CN1046879A - 可烧结的氧化锆粉末及其制备方法 - Google Patents

可烧结的氧化锆粉末及其制备方法 Download PDF

Info

Publication number
CN1046879A
CN1046879A CN90102519A CN90102519A CN1046879A CN 1046879 A CN1046879 A CN 1046879A CN 90102519 A CN90102519 A CN 90102519A CN 90102519 A CN90102519 A CN 90102519A CN 1046879 A CN1046879 A CN 1046879A
Authority
CN
China
Prior art keywords
weight
zirconium dioxide
lattice
making
sintered powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN90102519A
Other languages
English (en)
Other versions
CN1027689C (zh
Inventor
比阿特丽斯·米歇尔
卡尔·莫西曼
海因里希·霍夫曼
戴尔·奥弗特夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lonza AG
Original Assignee
Lonza AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lonza AG filed Critical Lonza AG
Publication of CN1046879A publication Critical patent/CN1046879A/zh
Application granted granted Critical
Publication of CN1027689C publication Critical patent/CN1027689C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/006Compounds containing, besides tantalum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Abstract

本发明涉及二氧化锆粉末,钛、钽及必要时镁、铝、钪、钇和稀土的氧化物添加剂嵌入二氧化锆晶格中。可烧结粉末通过对基本为水溶液的氢氧化锆和氢氧化物和/或水解氧化物的添加剂共同沉淀、干燥和焙烧得到。对水解敏感的原始物料如TiCl4用多元醇,如乙二醇以其反应产物的形式添加。

Description

本发明涉及可烧结的氧化锆粉末及其制备方法。
通常,要从部分稳定氧化锆(PSZ)或者四方晶体氧化锆(TZP)中制作陶瓷必需要二氧化锆粉末,以及分布尽可能均匀的稳定剂和/或合金添加剂。这可以这样达到,例如,从锆盐水溶液中(此溶液还含有所要求的合金元素的盐类)沉淀出锆与合金元素共同的氢氧化物或水解氧化物,再使其干燥和焙烧。其时,首先用氧化钇作稳定剂,氧化钇能均匀地溶解于以上述的方法所得到的粉末中,通常其含量约为3%(摩尔)[约为5-6%(重量)]。
虽然,由这种粉末制成的陶瓷在常温下具有良好的机械性能,但长期在100-400℃温度下,会因转变成单斜晶体而使强度急剧下降。
因此,人们很希望能提供含有其他稳定剂或合金元素的可烧结的氧化锆粉末,以阻止或延缓这种不希望有的强度下降。
然而,在几种潜在的稳定剂或者合金元素的情况下,采用由水溶液中共同沉淀的方法至今尚不可能,因为这些稳定剂或合金元素所提供的盐类在水溶液中没有足够的稳定性。特别要提到的是同水立即水解的TiCl4和TaCl5。这个困难至今是这样对待的,即使用可以以可控方式水解的相应的醇盐替代卤化物。由于与氯化物相比醇盐的价格相当高,故而这种方法成本也高。
本发明的目的在于提供一种可烧结的氧化锆粉末,这种粉末具有分布极为均匀且可供选择的稳定剂和合金添加剂,指出了一种不用醇盐制备的经济的方法。
本发明的目的是这样现实的:一种制作主要为四方氧化锆陶瓷体的可烧结的二氧化锆粉末,如果必要,还具有一种或多种镁、铝、钪、钇以及稀土的氧化物,其特征在于所说的粉末由50-99.9%(重量)二氧化锆组成,还至少含有一种钛和/或钽的氧化物并且全部补加的氧化物均嵌入二氧化锆的晶格中。
一种通过沉淀、过滤、洗涤、干燥及焙烧制备以上所述的可烧结的粉末的方法,其特征在于用至少一种选自由乙二醇、二乙二醇、三乙二醇、四乙二醇、1,2-丙二醇组成的组的多元醇,使至少一种钛(Ⅳ)和/或钽(Ⅴ)的卤化物转变,如有必要,紧接着用水稀释,再与锆盐水溶液混合,如有必要,该溶液可含有一种选自由镁、铝、钪、钇及稀土组成的组的一种金属的盐或者这些盐的一种混合物,以及用一种碱性溶液,使溶解的盐以氢氧化物和/或水解氧化物同时沉淀。
本发明的可烧结的粉末作为合金成分至少含有一种由嵌入在二氧化锆晶格中的氧化钛和氧化钽的氧化物,故而它们以固溶体(Mischkristall)形式存在。很明显,由这种极均匀的分布在X-射线衍射照片上看不到还原成附加结晶相的衍射线,而通常四方晶和/或单斜晶二氧化锆的衍射线的移动呈一种十分明显的直线,且与合金组分的含量有关。这明显地证明了由于固溶体的形成而改变了晶格常数。除了上述的两种氧化物之外,本发明的粉末还可以含有作稳定剂或合金元素的其他氧化物。这些添加剂是诸如镁、铝、钪、钇或稀土(镧和镧族元素)的氧化物。应用这些添加剂作为二氧化锆的稳定剂或者合金元素,不管是单个或者混合使用,就其本身而言已是公知的,但是本发明的粉末中,这些添加剂均嵌入氧化锆的晶格中。
添加剂的合适含量为总量的0.1-50%(重量),粉末相应含有二氧化锆50-99.9%(重量)。最大溶解度的添加剂浓度最好为90-100%。最大溶解度可以借助于X-射线衍射通过测定固溶体的晶格常数来确定。晶格常数随浓度增大以近乎直线变化,直到达到最大溶解度,超过最大溶解度则保持不变并出现新相。
表1所列为本发明的几种合金化的粉末与纯氧化锆相比较的晶格常数。
表1
相 a[ ] b[
Figure 901025194_IMG2
] c[
Figure 901025194_IMG3
] β[°]
ZrO2 ) m 5,1477 5,2030 5,3156 99,23
ZrO2 **) t 5,12 (5,12) 5,25 (90)
ZrO2+10 m 5,1193 5,1602 5,3247 98,812
Gew.%TiO2
ZrO2+10 m 5,0655 (5,0655) 5,1948 (90)
Gew.%TiO2
+2,5Gew.%Y2O3
m=单斜(monoklin)    *)按照A    STM-Kartei    Nr.13-307
t=四方(tetragonal)    **)按照A    STM-Kartei    Nr.17-923
本发明的可烧结的粉末由以下方法得到,即从基本上是锆和合金添加剂或稳定剂的水溶液中共同沉淀氢氧化物和/或水解氧化物,再通过过滤、洗涤,接着用干燥和焙烧等已知的方法继续处理上述所得的沉淀产物。
这里的氢氧化物或水解氧化物的概念,不仅是指具有精确组分的化合物(Mn+(OH)n-,而且也包括那些在足够高的pH值下从相应盐的水溶液中沉淀并可通过加热转变成氧化物的所有产物。
还令人惊异地发现,能在基本上是水溶液中加工出一些用水立即水解的盐,特别是卤化物,诸如TiCl4和TaCl5,如果此类盐事先用由乙二醇、二乙二醇、三乙二醇、四乙二醇、1,2-丙二醇或上述醇类的一种混合物组成的多元醇转变的话,在此这种转变时,形成一种澄清溶液,上述的盐或者卤化物可能以络合状或胶体状存在于此清液中。随溶解的金属盐或金属卤化物的浓度增大而出现粘度增大的现象表明了所形成产物的聚合特征。
在多元醇中,通过在强烈搅拌下缓慢地添加金属卤化物,优先地制备金属卤化物含量为1-20%(重量)的混合物。添加时释放的反应热则要冷却,以防温度过分上升。
接着,可以用水稀释所得的对水解敏感的金属盐或金属卤化物的溶液,以不使水解产物沉淀。水以大约1∶1到1∶3的比例,特别优先采用约用1∶1,在0-95℃,最好在20℃时加入。在这种情况下,也可发现产生一定的析热。
这一稀释步骤用于降低溶液的粘度以及易于进行其后的混合过程。稀释对产品的质量没有影响且使溶液处理和精确地调节所希望的组分变得容易。
然后,将多元醇中金属盐或金属卤化物的水稀释溶液同锆盐的水溶液混合。此种锆盐溶液在那些情况下不含有水解敏感的金属盐类,这些盐是氧化物的先导者,而这些氧化物作为二氧化锆的合金添加剂或稳定剂属于现有技术。属于此的例如镁、铝、钪、钇和稀土的氧化物。最好将这些添加剂作为氧化物放入盐酸溶液中。
主要采用二氯氧化锆作为锆盐,特别优先采用的是含量为15-30%(按ZrO2计)的二氢氧化锆溶液。混合最好在10-40℃下进行。当然,同样也可以对水解不敏感的盐带入具有多元醇的溶液里,这种先行的方式并没有别的优点。
这种最终得到的具有所有合金添加剂和稳定剂的基本上为锆盐的水溶液是强酸,pH值一般为<1。通过添加碱性溶液,当pH值在6-12.5时,产物沉淀。对沉淀特别有利于的pH值为6-8。沉淀时由合适的测量和计量计保持pH值并使其恒定,其波动不大于±0.3,则特别有利。
主要采用氨或氢氧化钠作为碱,特别优先采用的为氨水溶液。
带有所有合金添加剂和稳定剂的锆盐酸溶液优先在同时添加水和碱性溶液下中和。这种氢氧化物或者水解氧化物作为陶瓷粉末的先导者均匀地沉淀。这首先发生在使用具有分散搅拌器的流量反应器和借助定量给料泵输入溶液的连续过程中。
制备本发明可烧结粉末的其余步骤以已知的方法进行。为此,将沉淀之后存在的悬浮液进行适当过滤,例如采用压滤,并且要洗涤滤饼,直至所采用的盐中没有阴离子,如果用氢氧化钠作为碱,则应直至证明在洗涤水中不再有钠,再进行干燥。将干燥后的滤饼研磨且在600-1000℃下焙烧。
焙烧之后,将形成的烧结块进行研磨,例如在球磨机中进行湿磨所得的研磨泥浆优先采用喷雾干燥。
本发明的可烧结的粉末优先用来制备一些对机械性能要求特别高的烧结件,尤其是一些用于潮湿的或者腐蚀性气氛中或者在高温下长期使用的烧结件。
典型的实例是用于化学用的泵部件、马达部件、生物陶瓷等等。
以下,将结合实施例对本发明的可烧结粉末和由其制成的烧结产品的性能以及本发明的方法的实施作详细地说明。
实施例1
ZrO2/TiO2/Y2O3粉末的制备
按最终产品所要求组分[ZrO287.5%(重量),TiO210%(重量),Y2O32.5%(重量)]以溶解状态混合这三种合金元素。同时,将单个组分如下地转入水溶液中:
a)使ZrOCl2·8H2O溶于水。溶液浓度为15-25%(重量)(按ZrO2计)。
b)用稀盐酸(大约20%)将Y2O3转入YCl3的溶液中。溶液的浓度为10-15%(重量)(按Y2O3计)。
c)通过添加乙二醇,使TiCl4稀释成浓度为8-12%(重量)(以TiO2计)。同时,使TiCl4处于一种用水再稀释而不水解的状态。
溶液被混合,在强力搅拌下,粉末在酸性反应溶液中,在室温下同pH值恒定的氨溶液或氢氧化钠溶液一起被沉淀。过滤沉淀产物且洗涤去除氯或者去除氯和钠,然后干燥,且在650-750℃下焙烧。所得的烧结块在球磨机中经湿磨磨碎。用喷雾干燥使以悬浮液存在的粉末脱水。
这种沉淀的粉末具有规则的亚微细粒度分布和均匀的化学成分。
晶粒度    20-30nm
比表面(BET):30-40m2/g
单斜的和/或四方的二氧化锆的衍射线的位移表明不同元素在二氧化锆晶格中的溶解度。这种粉末的压制件以3-30K/分钟的加热速度、1200-1550℃的最高加热温度下保持5分钟到10小时进行烧结。对由此所得的烧结件测定密度、显微硬度、按Niihara的断裂韧性K1C以及抗弯强度。
显微硬度的测定要在一只带有金刚石的Durimet 小型硬度计上,按Vichers在100g载荷下进行。显微硬度为5次测量的平均值。
按Vickersr的金刚石同样也用于测定断裂韧性,31,25kg加载5秒钟。
此外,在3.8MPa压力的高压釜中通过用250℃水处理检验单斜晶相的转变。
最好的结果在加热速度为3-10K/分钟以及在1250-1350℃下保持1小时的情况下达到。图1-3所示为由此所得的试样的机械性能与烧结温度和加热速度的关系。
图1所示为1200-1550℃烧结温度和3,10和30K/分钟加热速度下的所得的密度,以理论密度的%表示。
图2和3所示分别为在上述相同条件下得到的硬度和断裂韧性。
图4所示为按现有技术[用Y2O33%(摩尔)稳定,曲线a]和由本发明的粉末(曲线b)制成的烧结件的从四方晶到单斜的晶型转变。所绘制的曲线为单斜晶组分与在250℃水和3.8MPa压力下作用时间的关系。按现有技术制成的产品大约2小时之后已都转变成单斜晶型,而本发明的产品在16小时之后实际上仍都为四方晶型。
以下所示为在最佳烧结条件下所达到的机械性能:
硬度    >8GPa
K1C>8MPa· m
抗弯强度    >600MPa
组织结构呈规则状,粒度<300nm。
实施例2
ZrO2/TiO2/Y2O3/Al2O3粉末的制备
实施例2的粉末以与实施例1相同的方法制备,但还共沉淀Al2O3。为此,铝以AlCl3盐酸溶液的状态同YCl3共同加入,沉淀用NaOH溶液进行。制成的粉末组分为ZrO267.5%(重量)、TiO210(重量)、Y2O32.5(重量)以及Al2O320%(重量)。晶粒度和比表面同实施例1。试样在1500℃下烧结,以获得最大密度。硬度>12GPa,K1C>7MPa· ,抗弯强度>500MPa。潮湿气氛中的稳定性基本上也优于Y-TZP3%(摩尔)的。
实施例3
ZrO2/TiO2/Ta2O5粉末的制备
用与实施例1相同的方法,由ZrOCl2·8H2O、TiCl4及TaCl5制备出由ZrO255%(重量)、TiO210%(重量)及Ta2O535%(重量)组成的粉末并且在1500℃下烧结。接着进行试样测定,其硬度>10GPa,断裂韧性K1C>6MPa·

Claims (19)

1、一种用于制作主要为四方氧化锆陶瓷体的可烧结的二氧化锆粉末,如果必要,还具有一种或多种镁、铝、钪、钇以及稀土的氧化物,其特征在于所说的粉末由50-99.9%(重量)二氧化锆组成,还至少含有一种钛和/或钽的氧化物,并且全部补加的氧化物均嵌入二氧化锆的晶格中。
2、根据权利要求1所述的可烧结的粉末,其特征在于所说的氧化物以最大溶解度为90-100%的数量嵌入二氧化锆的晶格中。
3、根据权利要求1或2所述的可烧结的粉末,其特征在于使0.1-15%(重量)TiO2嵌入二氧化锆的晶格中。
4、根据权利要求1或2所述的可烧结的粉末,其特征在于使7.5-12.0%(重量)TiO2和2.5-3.5%(重量)Y2O3嵌入二氧化锆的晶格中。
5、根据权利要求1或2所述的可烧结的粉末,其特征在于使7.5-12.0%(重量)TiO2、2.5-3.5%(重量)Y2O3及5.0-30.0%(重量)Al2O3嵌入二氧化锆的晶格中。
6、根据权利要求1或2所述的可烧结的粉末,其特征在于使13.0-40.0%(重量)Ta2O5嵌入二氧化锆晶格中。
7、根据权利要求1或2所述的可烧结的粉末,其特征在于使13.0-40.0%(重量)Ta2O5和0.1-5.0%(重量)MgO嵌入二氧化锆晶格中。
8、根据权利要求1或2所述的可烧结的粉末,其特征在于使0.1-12.0%(重量)TiO2和5.0-20.0%(重量)CeO2嵌入二氧化锆晶格中。
9、根据权利要求1或2所述的可烧结的粉末,其特征在于使0.1-12.0%(重量)TiO2和5.0-10.0%(重量)Sc2O3嵌入二氧化锆晶格中。
10、一种通过沉淀、过滤、洗涤、干燥及焙烧制备根据权利要求1所述的可烧结的粉末的方法,其特征在于用至少一种选自由乙二醇、二乙二醇、三乙二醇、四乙二醇、1,2-丙醇组成的组的多元醇,使至少一种钛(Ⅳ)和/或钽(Ⅴ)的卤化物转变,在此情况下,紧接着用水稀释,再与锆盐水溶液混合,如有必要,该溶液可含有一种选自由镁、铝、钪、钇及稀土组成的组的一种金属的盐或者这些盐的一种混合物,以及用一种碱性溶液,使溶解的盐以氢氧化物和/或水解氧化物同时沉淀。
11、根据权利要求10所述的方法,其特征在于用TiCl4和/或TaCl5作为钛(Ⅳ)和/或钽(Ⅴ)的卤化物添加。
12、根据权利要求10或11所述的方法,其特征在于用乙二醇作为多元醇添加。
13、根据权利要求10到12的一项或多项所述的方法,其特征在于用一种含锆15-30%(重量)(以ZrO2计)的二氯氧化锆溶液作为锆盐水溶液添加。
14、根据权利要求10到13的一项或多项所述的方法,其特征在于用氨作为碱添加。
15、根据权利要求10到13的一项或多项所述的方法,其特征在于用氢氧化钠作为碱添加。
16、根据权利要求10到15的一项或多项所述的方法,其特征在于在pH值为6-12.5范围内进行沉淀反应。
17、根据权利要求10到16的一项或多项所述的方法,其特征在于在pH值为6-8范围内进行沉淀反应。
18、根据权利要求10到17的一项或多项所述的方法,其特征在于使沉淀反应时的pH值保持恒定,其波动在±0.3之内。
19、根据权利要求1所述的可烧结的粉末用来制作四方晶的或部分稳定的氧化锆陶瓷的烧结成形件。
CN90102519A 1989-05-02 1990-04-25 可烧结的氧化锆粉末及其制备方法 Expired - Fee Related CN1027689C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1666/89 1989-05-02
CH166689 1989-05-02

Publications (2)

Publication Number Publication Date
CN1046879A true CN1046879A (zh) 1990-11-14
CN1027689C CN1027689C (zh) 1995-02-22

Family

ID=4215782

Family Applications (1)

Application Number Title Priority Date Filing Date
CN90102519A Expired - Fee Related CN1027689C (zh) 1989-05-02 1990-04-25 可烧结的氧化锆粉末及其制备方法

Country Status (7)

Country Link
US (2) US5030601A (zh)
EP (1) EP0395912B1 (zh)
JP (1) JPH02296727A (zh)
CN (1) CN1027689C (zh)
AT (1) ATE96127T1 (zh)
DE (1) DE59003114D1 (zh)
DK (1) DK0395912T3 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1062204C (zh) * 1994-12-29 2001-02-21 武汉工业大学 氧化锆等离子喷涂粉末的制备方法
CN1084304C (zh) * 1999-11-19 2002-05-08 清华大学 氧化锆固溶体超细粉的合成方法
CN100480213C (zh) * 2002-12-06 2009-04-22 中国科学院上海硅酸盐研究所 纳米四方氧化锆-氮化钛复合粉体及原位选择氮化合成法
CN103224391A (zh) * 2013-03-22 2013-07-31 西北有色金属研究院 一种多元稳定氧化锆抗热腐蚀涂层材料
CN106687414A (zh) * 2014-08-21 2017-05-17 巴特尔纪念研究院 制造用于能量存储设备和能量应用的增强型β"‑氧化铝固体电解质的方法
CN108947527A (zh) * 2016-04-20 2018-12-07 天津中天精科科技有限公司 一种陶瓷刀具及其制备方法
CN110183236A (zh) * 2018-02-22 2019-08-30 高佑君 一种高温耐火复合材料及其制备方法
CN113371756A (zh) * 2021-07-13 2021-09-10 河南工业大学 一种La-Sc-ZrO2纳米晶体材料及其制备方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9026952D0 (en) * 1990-12-12 1991-01-30 Tioxide Group Services Ltd Stabilised metal oxides
DE4100105A1 (de) * 1991-01-04 1992-07-09 Bosch Gmbh Robert Festelektrolytkeramik fuer elektrochemische anwendungen, insbesondere fuer gassensoren, sowie verfahren zu ihrer herstellung
GB9123280D0 (en) * 1991-11-02 1991-12-18 Tioxide Group Services Ltd Metallic oxides
CA2089013A1 (en) * 1992-02-21 1993-08-22 Josef Heveling Process for the preparation of 6-hydroxy-2, 5, 7, 8- tetraalkyl-2-(4-aminophenoxymethyl) chromans
CA2089012A1 (en) * 1992-02-21 1993-08-22 Josef Heveling Process for the preparation of 6-hydroxy-2,5,7,8-tetra- alkyl-2-(4-aminophenoxymethyl) chromans
FR2692246B1 (fr) * 1992-06-12 1994-09-16 Rhone Poulenc Chimie Procédé de préparation d'un sol d'un élément du groupe 5a, notamment de niobium ou de tantale.
US5762485A (en) * 1996-09-06 1998-06-09 Eastman Kodak Company Zirconia and zirconia composite ceramic shafts for gear micropumps and method of making same
US5723101A (en) * 1996-10-15 1998-03-03 Rhone-Poulenc Inc. Method for producing cerium and zirconium oxides, mixed oxides and solid solutions having improved thermal stability
US5747401A (en) * 1996-10-15 1998-05-05 Rhone-Poulenc Inc. Cerium and zirconium oxides, mixed oxides and solid solutions having improved thermal stability
US5780178A (en) * 1996-10-31 1998-07-14 The United States Of America As Represented By The Secretary Of The Navy Scandia, yttria-stabilized zirconia for ultra-high temperature thermal barrier coatings
DE19653629A1 (de) * 1996-12-20 1998-06-25 Basf Ag Monoklines Zirconiumoxid mit hoher Oberfläche
AU6876098A (en) * 1997-04-04 1998-10-30 Rhoda Inc Cerium oxides, zirconium oxides, ce/zr mixed oxides and ce/zr solid solutions having improved thermal stability and oxygen storage capacity
US6133194A (en) * 1997-04-21 2000-10-17 Rhodia Rare Earths Inc. Cerium oxides, zirconium oxides, Ce/Zr mixed oxides and Ce/Zr solid solutions having improved thermal stability and oxygen storage capacity
JP4184487B2 (ja) 1997-08-15 2008-11-19 昭和電工株式会社 二酸化チタン微粒子の製造方法
DE19735781A1 (de) * 1997-08-18 1999-02-25 Forschungszentrum Juelich Gmbh Scandium-stabilisiertes Zirkoniumoxid mit zugesetztem Metalloxid
US6803138B2 (en) * 2001-07-02 2004-10-12 Nextech Materials, Ltd. Ceramic electrolyte coating methods
ITFI20020052A1 (it) * 2002-03-28 2003-09-29 Consorzio Interuniversitario P Processo per la preparazione di nano - e micro-particelle di ossidi eidrossidi di metalli del secondo gruppo e di transizione, nano-e micro
US7760432B2 (en) * 2002-04-25 2010-07-20 Honeywell International Inc. Photochromic resistant materials for optical devices in plasma environments
DE10219879A1 (de) * 2002-05-03 2003-11-20 Basf Ag Katalysatorträger und Verfahren zu seiner Herstellung
US6858334B1 (en) * 2003-12-30 2005-02-22 General Electric Company Ceramic compositions for low conductivity thermal barrier coatings
US6916561B1 (en) * 2003-12-30 2005-07-12 General Electric Company Thermal barrier coatings with lower porosity for improved impact and erosion resistance
US6869703B1 (en) * 2003-12-30 2005-03-22 General Electric Company Thermal barrier coatings with improved impact and erosion resistance
US6875529B1 (en) * 2003-12-30 2005-04-05 General Electric Company Thermal barrier coatings with protective outer layer for improved impact and erosion resistance
JP4393963B2 (ja) * 2004-03-17 2010-01-06 住友化学株式会社 光触媒体コーティング液
EP1591421A1 (en) * 2004-04-29 2005-11-02 Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, C.S.G.I Process for preparing nano- and micro-sized particles of inorganic compounds using a water-structure modifier
JP2008511524A (ja) * 2004-09-01 2008-04-17 アドバンスド ナノテクノロジー リミテッド ジルコニアセラミック
WO2006080730A1 (en) * 2004-10-08 2006-08-03 Lg Chem, Ltd. Zirconia-alumina nano-composite powder and preparation method thereof
US20090061230A1 (en) * 2004-11-02 2009-03-05 Nanogate Ag Synthesis of Titanium Dioxide Nanoparticles
WO2007033934A2 (de) * 2005-09-20 2007-03-29 Basf Se Verfahren zur ermittlung der tortuosität, katalysatorträger, katalysator und verfahren zur dehydrierung von kohlenwasserstoffen
CN1326778C (zh) * 2005-11-09 2007-07-18 山西大学 一种单一四方晶相结构ZrO2的制备方法
FR2897612B1 (fr) * 2006-02-17 2008-05-16 Saint Gobain Ct Recherches Grain fondu d'alumine-oxyde de titane-zircone
FR2954767B1 (fr) * 2009-12-24 2014-01-24 Saint Gobain Ct Recherches Poudre de granules de zircone et d'alumine
FR2954761B1 (fr) * 2009-12-24 2015-11-27 Saint Gobain Ct Recherches Poudre de granules de zircone

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2911370A (en) * 1959-11-03 Time after polarization
DE1294947B (de) * 1962-05-08 1969-05-14 Degussa Verfahren zum Aufschliessen von Zirkonsand
NL135252C (zh) * 1965-10-22 1900-01-01
US3572825A (en) * 1968-10-21 1971-03-30 Harold L Davis Wig styling rack
US3634113A (en) * 1968-10-30 1972-01-11 Larry L Fehrenbacher Stabilized zirconium dioxide and hafnium dioxide compositions
FR2102391A5 (fr) * 1970-03-24 1972-04-07 Gnii Sulfatozirconates acides de sodium, d'ammonium ou sodico-ammoniacauxet leur procede de preparation
GB1350389A (en) * 1970-08-26 1974-04-18 Atomic Energy Authority Uk Processes for precipitating metal compounds
US4062790A (en) * 1971-02-08 1977-12-13 Matsushita Electric Industrial Co., Ltd. Piezoelectric ceramic compositions
CA981010A (en) * 1971-04-20 1976-01-06 Matsushita Electric Industrial Co., Ltd. Piezoelectric ceramic compositions
US3923675A (en) * 1973-08-09 1975-12-02 Us Air Force Method for preparing lead lanthanum zirconate-titanate powders
US3862829A (en) * 1973-08-14 1975-01-28 Us Army Method of processing ferroelectric devitrifiable glass ceramics
US4087366A (en) * 1973-11-30 1978-05-02 Tdk Electronic Company Method of preparing a piezoelectric ceramic composition
US4061583A (en) * 1974-03-13 1977-12-06 Murata Manufacturing Co., Ltd. Preparation of titanates
US4598053A (en) * 1974-05-23 1986-07-01 Sumitomo Electric Industries, Ltd. Ceramic compacts
JPS5915503B2 (ja) * 1974-11-21 1984-04-10 日本電気株式会社 ジルコン・チタン酸鉛を含む多成分系圧電性磁器用結晶化微粉末の製造方法
US3997690A (en) * 1975-05-27 1976-12-14 Honeywell Inc. Method of adjusting refractive index of PLZT optical coating on optical element
JPS5241616A (en) * 1975-09-30 1977-03-31 Asahi Glass Co Ltd Zirconia containing high antiicorrosive thermal fusion refractories
US4027209A (en) * 1975-10-02 1977-05-31 Sprague Electric Company Ceramic capacitor having a silver doped dielectric of (Pb,La)(Zr,Ti)O3
GB1495247A (en) * 1976-04-09 1977-12-14 Communic Consult Ltd Stabilised dc power supply
US4152281A (en) * 1978-04-17 1979-05-01 General Electric Company Molten salt synthesis of lead zirconate titanate solid solution powder
US4152280A (en) * 1978-04-17 1979-05-01 General Electric Company Molten salt synthesis of modified lead zirconate titanate solid solution powder
JPS5520208A (en) * 1978-07-25 1980-02-13 Toko Inc Piezoelectric porcelain composition
JPS6022835B2 (ja) * 1978-08-17 1985-06-04 株式会社村田製作所 圧電性磁器の製造方法
JPS5939913B2 (ja) * 1978-08-17 1984-09-27 株式会社村田製作所 圧電性磁器の製造方法
DE2854200C2 (de) * 1978-12-15 1981-02-05 Th. Goldschmidt Ag, 4300 Essen Verfahren zur Herstellung von Zirkonoxid aus technischem Calciumzirkonat
US4219866A (en) * 1979-01-12 1980-08-26 Sprague Electric Company Ceramic capacitor having a dielectric of (Pb,La) (Zr,Ti)O3 and BaTiO3
NL7903964A (nl) * 1979-05-21 1980-11-25 Philips Nv Pieezo-elektrisch lichaam voor een elektromechanisch omvormingselement.
DE2920795A1 (de) * 1979-05-22 1980-12-04 Max Planck Gesellschaft Hochfester und temperaturwechselbestaendiger keramikformkoerper, insbesondere aus mullit, seine herstellung und verwendung
DE2927128C2 (de) * 1979-07-05 1981-06-11 Th. Goldschmidt Ag, 4300 Essen Verfahren zur Herstellung von basischem Zirkoncarbonat hoher Reinheit
US4283228A (en) * 1979-12-05 1981-08-11 University Of Illinois Foundation Low temperature densification of PZT ceramics
US4391901A (en) * 1980-06-13 1983-07-05 The United States Of America As Represented By The United States Department Of Energy Photosensitivity enhancement of PLZT ceramics by positive ion implantation
US4293534A (en) * 1980-08-22 1981-10-06 General Electric Company Molten salt synthesis of alkaline earth titanates, zirconates and their solid solutions
US4406699A (en) * 1981-06-09 1983-09-27 Beck David E High-temperature electrically conductive ceramic composite and method for making same
US4565642A (en) * 1982-07-14 1986-01-21 Hitachi, Ltd. Piezoelectric substances
US4507394A (en) * 1982-12-24 1985-03-26 Ngk Insulators, Ltd. High electric resistant zirconia and/or hafnia ceramics
JPS59152266A (ja) * 1983-02-18 1984-08-30 東芝モノフラツクス株式会社 ジルコニア質耐火物
US4505886A (en) * 1983-07-01 1985-03-19 Nl Industries, Inc. Process for preparing high quality titanium dioxide
US4501818A (en) * 1983-07-05 1985-02-26 Norton Company Process for the preparation of ceramic powders
US4520114A (en) * 1983-09-26 1985-05-28 Celanese Corporation Production of metastable tetragonal zirconia
US4621936A (en) * 1983-10-14 1986-11-11 Corning Glass Works Zirconia pen balls
US4533647A (en) * 1983-10-27 1985-08-06 The Board Of Regents Acting For And On Behalf Of The University Of Michigan Ceramic compositions
JPS60127240A (ja) * 1983-12-14 1985-07-06 Onoda Cement Co Ltd 酸化ジルコニウム微粉の製造方法
DE3586115D1 (de) * 1984-08-07 1992-07-02 Nippon Catalytic Chem Ind Feinteiliges zirkondioxydpulver und herstellungsverfahren.
US4696810A (en) * 1984-08-16 1987-09-29 National Institute For Researches In Inorganic Materials Wet process for the production of a readily sinterable powder material of perovskite or its solid solution
JPS61127624A (ja) * 1984-11-22 1986-06-14 Denki Kagaku Kogyo Kk ペロブスカイト型酸化物固溶体の製造方法
US4627892A (en) * 1985-02-22 1986-12-09 University Patents, Inc. Electrochemical sensors and methods for their manufacture and use
EP0199459B1 (en) * 1985-04-11 1992-01-15 Corning Glass Works High toughness ceramic alloys
JPS61242954A (ja) * 1985-04-17 1986-10-29 住友電気工業株式会社 セラミツクドリル
JPS61242955A (ja) * 1985-04-17 1986-10-29 住友電気工業株式会社 セラミツクエンドミル
NZ215774A (en) * 1985-05-02 1988-08-30 Ici Australia Ltd Purification of zirconium compounds
US4624796A (en) * 1985-06-07 1986-11-25 Celanese Corporation Piezoelectric filler and flexible piezoelectric composites
US4769079A (en) * 1985-06-24 1988-09-06 The Dow Chemical Company Insoluble pigments and preparation thereof
US4640716A (en) * 1985-06-26 1987-02-03 Engelhard Corporation High bulking pigment and method of making same
US4626369A (en) * 1985-06-26 1986-12-02 The United States Of America As Represented By The Secretary Of The Navy Lead zirconate titanate ceramics
JPH06102574B2 (ja) * 1985-08-20 1994-12-14 株式会社ノリタケカンパニーリミテド 耐熱安定性に優れた高靭性セラミック焼結体及びその製造方法
CA1259080A (en) * 1985-09-06 1989-09-05 Nobuo Kimura High density alumina zirconia ceramics and a process for production thereof
US4639356A (en) * 1985-11-05 1987-01-27 American Cyanamid Company High technology ceramics with partially stabilized zirconia
JPS62260718A (ja) * 1986-05-06 1987-11-13 Shigeyuki Somiya 水熱法による高純度ジルコニア−アルミナ系超微粉末の製造方法
US4741894A (en) * 1986-06-03 1988-05-03 Morton Thiokol, Inc. Method of producing halide-free metal and hydroxides
CA1262813A (en) * 1986-06-26 1989-11-14 Corning Glass Works Preparation of high purity, homogeneous zirconia mixtures
US4990324A (en) * 1986-12-17 1991-02-05 Nippondenso Co., Ltd. Method for producing two-component or three-component lead zirconate-titanate
GB8709515D0 (en) * 1987-04-22 1987-05-28 Tioxide Group Plc Stabilised metallic oxides
US4849140A (en) * 1987-08-05 1989-07-18 Southwest Research Institute Method for producing monosized ceramic particle through organometallic swollen latex particles
US4886768A (en) * 1987-11-13 1989-12-12 Board Of Regents Acting For And On Behalf Of University Of Michigan Toughened ceramics
US4891343A (en) * 1988-08-10 1990-01-02 W. R. Grace & Co.-Conn. Stabilized zirconia

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1062204C (zh) * 1994-12-29 2001-02-21 武汉工业大学 氧化锆等离子喷涂粉末的制备方法
CN1084304C (zh) * 1999-11-19 2002-05-08 清华大学 氧化锆固溶体超细粉的合成方法
CN100480213C (zh) * 2002-12-06 2009-04-22 中国科学院上海硅酸盐研究所 纳米四方氧化锆-氮化钛复合粉体及原位选择氮化合成法
CN103224391A (zh) * 2013-03-22 2013-07-31 西北有色金属研究院 一种多元稳定氧化锆抗热腐蚀涂层材料
CN106687414A (zh) * 2014-08-21 2017-05-17 巴特尔纪念研究院 制造用于能量存储设备和能量应用的增强型β"‑氧化铝固体电解质的方法
US11145894B2 (en) 2014-08-21 2021-10-12 Battelle Memorial Institute Process for fabrication of enhanced β″-alumina solid electrolytes for energy storage devices and energy applications
CN108947527A (zh) * 2016-04-20 2018-12-07 天津中天精科科技有限公司 一种陶瓷刀具及其制备方法
CN110183236A (zh) * 2018-02-22 2019-08-30 高佑君 一种高温耐火复合材料及其制备方法
CN113371756A (zh) * 2021-07-13 2021-09-10 河南工业大学 一种La-Sc-ZrO2纳米晶体材料及其制备方法

Also Published As

Publication number Publication date
DE59003114D1 (de) 1993-11-25
EP0395912B1 (de) 1993-10-20
CN1027689C (zh) 1995-02-22
DK0395912T3 (da) 1993-12-06
ATE96127T1 (de) 1993-11-15
AU5452090A (en) 1990-11-08
EP0395912A1 (de) 1990-11-07
JPH02296727A (ja) 1990-12-07
US5030601A (en) 1991-07-09
AU634769B2 (en) 1993-03-04
US5104832A (en) 1992-04-14

Similar Documents

Publication Publication Date Title
CN1027689C (zh) 可烧结的氧化锆粉末及其制备方法
DE3813731C2 (de) Zusammensetzung mit Zirkoniumdioxid und Verfahren zu ihrer Herstellung
KR920007020B1 (ko) 고강도 산화지르코늄형 소결체 및 그의 제조방법
JP5034349B2 (ja) ジルコニア微粉末及びその製造方法並びにその用途
EP2819973B1 (de) Verfahren zur herstellung eines keramischen sinterformkörpers aus y2o3-stabilisiertem zirkonoxid
US4873064A (en) Powder of coagulated spherical zirconia particles and process for producing them
US5066617A (en) Method for producing plzt powder
JP2003192452A (ja) ジルコニア粉末およびその焼結体
JPS6214490B2 (zh)
CN1257132C (zh) 高四方相氧化锆-氧化铝复合粉料及其制备方法
JP6665542B2 (ja) ジルコニア粉末及びその製造方法
JP4253877B2 (ja) ジルコニア微粉末及びその製造方法
KR20210042019A (ko) 지르코니아 소결체 및 이의 제조 방법
CN104528823A (zh) 一种氧化锆粉体、其制品及制备方法
WO2003076336A1 (fr) Oxyde composite au cerium, produit fritte utilisant cet oxyde, et procede d'elaboration correspondant
CN1016962B (zh) 掺杂的钛酸钡基介电组合物粉末
JPH05170442A (ja) ジルコニア系ゾルの製造方法
JP2001080962A (ja) ジルコニア焼結体及びその製造方法
JP2645826B2 (ja) 耐熱劣化性高強度ジルコニア・アルミナセラミツクス及びその製造方法
CN116744877A (zh) 包含针状金属氧化物的氧化锆烧结体
JPS61141619A (ja) ジルコニア微粉体の製造法
JP3355655B2 (ja) 水和ジルコニアゲルおよびジルコニア粉末の製造方法
JP4696338B2 (ja) ジルコニア微粉末の製造方法
JPS623004A (ja) 湿式法による易焼結性ペロブスカイト原料粉末の製造方法
EP0351827A2 (en) Zirconia-based sintered material and process for producing the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: Goslar Germany 38462

Applicant after: H.C Starkey West Company Co.

Address before: Basel, Switzerland

Applicant before: Lonza Ltd.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: LONZA AG TO: H.CNASDAQ WEST A LIMITED COMPANY

C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee