CN1058316C - 钻井和固井方法 - Google Patents

钻井和固井方法 Download PDF

Info

Publication number
CN1058316C
CN1058316C CN93119167A CN93119167A CN1058316C CN 1058316 C CN1058316 C CN 1058316C CN 93119167 A CN93119167 A CN 93119167A CN 93119167 A CN93119167 A CN 93119167A CN 1058316 C CN1058316 C CN 1058316C
Authority
CN
China
Prior art keywords
drilling fluid
described method
blast
well
furnace cinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN93119167A
Other languages
English (en)
Other versions
CN1086575A (zh
Inventor
K·M·科万
A·H·哈尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN1086575A publication Critical patent/CN1086575A/zh
Application granted granted Critical
Publication of CN1058316C publication Critical patent/CN1058316C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/14Clay-containing compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q41/00Combinations or associations of metal-working machines not directed to a particular result according to classes B21, B23, or B24
    • B23Q41/08Features relating to maintenance of efficient operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/26Programme control arrangements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices, or the like
    • E21B33/14Methods or devices for cementing, for plugging holes, crevices, or the like for cementing casings into boreholes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4063Monitoring general control system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C3/00Registering or indicating the condition or the working of machines or other apparatus, other than vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33284Remote diagnostic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45143Press-brake, bending machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2223/00Indexing scheme associated with group G05B23/00
    • G05B2223/06Remote monitoring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

用含有高炉矿渣和水的钻井液钻小眼井,在钻井期间循环钻井液,形成泥饼。其后,加入活化剂,一般来说它是碱性材料和另外加入的高炉矿渣,生成粘结性水泥浆。这种粘结性水泥浆经套管向下,上返进入环形空间,完成初次固井作业。

Description

钻井和固井方法
本发明涉及钻井和固井方法。
油井或气井井眼通常是以约50cm的初始直径钻的。很久以前就知道钻勘称为小井眼的较小直径的井作为探井。这类井一般来说井眼初始直径不大于13-15cm。在某些情况下也希望钻小井眼生产井。
按常规钻井方法,小井眼的作业方法一般是用旋转钻井工艺进行的。
旋转钻井是用旋转钻柱组件完成的,该组件包括装在钻柱下端的旋转钻头。在旋转时负荷加在钻头上,产生一个进入地层的井眼。钻柱是空心的,当井眼钻深时,把钻杆加到钻柱上,增加钻柱长度。在旋转钻井过程中,钻头可用旋转钻柱的方法转动,和/或驱动装在钻柱下端的马达旋转钻头。
这种旋转钻井过程产生巨大的摩擦力,产生热及被钻地层的碎屑。必须从井眼中清除掉地层碎屑,钻头也要冷却,以延长其使用寿命。这两种要求是靠钻井液通过钻柱向下,并经钻柱和井壁之间的环形空间向上达到地面这种循环方法实现的。
一旦井眼钻到预定的深度,最理想的是把井眼钻穿的独立的范围、层带或地层分隔开。为了采出地层中的流体,管子(套管)必须从地面向下插入井眼,衬管可以悬挂在套管内。
由于这种情况,需要用封堵环形空间的材料充填套管和并壁间或衬管和套管间的环形空间,构成套管或衬管的结构支撑,这通常叫做初次固井。
小井眼钻井产生两个问题。第一,因环形空间小,很难清除井壁和套管间的环形空间中的钻井液。第二,又因环形空间很窄,很难清除井壁上的泥饼。因泥饼一般与水泥不配伍,这后一个问题就更重要。这可能造成用来冲替钻井液的流体沟道,和/或留在环形空间内的大量的未清除而又不配伍的钻井液泥浆沟道,在最后固井作业中形成空洞。
本发明的一个目的是小井眼固井问题。
本发明的另一个目的是避免小井眼固井作业中形成空洞。
本发明的最后一个目的是消除小井眼环形空间内水泥和泥饼间的不相容问题。
为达到此目的,按照本发明的钻井和固井方法包括:
用包括钻柱和钻头的旋转钻柱组件和含高炉矿渣和含水液体的钻井液钻一口井;
通过钻柱向下,经钻柱和井壁间的环形空间向上循环钻井液,因而在钻井过程中在井壁上形成泥饼;
起出钻柱组件,插入套管,套管的外径应能使套管的外表面和井眼的内表面间的环形空间宽度为0.2-4cm之间;
向钻井液加入活化剂,生成胶结水泥浆;及
经套管内部向下,上返进入环形空间循环胶结水泥浆。
已经发现在钻井液中使用高炉矿渣时,在井壁上形成相容性泥饼,从而这种泥饼转变成有用的材料,而不再是一种负担。另外,正如在下面将要详细论述的那样,狭窄环形空间中未置换出的钻井液转变成很强、很硬的封堵材料。
术语“小井眼”是指包括初始井眼直径为7-23cm,更常见的是10-15cm的那种技术。在这类井中,套管或衬管和井壁间环形空间的宽度只有0.2-4cm,通常0.6-3cm,更常见的是1-2cm。环形空间尺寸的参考数据是指井眼内表面的半径与套管外表面半径之差。
本文中用的术语“钻井液”是指水基或油基液体,它含有含水液体,高炉矿渣,和至少一种其它的添加剂如:增粘剂、降粘剂、溶解盐、被钻地层的固体颗粒,增加液体密度的固体增重剂,抑制钻井液和地层间有害反应的地层稳定剂,及改进钻井液润滑性能的添加剂。
在较理想的方案中,是再加入高炉矿渣和促进剂(将在下面论述),激活钻井液,使钻井液和水泥两者的流变学特性都成最优化。最后,按照本发明配制的钻井液和水泥允许盐水存在,而且还确实受益于盐水。由于使用小井眼的主要领域是海上钻井,这里当然有盐水,这种技术就具有特殊意义。由于按本发明使用的钻井液变成最后固井水泥的一部分,这种钻井液可称为通用液体,即在钻井和固井中都是有用的。
一般来说,初始钻井液是任何与高炉矿渣相混合的已知钻井液中的一种,适用的钻井液包括那些本领域已知的如水基泥浆,清水泥浆,海水泥浆,盐水泥浆,卤水泥浆,石灰泥浆,石膏泥浆,多元醇泥浆和水包油乳化液。一组适用的钻井液已在USA专利NO.5058679中公布过。此外,含油也含水的泥浆也可使用,如低含水的油基泥浆和反油乳化液泥浆。在各种情况下,这类泥浆都含有高炉矿渣,一般其最终钻井液的含量为2.8-285kg/m3,较好的是28-228kg/m3,最好是57-143kg/m3
可加入胶结材料形成通用钻井液的典型钻井液配方如下:10-20重量%盐,23-28kg/m3
Figure C9311916700071
土,11-17kg/m3羧甲基淀粉(防失水剂),Milpark钻井液公司以商标名“BIOLOSE”销售,1-3kg/m3部分水解的聚丙烯酰胺(PHPA),它是页岩稳定剂,Milpark钻井液公司以商标名“NEWDRIL”销售,3-4kg/m3CMC,Milpark钻井液公司以商标名“MILPAC”销售,85-200kg/m3钻屑,和0-715kg/m3重晶石。
因为钻井液要成为最后的胶结水泥浆的一部分,所以,要处理的旧钻井液的数量就大大减少了。
本发明的另一实施方案中,大部分或全部钻井液组分要经过挑选,以使它们也能在胶结材料中起一种作用。下表1和表2说明了这类钻井液配方和胶结水泥浆配方的特性。
表1.钻井液中添加剂的作用
添加剂                主要作用                次要作用
合成聚合物1          防失水
淀粉2                防失水                  调节粘度
生物聚合物3          粘度
硅酸盐                粘度                    页岩稳定剂
碳水化合物            反絮凝剂
聚合物4
重晶石5              密度
6              防失水
粘土/石英粉7         --                      --
矿渣8                剪切稳定剂              --
石灰9                页岩稳定剂              碱度
PECP10               剪切/井眼稳定剂         防失水
NaCl                  页岩稳定剂              -
油                    润滑剂                  防泥包
表2 胶结水泥浆中添加剂的作用
添加剂                主要作用                次要作用
合成聚合物1          防失水                  缓凝剂
淀粉2                防失水                  缓凝剂
生物聚合物3          粘度                    缓凝剂
硅酸盐                促凝剂                   --
碳水化合物聚合物4    缓凝剂                  反絮凝
重晶石5         调节密度           调节固体含量
Figure C9311916700091
6         防失水             调节固体含量
粘土/石英粉7    调节固体颗粒含量
矿渣8           粘结度             调节固体含量
石灰9           促凝剂             调节固体含量
PECP10          缓凝剂
NaCl             -                  -
油               --                 --
1.如由SKW化学公司制造、商标名“POLYDRILL”合成聚合物。
2.如由Milpark公司制造、商标名“PERMALOSE”淀粉。
3.如由Kelco油田集团公司制造的“BIOZAN”。
4.由Grain Processing CO.制造,商标名“MOR-REX”水溶性碳水化合物聚合物。
5.重晶石是BaSO4,钻井液增重剂。
6.
Figure C9311916700092
土是一种粘土或胶质粘土增稠剂。
7.如粘土/石英粉由Milwhite公司制造,商标名“REVDUST”。
8.由Blue Circle水泥公司制造,商标名“NEWCEM”高炉矿渣最为适用。
9.CaO。
10.多环聚醚多元醇,USA专利No.5058679中有描述。
所谓“高炉矿渣”是指高炉中熔化金属或还原矿石的水凝性废料,如USA专利No.5058679中的描述,该描述也引入本文供参考。所谓“磷盐”是指膦酸盐、磷酸盐或聚磷酸盐,下面将详细描述。
本发明中优先选用的高炉矿渣是高玻璃质含量的矿渣,它是1400℃-1600℃的高温矿渣熔流与大量的水直接接触急剧冷却生成的,急冷作用把熔流转变成具有水凝性的玻璃状物质,这时它通常是颗粒状,很容易研磨成预定的粒度。二氧化硅、氧化铝、氧化铁、氧化钙、氧化镁、氧化钠、氧化钾、和硫是矿渣中的一些化学成分。本发明中优先选用的高炉矿渣应具有的粒度如下:比表面积在2000cm2/g-15000cm2/g之间,较好的是3000cm2/g-15000cm2/g,更好的是4000cm2/g-9000cm2/g,最好的是4000cm2/g-8500cm2/g。各例中的比表面积或表面积是伯努利(Blaine)比表面积。完全能满足这些要求市场上可买到的高炉矿渣是BlueCircle水泥公司制造的,商标名为“NEWCEM”。这种矿渣是从马里兰州,Sparrows Point市的Bethlehem钢铁公司的高炉产出的。
普通高炉矿渣的组分含量范围,按重量百分比是:SiO2,30-40;Al2O3,8-18;CaO,35-50;MgO,0-15;氧化铁,0-1;S,0-2;氧化锰,0-2。典型的例子是:SiO2,36.4;Al2O3,16.0;CaO,43.3;MgO,3.5;氧化铁,0.3;S,0.5,及氧化锰,<0.1。
具有较小粒度的高炉矿渣往往是最理想的,这是因为在多数情况下它能把较大的强度赋予最后的水泥。关于确定粒度特性的术语“细粒”可用来表述比表面积在4000cm2/g-7000cm2/g之间的颗粒,相当于粒径16-31微米;“微细粒”可用来表述比表面积在7000cm2/g-10000cm2/g那类颗粒,相当于粒径5.5-16微米;“超细粒”可用来表述比表面积大于10000cm2/g的颗粒,相当于粒径5.5微米或更小。小粒径高炉矿渣可从奥柯拉荷马州,吐尔萨市koch工业区,Blue Circle水泥公司购买,商标名“WELL-CEM”,以及从Geochem公司购买,商标名为“MICRDFINEMC100”。
然而,把高炉矿渣研磨成这种粒径是很费时间的。把高炉矿渣磨成完全是一种粒径的颗粒是不可能的。因此,任何研磨方法都将得到杂散的粒径分布,粒径与具有该粒径的颗粒百分率图将得出表示粒度分布的曲线。
按照本发明优先选择的实施方案,在上述粒度分布图上至少呈现两个交点的那种杂散粒径分布特征的高炉矿渣是可使用的。已经发现,如果仅有一部分颗粒属超细粒级,那么其余的,而且是大量的,研磨得更粗些,而且基本上仍能得到与花费更大的把全部高炉矿渣都磨成超细粒所得的结果相同。因此,至少能得出5%粒径在1.9-5.5微米的颗粒的研磨方法在经济上和效果上都具有特别的优点,较好些的是6-25重量%颗粒粒径在1.9-5.5微米间。获得这种组分的最简便方法是只把少量高炉矿渣研磨成超细粒,把这种超细粒粉末与在不大严格条件下磨制的矿渣粉相混合。即使在这种不大严格的条件下,也会有些颗粒是细粒,微细粒或超细粒级。因此,只有少量,即少达4重量%的矿渣需要研磨成超细粒级。一般来说,5-25重量%,较好的是5-10重量%,研磨成超细粒级,其余按常规方法研磨,得到的颗粒粒径一般大于11微米,大部分在11-31微米之间。
本发明的另一特点是能把钻井液和最后的水泥浆的流变学特性调配成适宜特殊井眼的条件。这是由于使用高炉矿渣作水凝材料得到的最后的胶结水泥浆,如果这种水泥浆更稀的话,在一定意义上,它不会象用普通水泥那样而减低,换句话说,额外加入的高炉矿渣不会把极高的粘度赋予这种水泥浆,因此,如果愿意的话,高浓度的水凝材料是可以使用的。
然而,在本发明优先选用的方法中,先使用钻井液,随后在额外加入高炉矿渣之前或在加入期间稀释钻井液,稀释液可以是与配制钻井液的液体相同,或不同。一般来说,是盐水,尤其是钻井液是用盐水配制时,稀释液更应用盐水,也可以是更浓的盐水。在许多实例中,稀释液和配制初始钻井液的原始液体两者都应优先选用海水,这在海上钻井是特别有利的,这里淡水不容易得到,而海水是容易得到的。
适用的钻井液含57-143kg/m3高炉矿渣,往其中加入额外的足够量的高炉矿渣,以形成胶结水泥浆中胶结材料的总量在285-1430kg/m3之间的胶结水泥浆。
因此,作业方法得到很大的改进,这是因为首先可选择钻井液的密度,使其足以避免因地层压力而使地层流体进入井眼,但又要不会破裂井壁而迫使钻井液进入地层。用释释液,其后再额外加入高炉矿渣的方法,胶结水泥浆也能具有同钻井液一样的可调配成适合特殊作业的密度。
用两种方法中的任一种可完成稀释作业。第一,把盛钻井液的容器分开,把预定的水量或其它稀释剂加进去。然而在一优选的方法中,钻井液象液流样通过混合带,“在流动中”把稀释液加到液流中。此后,再额外加入高炉矿渣。这就避免了高粘度的胶结水泥浆组合物,并使其能用各类泵通过管输进行,泵是固井设备上的,不需要专门设计泵粘性水泥浆的泵。这一点在本发明有特殊功效的领域常很有价值,如海上钻机,往这运送附加的泵输设备是极不方便的。因此,如果需要的话,可以把胶结水泥浆的最终密度调制成钻井液原始密度30%不到至70%多之间,较好是低于15%至大于50%之间,最好是基本上相同,即变化不大±5重量%。
胶结水泥浆中胶结材料的总量一般在约57-1712kg/m3之间,较好是285-1430kg/m3,最好是428-1000kg/m3。在一最为优先选择的方法中,水凝性材料完全是,或基本上完全是高炉矿渣制成的,不加其它水凝材料。
在另外与本发明有关的方法中,钻井作业中使用的通用液体,其后逐渐加入额外的高炉矿渣和/或添加剂,以便使其逐渐的由钻井液转变成胶结水泥浆。
本发明甚至可用来钻广义小井眼,它本身具有与小井眼有某些相同的问题,一般是由在井眼中不均匀安放套管造成的。
术语“钻广义井”是指包括有时称为钻倾斜井、水平井或定向井的那些技术。本发明适用于那种倾斜井:偏离垂向小达1%,即使这样小的井向偏斜也会由此造成套管居中的困难。其它极端例子是纯粹水平井,这是很少有的。本发明在那类井中具有特殊价值:偏离垂向1-90°,较好的为10-90°,最好是30-80°。
在某些情况下,希望顺序加入各种组分。例如,高炉矿渣在加入降粘剂和/或缓凝剂之后再加入。如果在钻井液中使用了混合的金属氢氧化物以赋予触变性时,这一点特别正确。在这种例子中,如磺化木质素这种降粘剂应在加高炉矿渣之前先加入。
混合的金属氢氧化物较好地提供了固体悬浮物。与本发明的技术提供的稳定泥饼相结合,这就大大提高了有限环形空间内的固井作业。混合的金属氢氧化物在含有钠质
Figure C9311916700141
土这种粘土的泥浆中特别有效,优选的以这种方法增粘系统含粘土如 土的量为:3-57kg/m3,较好的是6-43kg/m3,最好是20-34kg/m3。混合的金属氢氧化物在总钻井液中一般含量为:0.3-6kg/m3,较好是0.3-4kg/m3,最好是2-4kg/m3。混合的金属氢氧化物在本领域是已知的,是含三价的金属氢氧化物的组合物,如Mgal(OH)4.7Cl0.3它们基本上与下式一致:LimDdT(OH)(m+2d+3+na)Aa n
式中:
m表示存在的Li离子数;数量为0-1;
D表示二价的金属离子;
d表示D离子数,在0-4之间;
T表示三价的金属离子;
A代表一价的阴离子或n价的多价阴离子,而不是OH-,a为A的阴离子数;而(m+2d+3+na)等于或大于3。
更详细的说明可见USA专利No.4664843。
钻井液中混合的金属氢氧化物与高炉矿渣相结合,在低达38℃条件下较短的时间即约半小时内,有助于形成相当强度的水泥,在某些应用实例中这可能是个重要特征。
在钻井液中见到的适用防失水添加剂包括
Figure C9311916700143
土粘土,羧甲基化淀粉,淀粉,羧甲基纤维素,合成树脂,如SKW化学公司制造的“POLYDRILL”,磺化褐煤,褐煤,木质素,或鞣酸化合物。增重材料包括如重晶石,碳酸钙,赤铁矿和MgO。钻井液中用的页岩稳定剂包括水解的聚丙烯腈,部分水解的聚丙烯酰胺,盐类有NaCl,Kcl,甲酸钠或甲酸钾,乙酸钠或乙酸钾,聚醚和多环的及/或聚醇类。可用的增粘添加剂为如生物聚合物,淀粉类,坡缕石和海泡石。添加剂也用来降低扭矩。适用的降粘剂如铬和无铬木质素磺酸盐,磺化苯乙烯顺丁烯二酐和聚丙烯酸酯也可根据泥浆类型和泥浆重量选用。润滑添加剂包括非离子型洗涤剂和油类(柴油、矿物油、植物油、合成油)。碱度调节可用如KOH,NaOH或CaO。此外,其它添加剂如防腐剂,坚果硬壳等也可在典型钻井液中见到。当然包括像石英和粘土矿物(蒙脱石,尹利石,绿泥石,高岭土等)的钻屑在泥浆中也可见到。
钻完井之后,激活钻井液。用加活化剂(下面详细讨论),和再额外加高炉矿渣或两者都加的方法能做到这点。优先选用的是加额外的高炉矿渣和促进剂来进行活化。由与高炉矿渣不同的水凝性材料,如火山灰和其它可用的水凝性材料制胶结水泥浆也属本发明的范围。所谓“水凝性材料”是指那些与含水液体和/或活化剂接触就变硬或凝固的材料。
活化剂或多种活化剂,不是在加高炉矿渣之前与要加的其它成分、与外加高炉矿渣一起加入,就是在额外加高炉矿渣之后加入。
在某些情况下,因为需要缓凝剂产生别的效果,希望使用与活化剂一起使用起缓凝剂作用的材料。例如,木质磺酸铬与活化剂一起使用可起到降粘剂的作用,虽然它也起缓凝剂的作用。
如上所述,活化剂无非是额外加入高炉矿渣,使浓度高到足以形成胶结水泥浆。如果在高温环境或向井眼加热以加速其凝固的话高炉矿渣最后将水解并形成特殊水泥。
然而,最优先选择的是用数量上在胶结组合物中占矿渣总量多数的矿渣(即钻井液中的矿渣和加入形成胶结水泥浆的矿渣的总和占矿渣的大部分)和化学活化剂相结合的方法。适用的化学活化剂包括硅酸钠,氟酸钠,硅氟酸钠,硅氟酸镁,硅氟酸锌,碳酸钠,碳酸钾,氢氧化钠,氢氧化钾,氢氧化钙,硫酸钠及它们的混合物。苛性钠(氢氧化钠)和苏打粉(碳酸钠)的混合物由于其效果好和容易得到而优先选用。当使用这种苛性钠和苏打粉混合物时,由于它各自都起促进作用,比例变化很大,优先选用的是2.8-57kg/m3苛性钠,较好的是5-17kg/m3苛性钠与5-143kg/m3,较好的是5-57kg/m3苏打粉一同使用。参数“kg/m3是指最后的胶结水泥浆的每立方米中的kg数。
本发明的另一方法中,钻井过程是按上述方法用通用钻井液钻一口穿过许多地层的井眼完成的,从而在井壁上形成泥饼。固井作业之前,用活化剂经钻柱内部向下,而经钻柱与泥饼间的环形空间向上;不然就起出钻柱,下套管,活化剂经套管向下,由环形空间向上循环的方法使活化剂与泥饼接触。这里使用的与钻柱或套管有关的“向下”一词是指方向指向井眼的最远一端,即使少数例子中井眼是水平布置的也如此。与此相类似的“向上”一词是指朝井眼的起始端返回。优先选用的是用钻柱进行循环,这就是本发明的方法的优点,不用起出钻柱和另下套管柱就可以借助泥饼“稳固”,封堵气层,防止失水,或者防止井漏以保持钻井。这也可用来稳定容易冲蚀的层带(盐层,其中的盐是溶于水的地层)或其它不稳定地层。钻井作业完成之后,稀释钻井液,起出钻柱,并按上述方法进行固井作业。该项作业可用循环含活化剂的隔离液或向钻井液加前述的碱性活化剂的方法完成。
本发明还包括一种钻井和固井方法,该方法如下:
用包括钻柱和钻头的旋转钻柱组件钻井;
使用含47-143kg/m3高炉矿渣,粘土,淀粉,部分水解的聚丙烯酰胺和重晶石的钻井液;
钻井液经钻柱向下,经管柱和井壁间的环形空间向上进行循环,
因此在井壁上形成泥饼;
起出钻柱组件,下套管,因此,造成套管与井壁间的环形空间,宽度为0.2-4cm;
向钻井液加高炉矿渣,磺化木质素降粘剂,和含苛性钠及苏打粉混合物的活化剂,生成胶结水泥浆,含高炉矿渣的总量在285-1430kg/m3之间;及
使胶结水泥浆经套管向下,上返进入套管与井壁形成的环形空间。
常规隔离液可在上述顺序中使用,此外,用另一种液体和/或隔离液置换出井眼内含活化剂的废液,存起来为随后使用或进行处理。
在该方案中,泥饼是“固结的”,活化剂可以是前述的碱性活化剂中的任一种,如氢氧化钠和碳酸钠的混合物。
本发明将参照下述试验举例详细论述。
用含下述组分的1617kg/m3钻井液制备1665kg/m3通用液,其组成为:20重量%盐(140000mg/L),23-28kg/m3
Figure C9311916700181
土,11-17kg/m3羧甲基淀粉,Milpark公司制造以商标名“BIOLOSE”销售,1.4-2.8kg/m3部分水解的聚丙烯酰胺(PHPA),Milpark公司生产以商标名“NEWDRILL”销售,2.8-3.6kg/m3 CMC,Milpark公司生产,以商标名“MILPAC”销售,86-200kg/m3钻屑,0-700kg/m3重晶石,114kg/m3高炉矿渣,Blue Circle水泥公司生产,以商标名“NEWCEM”销售。
通用钻井液设计成能在温度49℃-71℃条件下使用的钻井液,并形成稳固的泥饼,更好的封隔地层,和保持地层。用全尺寸的水平井模型测试这种通用钻井液的固化作用。测试的通用钻井液表明,它可在井下条件形成泥饼。
1665kg/m3通用液通过该模型进行循环,并形成泥饼.然后把部分通用液按下述方法加入矿渣和活化剂转成1845kg/m3胶结水泥浆,并用来置换出井眼模型中的通用液。在93℃温度下井眼模型加热老化三周。试验的最重要目的是把通用液存留在模拟的冲蚀部位,证明在最差的物理条件下未置换出的通用液也能形成封堵。
试验目的是:1)证明为了消除试验模型中未凝固的液体和泥饼,1665kg/m3通用液的未置换段可以在井下形成封堵。2)证明1665kg/m3通用钻井液能转变成令人满意的胶结水泥浆并具有固化特性,3)证明通用钻井液/胶结水泥浆作业能改进分带作用(在模型中提高了剪切力和水凝水泥胶结作用)并形成套管的侧向支撑。
试验条件:修改人造井眼模型专门建造三处冲蚀段(2.54,5.08和15.24cm宽),按下述现场条件在修改过的模型上做置换试验:
通用钻井液条件:钻一口直径27cm的倾斜井,井眼循环温度(BHCT)49℃-71℃。
固井水泥浆条件:井眼静态温度(BHST)93℃(5486m)。
置换模型:外径(OD)12.7cm,4.6m长的钢套管装在16.5cm内径(ID)的人造岩心中,模拟地层具有三处冲蚀段,水平部位用下述测试方法:1)为了不冲走沉积的泥饼和保护冲蚀部位未置换掉的通用钻井液,以低速置换(159 L/min),2)100%的套管平衡(居中心位置)。
人造岩心(地层)是具有渗透性的砂-环氧树脂的混合物,厚4.45cm,放置在模型的内圆周上(钢套管模型OD 27.3cm,ID25.4cm)。在把套管总长度4.75m焊接在一起之前,去掉部分模拟的砂-环氧树脂地层,制成了三处冲蚀段(边缘整齐,无过渡带)。三处冲蚀段(2.54,5.08和15.24cm宽)的顶端,由井眼模型底部算起,分别放置在1.5m,2.1m和3m处。如前面所述,OD12.7cm的钢套管处于井眼模型内的中心位置,理论上环形空间间隙为1.9cm宽,冲蚀处为6.35cm宽。
1.9cm的环形空间间隙模拟小井眼的狭窄环形空间。
泥饼沉积:上述1665kg/m3的通用钻井液通过水饱和的井眼模型以447-636 L/min速度循环2小时,关闭井眼模型,用电加热到60℃并加压力。在压差0.69Mpa下收集滤液,在岩心上形成约0.32cm厚的泥饼。
置换:在60℃温度下渗滤24小时后,通用钻井液通过井眼模型以159 L/min速度循环20分钟,同时收集额外的滤液。在循环期间,从通用钻井液中分离出795 L通用钻井液,加入另外的457kg/m3 NEWCEM高炉矿渣,活化剂和缓凝剂把分离出的通用钻井液转变成570kg/m3的胶结水泥浆,然后加入7kg/m3氧化铁红把胶结水泥浆染色。活化剂系统由11kg/m3苛性钠,40kg/m3苏打粉,和17kg/m3“SPERSENE CF”(MI钻井液公司制造的无铬木质素磺酸盐)配成。用染色的胶结水泥浆,以159-318L/min速率从井眼模型中置换出通用钻井液,直到见到未染色的胶结水泥浆的初始部分流出为止。为了在井眼模型中留下足够量的未置换的通用钻井液,采用低速置换法。然后,通过井眼模型,以159-318 L/min速率将胶结水泥浆再循环20分钟。
岩心评估:在93℃温度下老化三周之后,把井眼模型冷却至室温,然后把模型拆卸,锯成三段。把这三段再锯成较小的段节,进一步做剪切和水凝水泥胶结试验。
为了评估置换效果,把全部有用的横截面都拍下照片。如预想的那样,置换效率约为55%。用高角度井眼模型,清楚地反映出正常的较差的置换效率。虽然套管是居中心位置的,但绝对的居中是做不到的,在环形空间的狭窄一侧,大量通用钻井液未置换出来。所谓“置换效率”是指置换出的泥浆体积除以环形空间的体积,乘100换算成百分率。
因此,该例子证明了本发明的小井眼中见到的这种狭窄环形空间中的价值。
从超始端到末端,尤其是在底部都明显地见到有未置换出的通用钻井液,即是这样,也发现通用钻井液的泥饼和未置换出的通用钻井液的封隔层都是非常坚硬的。用手持式针入度仪测试结果表明,通用钻井液泥饼和胶结水泥浆具有超过5.1Mpa(最大读数)的抗压缩强度。实质上取得了优秀的固井作业,尽管泵速低,井眼角度高(90°)和有三处冲蚀段。如果不用通用钻井液和胶结水泥浆,置换效率55%这种固井作业会是非常糟的。
含有井眼模型冲蚀部分的几段再锯开,并进一步评估。用金刚石锯沿纵向锯开,制成约3-4cm厚的平行面薄片,这些薄片显示出地层、环形空间、冲蚀、固化的通用钻井液,通用钻井液泥饼,和胶结水泥浆的新截面。
固结了的通用钻井液和通用钻井液泥饼,都在2.54cm冲蚀处,5.08cm冲蚀处底部和15.24cm冲蚀处底角部见到了。冲蚀处渗透性地层面附近的高硬度是因失水通用钻井液变浓造成的,硬化的通用钻井液显示出抗压缩强度大约在3.4-10.5Mpa之间。虽然在试样上有许多纹层,但环形空间和冲蚀部位是完全固结的,而且所有层带的分隔是很好的。
此外,在置换期间,取了8个矿渣胶结水泥浆样品,在93℃温度下在5cm见方的模具中固化一周,达到的平均抗压缩强度为13Mpa,标差1Mpa。
水凝水泥胶结试验结果:顶端(1.4m长)切成2小段,用染有荧光的水,在这些岩心上(0.7m长)做原位水凝水泥胶结试验。两个孔眼(前面和后面)钻至岩心上的套管壁处,用环氧树脂安装喷嘴。从喷嘴用液压泵泵入染色的水,记下最大破裂压力作为水凝水泥的胶结强度,试验结果如下:
岩心/压力孔           水凝水泥胶结强度,Mpa
H-1,前                12.4
H-1,后                2.7
H-2,前                3.8
H-2,后                5.2
剪固结力试验结果:模型(1.4m长)的两底端切成5块做剪固结力试验。有冲蚀的部分不做剪固结力试验,在水压机上压出套管的方法,测量剪固结力,测试结果如下:
试样    管长(cm)    力(KN)    剪固结力(Mpa)
S-1     25          18        0.18
S-2     23          86        0.93
S-3     22          7.6       0.88*
S-4     27          45        0.42
S-5     27          24        0.22
S-6     27          22        0.22
S-7     27          7.0       0.06*
S-8     22          8.9       0.10*
*在锯岩心期间,试样受损坏。
此外,在置换期间,取了4个矿渣胶结水泥浆样品,在实验室剪固结力模型中用钢管在93℃下固化一周,模型钢管长10cm,外径(OD)3.8cm。平均剪固结力为0.32Mpa。
由上述试验,得出下述结论。未置换出的通用钻井液的封隔层的固化硬度为抗压缩强度在3.4-10Mpa之间,得到了很好的水固结力数据。虽然有些变化,但剪固结力数据是很好的,这证明(1)高炉矿渣通用钻井液能达到100%的置换效率,即使在狭窄环形空间中的未固结的钻井液封堵也消除了。(2)高炉矿渣通用钻井液,因消除了未固结的物质并固化其它原因造成的未固结部分而产生了额外的强度,从而提高了套管的侧向支撑,(3)高炉矿渣通用钻井液,通过提高剪固结力和水凝水泥固结力,而改进了层位分隔效果,(4)高密度的高炉矿渣通用钻井液可按配方配制和在高温条件使用。

Claims (16)

1.一种钻井和固井方法,该方法包括:
用包括钻柱和钻头的旋转钻柱组件,和含高炉矿渣和含水液体的钻井液钻井眼;
通过钻柱向下,经钻柱与井壁间的环形空间向上循环钻井液,因此,在钻井过程中在井壁上形成泥饼;
起出钻柱组件,下套管,套管的外径应能使套管的外表面和井眼的内表面间的环形空间宽度在0.2-4cm之间;
向钻井液中加入活化剂,生产胶结水泥浆;及
胶结水泥浆经套管内部向下并上返进入环形空间,进行循环。
2.权利要求1所述的方法,其中活化剂是外加加入的高炉矿渣和碱性剂。
3.权利要求2所述的方法,其中碱性剂是苛性钠和苏打粉的混合物。
4.权利要求3所述的方法,其中钻井液另外还含有木质素磺酸盐降粘剂。
5.权利要求2所述的方法,其中,钻井液含有57-143kg/m3的高炉矿渣;而且其中加入额外的高炉矿渣以便形成胶结水泥浆,其量足以使胶结水泥浆中的胶结材料的数量在285-1430kg/m3之间。
6.权利要求5所述的一个方法,其中高炉矿渣是胶结水泥浆中唯一的水凝性组分。
7.权利要求2所述的方法,其中钻井液高炉矿渣和活化剂高炉矿渣都是由5-25%重量百分比超细粒矿渣粉和80-90%重量百分比细粒或微细粒矿渣粉的混合物配制的。
8.权利要求1所述的方法,其中含水液体含有溶解盐。
9.权利要求8所述的方法,其中溶解盐包括氯化钠。
10.权利要求9所述的方法,其中氯化钠含量在0.2-5%重量百分比之间。
11.权利要求8所述的方法,其中含水液体也包括海水。
12.权利要求l所述的方法,其中钻井液另外还含有多环聚醚多元醇。
13.权利要求1所述的方法,其中井眼直径在10-15cm之间,环形空间的宽度在0.4-3cm之间。
14.权利要求1所述的方法,其中钻井液含有粘土和混合金属氢氧化物触变剂。
15.权利要求14所述的方法,其中粘土是 土,混合金属氢氧化物是MgAl(OH)4.7Cl0.3,其中在加活化剂之前,加入木质素磺酸盐降粘剂,而且其中活化剂包括外加的高炉矿渣和碱性剂。
16.权利要求1所述的方法,其中
起出钻柱组件之前,活化剂经钻柱内部向下,上返进入环形空间与泥饼接触,因此使泥饼固化;其后再进行其它钻井作业。
CN93119167A 1992-10-22 1993-10-21 钻井和固井方法 Expired - Fee Related CN1058316C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US964,991 1992-10-22
US07/964,991 US5343951A (en) 1992-10-22 1992-10-22 Drilling and cementing slim hole wells
US964991 1992-10-22

Publications (2)

Publication Number Publication Date
CN1086575A CN1086575A (zh) 1994-05-11
CN1058316C true CN1058316C (zh) 2000-11-08

Family

ID=25509281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN93119167A Expired - Fee Related CN1058316C (zh) 1992-10-22 1993-10-21 钻井和固井方法

Country Status (11)

Country Link
US (1) US5343951A (zh)
EP (1) EP0667930B1 (zh)
CN (1) CN1058316C (zh)
AU (1) AU672842B2 (zh)
BR (2) BR9307297A (zh)
CA (1) CA2147492A1 (zh)
MY (1) MY110354A (zh)
NO (1) NO951504L (zh)
NZ (1) NZ257122A (zh)
OA (1) OA10012A (zh)
WO (1) WO1994009252A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447197A (en) * 1994-01-25 1995-09-05 Bj Services Company Storable liquid cementitious slurries for cementing oil and gas wells
US5499677A (en) * 1994-12-23 1996-03-19 Shell Oil Company Emulsion in blast furnace slag mud solidification
US6536520B1 (en) 2000-04-17 2003-03-25 Weatherford/Lamb, Inc. Top drive casing system
CN1059648C (zh) * 1998-08-15 2000-12-20 刘兴才 矿业充填封堵低水胶固粉
BR0009654A (pt) 1999-04-09 2002-01-08 Shell Int Research Processo para vedar uma coroa circular entre dois tubulares sólidos ou entre um tubular sólido e um furo de sondagem, poço dotado de um tubular vedado, e, tubular provido de um tubular interno vedado a dito tubular
US6258160B1 (en) * 1999-09-07 2001-07-10 Halliburton Energy Services, Inc. Methods and compositions for grouting heat exchange pipe
FR2801049B1 (fr) * 1999-11-16 2002-01-04 Ciments D Obourg Sa Composition de beton a ultra-hautes performances a base de laitier
GC0000398A (en) 2001-07-18 2007-03-31 Shell Int Research Method of activating a downhole system
US20050009710A1 (en) * 2002-01-31 2005-01-13 Halliburton Energy Services Reactive sealing compositions for sealing hydrocarbon containing subterranean formations and methods
US7730965B2 (en) 2002-12-13 2010-06-08 Weatherford/Lamb, Inc. Retractable joint and cementing shoe for use in completing a wellbore
US6899186B2 (en) * 2002-12-13 2005-05-31 Weatherford/Lamb, Inc. Apparatus and method of drilling with casing
USRE42877E1 (en) 2003-02-07 2011-11-01 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
US7650944B1 (en) 2003-07-11 2010-01-26 Weatherford/Lamb, Inc. Vessel for well intervention
US7059408B2 (en) * 2004-07-08 2006-06-13 Halliburton Energy Services, Inc. Methods of reducing the impact of a formate-based drilling fluid comprising an alkaline buffering agent on a cement slurry
US7303008B2 (en) * 2004-10-26 2007-12-04 Halliburton Energy Services, Inc. Methods and systems for reverse-circulation cementing in subterranean formations
US7303014B2 (en) 2004-10-26 2007-12-04 Halliburton Energy Services, Inc. Casing strings and methods of using such strings in subterranean cementing operations
US7284608B2 (en) * 2004-10-26 2007-10-23 Halliburton Energy Services, Inc. Casing strings and methods of using such strings in subterranean cementing operations
CA2538196C (en) 2005-02-28 2011-10-11 Weatherford/Lamb, Inc. Deep water drilling with casing
US7857052B2 (en) 2006-05-12 2010-12-28 Weatherford/Lamb, Inc. Stage cementing methods used in casing while drilling
US8276689B2 (en) 2006-05-22 2012-10-02 Weatherford/Lamb, Inc. Methods and apparatus for drilling with casing
EP2356193B1 (en) * 2008-10-13 2013-12-25 M-I L.L.C. Chrome free water-based wellbore fluid
US9102861B2 (en) * 2012-09-27 2015-08-11 Halliburton Energy Services, Inc. Cement compositions for cementing in confined locales and methods for use thereof
CN103032050A (zh) * 2012-12-14 2013-04-10 湖北双环科技股份有限公司 一种岩盐井施工不稳定性地层处理技术
US20140262268A1 (en) * 2013-03-15 2014-09-18 Halliburton Energy Services, Inc. ("HESI") Drilling and Completion Applications of Magnetorheological Fluid Barrier Pills
CN103627375B (zh) * 2013-12-02 2017-01-04 中国石油集团西部钻探工程有限公司 矿渣mtc固井液及其制备方法
NO341732B1 (no) * 2014-02-18 2018-01-15 Neodrill As Anordning og framgangsmåte for stabilisering av et brønnhode
CN105866339B (zh) * 2016-05-05 2018-01-05 西南石油大学 一种页岩水基钻井液封堵性能的评价泥饼及制备方法
CN106285566A (zh) * 2016-08-01 2017-01-04 中嵘能源科技集团有限公司 一种注空气防腐完井方法及其中使用的缓蚀酸溶液
CN111946297A (zh) * 2020-08-19 2020-11-17 新地能源工程技术有限公司 一种填充固化泥浆及水平定向钻注浆防塌工艺
CN115895624B (zh) * 2022-11-11 2024-03-22 荆州嘉华科技有限公司 一种环氧基冲洗液及其制备方法和应用

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2899329A (en) * 1959-08-11 Certificate of correction
US2336723A (en) * 1941-03-11 1943-12-14 John V Drummond Concrete, cement, and the like, and the process of making the same
US2649160A (en) * 1952-03-15 1953-08-18 Atlantic Refining Co Method of cementing casings in oil wells
US2822873A (en) * 1954-11-12 1958-02-11 Shell Dev Cement composition
US2880096A (en) * 1954-12-06 1959-03-31 Phillips Petroleum Co Cement compositions and process of cementing wells
US2938353A (en) * 1954-12-27 1960-05-31 Shell Oil Co Submersible drilling barge
US3021680A (en) * 1954-12-29 1962-02-20 John T Hayward Submergible drilling barge with hull protective devices
US2895301A (en) * 1955-02-08 1959-07-21 California Research Corp Stabilization of submarine raft foundations
US2961044A (en) * 1957-06-17 1960-11-22 Phillips Petroleum Co Cement compositions and process of cementing wells
FR1237311A (fr) * 1959-06-19 1960-07-29 Soletanche Nouveau procédé d'injection de coulis d'argile et produit utilisé pour la mise enceuvre dudit procédé
US3168139A (en) * 1961-05-08 1965-02-02 Great Lakes Carbon Corp Converting drilling muds to slurries suitable for cementing oil and gas wells
US3077740A (en) * 1962-01-02 1963-02-19 Dow Chemical Co Stabilization of clay soils and aggregates-so4-po4
US3412564A (en) * 1967-02-21 1968-11-26 Pike Corp Of America Sub-sea working and drilling apparatus
US3499491A (en) * 1968-06-28 1970-03-10 Dresser Ind Method and composition for cementing oil well casing
US3557876A (en) * 1969-04-10 1971-01-26 Western Co Of North America Method and composition for drilling and cementing of wells
US3695355A (en) * 1970-01-16 1972-10-03 Exxon Production Research Co Gravel pack method
US3670832A (en) * 1970-08-19 1972-06-20 Atlantic Richfield Co Slim hole drilling method
US3724562A (en) * 1970-08-19 1973-04-03 Atlantic Richfield Co Slim hole drilling electric power unit
US3675728A (en) * 1970-09-18 1972-07-11 Atlantic Richfield Co Slim hole drilling
US3820611A (en) * 1970-11-11 1974-06-28 Atlantic Richfield Co Well drilling method and apparatus
US3712393A (en) * 1971-01-20 1973-01-23 Atlantic Richfield Co Method of drilling
US3835939A (en) * 1972-09-18 1974-09-17 Atlantic Richfield Co Well drilling
US4057116A (en) * 1972-11-17 1977-11-08 Atlantic Richfield Company Slim hold drilling
IE40156B1 (en) * 1973-07-20 1979-03-28 Redpath Dorman Long North Sea Improvements in or relating to the stabilisation of marititime structures
US3887009A (en) * 1974-04-25 1975-06-03 Oil Base Drilling mud-cement compositions for well cementing operations
US3964921A (en) * 1975-02-27 1976-06-22 Calgon Corporation Well cementing composition having improved flow properties, containing phosphonobutane tricarboxylic acid, and method of use
US4037424A (en) * 1975-10-03 1977-07-26 Anders Edward O Offshore drilling structure
US4014174A (en) * 1975-10-28 1977-03-29 N L Industries, Inc. Method of simultaneously strengthening the surface of a borehole and bonding cement thereto and method of forming cementitious pilings
US4215952A (en) * 1978-03-15 1980-08-05 Chevron Research Company Offshore structure for use in waters containing large moving ice masses
US4252471A (en) * 1978-11-01 1981-02-24 Straub Erik K Device for protecting piles
SU833704A1 (ru) * 1979-04-06 1981-05-30 Новокузнецкое Отделение Уральскогонаучно-Исследовательского И Проектногоинститута Строительных Материалов Комплексна добавка дл шлакобетоннойСМЕСи
DE2930602A1 (de) * 1979-07-27 1981-02-19 Muenster L Graf Zu Handel Verfahren zum binden von abwasser und schlamm
US4335980A (en) * 1980-04-28 1982-06-22 Chevron Research Company Hull heating system for an arctic offshore production structure
US4425055A (en) * 1982-02-02 1984-01-10 Shell Oil Company Two-section arctic drilling structure
US4427320A (en) * 1982-02-19 1984-01-24 Shell Oil Company Arctic offshore platform
JPS58144069A (ja) * 1982-02-23 1983-08-27 Futaba Bobin Kk ボビンの製造方法
US4460292A (en) * 1982-07-15 1984-07-17 Agritec, Inc. Process for containment of liquids as solids or semisolids
US4760882A (en) * 1983-02-02 1988-08-02 Exxon Production Research Company Method for primary cementing a well with a drilling mud which may be converted to cement using chemical initiators with or without additional irradiation
US4450009A (en) * 1983-04-29 1984-05-22 Halliburton Company Method of preparing a light weight cement composition from sea water
US4518508A (en) * 1983-06-30 1985-05-21 Solidtek Systems, Inc. Method for treating wastes by solidification
JPS60230418A (ja) * 1984-04-28 1985-11-15 Takenaka Komuten Co Ltd 海洋単位構築物
JPS60242219A (ja) * 1984-05-14 1985-12-02 Takenaka Komuten Co Ltd 沖合用海底マウンド造成法
US4668128A (en) * 1984-07-05 1987-05-26 Soli-Tech, Inc. Rigidification of semi-solid agglomerations
JPS6148454A (ja) * 1984-08-13 1986-03-10 日本磁力選鉱株式会社 製鋼スラグの利用方法
NO850836L (no) * 1985-03-01 1986-09-02 Norske Stats Oljeselskap System for utvikling og utbygging av olje- og/eller gassfelter til havs.
JPS61250085A (ja) * 1985-04-30 1986-11-07 Lion Corp 土壌処理方法
US4664843A (en) * 1985-07-05 1987-05-12 The Dow Chemical Company Mixed metal layered hydroxide-clay adducts as thickeners for water and other hydrophylic fluids
US4720214A (en) * 1986-05-21 1988-01-19 Shell Offshore Inc. Mudmat design
US4674574A (en) * 1986-09-26 1987-06-23 Diamond Shamrock Chemicals Company Fluid loss agents for oil well cementing composition
US4761183A (en) * 1987-01-20 1988-08-02 Geochemical Corporation Grouting composition comprising slag
US4897119A (en) * 1988-01-11 1990-01-30 Geochemical Corporation Aqueous dispersion of ground slag
US4880468A (en) * 1988-09-29 1989-11-14 Halliburton Services Waste solidification composition and methods
US5026215A (en) * 1988-12-02 1991-06-25 Geochemical Corporation Method of grouting formations and composition useful therefor
US5106423A (en) * 1988-12-02 1992-04-21 Geochemical Corporation Formation grouting method and composition useful therefor
US4913585A (en) * 1988-12-21 1990-04-03 Tricor Envirobonds, Ltd. Method of treating solids containing waste fluid
US4991668A (en) * 1989-02-06 1991-02-12 Maurer Engineering, Inc. Controlled directional drilling system and method
US5016711A (en) * 1989-02-24 1991-05-21 Shell Oil Company Cement sealing
US5082499A (en) * 1989-02-28 1992-01-21 Union Oil Company Of California Well preflush fluid
US4942929A (en) * 1989-03-13 1990-07-24 Atlantic Richfield Company Disposal and reclamation of drilling wastes
US5020598A (en) * 1989-06-08 1991-06-04 Shell Oil Company Process for cementing a well
US5058679A (en) * 1991-01-16 1991-10-22 Shell Oil Company Solidification of water based muds
US5133806A (en) * 1990-06-05 1992-07-28 Fujita Corporation Softy mud solidifying agent
US5105885A (en) * 1990-11-20 1992-04-21 Bj Services Company Well cementing method using a dispersant and fluid loss intensifier
US5147565A (en) * 1990-12-12 1992-09-15 Halliburton Company Foamed well cementing compositions and methods
US5127473A (en) * 1991-01-08 1992-07-07 Halliburton Services Repair of microannuli and cement sheath
US5086850A (en) * 1991-01-08 1992-02-11 Halliburton Company Well bore drilling direction changing method
US5125455A (en) * 1991-01-08 1992-06-30 Halliburton Services Primary cementing
US5123487A (en) * 1991-01-08 1992-06-23 Halliburton Services Repairing leaks in casings
US5121795A (en) * 1991-01-08 1992-06-16 Halliburton Company Squeeze cementing
US5213160A (en) * 1991-04-26 1993-05-25 Shell Oil Company Method for conversion of oil-base mud to oil mud-cement

Also Published As

Publication number Publication date
WO1994009252A1 (en) 1994-04-28
NZ257122A (en) 1995-10-26
CA2147492A1 (en) 1994-04-28
BR9307297A (pt) 1999-06-01
NO951504L (no) 1995-06-21
AU672842B2 (en) 1996-10-17
EP0667930A1 (en) 1995-08-23
US5343951A (en) 1994-09-06
CN1086575A (zh) 1994-05-11
EP0667930B1 (en) 1997-03-12
NO951504D0 (no) 1995-04-20
MY110354A (en) 1998-04-30
OA10012A (en) 1996-03-29
BR9800343A (pt) 1999-06-29
AU5337194A (en) 1994-05-09

Similar Documents

Publication Publication Date Title
CN1058316C (zh) 钻井和固井方法
CN1058546C (zh) 钻井和固井方法
CN1051353C (zh) 固井方法
US5351759A (en) Slag-cement displacement by direct fluid contact
US7338923B2 (en) Settable drilling fluids comprising cement kiln dust
US7204310B1 (en) Methods of use settable drilling fluids comprising cement kiln dust
CN1036672C (zh) 固井方法
US7198104B2 (en) Subterranean fluids and methods of cementing in subterranean formations
US3168139A (en) Converting drilling muds to slurries suitable for cementing oil and gas wells
US20170137694A1 (en) Cementitious compositions comprising a non-aqueous fluid and an alkali-activated material
EP2004569B1 (en) Settable drilling fluids comprising cement kiln dust and methods of using them

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee