CN1093019C - 生产钽粉的方法 - Google Patents

生产钽粉的方法 Download PDF

Info

Publication number
CN1093019C
CN1093019C CN95116755A CN95116755A CN1093019C CN 1093019 C CN1093019 C CN 1093019C CN 95116755 A CN95116755 A CN 95116755A CN 95116755 A CN95116755 A CN 95116755A CN 1093019 C CN1093019 C CN 1093019C
Authority
CN
China
Prior art keywords
tantalum powder
powder
tantalum
meal
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN95116755A
Other languages
English (en)
Other versions
CN1123206A (zh
Inventor
岩渊克朗
古忠
大木博志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Starck Ltd Japan
Original Assignee
HC Starck VTech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Starck VTech Ltd filed Critical HC Starck VTech Ltd
Publication of CN1123206A publication Critical patent/CN1123206A/zh
Application granted granted Critical
Publication of CN1093019C publication Critical patent/CN1093019C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/24Obtaining niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Abstract

一种钽粉,通过将镁粉加到用钠金属还原氟化钽钾制得的钽粉中,不用常规的热处理钽粉中产生的阳极体的电解质电容器有极高的电容,即,CV范围为70000-80000。在生产方法中着火的概率明显减少,这样钽粉可被安全处理。

Description

生产钽粉的方法
本发明涉及用作电解质电容器材料的钽粉的生产方法,一种烧结所得钽粉制得的电解质电容器的阳极体,本发明也涉及使用该阳极体的电解质电容器。
钽由于它的氧化膜的高绝缘常数,约是27,故被用作电极材料。但最近由于要与其它电容器竞争,并且电气和电子设备有微型化的总趋势,所以需要开发出电容有改善的电解质电容器,因此,用于这类电解材料的钽粉的需求也迅速增加。
钽粉一般通过用钠还原氟化钽钾制得。这样制得的刮勺形颗粒钽粉包括作为副产物的盐,因此,钽粉进行诸如水洗和/或酸洗的处理以除去存在于其中的盐,这样提高了它的纯度,然后干燥得到粗制粉。用钠金属还原制得的钽粉由于包括平均粒度在0.3-3.0μm级别的细颗粒,故不易处理。由于这个原因,含有细颗粒的钽粉在真空中进行热处理使之暂行聚结,然后在使用前将聚结物粉碎成1.0-5.0μm,但比表面大的多孔颗粒。
如上所讨论的,钽粉(粗粉)在真空中进行热处理以除去任何气体组份(氢气)和金属杂质(如钠和钾),并使细颗粒聚积造粒,改善粉末的流动性。同时要说的是,在平均粒径范围为0.3-0.4μm的钽粗粉中,氧含量范围为700-9000ppm,但由于随后的真空热处理,其氧含量增加到12000-14000ppm的范围。氧的会存在增加粉末的漏泄电流这一重要的电学性质。因此,大部分钽粉产物通过还原,如用镁金属还原除去氧以改善漏泄电流,然后在使用于电极制造前用酸洗,干燥之。
静电电容(C)由以下等式表示:
静电电容C=介电常数(ξ)×比表面(S)÷膜厚(d)
因此,被开发且用作有超高电容的电解质电容器的电极材料的钽粉必需有尽可能大的比表面。例如,对于开发这类钽粉,必需通过用钠还原制备比表面积大的粗粉;制备的粗粉,其杂质含量降到最低水平的粗粉以适应最近趋于下降的压片烧结温度的要求;并且选择热处理的最佳温度,使热处理的同时,粗粉比表面积不致于明显减少。
但是,当根据常规方法制备比表面积大、且用作极高电容的电解质电容器的电极材料的钽粉时,会产生下列问题:
(1)比表面积大、且通过钠金属还原的细钽粉对热极敏感,并具有高活性。由于这个原因,粉末得在1200-1300℃相对低温下热处理,使其部分造粒。造粒后,颗粒的比表面积减少,难以生产出高电容的电容器。
(2)比表面积的减少通过采用较低热处理温度来抑制,但随着降低热处理温度,完成热处理后从热处理炉中取出产物时吸氧量增加,结果着火的危险也相应增加。
(3)此外,在热处理炉中观察到热处理温度的偏移(+15℃),因此,同样也会观察到物理性质的偏移(如比表面积、堆积密度,粒径分布〕和电学性质的偏移。(如CV)。
(4)为了防止任何着火,组份必需一点一点地热处理(以减少积聚的热量)。另外,必需在热处理完成后从熔炉中除去产物,同时分步与氧接触(几步),因此就明显地限制了生产率。
例如,美国专利4,483,819揭示了一种电解电容器。其中的钽粉是按上述常规的生产方法得到的,结果所得的钽粉的比表面很小,其结果是吸氧量增加,着火的危险也相应增加。
本技术领域很需要比表面积大的钽粉,使其吸氧量相应减少,从而减少着火的危险。
因此,本发明的一个目的是提供用钠还原制得、比表面大、用作制备电解质电容器材料的钽粉的生产方法;
本发明的另一个目的是提供一种烧结上述方法得到的钽粉而制得的电解质电容器的阳极体;以及一种使用该阳极体的电解质电容器。
本发明涉及一种钽粉的制法,通过将镁粉加到用钠金属还原氟化钽钾制得的钽粉中,不用常规的造粒热处理,除去存在于钽粉中的氧,然后用酸洗并干燥来制得。简言之,本发明的特征在于用来生产有极高电容的电容器的钽粉,其制备方法中不包括任何通常用于造粒的热处理的步骤。
本发明特别涉及一种生产钽粉的方法,包括下列步骤:
(a)通过用钠金属还原氟化钽钾,并以50-100ppm的量掺磷得到粗制钽粉,
(b)用镁还原粗制粉末,但不用常规的热处理成团,除去钽粉中存在的氧,
(c)步骤(b)制得的粉末用酸洗涤,和
(d)干燥步骤(c)中洗涤的粉末。
本发明也涉及一种电解质电容器的阳极体,通过烧结上述方法得到的钽粉而产生。
本发明进一步涉及一种包括上述阳极体的电解质电容器。
本发明中的粗粉是通过用金属钠还原氟化钽钾制得的钽粉。粗粉的平均粒径范围约是0.3-0.4μm。一般来说,粗粉较好地通过用磷酸进行掺磷处理,以抑制任何造粒化的发生。掺磷合适的剂量范围约为50-100ppm。然后粗粉用镁还原,还原的温度不致起造粒热处理的作用。镁粉以还原中用量范围约为2.0-6.0%(重量)的量加入粗粉中。粗粉然后与镁粉混合,此时温度为950-1050℃,较好地是980-1020℃的范围,真空中还原2-6小时,较好地是3-4小时。若温度低于950℃,粗粉没有充分还原(除去氧气)。另一方面,若超过1050℃,粗粉会颗粒化,因此所得的钽粉的比表面积小。
在这样从粗粉中除去存在的氧以后,粗粉用诸如硝酸的酸洗涤,然后干燥。前述过程,即,镁还原、酸洗和干燥过程,需要时重复2次或多次,至得到有所需性质的钽粉。
在本发明中不采用造粒的热处理。因此,可以解决在热处理中观察到的吸氧问题,着火的概率是相当低的。因此,本发明的钽粉可容易地进行运输、储存,并保证高产率。此外,用镁处理还原含氧物的同时,也有颗粒化的发生,但常规方法相比,比表面积的减少是低的。这样,本发明的钽粉有适用于用作有极高电容的电容器的材料的优良特性。
实施例
用钠还原的钽粉(平均粒径0.31、0.34或0.37μm)通过用磷酸掺磷处理至含磷量80ppm得到粗粉。然后加入5%(重量)的镁粉并与粗粉混合,在下表1中列出的温度下进行脱氧3小时。然后粗粉用硝酸水溶液洗涤并干燥,再加入2%(重量)的镁粉,混合进行第二次脱氧。脱氧处理3小时。此后,粗粉用硝酸水溶液洗涤并干燥得到最终产物,所得的粉末在1350℃下烧结30分钟得到密度为5.0g/cc的阳极体,测出所得的阳极体的物理性质和电学性质。所得的结果列于表1。
比较实施例
如实施例1那样,用钠还原的钽粉(平均粒径0.31或0.34μm)通过磷酸掺磷处理至含磷量80ppm得到粗粉。所得的粗粉进行一般的热处理(1200℃下30分钟;1240℃下30分钟),然后加入5%(重量)的镁粉并与粗粉混合,在960℃下进行脱氧3小时。然后粗粉用硝酸水溶液洗涤并干燥。此后,加入2.5%(重量)的镁粉并与粗粉混合,在与上述相同的温度下进行第二次脱氧处理3小时,然后粗粉用硝酸水溶液洗涤并干燥得到最终产物。常规方法中所得的结果也列于表1。
阳极体的压片-烧结-形成条件和测量条件
片的重量:0.15克;片的生坯密度:5.0g/cc
烧结:1350℃下30分钟
             形成:60℃;形成电压:40V
                            表1实施例           用Na还原的钽粉              热处理温度       Mg还原温度
             平均粒径    比表面                           (1)            (2)序号             (μ)        (m2/g)          (℃)            (℃)           (℃)1                0.31         2.715            --             1000           10002                0.31         2.715            --             900            10003                0.31         2.715            --             900            9004                0.34         2.373            --             1000           10005                0.34         2.373            --             900            10006                0.34         2.373            --             900            9007                0.34         2.373            --             1050           10508                0.37         2.260            --             1050           10509                0.37         2.260            --             1000           100010               0.37         2.260            --             900            100011               0.37         2.260            --             900            9001*               0.31         2.715            1200           960            9602*               0.31         2.715            1240           960            9603*               0.34         2.373            1200           960            9604*               0.34         2.373            1240           960            960
                                表1(续)实施例                                     产物
          比表面               氧                 CV                  SD序号          (m2/g)             (ppm)             (μFV/g)            (g/cc)1             1.157               4084               81306               5.502             1.264               4374               85708               5.273             1.731               6283               86371               6.054             1.005               3514               77147               5.235             1.295               4570               86445               5.336             1.821               6421               91810               5.847             0.864               3216               67592               5.018             0.792               3089               66780               4.929             0.979               3555               77520               5.1610            1.247               4172               83469               5.3611            1.584               5857               68188               5.851*            0.691               2677               59397               5.552*            0.712               2741               56247               6.223*            0.684               2560               56550               5.614*            0.674               2619               52801               6.16
*:比较实施例
本发明的钽粉具有大的比表面积,因此,从本发明钽粉中制出的阳极体的电解质电容器有特别大的电容,即CV范围为70000-80000。此外,本发明中在生产方法中产生的着火概率明显减少,这样本发明的钽粉可安全地进行储运等处理。

Claims (1)

1.一种生产钽粉的方法,包括下列步骤:
(a)通过用钠金属还原氟化钽钾,并以50-100ppm的量掺磷得到粗制钽粉,
(b)用镁还原粗制粉末,但不用常规的热处理成团,除去钽粉中存在的氧,
(c)步骤(b)制得的粉末用酸洗涤,和
(d)干燥步骤(c)中洗涤的粉末。
CN95116755A 1994-09-28 1995-09-28 生产钽粉的方法 Expired - Lifetime CN1093019C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP233307/94 1994-09-28
JP6233307A JPH0897096A (ja) 1994-09-28 1994-09-28 タンタル粉末及びそれを用いた電解コンデンサ

Publications (2)

Publication Number Publication Date
CN1123206A CN1123206A (zh) 1996-05-29
CN1093019C true CN1093019C (zh) 2002-10-23

Family

ID=16953076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95116755A Expired - Lifetime CN1093019C (zh) 1994-09-28 1995-09-28 生产钽粉的方法

Country Status (4)

Country Link
US (1) US5605561A (zh)
JP (1) JPH0897096A (zh)
CN (1) CN1093019C (zh)
DE (1) DE19536013C2 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6079186A (en) * 1995-06-07 2000-06-27 H.C. Starck, Inc. Method of making vacuum-packaged, capacitor-grade tantalum powder
US5993513A (en) * 1996-04-05 1999-11-30 Cabot Corporation Method for controlling the oxygen content in valve metal materials
US6165623A (en) * 1996-11-07 2000-12-26 Cabot Corporation Niobium powders and niobium electrolytic capacitors
IL131248A (en) * 1997-02-19 2002-09-12 Starck H C Gmbh Co Kg Tantalum powder, process for its preparation and compressed anodes obtained from this powder
EP0964937B1 (de) * 1997-02-19 2001-10-04 H.C. Starck Gmbh & Co.Kg Tantalpulver, verfahren zu seiner herstellung, sowie daraus erhältliche sinteranoden
US6051326A (en) 1997-04-26 2000-04-18 Cabot Corporation Valve metal compositions and method
CN1068809C (zh) * 1997-04-29 2001-07-25 宁夏有色金属冶炼厂 团化钽粉的生产方法
WO2000067936A1 (en) * 1998-05-06 2000-11-16 H.C. Starck, Inc. Metal powders produced by the reduction of the oxides with gaseous magnesium
BR9911008A (pt) 1998-05-06 2002-04-30 Starck H C Inc Pós de metal produzidos através da redução dos óxidos com magnésio gasoso
US6576038B1 (en) * 1998-05-22 2003-06-10 Cabot Corporation Method to agglomerate metal particles and metal particles having improved properties
CZ2001751A3 (cs) * 1998-08-28 2001-08-15 Kemet Electronics Corporation Kondenzátor a způsob anodické oxidace kovové anody
US6183618B1 (en) 1999-02-02 2001-02-06 Kemet Electronics Corporation Process for treating impregnated electrolytic capacitor anodes
JP3871824B2 (ja) 1999-02-03 2007-01-24 キャボットスーパーメタル株式会社 高容量コンデンサー用タンタル粉末
US6235181B1 (en) 1999-03-10 2001-05-22 Kemet Electronics Corporation Method of operating process for anodizing valve metals
JP2000306781A (ja) * 1999-04-21 2000-11-02 Showa Kyabotto Super Metal Kk 電解コンデンサ用金属粉末ならびにこれを用いた電解コンデンサ用陽極体および電解コンデンサ
US6558447B1 (en) * 1999-05-05 2003-05-06 H.C. Starck, Inc. Metal powders produced by the reduction of the oxides with gaseous magnesium
US6224990B1 (en) 1999-09-23 2001-05-01 Kemet Electronics Corporation Binder systems for powder metallurgy compacts
AU2001239946B2 (en) * 2000-03-01 2004-12-16 Cabot Corporation Nitrided valve metals and processes for making the same
JP4697832B2 (ja) * 2000-04-21 2011-06-08 昭和電工株式会社 ニオブ焼結体、その製造方法及びその焼結体を用いたコンデンサ
JP3402313B2 (ja) * 2000-07-05 2003-05-06 株式会社村田製作所 弾性表面波装置の製造方法
US6436268B1 (en) * 2000-08-02 2002-08-20 Kemet Electronics Corporation Non-aqueous electrolytes for anodizing
JP4828016B2 (ja) * 2000-08-09 2011-11-30 キャボットスーパーメタル株式会社 タンタル粉末の製法、タンタル粉末およびタンタル電解コンデンサ
US6267861B1 (en) 2000-10-02 2001-07-31 Kemet Electronics Corporation Method of anodizing valve metals
WO2005099936A1 (ja) * 2004-04-15 2005-10-27 Jfe Mineral Company, Ltd. タンタル粉末およびこれを用いた固体電解コンデンサ
DE102004020052B4 (de) * 2004-04-23 2008-03-06 H.C. Starck Gmbh Verfahren zur Herstellung von Niob- und Tantalpulver
EP1761352B1 (en) * 2004-06-24 2008-08-13 H.C. Starck Inc. Production of valve metal powders with improved physical and electrical properties
DE102004049039B4 (de) * 2004-10-08 2009-05-07 H.C. Starck Gmbh Verfahren zur Herstellung feinteiliger Ventilmetallpulver
GB0622463D0 (en) * 2006-11-10 2006-12-20 Avx Ltd Powder modification in the manufacture of solid state capacitor anodes
CN101879605B (zh) * 2010-06-18 2012-07-04 江门富祥电子材料有限公司 搅拌钠还原氟钽酸钾制取钽粉的方法及装置
CN101880847B (zh) * 2010-06-18 2011-12-07 江门富祥电子材料有限公司 钽坩埚的热处理方法
JP5906406B2 (ja) * 2011-03-18 2016-04-20 パナソニックIpマネジメント株式会社 固体電解コンデンサの製造方法
CN103878364B (zh) * 2014-04-23 2017-03-29 宁夏东方钽业股份有限公司 一种改善了耐电压性能的中压钽粉的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4483819A (en) * 1981-07-31 1984-11-20 Hermann C. Starck Berlin Production of highly capacitive agglomerated valve metal powder and valve metal electrodes for the production of electrolytic capacitors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041359A (en) * 1972-12-06 1977-08-09 Matsushita Electric Industrial Co., Ltd. Method of making an electrolytic capacitor and electrolytic capacitor made thereby
US4356028A (en) * 1981-08-24 1982-10-26 Fansteel Inc. In situ phosphorus addition to tantalum
JPS60149706A (ja) * 1984-01-18 1985-08-07 Showa Kiyabotsuto Suupaa Metal Kk タンタル粉末の製造方法
DE3820960A1 (de) * 1988-06-22 1989-12-28 Starck Hermann C Fa Feinkoernige hochreine erdsaeuremetallpulver, verfahren zu ihrer herstellung sowie deren verwendung
US5082491A (en) * 1989-09-28 1992-01-21 V Tech Corporation Tantalum powder with improved capacitor anode processing characteristics
US5448447A (en) * 1993-04-26 1995-09-05 Cabot Corporation Process for making an improved tantalum powder and high capacitance low leakage electrode made therefrom
US5442978A (en) * 1994-05-19 1995-08-22 H. C. Starck, Inc. Tantalum production via a reduction of K2TAF7, with diluent salt, with reducing agent provided in a fast series of slug additions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4483819A (en) * 1981-07-31 1984-11-20 Hermann C. Starck Berlin Production of highly capacitive agglomerated valve metal powder and valve metal electrodes for the production of electrolytic capacitors

Also Published As

Publication number Publication date
CN1123206A (zh) 1996-05-29
DE19536013C2 (de) 1998-02-19
JPH0897096A (ja) 1996-04-12
DE19536013A1 (de) 1996-04-04
US5605561A (en) 1997-02-25

Similar Documents

Publication Publication Date Title
CN1093019C (zh) 生产钽粉的方法
EP2446986B1 (en) Process for preparing tantalum powder for capacitors
US6193779B1 (en) Tantalum powder, method for producing same powder and sintered anodes obtained from it
CN1046878C (zh) 一种电容器级钽粉的制造方法
SU1243612A3 (ru) Способ получени порошков сплавов титана
JPH0411601B2 (zh)
KR101158520B1 (ko) 아산화 니오븀 또는 니오븀의 분말을 제조하는 방법
JPS59214218A (ja) 電解コンデンサ−用バルブメタル陽極の製造方法
CN103600086A (zh) 粉末冶金用钽和/或铌粉及其制备方法
CN1131803A (zh) 钽粉及其使用该种钽粉的电解质电容器
US4645533A (en) Tantalum powder and method of making
EP0665302B1 (en) Nitriding tantalum powder
GB2147611A (en) Process for treating the surface of valve metals with chalcogens
CN114210973B (zh) 一种钽粉的生产方法以及由该方法得到的钽粉
USRE32260E (en) Tantalum powder and method of making the same
RU2404881C2 (ru) Восстановление порошков вентильных металлов
CN1068809C (zh) 团化钽粉的生产方法
WO2013021004A1 (de) Verfahren zur herstellung von elektrolytkondensatoren aus ventilmetallpulvern
WO2001026852A1 (en) A method for production of tantalum and niobium powders with highly developed surface
JP3398318B2 (ja) チタンインゴットの製造方法
JP2505324B2 (ja) タンタル粉末の製造方法
JP2505343B2 (ja) タンタル粉末及びその製造方法
SU1725273A1 (ru) Способ изготовлени объемно-пористых анодов конденсаторов
JP2632985B2 (ja) チタン族元素含有タンタル粉及びその製造方法
JPS62247001A (ja) 金属タンタル粉末の精製方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C53 Correction of patent of invention or patent application
CB03 Change of inventor or designer information

Inventor after: Katsuro Iwabuchi

Inventor after: Gu Zhong

Inventor after: Hiroshi Oki

Inventor after: D*Behrens

Inventor before: Katsuro Iwabuchi

Inventor before: Gu Zhong

Inventor before: Hiroshi Oki

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: AKIRA; GU ZHONG; HIROSHI OKI TO: AKIRA; GU ZHONG; HIROSHI OKI; D. BELUNS

CX01 Expiry of patent term

Granted publication date: 20021023

EXPY Termination of patent right or utility model