CN104790458A - 控制工业机械的铲动参数 - Google Patents

控制工业机械的铲动参数 Download PDF

Info

Publication number
CN104790458A
CN104790458A CN201510108985.4A CN201510108985A CN104790458A CN 104790458 A CN104790458 A CN 104790458A CN 201510108985 A CN201510108985 A CN 201510108985A CN 104790458 A CN104790458 A CN 104790458A
Authority
CN
China
Prior art keywords
parameter
industrial machinery
function
value
shovel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510108985.4A
Other languages
English (en)
Other versions
CN104790458B (zh
Inventor
李武英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joy Global Surface Mining Inc
Original Assignee
Harnischfeger Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harnischfeger Technologies Inc filed Critical Harnischfeger Technologies Inc
Priority to CN201810952793.5A priority Critical patent/CN109113121B/zh
Publication of CN104790458A publication Critical patent/CN104790458A/zh
Application granted granted Critical
Publication of CN104790458B publication Critical patent/CN104790458B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/46Dredgers; Soil-shifting machines mechanically-driven with reciprocating digging or scraping elements moved by cables or hoisting ropes ; Drives or control devices therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/304Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom with the dipper-arm slidably mounted on the boom
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/425Drive systems for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2016Winches
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)

Abstract

本公开提供了控制工业机械的铲动参数。一种工业机械,包括铲斗、铲斗柄部、吊杆、铲动马达、提升马达、摆动马达、第一传感器、第二传感器和控制器。第一传感器生成与铲斗柄部角度相关的第一信号,而第二传感器生成与提升绳角度相关的第二信号。第一信号和第二信号由控制器接收。控制器基于第一和第二信号,确定收缩扭矩值。收缩扭矩值与收缩扭矩阈值相比较。如果收缩扭矩值大于或者等于阈值,则铲动马达的收缩扭矩被设定为最大值。如果收缩扭矩小于阈值,则铲动马达的收缩扭矩被设定为缺省值。

Description

控制工业机械的铲动参数
相关申请的交叉引用
本申请要求2014年1月21日提出的、申请号为No.61/929,646的美国申请的权益,该文献通过引用方式全文引入本文。
背景技术
本发明涉及控制诸如电动绳铲或者动力铲的工业机械的铲动参数。
发明内容
诸如电动绳铲或者动力铲、索斗铲等的工业机械被用于执行挖掘操作,以从例如矿山工作面(a bank of a mine)上移除材料。当设计这种工业机械的时候,受限于设计的一个要素在于机器较大的机器重量、较大的有效负载以及较大的组件尺寸造成的结构负载承受力的增加。如此,工业机械被制造得较大,工业机械承受的结构负载增加。工业机械上的结构负载会导致绕着工业机械的轴线发生向前或者向后的倾斜力矩,对工业机械的组件造成伤害,性能降低等。
例如,当铲处于挖掘操作尾声的时候,工业机械承受的结构负载会变得最大化,因为铲附件(例如,铲斗)和铲附件之中的挖掘材料在离工业机械最远的位置进行悬吊。工业机械承受的结构负载也受到从挖掘循环的尾声转变到摆动循环的开始的影响,在摆动循环中高收缩力突然间施加到铲斗柄部上。例如,当铲斗从工作面上拉出,铲动马达扭矩可以从约100%铲动力变为约100%的收缩力,尽管所需收缩力在挖掘循环的尾声可以是最小。所施加收缩力和铲斗以及铲斗中材料的重量的组合导致工业机械上的高结构负载。工业机械上的这种结构负载的效果是最终对工业机械的执行能力有所限制的设计因素。
本文所述的本发明提供了对工业机械的控制,使得对于给定铲斗位置仅施加了必要量的收缩力(例如,收缩马达扭矩)。通过动态地控制收缩力的量(例如,挖掘操作期间),本发明可以减少工业机械上的动态结构负载以及倾斜力矩。此外,通过作为收缩力作用的结果减少工业机械所承受的负载,工业机械的有效负载会增加,而在工业机械上的负载不会对应增加(即,有效负载和收缩力的组合造成的工业机械上的负载保持接近常量,但是收缩力造成的负载减少会允许有效负载增加)。由此,本发明允许工业机械的更大的铲斗和更重的有效负载,而不会增加工业机械的其他结构或组件(例如,门架、回转平台、辊配件等)的尺寸,并且不会增加工业机械上的结构负载。
在一个实施例中,本发明提供了一种工业机械,该工业机械尤其包括铲斗、铲斗柄部、吊杆、铲动马达、提升马达、摆动马达、第一传感器、第二传感器以及控制器。第一传感器生成与铲斗柄部角度有关的第一信号,并且第二传感器生成与提升绳角度有关的第二信号。第一信号和第二信号由控制器接收。控制器基于第一信号和第二信号来确定收缩扭矩值。收缩扭矩值与收缩扭矩阈值进行比较。如果收缩扭矩值大于或等于阈值,则铲动马达的收缩扭矩被设定为最大值。如果收缩扭矩值小于阈值,则铲动马达的收缩扭矩被设定为缺省值。在其他实施例中,铲动马达的收缩力可以设定为作为工业机械的参数(例如,铲斗柄部角度、绳角度等)函数进行确定或者计算的值。
在另一个实施例中,本发明提供了一种工业机械,该工业机械包括附接到铲斗柄部的铲斗、具有收缩扭矩参数的铲动马达、能操作为对提升绳施加力的提升马达、第一传感器、第二传感器以及控制器。第一传感器生成与工业机械的第一参数有关的第一信号,第一信号由控制器接收。第二传感器生成与工业机械的第二参数相关的第二信号,第二信号也是由控制器接收。控制器基于第一信号和第二信号来确定收缩扭矩极限。控制器把铲动马达的收缩扭矩参数设定成收缩扭矩极限,并以收缩扭矩参数或者低于该收缩扭矩参数来操作工业机械。
在另一个实施例中,本发明提供了一种工业机械,该工业机械包括附接到铲斗柄部的铲斗、具有收缩扭矩参数的铲动马达、能操作为对提升绳施加力的提升马达、第一传感器、第二传感器以及控制器。第一传感器生成与工业机械的第一参数有关的第一信号,第一信号由控制器接收。第二传感器生成与工业机械的第二参数相关的第二信号,第二信号也是由控制器接收。控制器基于第一信号确定第一参数的值,并比较第一参数的值与第一阈值。控制器基于第二信号确定第二参数的值,并比较第二参数的值与第二阈值。基于第一参数的值与第一阈值的比较以及第二参数的值与第二阈值的比较,控制器确定收缩扭矩极限,并比较收缩扭矩极限和第三极限。如果收缩扭矩极限大于或者等于第三阈值,则控制器将铲动马达的收缩扭矩参数设定为第一值。如果收缩扭矩极限小于第三阈值,则控制器将铲动马达的收缩扭矩参数设定为第二值。第一值大于第二值。控制器以收缩扭矩参数或者低于收缩扭矩参数来操作工业机械。
在另一个实施例中,本发明提供控制工业机械的启动装置的方法。该工业机械包括传感器和处理器。该方法包括传感器,该传感器生成与工业机械的参数相关的信号以及在处理器处接收信号。该方法还包括基于与工业机械的参数相关的信号来确定收缩力极限,将启动装置的铲动参数设定为收缩力极限,并以收缩扭矩参数或者低于该收缩扭矩参数操作工业机械。
在详细解释本发明的任何实施例之前,应当理解的是本发明不限于在以下说明中详述以及在附图中示出的结构细节以及组件布置的应用。本发明能为其他实施例并以各种方式实践或者执行。同样地,应当理解的是本文所用措辞和术语都是出于说明的目的,且不应被示为限制。“包括”、“包含”、或“具有”及其变形在本文中的使用是指包含了此后所列的项目及其等同物以及额外的项目。除非另外限定或者限制,术语“安装”、“连接”、“支撑”、及“耦接”及其变形广泛使用并包含了直接或者间接的安装、连接、支撑和耦接。
此外,应该理解的是,本发明的实施例可以包括硬件、软件和电子组件或模块,出于讨论的目的,这些可以按照大部分的组件在硬件中单独实现来进行说明和描述。然而,基于这个详细说明的阅读,本领域技术人员会意识到,在至少一个实施例中,本发明基于电子的方法可以在可由一个或多个处理单元执行的软件中实现(例如,存储在非暂时的计算机可读取介质上),诸如微处理器和/或专用集成电路(“ASIC”)。如此,应该注意到,多种基于硬件和软件的装置、以及多个不同的结构组件可以用于实现本发明。例如,说明书中描述的“服务器”和“计算装置”可以包括一个或多个的处理单元、一个或多个的计算机可读介质模块、一个或多个输入/输出接口、以及连接组件的各种连接件(例如,系统总线)。
本发明的其他方面将通过考虑详细的说明和附图变得显而易见。
附图说明
图1图示了根据本发明实施例的工业机械。
图2图示了根据本发明实施例的图1中工业机械的控制系统。
图3图示了根据本发明实施例的图1中工业机械的控制系统。
图4图示了图1的工业机械的提升绳角度。
图5图示了图1的工业机械的铲斗柄部角度。
图6是根据本发明一个实施例用于设定工业机械的收缩极限的过程。
图7是根据本发明另一实施例用于设定工业机械的收缩极限的过程。
图8是根据本发明另一实施例用于设定工业机械的收缩极限的过程。
图9是根据本发明实施例的工业机械的收缩扭矩极限的图形表示。
图10是根据本发明另一实施例的工业机械的收缩扭矩极限的图形表示。
具体实施方式
本文所描述的本发明涉及系统、方法、装置和与工业机械的参数(例如,收缩力、收缩扭矩极限等)的动态控制相关联的计算机可读介质,这些参数是基于工业机械的参数,像例如,提升绳角度、铲斗柄部角度、铲斗位置等。诸如电动绳铲或相似采矿机的工业机械能操作为执行挖掘操作从而从采矿工作面上移除有效负载(即材料)。随着工业机械在采矿工作面中的挖掘,有效负载的重量、工业机械的结构以及收缩力的相对量级和提升力引起的对于工业机械上的力可以在工业机械上产生结构负载以及倾斜力矩(tipping moment)(例如,重心[“CG”]偏移)。结构负载的量级可以尤其取决于工业机械的铲斗有效负载、收缩力或者收缩力设定、提升力或者提升力设定等。作为结构负载的结果,工业机械可以承受循环性结构疲劳以及会不利地影响工业机械的工作寿命的应力。结构负载也通过限制可以施加的提升的水平来限制工业机械的执行性能。为了减少工业机械的结构负载和/或增加性能,工业机械的控制器针对挖掘循环中的不同点,动态地将铲动收缩力限制到必要的值。挖掘操作期间以这样的方式控制工业机械的操作允许工业机械的结构负载减少或者有效负载增加,而不会增加工业机械所承受的总结构负载。
尽管本文所记载的本发明可以应用于各种工业机械、由各种工业机械实施或者结合各种工业机械(例如,绳铲、索斗铲、交流(AC)电机、直流(DC)电机、液压机械等)一起使用,但是针对电动铲或者诸如图1中所示的动力铲10的动力铲描述了本文所描述的实施例。动力铲10包括履带15,用于推动铲10向前和向后,并用于转动绳铲10(即,通过改变左右履带相对于彼此的速度和/或方向)。履带15支撑包括驾驶室30的底座25。底座25能够绕着摆动轴线35摇摆或摆动,例如,以从挖掘位置移动到倾卸位置。履带15的移动不一定是摆动运动。绳铲10进一步包括可枢转铲斗柄部45和铲斗50。铲斗50包括用来倾卸铲斗50中所装物的门55。
绳铲10包括耦合在底座25和吊杆65之间的、用来支撑吊杆65的吊索60。绳铲也包括钢丝索或者附接到底座25之中的绞车和提升鼓轮(未示出)的提升索70以用于卷起提升索79来升降铲斗50,以及在另一个绞车(未示出)和铲斗门55之间连接的铲动索75。绳铲10也包括鞍状块80、滑轮85以及门架结构90。在一些实施例中,绳铲10为JoyGlobal Surface Mining所产的系列铲。
图2图示了与图1中铲10相关联的控制器200。控制器200电连接和/或可通信地连接到铲10的各个模块以及组件。例如,所图示的控制器200连接到一个或多个的指示器205,、用户接口模块210、一个或多个提升启动装置(例如,马达、液压缸等)以及提升驱动215、一个或多个铲动启动装置(例如,马达、液压缸等)和摆动驱动220、一个或多个摆动启动装置(例如,马达、液压缸等)和摆动驱动225、数据存储或者数据库230、电源模块235以及一个或多个传感器240。控制器200包括硬件和软件的组合,它们能操作为尤其控制动力铲10的操作,控制吊杆65、铲斗柄部45、铲斗50等的位置,激活一个或多个指示器205(例如,液晶显示器[“LCD”],监视铲10的操作等。一个或多个传感器240包括尤其负载脚应变计、一个或多个倾斜仪、门架销、一个或多个马达场模块、一个或多个解析器等。在一些实施例中,可以使用除了铲动马达驱动之外的铲动驱动(例如,用于独脚柄、棍子、液压缸等的铲动驱动)。
在一些实施例中,控制器200包括向控制器200和/或铲10之中的组件和模块提供电力、操作性控制和保护的多个电动或者电子组件。例如,控制器200尤其包括处理单元250(例如,微处理器、微控制器或者另一适宜的可编程装置)、存储器255、输入单元260和输出单元265。处理单元150尤其包括控制单元270、算术逻辑单元(“ALU”)275,以及多个寄存器280(图2中所示为一组寄存器),并且使用已知的计算机架构来实现,诸如修正的哈佛架构、冯诺伊曼架构等。处理单元250、存储器255、输入单元260和输出单元265、以及连接到控制器200的各种模块通过一个或多个控制和/或数据总线(例如,公用总线)来连接。出于说明的目的,控制和/或数据总线在图2中大体地示出。鉴于在此描述的发明,为了在各种模块和组件当中形成相互连接和通信而使用的一个或多个控制和/或数据总线对于本领域技术人员来说将是已知的。在一些实施例中,控制器200在半导体(例如,现场可编程门阵列[“FPGA”]半导体)芯片上部分地或者完全地实施,诸如通过寄存器传送级(“RTL”)设计程序来开发的芯片。
存储器255包括例如程序存储区域和数据存储区域。程序存储区域和数据存储区域可以包括不同类型存储器的组合,诸如只读存储器(“ROM”)、随机存取存储器(“RAM”)(例如,动态RAM[“DRAM”]、同步DRAM[“SDRAM”]等),电可擦可编程只读存储器(“EEPROM”)、闪存、硬盘、SD卡或者其他适宜的磁性、光学、物理或者电子存储器装置。处理单元250连接到存储器255,并执行能够存储在存储器155的RAM(例如,执行期间)、存储器255的ROM(例如,在大体上永久性的基础上)、或者诸如另一存储器或者光盘的另外的非暂时性计算机可读介质之中的软件指令。包括在铲10的实现之中的软件可以存储在控制器200的存储器255之中。软件包括例如固件、一个或多个应用、程序数据、过滤器、规则、一个或多个程序模块、和其他可执行指令。控制器200被配置为从存储器检索、并执行尤其与本文中所记载的控制程序和方法相关的指令。在其他结构中,控制器200包括额外的、更少的或者不同的组件。
电源模块235向控制器200或者铲10的其他组件或者模块提供额定交流或者直流电压。电源模块235由例如电源供电,该电源具有在100V和240V AC之间的额定线电压,以及约50-60Hz的频率。电源模块235也被配置为提供较低电压来操作控制器200或者铲10之中的电路和组件。在其他结构中,控制器200或者铲10之中的其他组件和模块由一个或多个电池或者电池组、或者另一种独立于电网的电源(例如,发电机、太阳能板等)供电。
用户接口模块210被用于控制或者监视动力铲10。例如,用户接口模块210被能操作地耦接到控制器200以控制铲斗50的位置、吊杆65的位置、铲斗柄部45的位置等。用户接口模块210包括需要实现所需控制水平以及对动力铲10进行监视所需要的数据和模拟输入或输出装置的组合。例如,用户接口模块210包括显示器(例如,主显示器、辅显示器等)以及输入装置,诸如触屏显示器、多个旋钮、拨号盘、开关、按钮等。显示器是例如液晶显示器(“LCD”)、发光二极管(“LED”)显示器、有机LED(“OLED”)显示器、电致发光显示器(“ELD”)、表面传导电子发射显示器(“SED”)、场致发射显示器(“FED”)、薄膜晶体管(“TFT”)LCD等。用户接口模块210也可以配置为实时或者基本上实时地显示与动力铲10相关联的条件或数据。例如,用户接口模块210被配置为显示动力铲10所测得的电性能、动力铲10的状态、铲斗50的位置、铲斗柄部45的位置等。在一些实现中,用户接口模块210结合一个或多个指示器205(例如LED、扬声器等)来控制,以提供动力铲10的状态或者条件的视觉或者听觉提示。
图3图示了动力铲10的更为详细的控制系统400。例如,动力铲10包括主控制器405、网络交换机410、控制柜415、辅助控制柜420、操作者室425、第一提升驱动模块430、第二提升驱动模块435、铲动驱动模块440、摆动驱动模块445、提升场模块450、铲动场模块455、和摆动场模块460。控制系统400的各种组件通过并经由例如,利用诸如过程现场总线(“PROFIBUS”)、以太网、控制网、基金会现场总线、互联总线、控制器局域网(“CAN”)总线等等的工业自动化的一个或多个网络协议的光纤通信系统连接及通信。控制系统400可以包括以上相对于图2描述的组件和模块。例如,一个或多个提升启动装置和/或驱动215对应于第一和第二提升驱动模块430和435,一个或多个铲动启动装置和/或驱动220对应于铲动驱动模块440,以及一个或多个摆动启动装置和/或驱动225对应于摆动驱动模块445。用户接口210和指示器205可以被包括在操作者室425等之中。应变计、倾斜仪、门架销、解析器等可以向主控制器405、控制器柜415、辅助柜420等提供电信号。
第一提升驱动模块430、第二提升驱动模块435、铲动驱动模块440和摆动驱动模块445被配置为从例如主控制器405接收控制信号,以控制铲10的提升、铲动和摆动操作。控制信号与铲10的提升、铲动、和摆动启动装置215、220和225的驱动信号相关联。随着驱动信号应用到启动装置215、220和225,启动装置的输出(例如,电子和机械输出)被监视并反馈回主控制器405(例如,经由场模块450-460)。启动装置的输出包括例如马达位置、马达速度、马达扭矩、马达功率、马达电流、液压、液压力等。基于与铲10相关联的这些和其他信号,主控制器405被配置为确定或者计算铲10或其组件的一个或多个操作状态或位置。在一些实施例中,主控制器405确定铲斗位置、铲斗柄部角度或者位置、提升绳缠绕角度、提升马达每分钟转速(“RPM”)、缠绕的数目、铲动马达(crowd motor)每分钟转速、铲斗速度、铲斗加速度、重心偏移(例如,相对于轴线35)、倾斜力矩、总门架负载(例如,总门架结构负载)等。
上述铲10的控制器200和/或控制系统400被用于基于例如组件(例如,铲斗、挖掘附件等)位置、铲斗柄部角度、提升绳角度或者由上述控制器200或者系统400确定或者接收到的另外参数来控制工业机械10的操作参数(例如、收缩力、收缩扭矩等)。图4图示了可以由控制器200确定的提升绳角度。如图4中所示,铲斗50在挖掘循环期间可以位于各种位置。提升绳角度被图示为在水平轴线470和提升绳或者钢丝索70之间的负角。可以使用例如一个或多个的解析器、工业机械的运动模型、铲斗位置、提升绳长度等来确定提升绳的角度。图5图示了可由控制器200确定的铲斗柄部角度。铲斗柄部角度被图示为在第二水平轴线475和铲斗柄部45之间的负角。可以使用例如一个或多个的解析器、工业机械的运动模型、倾斜仪、铲斗位置、提升绳长度等来确定提升绳角度。可以使用例如一个或多个的解析器、工业机械的运动模型、倾斜仪、提升绳长度等来确定组件位置。
过程500、600和700与挖掘操作期间所施加的力(例如,铲动力等)和挖掘操作相关联并相对于它们在此进行描述。本文中描述的针对过程500、600和700的各种步骤能够同时执行、并行地,或者以与所示的执行系列方式不同的顺序来执行。过程500、600和700也能够使用比所示实施例中所示的步骤更少的步骤来执行。例如,在一些实施例中,一个或多个功能、公式、或者算法都可以用于计算最大要求收缩力,由控制器200在约每40-110ms确定或者计算所述最大要求收缩力。在其他实施例中,控制器可以取决于控制器中处理器的时钟速度来针对不同速度(例如,小于每40ms,大于每100ms等)的工业机械确定收缩扭矩极限。
图6所示的过程500由控制器200确定工业机械的参数(步骤505)开始。工业机械的参数可以是例如组件位置、铲斗柄部角度、提升绳角度、或者由上述控制器200或者系统400所确定或者接收的另一种参数。基于工业机械的参数的值,控制器200确定了铲动参数,该铲动参数限制了最大的收缩力,诸如收缩参数、收缩力极限、斜率、或者针对工业机械的收缩扭矩极限(步骤510)。作为说明性示例,在本文中将针对收缩力极限的设定来描述过程500、600(下方)、和700(下方)。在其他实施例中,由控制器200或者控制系统400确定或接收的上述任何额外或者不同参数可以类似地用来设定铲动(crowd)参数。
收缩力极限可以例如被设定为铲斗位置、铲斗柄部角度、提升绳角度、铲斗柄部角度和提升绳角度两者、或者由上述控制器200或系统400(例如,收缩力极限可以被设定为倾斜力矩或者重心偏移的线性函数、二次函数等)所确定或者接收的另一种参数的函数(例如,线性函数、非线性函数、二次函数、三次函数、指数函数、双曲线函数、幂函数等)。此外或者可替换地,收缩力极限的一个或多个预定或者计算值可以针对挖掘循环的不同部分设定。在每一种情况下,收缩力极限被设定为与在挖掘循环的给定部分所需收缩力最大量相对应的值。在一些实施例中,在挖掘循环后期所需要的收缩力比挖掘循环前期所需的要小。在一些实施例中,与铲斗远离工业机械(例如,当铲斗柄部完全张开的时候)时相比,当铲斗位置更加靠近工业机械(例如,底座25)周围的时候,需要更大的收缩力。
收缩力极限的值可以设定为例如从最小值(例如,0%收缩力)到最大值(例如,100%收缩力)的范围内。使用常规的控制技术,收缩力的缺省值在整个挖掘操作期间可以设定为85%-100%。通过将收缩力极限控制为许多值(例如,在0%到100%之间),针对给定铲斗位置所需的收缩力对于工业机械来说是可得到的,这消除了与过大或者过小收缩力相关联的问题。例如,通过控制工业机械的收缩力极限,工业机械将持续在每一挖掘操作中举起柄部和铲斗,并克服收缩力太小所造成的潜在问题,太小的收缩力不能够举起柄部和铲斗,而太大的收缩力会对铲组件造成损伤。
在步骤515,铲动启动装置的收缩参数被设定为在步骤510确定的收缩力极限。在将收缩参数设定到收缩力极限之后,工业机械以收缩参数操作或者在收缩参数下(即,小于或者等于)操作(步骤520)。过程500继而返回到步骤505,在步骤505再次确定工业机械的参数。如上所示,在一些实施例中,约每40-100ms可确定收缩力极限。在这样的实施例中,工业机械的参数可以被确定,而收缩力极限可以约每40-100ms被设定为计算值。在其他实施例中,控制器可以取决于控制器中处理器的时钟速度来针对不同速度下(例如,小于每40ms,大于每100ms等)的工业机械确定收缩力极限。
图7中所示的过程600由控制器200确定工业机械的铲斗柄部的铲斗柄部角度开始(步骤605)。控制器200然后确定工业机械的提升绳的提升绳角度(步骤610)。基于铲斗柄部角度的值以及提升绳角度的值,控制器200确定工业机械的收缩力极限(步骤615)。在步骤620,铲动启动装置的收缩参数被设定为在步骤615确定收缩力极限。在将收缩参数设定为收缩力极限之后,工业机械以收缩力参数操作或者低于收缩力参数(及小于或者等于)操作(步骤625)。过程600然后返回到步骤605,在步骤605再次确定工业机械的参数。如上所示,在一些实施例中,可约每40-100ms确定收缩力极限。在这样的实施例中,可以确定铲斗柄部角度和提升绳角度,并且收缩力极限可以约每40-100ms呈现所计算的值。在其他实施例中,控制器可以取决于控制器中处理器的时钟速度来针对不同速度下(例如,小于每40ms,大于每100ms等)的工业机械确定收缩力极限。
图8所示的过程700由控制器200确定工业机械的铲斗柄部的铲斗柄部角度开始(步骤705)。如果在步骤710,铲斗柄部角度大于或者等于第一阈值或者对应于值的第一预定范围(例如,-90°-0°),则控制器200确定工业机械的提升绳的提升绳角度(步骤715)。如果,在步骤710,铲斗柄部角度小于第一阈值或者在第一预定范围之外,则过程700返回到步骤705,在步骤705再次确定铲斗柄部角度。在步骤715之后,绳角度大于或者等于第二阈值或者对应于值的第二预定范围(例如,0°-90°),控制器200确定收缩力极限(步骤725)。如果,在步骤720,绳角度小于第二阈值或者在第二预定范围之外,则过程700返回到步骤705,在步骤705再次确定铲斗柄部角度。
基于铲斗柄部角度的值以及提升绳角度的值,控制器200确定工业机械的收缩力极限(步骤725)。在步骤730,收缩力极限与第三阈值相比较。如果,在步骤730,收缩力极限大于或者等于第三阈值,则铲动启动装置的收缩参数被设定为最大值(例如,100%铲动收缩)(步骤735)。如果在步骤730,收缩极限小于第一阈值,则收缩参数被设定为缺省收缩力值(例如,85%铲动收缩)(步骤740)。在步骤735和740之后,工业机械以收缩参数或者低于收缩参数(即,小于或等于)的收缩力操作(步骤745)。过程700返回到步骤705,在步骤705再次确定铲斗柄部角度。如上所示,在一些实施例中,可约每40-100ms确定收缩力极限。在这样的实施例中,可以确定铲斗柄部角度和提升绳角度,并且收缩力极限可以约每40-100ms呈现所计算的值。在其他实施例中,控制器可以取决于控制器中处理器的时钟速度来针对不同速度下(例如,小于每40ms,大于每100ms等)的工业机械确定收缩力极限。
此外地或可替换地,在一些实施例中,收缩力极限的计算和设定可以基于铲斗位置、循环状态值、提升力(例如,提升马达扭矩或者提升推拉)等。在一些实施例中,收缩力极限也可以基于工业机械的所确定的倾斜力矩(例如,前倾运动)来设定,或者可以基于指示工业机械的倾斜力矩的参数(例如,来自负载脚[诸如门架负载销]的传感器的信号、门架结构90中的应变计、基座25、吊杆65以及悬吊索60等)来确定。
图9和10图示了铲动收缩力极限作为铲斗柄部角度和提升绳角度的函数的曲线图800和900。如上所述,在一些实施例中,收缩力极限可以基于铲斗柄部角度或提升绳角度之一来设定。如果收缩力极限仅基于工业机械的一个参数来设定,则相对于那个参数来说,收缩力极限的二维曲线图便得以产生(未示出)。图9和10的三维曲线图仅出于说明性目的而示出。在图9和10中,在铲斗从工业机械伸展开(铲斗柄部角度接近0°)的时候,工业机械所需的收缩力极限被设定为最小,而铲斗被升高至其最高点(例如,提升绳角度约90°)。在铲斗柄部接近竖直的时候(例如,铲斗柄部角接近-90°),工业机械所需要的收缩力极限被设定为最大值(被图示为蓝色/绿色)。
此外,可以设定收缩力极限的偏移。在一些实施例中,收缩力极限的偏移是铲动马达规格的产物。偏移可用于增加或减小收缩力极限的最大和最小值。例如,在一些实施例中,所需的确定的收缩力极限可以对应于将有效负载保持在空中所需的收缩力值。然后,额外的收缩力可以用于移动有效负载。可以通过所示的力偏移来添加这个额外的收缩力。
因此,本发明尤其提供用于设定诸如基于工业机械的参数的工业机械的力极限的收缩参数的系统、方法、装置和计算机可读介质。本发明的各种特征和优势在权利要求书中阐述。

Claims (28)

1.一种工业机械,包括:
铲斗,所述铲斗附接到铲斗柄部;
铲动马达,所述铲动马达具有收缩扭矩参数;
提升马达,所述提升马达能操作为向提升绳施加力;
第一传感器,所述第一传感器能操作为生成与所述工业机械的第一参数相关的第一信号;
第二传感器,所述第二传感器能操作为生成与所述工业机械的第二参数相关的第二信号;
控制器,所述控制器被配置为:
接收与所述第一参数相关的所述第一信号以及与所述第二参数相关的所述第二信号,
基于所述第一信号和第二信号确定收缩扭矩极限,
将所述铲动马达的所述收缩扭矩参数设定为所述收缩扭矩极限,以及
以所述收缩扭矩参数或者低于所述收缩扭矩参数来操作所述工业机械。
2.根据权利要求1所述的工业机械,其中所述收缩扭矩极限被确定为所述第一参数和所述第二参数的函数。
3.根据权利要求2所述的工业机械,其中所述函数选自下述组,该组包括:线性函数、非线性函数、二次函数、三次函数、指数函数、双曲线函数、和幂函数。
4.根据权利要求2所述的工业机械,其中所述第一参数为所述铲斗柄部的角度,并且所述第二参数为所述提升绳的角度。
5.根据权利要求1所述的工业机械,其中所述收缩扭矩极限对应于挖掘循环的给定部分所需的收缩扭矩的最大量。
6.根据权利要求5所述的工业机械,其中,与在所述挖掘循环的晚期的所述收缩扭矩极限相比,所述收缩扭矩极限在所述挖掘循环的早期具有更大的值。
7.根据权利要求5所述的工业机械,其中所述收缩扭矩极限被确定为所述工业机械的倾斜力矩的函数。
8.一种工业机械,包括:
铲斗,所述铲斗附接到铲斗柄部;
铲动马达,所述铲动马达具有收缩扭矩参数;
提升马达,所述提升马达能操作为向提升绳施加力;
第一传感器,所述第一传感器能操作为生成与所述工业机械的第一参数相关的第一信号;
第二传感器,所述第二传感器能操作为生成与所述工业机械的第二参数相关的第二信号;以及
控制器,所述控制器被配置为:
接收与所述第一参数相关的所述第一信号以及与所述第二参数相关的所述第二信号,
基于所述第一信号确定所述第一参数的值,
比较所述第一参数的值和第一阈值,
基于所述第二信号确定所述第二参数的值,
比较所述第二参数的值和第二阈值,
基于所述第一参数的值与所述第一阈值的比较以及所述第二参数的值与所述第二阈值的比较,确定收缩扭矩极限,
比较所述收缩扭矩极限和第三阈值,
如果所述收缩扭矩极限大于或者等于所述第三阈值,则将所述铲动马达的所述收缩扭矩参数设定为第一值,
如果所述收缩扭矩极限小于所述第三阈值,则将所述铲动马达的所述收缩扭矩参数设定为第二值,所述第一值大于所述第二值,以及
以所述收缩扭矩参数或者低于所述收缩扭矩参数来操作所述工业机械。
9.根据权利要求8所述的工业机械,其中所述收缩扭矩极限被确定为所述第一参数的值和所述第二参数的值的函数。
10.根据权利要求9所述的工业机械,其中所述函数选自下述组,该组包括:线性函数、非线性函数、二次函数、三次函数、指数函数、双曲线函数、和幂函数。
11.根据权利要求8所述的工业机械,其中所述第一参数为所述铲斗柄部的角度,并且所述第二参数为所述提升绳的角度。
12.根据权利要求8所述的工业机械,其中所述收缩扭矩极限对应于挖掘循环中给定部分所需的收缩扭矩的最大量。
13.根据权利要求12所述的工业机械,其中,与在所述挖掘循环的晚期的所述收缩扭矩极限相比,所述收缩扭矩极限在所述挖掘循环的早期具有更大的值。
14.根据权利要求12所述的工业机械,其中所述收缩扭矩极限被确定为所述工业机械的倾斜力矩的函数。
15.根据权利要求8所述的工业机械,其中所述第一阈值与铲斗柄部角度值的预定范围相关。
16.根据权利要求8所述的工业机械,其中所述第二阈值与提升绳角度值的预定范围相关。
17.一种控制工业机械的启动装置的方法,所述方法包括:
使用传感器,生成与所述工业机械的参数相关的信号;
在处理器处,接收与所述工业机械的所述参数相关的所述信号;
使用处理器,基于与所述工业机械的所述参数相关的所述信号来确定收缩力极限;
使用处理器,将所述启动装置的铲动参数设定为所述收缩力极限;以及
以所述铲动参数或者低于所述铲动参数来操作所述工业机械。
18.根据权利要求17所述的方法,其中所述启动装置是铲动马达。
19.根据权利要求17所述的方法,其中所述工业机械的所述参数选自下述组,该组包括:铲斗柄部的角度、提升绳的角度以及铲斗位置。
20.根据权利要求17所述的方法,其中所述收缩力极限被确定为所述工业机械的所述参数的函数。
21.根据权利要求20所述的方法,其中所述函数选自下述组,该组包括:线性函数、非线性函数、二次函数、三次函数、指数函数、双曲线函数、和幂函数。
22.根据权利要求17所述的方法,其中所述收缩力极限对应于挖掘循环中的给定部分所需的收缩力的最大量。
23.根据权利要求22所述的方法,其中,与在所述挖掘循环的晚期的所述收缩力极限相比,所述收缩力极限在所述挖掘循环的早期具有更大的值。
24.根据权利要求22所述的方法,其中所述收缩力极限被确定为所述工业机械的倾斜力矩的函数。
25.根据权利要求17所述的方法,其中所述工业机械的所述参数是所述工业机械的组件的位置。
26.根据权利要求25所述的方法,其中所述工业机械的所述组件为铲斗。
27.根据权利要求17所述的方法,其中所述收缩力极限为收缩力扭矩极限。
28.根据权利要求17所述的方法,其中所述工业机械是液压机械。
CN201510108985.4A 2014-01-21 2015-01-21 控制工业机械的铲动参数 Active CN104790458B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810952793.5A CN109113121B (zh) 2014-01-21 2015-01-21 控制工业机械的铲动参数

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461929646P 2014-01-21 2014-01-21
US61/929,646 2014-01-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201810952793.5A Division CN109113121B (zh) 2014-01-21 2015-01-21 控制工业机械的铲动参数

Publications (2)

Publication Number Publication Date
CN104790458A true CN104790458A (zh) 2015-07-22
CN104790458B CN104790458B (zh) 2018-09-21

Family

ID=53544315

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510108985.4A Active CN104790458B (zh) 2014-01-21 2015-01-21 控制工业机械的铲动参数
CN201810952793.5A Active CN109113121B (zh) 2014-01-21 2015-01-21 控制工业机械的铲动参数

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201810952793.5A Active CN109113121B (zh) 2014-01-21 2015-01-21 控制工业机械的铲动参数

Country Status (5)

Country Link
US (3) US9260834B2 (zh)
CN (2) CN104790458B (zh)
AU (1) AU2015200234B2 (zh)
CA (1) CA2879099C (zh)
CL (1) CL2015000136A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108060696A (zh) * 2016-11-09 2018-05-22 哈尼斯菲格技术公司 防止工业机械中的失控状态的系统和方法
CN111593774A (zh) * 2019-02-20 2020-08-28 迪尔公司 智能机械联动性能系统
CN114472398A (zh) * 2022-01-20 2022-05-13 曾群英 一种水利沟渠用内部除杂设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103003801B (zh) * 2010-05-14 2016-08-03 哈尼施费格尔技术公司 用于远程机器监视的预测分析
CL2012000933A1 (es) * 2011-04-14 2014-07-25 Harnischfeger Tech Inc Un metodo y una pala de cable para la generacion de un trayecto ideal, comprende: un motor de oscilacion, un motor de izaje, un motor de avance, un cucharon para excavar y vaciar materiales y, posicionar la pala por medio de la operacion del motor de izaje, el motor de avance y el motor de oscilacion y; un controlador que incluye un modulo generador de un trayecto ideal.
US9206587B2 (en) 2012-03-16 2015-12-08 Harnischfeger Technologies, Inc. Automated control of dipper swing for a shovel
AU2015200234B2 (en) 2014-01-21 2019-02-28 Joy Global Surface Mining Inc Controlling a crowd parameter of an industrial machine
USD760808S1 (en) * 2015-02-13 2016-07-05 Caterpillar Global Mining Llc Electric rope shovel crowd take-up device
CA2990968C (en) * 2015-06-30 2023-10-03 Harnischfeger Technologies, Inc. Systems and methods for controlling machine ground pressure and tipping
AU2017200699B2 (en) 2016-02-15 2021-07-01 Joy Global Surface Mining Inc Adaptive leveling control system
US10870968B2 (en) * 2018-04-30 2020-12-22 Deere & Company Work vehicle control system providing coordinated control of actuators
US11891772B2 (en) 2021-03-29 2024-02-06 Joy Global Surface Mining Inc System and method for estimating a payload of an industrial machine
CN114855899B (zh) * 2022-05-12 2023-06-23 南京工业大学 一种挖掘机工作阶段及工况识别方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201199679Y (zh) * 2006-07-13 2009-02-25 百得有限公司 用于检测和防止电动工具中的扭转工况的控制系统
US7853384B2 (en) * 2007-03-20 2010-12-14 Deere & Company Method and system for controlling a vehicle for loading or digging material
US8260834B2 (en) * 2005-02-14 2012-09-04 France Telecom Method system and device for generation of a pseudo-random data sequence
US20120275893A1 (en) * 2011-04-29 2012-11-01 Joseph Colwell Controlling a digging operation of an industrial machine
US8340822B2 (en) * 2008-05-01 2012-12-25 Sony Corporation Actuator control device, actuator control method, actuator, robot apparatus, and computer program
CN103003801A (zh) * 2010-05-14 2013-03-27 哈尼施费格尔技术公司 用于远程机器监视的预测分析

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2858070A (en) 1955-11-17 1958-10-28 Scharff Leon Moment computing and indicating systems
US3638211A (en) 1969-10-08 1972-01-25 Litton Systems Inc Crane safety system
US3740534A (en) 1971-05-25 1973-06-19 Litton Systems Inc Warning system for load handling equipment
US3965407A (en) 1973-02-15 1976-06-22 Bucyrus-Erie Company Method and means for measuring the torque delivered by an electric motor
US4046270A (en) 1974-06-06 1977-09-06 Marion Power Shovel Company, Inc. Power shovel and crowd system therefor
US3976211A (en) 1974-11-07 1976-08-24 Marion Power Shovel Company, Inc. Motion limit system for power shovels
US4308489A (en) 1978-02-09 1981-12-29 Dresser Industries, Inc. Method and apparatus for coordinating the speeds of motions
US4263535A (en) 1978-09-29 1981-04-21 Bucyrus-Erie Company Motor drive system for an electric mining shovel
US4509895A (en) 1978-10-06 1985-04-09 Dresser Industries, Inc. Crowd drive assembly for power shovels
US4278393A (en) 1978-12-04 1981-07-14 Dresser Industries, Inc. Slack prevention system for a crowd rope of a power shovel
ZA863019B (en) 1985-06-24 1986-12-30 Dresser Ind Method and apparatus for optimizing dipper cutting forces for a mining shovel
US4677579A (en) 1985-09-25 1987-06-30 Becor Western Inc. Suspended load measurement system
US4776751A (en) 1987-08-19 1988-10-11 Deere & Company Crowd control system for a loader
US5019761A (en) 1989-02-21 1991-05-28 Kraft Brett W Force feedback control for backhoe
JPH0626067A (ja) 1992-07-09 1994-02-01 Kobe Steel Ltd ディッパショベルの掘削制御装置
US5469647A (en) 1993-11-18 1995-11-28 Harnischfeger Corporation Power shovel
US5499463A (en) 1994-10-17 1996-03-19 Harnischfeger Corporation Power shovel with variable pitch braces
JP3373121B2 (ja) 1996-12-02 2003-02-04 株式会社小松製作所 ブルドーザのドージング装置
JP3571142B2 (ja) 1996-04-26 2004-09-29 日立建機株式会社 建設機械の軌跡制御装置
US5968103A (en) 1997-01-06 1999-10-19 Caterpillar Inc. System and method for automatic bucket loading using crowd factors
US6025686A (en) 1997-07-23 2000-02-15 Harnischfeger Corporation Method and system for controlling movement of a digging dipper
US6225574B1 (en) 1998-11-06 2001-05-01 Harnischfeger Technology, Inc. Load weighing system for a heavy machinery
US7152349B1 (en) 1999-11-03 2006-12-26 Cmte Development Limited Dragline bucket rigging and control apparatus
US6321153B1 (en) 2000-06-09 2001-11-20 Caterpillar Inc. Method for adjusting a process for automated bucket loading based on engine speed
US6466850B1 (en) 2000-08-09 2002-10-15 Harnischfeger Industries, Inc. Device for reacting to dipper stall conditions
US6480773B1 (en) 2000-08-09 2002-11-12 Harnischfeger Industries, Inc. Automatic boom soft setdown mechanism
US7174826B2 (en) 2004-01-28 2007-02-13 Bucyrus International, Inc. Hydraulic crowd control mechanism for a mining shovel
WO2006054678A1 (ja) 2004-11-19 2006-05-26 Mitsubishi Heavy Industries, Ltd. フォークリフトの転倒防止装置
US8590180B2 (en) 2005-07-13 2013-11-26 Harnischfeger Technologies, Inc. Dipper door latch with locking mechanism
DE202005013310U1 (de) 2005-08-23 2007-01-04 Liebherr-Hydraulikbagger Gmbh Überlastwarneinrichtung für Bagger
US8065060B2 (en) 2006-01-18 2011-11-22 The Board Of Regents Of The University And Community College System On Behalf Of The University Of Nevada Coordinated joint motion control system with position error correction
CN101336345B (zh) * 2006-01-26 2015-11-25 沃尔沃建筑设备公司 用于控制车辆部件移动的方法
US20070266601A1 (en) 2006-05-19 2007-11-22 Claxton Richard L Device for measuring a load at the end of a rope wrapped over a rod
CA2659545C (en) 2006-08-04 2014-12-23 Cmte Development Limited Collision avoidance for electric mining shovels
US7894963B2 (en) 2006-12-21 2011-02-22 Caterpillar Inc. System and method for controlling a machine
US7832126B2 (en) 2007-05-17 2010-11-16 Siemens Industry, Inc. Systems, devices, and/or methods regarding excavating
CA2637425A1 (en) 2007-07-13 2009-01-13 Bucyrus International, Inc. Method of estimating life expectancy of electric mining shovels based on cumulative dipper loads
CL2009000740A1 (es) 2008-04-01 2009-06-12 Ezymine Pty Ltd Método para calibrar la ubicación de un implemento de trabajo, cuyo implemento de trabajo se coloca sobre la cubierta de una máquina; sistema.
KR101112135B1 (ko) 2009-07-28 2012-02-22 볼보 컨스트럭션 이큅먼트 에이비 전기모터를 이용한 건설기계의 선회 제어시스템 및 방법
US8463508B2 (en) 2009-12-18 2013-06-11 Caterpillar Inc. Implement angle correction system and associated loader
US20120187754A1 (en) 2011-01-26 2012-07-26 Mark Emerson Hybrid electric shovel
CL2012000933A1 (es) * 2011-04-14 2014-07-25 Harnischfeger Tech Inc Un metodo y una pala de cable para la generacion de un trayecto ideal, comprende: un motor de oscilacion, un motor de izaje, un motor de avance, un cucharon para excavar y vaciar materiales y, posicionar la pala por medio de la operacion del motor de izaje, el motor de avance y el motor de oscilacion y; un controlador que incluye un modulo generador de un trayecto ideal.
US8620536B2 (en) * 2011-04-29 2013-12-31 Harnischfeger Technologies, Inc. Controlling a digging operation of an industrial machine
US8843279B2 (en) 2011-06-06 2014-09-23 Motion Metrics International Corp. Method and apparatus for determining a spatial positioning of loading equipment
US8620533B2 (en) 2011-08-30 2013-12-31 Harnischfeger Technologies, Inc. Systems, methods, and devices for controlling a movement of a dipper
CL2012003338A1 (es) * 2011-11-29 2013-10-04 Harnischfeger Tech Inc Metodo para controlar una operacion de excavacion de una maquina industrial que incluye un cucharon, un cable de elevacion unido al cucharon, un motor de evaluacion moviendo el cable de elevacion y el cucharon, y un ordenador que tiene un controlador; y maquina industrial asociada
CA2804075C (en) * 2012-01-30 2020-08-18 Harnischfeger Technologies, Inc. System and method for remote monitoring of drilling equipment
US8958957B2 (en) * 2012-01-31 2015-02-17 Harnischfeger Technologies, Inc. System and method for limiting secondary tipping moment of an industrial machine
US9206587B2 (en) * 2012-03-16 2015-12-08 Harnischfeger Technologies, Inc. Automated control of dipper swing for a shovel
JP2014007780A (ja) * 2012-06-21 2014-01-16 Hitachi Constr Mach Co Ltd ハイブリッド式作業車両
US9009993B2 (en) 2012-09-21 2015-04-21 Harnischfeger Technologies, Inc. Internal venting system for industrial machines
WO2014127368A1 (en) * 2013-02-18 2014-08-21 Harnischfeger Technologies, Inc. Systems and methods for monitoring a fluid system of a mining machine
US9890515B2 (en) 2013-09-27 2018-02-13 Harnischfeger Technologies, Inc. Dipper door and dipper door trip assembly
AU2015200234B2 (en) * 2014-01-21 2019-02-28 Joy Global Surface Mining Inc Controlling a crowd parameter of an industrial machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8260834B2 (en) * 2005-02-14 2012-09-04 France Telecom Method system and device for generation of a pseudo-random data sequence
CN201199679Y (zh) * 2006-07-13 2009-02-25 百得有限公司 用于检测和防止电动工具中的扭转工况的控制系统
US7853384B2 (en) * 2007-03-20 2010-12-14 Deere & Company Method and system for controlling a vehicle for loading or digging material
US8340822B2 (en) * 2008-05-01 2012-12-25 Sony Corporation Actuator control device, actuator control method, actuator, robot apparatus, and computer program
CN103003801A (zh) * 2010-05-14 2013-03-27 哈尼施费格尔技术公司 用于远程机器监视的预测分析
US20120275893A1 (en) * 2011-04-29 2012-11-01 Joseph Colwell Controlling a digging operation of an industrial machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108060696A (zh) * 2016-11-09 2018-05-22 哈尼斯菲格技术公司 防止工业机械中的失控状态的系统和方法
CN111593774A (zh) * 2019-02-20 2020-08-28 迪尔公司 智能机械联动性能系统
CN111593774B (zh) * 2019-02-20 2023-01-31 迪尔公司 智能机械联动性能系统
CN114472398A (zh) * 2022-01-20 2022-05-13 曾群英 一种水利沟渠用内部除杂设备
CN114472398B (zh) * 2022-01-20 2023-12-08 徐州欧润泵业有限公司 一种水利沟渠用内部除杂设备

Also Published As

Publication number Publication date
US20160115670A1 (en) 2016-04-28
US20150204052A1 (en) 2015-07-23
CA2879099A1 (en) 2015-07-21
CN109113121A (zh) 2019-01-01
CN109113121B (zh) 2021-06-18
CA2879099C (en) 2022-08-16
US10316490B2 (en) 2019-06-11
US9260834B2 (en) 2016-02-16
AU2015200234A1 (en) 2015-08-06
CN104790458B (zh) 2018-09-21
AU2015200234B2 (en) 2019-02-28
US9689141B2 (en) 2017-06-27
US20170268199A1 (en) 2017-09-21
CL2015000136A1 (es) 2015-11-27

Similar Documents

Publication Publication Date Title
CN104790458A (zh) 控制工业机械的铲动参数
US9957690B2 (en) Controlling a digging operation of an industrial machine
CN204919649U (zh) 工业机械
CN103541732A (zh) 一种用于监控采掘机效率的系统和方法
CN103147479B (zh) 工业机器的动态控制
CN104790444A (zh) 基于钢丝绳永久缠绕来控制工业机械的操作
CN107407954B (zh) 具有功率控制系统的工业机械
CN104110048A (zh) 控制工业机械的挖掘操作

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20181120

Address after: Wisconsin

Patentee after: Joy Global Surface Mining Co., Ltd.

Address before: Delaware

Patentee before: Harnischfeger Tech Inc.

TR01 Transfer of patent right