CN1135480C - 假想现实感和远程现实感系统 - Google Patents

假想现实感和远程现实感系统 Download PDF

Info

Publication number
CN1135480C
CN1135480C CNB95194777XA CN95194777A CN1135480C CN 1135480 C CN1135480 C CN 1135480C CN B95194777X A CNB95194777X A CN B95194777XA CN 95194777 A CN95194777 A CN 95194777A CN 1135480 C CN1135480 C CN 1135480C
Authority
CN
China
Prior art keywords
mentioned
mechanics
display device
long
sensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB95194777XA
Other languages
English (en)
Other versions
CN1156513A (zh
Inventor
古庄纯次
佐野明人
井上昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
In Ancient Times Zhuangchun
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Publication of CN1156513A publication Critical patent/CN1156513A/zh
Application granted granted Critical
Publication of CN1135480C publication Critical patent/CN1135480C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/001Electrorheological fluids; smart fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/014Hand-worn input/output arrangements, e.g. data gloves

Abstract

本发明为一种虚拟及远程现实感系统,该系统使利用计算机形成的图像(虚拟世界)、以机器人为媒体的实际存在的世界(远程世界)和随外加电场强度而变化的电粘滞性流体的流动阻力按实时间连动,从而向操作者显示由于流动阻力的变化而产生的力学感觉的变化。

Description

假想现实感和远程现实感系统
本发明涉及利用于设计、教育、训练、娱乐、危险作业、细微/超细微作业等领域的所谓的虚拟现实和远程现实,特别是使用使电粘滞性流体的流动电阻变化的控制机构将使用计算机制作的虚拟世界或实际存在的远程世界的力学感觉实时地呈现给操作者的虚拟现实感系统和远程现实感系统。
本发明的虚拟现实感系统或远程现实感系统还可以作为表示在运动-感觉系统中识别的信息即关于伴随身体的活动的力学感觉的信息的触觉接口使用。
本发明所说的虚拟世界,是指利用计算机在显示器上制作的图像(例如,计算机图形学等)的世界。这种图像也可以在示波管、荧光屏、平面显示器、3维显示器等上形成。在这些视觉显示器上制作的图像和力学感觉显示设备中的电粘滞性流体的流动电阻与远程世界的情况一样,是实时地连动的,但是,不像远程世界的情况那样伴有现实的力学作用。在本发明中所说的实时,是指实际上几乎不延迟,包括进行图像处理和电气或力学传递引起的极短的时间延迟。
在本发明中所说的远程世界,是指在原子能、海洋、防灾、宇宙等领域的危险环境下进行的极限作业和在医疗、电子元件、微型机械加工等领域进行的细微/超细微作业等发生力学作用的世界。即,从力学的感觉显示系统的操作者通过机器人、机械手等机械媒体发生力学作用的远离的世界,是与操作者所在的世界应用同一物理定律的现实的世界。因此,力学的感觉显示系统的操作者所在的世界和发生力学作用的世界是实时地连动的。
本发明所说的虚拟显示感系统,是指宛如自己处在利用计算制作的虚拟的世界中行动及作业那样的具有实时的临场感的系统。以往,主要是引起视觉和听觉,但是,本发明的系统除此之外特别引起力学的感觉。
另外,本发明所说的远程现实感系统,是指将在极细微的世界及危险的世界或环境恶劣的世界等特殊的现实世界中发生的事件通过机器人等机械媒体以实时的临场感引起各种感觉(特别是力学感觉)。
在本发明中所说的远程存在系统,是包括虚拟现实感系统和远程现实感系统这两者在内的概念。
在本发明中所说的力学感觉,是指触觉及体感即伴随人的手脚的操作的感觉或伴随外部物体对人体的作用的感觉。触觉例如是伴随按、拉、摸、握、转、敲、踢等作用的软、硬、重、轻、强、弹力的、粘性的等感觉,体感例如是伴随挤压、拉伸、缠绕等作用的同样的感觉。
本发明的力学的感觉显示设备,可以用模拟人的手脚和身体的手套、指状物、臂状物、夹子、弯管等形式使用。使用电粘滞性流体的本发明的力学的感觉显示设备,与先有的纯机械装置相比,可以单纯地采用紧密的结构。
在本发明中所说的力学的各量,是指位置、角度、畸变量、速度、力、压力、加速度等,检测这些量的传感器安装在力学的感觉显示设备上。另外,在远程世界发生力学作用的输出系统多数也安装。
在本发明中所说的电粘滞性流体,是指当加上电场时其粘性瞬间便发生变化并且是可逆的流体,大致可以分为分散系电粘滞性流体和均匀系电粘滞性流体。分散系电粘滞性流体是将电介质粒子分散到绝缘油中形成的流体,均匀系电粘滞性流体是不使用粒子的流体。作为用于分散系电粘滞巡回流体的粒子,有以下几种。
(1)无机粒子
含有可以离子极化的水、酸、碱或有机电解质等的二氧化硅或沸石等。
(2)有机粒子
离子交换树脂及纤维素等。
(3)半导体粒子
不包含水的与离子极化相比容易发生电子极化的碳及聚胺或金属肽箐染料等。
(4)表面被覆绝缘性薄膜的金属粒子和导电聚合体粒子。
(5)由具有各向异性导电性及非线性光学特性的材料构成的粒子。
另外,作为绝缘油,通常是使用硅油、碳氟化合物油、矿物油、石蜡、芳香族脂油、脂肪族环状化合物脂油、天然有等绝缘性和机械、物理、化学特性稳定的油。
另一方面,作为均匀系电粘滞性流体,可以使用具有液晶性、黏度各向异性、双亲和性、强介电性、高双极化率等的物质或其溶液。其中,最好是液晶特别是高分子液晶。
分散系电粘滞性流体通常在外加电场时剪切应力大致一定,与剪切速度无关,呈现所谓的宾厄姆性流动。另一方面,均匀系粘滞性流体通常剪切应力与剪切速度成正比,呈现所谓的牛顿性流动。
具有宛如自己在使用计算机制作的虚拟的世界和实际存在但极其微细的世界以及危险的世界中直接进行作业的实时的临场感的所谓的虚拟现实及远程现实的技术正在蓬勃发展。为了使作为操作者的人具有很强的临场感,高功能的力学的感觉显示设备是不可缺少的。另外,还必须进行与其相关联的传感器、调节器、计算机等涉及整个系统的广泛的研究。
关于在虚拟现实感系统中使用的力学的感觉显示设备,已发表了如下技术。
(1)M.Minsky等人在“ACMSIGGRAPH、Vol.24、235、1990”上发表了将虚拟的物体的表面的组织结构传递给手指的“虚拟锉刀”。研究了以具有可以运动的检测所有的方向的位置的传感器、在各方向的轴上安装电机和制动器的大型的特殊的操纵杆作出的阻力感来表现组织结构,使用手可以感觉到虚拟的物体的表面的状态。
(2)岩田等人在“ACMSIGGRAPH、Vol.24、165、1990”上发表了通过特殊的圆盘顶部操作装置将触及虚拟的物体时的力学的感觉传递给操作者的手及手指的装置。该圆盘操作装置具有将几个金属制的小缩放仪组合的巧妙的形状,通过将指尖伸入到其中,将使用电机和机械结构发生的力传递给操作者的手及手指。
(3)桥本等人在“日本机器人学会志、Vol.10、903、1992”上发表了用于分析人的手的动作的手套。该手套具有3指10个自由度,是金属丝传递电机驱动的手套,称为传感器手套。
(4)佐藤等人在“电子情报通信学会论文志、D-2,Vol.7、887、1991”上发表了通过用螺旋管调整与手指连接的数条线的张力,表现用手指触摸通过立体摄像机看到的显示器的图像时的感觉的技术。
(5)拉多加斯大学的服部在“人工现实感的世界”(工业调查会、151、1991)上发表了机械地发生指尖触及虚拟的物体时产生的力、将宛如该处存在物体的感觉传递给手指的技术。这就是将微型汽缸安装到大拇指、食指、中指上,将实时地送入空气的泵与这些微型汽缸连接,当指尖触及虚拟的物体时送入空气压,发生挤压和放松手指的力的技术。
(6)特表平6-507032(PCT/GB92/00729)和田中等人在“日本机械学会、第71期通常总会讲演会讲演论文集、No.4,373,1994”中发表了直接装到操作者的手上、显示力学的感觉的流体手套。该流体手套使用流体(空气)的压力控制,实现与机器人的把持动作等相应的作业感觉(触觉)。
另外,将电粘滞性流体使用于机械输出控制的技术,记载在以下文献中。
(1)德国专利DE3830836C2公开了在飞机的动力模拟中利用电粘滞性流体的技术。这和汽车的动力转向一样,是关于用于臂力操作的辅助和防止作用过度的一种伺服支援装置。
(2)池田等人在“第11届日本机器人学会学术讲演会予稿集、987、1993”中发表了在生产调节器的输出控制中利用电粘滞性流体的技术。这就是关于人造肌肉的机械输出的调整装置。
利用电粘滞性流体的这些装置,都是关于机械输出的控制的装置,不涉及力学感觉的显示特别是虚拟现实感系统的力学感觉的显示。
上述的现有力学感觉显示设备存在各种各样的问题。例如,使用电机的装置,体积庞大,自由度的数有限,应答性差。另外,使用螺旋管及空气压汽缸的装置,控制性差,难于显示微妙的感觉。
本发明的目的旨在提供具有自由度多、可以显示微妙的力学感觉、临场感优异的紧密的力学感觉显示设备的远程存在系统。
为了达到上述目的,本发明者不是单纯地将通过电场作用可以改变其粘性的电粘滞性流体使用于机械输出的控制,而是想到将基于粘性变化的流体阻力的变化应用于感觉显示,对该方法进行锐意研究的结果,实现了本发明。
按照本发明,可以实现一种应答于操作者对以图像的形式给定的环境采取的动作对上述操作者显示力学感觉的远程存在系统,提供具有根据给定的图像信号显示上述图像的图像显示装置、发生与上述力学感觉对应的力感信号的计算机、包括根据上述力感信号利用电场作用改变电粘滞性流体的流动阻力的控制装置和将由上述流动阻力所控制的力作用于上述操作者的力感传递装置的力学感觉显示设备。
上述远程存在系统进而还具有检测上述力学感觉显示系统的力学的各量的传感器,该传感器的输出信号反馈给上述计算机,上述计算机利用上述传感器的输出信号可以控制上述力学感觉显示设备和上述图像显示装置中的至少一种装置。
上述力学感觉显示设备进而还可以具有驱动上述力感传递装置的驱动系统。
以图像的形式给定的上述环境是远程世界,具有拍摄该远程世界并输出上述图像信号的摄影装置和检测该远程世界的力学作用并将该输出信号反馈给上述计算机的远程世界传感器。
上述计算机也可以根据从上述摄影装置输出的上述图像信号和上述远程世界传感器的输出信号中的至少一种信号发生上述力感信号,供给上述力学感觉显示设备。
以图像的形式给定的上述环境是虚拟世界,上述计算机也可以预先存储该虚拟世界的图像,根据上述虚拟世界的图像将上述图像信号供给上述图像显示装置,同时根据上述虚拟世界的图像将上述力感信号供给上述力学感觉显示设备。
上述电粘滞性流体也可以是当施加电场时呈现宾厄姆性流动的电粘滞性流体。
上述电粘滞性流体也可以是当施加电场时呈现牛顿性流动的电粘滞性流体。
上述电粘滞性流体既也可以是当施加电场时呈现牛顿性流动的电粘滞性流体又可以是呈现宾厄姆性流动的电粘滞性流体。
本发明的特征在于作为力学感觉显示设备采用使用电粘滞性流体的设备。电粘滞性流体的粘性随外加电场的强度而变化,所以,可以利用电场强度控制其流动阻力。通过使用该力学感觉显示设备,可以减小输出端的质量,从而可以极大地提高输出/惯性之比。因此,可以将在虚拟世界和远程世界发生的力学感觉以接近现实的感觉进行显示。另外,还可以用简单而紧密的结构实现进行多自由度的活动的力学感觉显示设备。通过利用计算机使该力学感觉显示设备和图像显示装置连动,可以实现具有优异的力学感觉显示功能的紧密的虚拟现实感系统和远程现实感系统。
图1是示意地表示本发明的虚拟现实感系统的框图。
图2是示意地表示本发明的远程现实感系统的框图。
图3是表示被动力学感觉显示设备的动作形式的框图。
图4是表示主动力学感觉显示设备的动作形式的框图。
图5是表示作为使用于本发明的远程存在系统的实施例1的手套式力学感觉显示设备的基本部分的形状再生球的结构的斜视图。
图6是表示图5的形状再生球的表面部分的结构的剖面图。
图7是表示以表示图5的形状再生球与数据手套接触的状态的斜视图为中心的本发明的远程存在系统的实施例1的总体结构的图。
图8是表示用数据手套握住在上下左右360度的方向具有支杆的形状再生球的状态的一部分剖面斜视图。
图9是表示本发明的远程存在系统的实施例2的框图,特别示出了使用于应用本发明的汽车驾驶模拟系统的驾驶装置的被动力学感觉显示设备的剖面。
图10是表示在本发明的远程存在系统的实施例3中使用的力学感觉显示设备的结构的简略图,表示在采用使用电粘滞性流体的油压系统的远程现实感系统中使用的力学感觉显示设备的动作原理。
图11是表示实施例3的总体结构的框图,特别示出了构成图10的油压系统中的升降桥的4个电粘滞性流体管和1个活塞的剖面。
图12是表示图11所示的升降桥的操作者一侧的手套部分的剖面图。
图13是表示本发明的远程存在系统的实施例4的框图,特别示出了使用于应用本发明的汽车驾驶模拟系统的驾驶装置的主动力学感觉显示设备的剖面。
图14和15是表示本发明的远程存在系统的实施例5的图,图14是表示可以显示在XY平面内的力学感觉的力学感觉显示设备的斜视图,图15是表示使用该力学感觉显示设备的虚拟现实感系统的框图。
图16~18是表示本发明的远程存在系统的实施例6的图,图16是表示以力学感觉显示设备为中心的总体结构的框图,图17是表示电极单元的剖面图,图18是表示用5个手指把持虚拟物体9时的状态的图。
图19是表示在本发明的远程存在系统的实施例7中使用的力学感觉显示设备的部分剖面图。
图20是表示本发明的远程存在系统的实施例8的简略图,是将本发明应用于虚拟钓鱼游戏的例子。
实施例
下面,用实施例具体说明本发明的内容,但是,在说明之前,先说明本发明的远程存在系统的简要情况。
图1和2是示意地表示本发明的远程存在系统的框图,图1表示虚拟现实感系统,图2表示远程现实感系统。
图1所示的虚拟现实感系统具有力学感觉显示设备1、传感器2、图像显示装置3和计算机4。传感器2与力学感觉显示设备1连接,检测力学的各量,将检测量反馈给计算机4。但是,在该系统中,传感器2不一定是必须的。图像显示装置3显示虚拟世界的图像,呈现给本虚拟现实感系统的操作者。
图2所示的远程现实感系统具有在图1所示的虚拟现实感系统上增加在远程现实世界作业的机器人5、检测机器人5的位置和动作的传感器6和拍摄远程世界的摄像机7的结构,图像现显示装置3显示远程世界的图像,取代虚拟世界。作为传感器,可以使用检测远程世界的力学作用的力学传感器。另外,力学感觉显示设备1采用与机器人5的操作装置一体化的形式。由摄像机7拍摄的远程世界的图像信号可以分别直接供给图像显示装置3和计算机4,也可以经由图像显示装置3供给计算机4。相反,也可以经由计算机4供给图像显示装置3。传感器6的信号反馈给计算机4,用于控制力学感觉显示设备1和/或图像显示装置3。
这些系统中的力学感觉显示设备1具有利用电场改变电粘滞性流体的流动阻力的控制机构,分为被动力学感觉显示设备和主动力学感觉显示设备。
图3是被动力学感觉显示设备。这就是由控制机构12利用电场控制电粘滞性流体(ER)11的粘性,改变流动阻力,作为力学感觉显示输出13。作为被动力学感觉显示设备,使用如下机构。
(a)使电粘滞性流体处于平行板或同心双重(或多重)圆筒状的固定电极间,将电场加到该电粘滞性流体上,控制其粘性,从而改变流动阻力(或流体压力)的机构。
(b)使电粘滞性流体处于一方固定、另一方可动的平行板或同心双重(多重)圆筒状电极间,将电场加到该电粘滞性流体上,控制其粘性,从而改变可动电极移动时的流动阻力(或剪切应力)的机构。这时,当可动电极为平行板时,可动电极的移动就是滑动,当可动电极为圆筒时,可动电极的移动就是以同心圆的轴为中心的转动。
作为采用了这些控制机构的具体的力学感觉显示设备,通常是双重或多重的同心圆筒式的喷嘴、汽缸和活塞的组合,一对或多对平行板式的狭缝、滑块、圆盘、法兰等。
图4是主动力学感觉显示设备。该设备由控制机构12利用电场控制电粘滞性流体11,改变流动阻力,进而由该流动阻力控制驱动系统14的输出,将其作为力学感觉显示输出15。
即,主动力学感觉显示设备利用电粘滞性流体的流动阻力控制驱动系统的力学输出。该机构和被动力学感觉显示设备的情况一样,作为输出形式,通常也是圆筒式和平行板式。
作为主动力学感觉显示设备的驱动系统,可以单独或组合使用电机、螺旋管、气压、油压、导线等外部驱动式的驱动系统和利用弹簧、板簧、线簧、橡皮、弹性体等的自形状恢复力的内部驱动式的驱动系统。
计算机4根据预先输入的数据库和程序使力学感觉显示设备1和图像显示装置3连动。计算机4具有处理传感器2的信号和/或图像显示装置3的信号并将该处理结果供给力学感觉显示设备1的功能。此外,计算机4根据预先输入的数据库和程序或传感器2的信号计算加到电粘滞性流体上的电场强度,根据该计算结果改变电场,控制电粘滞性流体的流动阻力。在图2所示的远程现实感系统中,计算机4进而还担任与远程世界的连动的作用。该功能也可以由用于辅助计算机4的其他计算机担任。
作为力学感觉显示设备1,当使用剪切应力基本上一定与剪切速度无关的呈现宾厄姆流动的电粘滞性流体时,对于固体摩擦式等阻力的再现及显示是优异的。因此,按、拉、握、转、踢等初始(始动)和结束(停止)操作的阻力感觉便可以接近现实的状态显示。另一方面,当使用剪切应力与剪切速度成正比的呈现牛顿流动的电粘滞性流体时,对于粘性阻力的再现和显示是优异的。因此,触、刺、拧、转等操作及连续操作过程中的阻力感觉便可以接近现实的状态显示。通过将呈现宾厄姆流动的电粘滞性流体和呈现牛顿流动的电粘滞性流体组合使用并且独立地进行控制,便可以更加接近现实的感觉显示所有的操作。
利用力学感觉显示设备1显示的感觉,是用只基于电粘滞性流体的流动阻力的被动的力或驱动系统的输出与该流动阻力的组合而形成的主动的力来表现的。由于其本身并不发生驱动力,所以,不必担心被动的力会发生大于操作者输出的力的巨大的力。因此,被动的力适合于构成安全的力学感觉显示设备。但是,对于现实的力学感觉显示,发现很多情况组合了其他驱动力的主动的力更适合。
本发明使用的力学感觉显示设备是利用电场改变电粘滞性流体的流动阻力来进行显示的设备,电粘滞性流体的粘性随外加电场而灵敏地变化。不像先有的力学感觉显示设备那样使用很多机械部件,非常紧凑,应答也很迅速。另外,与电机等相比,可以使输出端部件的质量非常小,从而可以获得大的输出/惯性比。因此,可以获得所希望的加速度、振动数、或波形等输出。例如,可以发现或再现用敲、摸、抚、戳、揉、麻木等语言的表现的微妙的力。换言之,就是可以给力赋予各种各样的颜色,从而可以显示迄今还没有的优异的力学感觉。结果,便可实现临场感优异的虚拟现实感系统或远程现实感系统。
在这些远程存在系统中,还可以通过计算机4或其他计算机使力学感觉显示设备1和图像显示装置3以外的显示听觉、嗅觉、味觉及疼、痒等触觉的装置连动。
下面,参照附图详细说明本发明的实施例。
实施例1
图5~7是表示本发明的虚拟现实感系统的实施例的图。本实施例是具有使用电粘滞性流体的手套式力学感觉显示设备的虚拟现实感系统的例子。
图5是表示作为手套式力学感觉显示设备的基本部分的形状再生球101的内部结构的斜视图。在球102的表面设置多个圆筒状的洞穴103,支杆104插入到各洞穴103内,利用绝缘性的部分衬套105与洞穴103的内壁面保持一定的间隙。电粘滞性流体106填充到该间隙和洞穴的底部。电粘滞性流体106响应支杆104的运动,可以通过球内部的流体槽(图中未示出)和部分衬套105的间隙很容易地移动。球102为负电极,支杆104为正电极,为了能够独立地将电压加到各支杆104上而布线。球102是直径为40mm的铝制的球。另外,洞穴103是直径为5mm的洞穴,支杆104是直径4mm、长度25mm的铝制的支杆,具有树脂制的平钉头。因此,支杆104与洞穴103的内壁面之间的间隙为0.5mm,该间隙利用聚四氟乙烯制的衬套105保持。
图6是形状再生球101的表面部分的剖面结构。球102使用柔软的橡皮球状的橡胶107将整个球包裹,支杆104的平钉头与橡皮107的内壁面接触。橡皮107的直径为55mm。如上所述,电粘滞性流体106填充在利用衬套105保持一定间隔的支杆104与洞穴103的间隙和洞穴103的底部,同时,还填充到橡皮107的内壁面与球102的表面之间的间隙内。
图7是表示橡皮107有数据手套108的关系的图。数据手套108用于测量手指的弯曲角等,橡皮107与数据手套108的内侧接触。因此,响应握手及放手的动作,支杆104在洞穴103内往复运动。这时,完全不必使用气压缸等外部驱动系统。
电粘滞性流体106的粘性随电场强度而变化。即,当给填充在支杆104与洞穴102的间隙中的电粘滞性流体加上电场时,其粘性就随电场强度而增减。因此,便由电场强度改变电粘滞性流体106的流动阻力,从而可以自由地控制支杆104的运动加重或减轻。
如果如图7所示的那样由计算机4使使用该形状再生球101的力学感觉显示设备1和图像显示装置3连动,便可以现实的感觉把握虚拟物体。
首先,慢慢地将手指合拢。从与在计算机4中构筑的在图像显示装置3上反映出来的虚拟物体接触的手指对应的支杆开始,顺序加电压并锁定。这里,利用安装在数据手套108上的光纤型传感器2测量手指的活动并输入计算机4,由计算机4控制加到各支杆104上的电压。最后,将电压加到虚拟物体与手指接触的位置的所有的支杆上,将这些支杆锁定。这样,操作者便可从视觉和力学感觉两方面获得宛如握持图像上反映出来的虚拟物体的感觉。相反,当伸开手指时,电压就被解除,各支杆104便自由移动。这样,数据手套108便成为以操作者的握力伸开的状态。
图8是表示形状再生球101的变形例的部分剖面图。由于该形状再生球101在上下左右360度的方向具有支杆104,所以,可以显示更现实的握持感觉。从与虚拟物体(这时为长方体)109接触的手指的部分的支杆(斜线部)开始顺序加电压并锁定。
由于图8所示的力学感觉显示设备具有非常多的自由度,所以,不仅对指尖而且对指腹部和手掌部分都可以显示虚拟物体的接触及握持的感觉。特别是由于手指未约束为被机械地包裹的状态,所以,佩带感也很好。此外,由于本力学感觉显示设备是紧凑的,所以,可以在实空间自由地移动使用。
作为使用的电粘滞性流体106,使用将离子交换树脂粒子(三菱化成(株)、MCI凝胶·K08P、Na型、粒径约3μm、含水率6wt%)以粒子浓度30vol%分散到硅油(100cst)中的分散系电粘滞性流体时,便可以接近现实的形式获得开始抓坚硬的虚拟物体时及抓住时的感觉。另一方面,使用由液晶硅构成的均匀系电粘滞性流体(旭化成(株)、试作验品AD01)时,显示握柔软的虚拟物体时的感觉是很优异的,可以获得与人握手那样的感觉。
本实施例的虚拟现实感系统是不使用驱动系统的被动力学感觉显示,但是,可以比先有的使用空气压的系统再现更精细的力。另外,即使在去掉光纤型传感器2的状态下,也可以与其他感觉显示装置例如声音显示装置连动地使手指活动。这时,根据内装在计算机4内的数据库和程序进行向电粘滞性流体106加电场,操作者听着声音,看着由图像显示装置3显示的图像的运动而使手指活动。这样的系统,可以作为安全的指尖功能恢复装置及微细作业训练装置使用。微细作业训练装置是用于训练对放大图像进行的微细操作和以微弱的握持力进行的操作等的装置。
实施例2
图9是表示本发明的远程存在系统的实施例2的剖面图。本实施例是将本发明的虚拟现实感系统应用于汽车驾驶模拟系统的例子。该模拟系统与方向盘操作对应地改变虚拟运转状态的图像,对方向盘显示与其对应的力学感觉。
在图9中,与转动自由的方向盘110的转轴垂直地安装在该转轴上的圆盘111与其上下2块固定圆盘112和113平行地保持1.0mm的一定间隙,夹在两者之中。这里,方向盘110是直径为320mm的方向盘。另外,圆盘111是直径为250mm的铝制的圆盘,圆盘112和113是直径为200mm的铝制的圆盘。电粘滞性流体106填充到这2块固定圆盘112和113与圆盘111之间的间隙内。并且,如图9所示,电场分别独立地加到填充在圆盘111与固定圆盘112之间的电粘滞性流体106和填充在圆盘111与圆盘113之间的电粘滞性流体106上。
按照预先输入计算机4的数据库和程序,在显示器3上反映出汽车的虚拟驾驶状态的图像。检测方向盘操作的传感器2和检测加速器/制动器操作的传感器2a的信号反馈给计算机4,与这些操作连动地图像发生变化。加到电粘滞性流体106上的电场强度与图像和加速器/制动器操作连动地由计算机4进行计算。计算机4根据计算的电场强度控制加到电粘滞性流体106上的电场,改变电粘滞性流体106的粘性阻力。结果,便可显示对方向盘110显示力学感觉。
使用在实施例1中使用的呈现牛顿流动的液晶硅系的电粘滞性流体时,急剧地加速转动及缓慢地继续转动方向盘110时的感觉的再现性非常好。另一方面,使用呈现宾厄姆流动的离子交换树脂粒子系的电粘滞性流体时,低速驾驶时的方向盘的沉重感觉和细微的方向盘放开的感觉的再现性好。另外,在圆盘111和上部的圆盘112之间使用液晶硅系的电粘滞性流体而在圆盘111和下部的圆盘113之间使用离子交换树脂系的电粘滞性流体时,通过与上述操作一致地独立地控制外加电压,尽管是被动的力学感觉显示,但是却可以获得非常接近现实的驾驶状态的感觉。
实施例3
图10是表示在本发明的远程存在系统的实施例中使用的力学感觉显示设备的概念图。本实施例是用机器人-手套操作远程地的物体的远程现实感系统的例子,图10表示该力学感觉显示设备的动作原理。
该远程现实感系统将以电粘滞性流体106作为循环液的液压系统使用于驱动系统,利用加到电粘滞性流体106上的电场强度控制活塞输出的方向和大小,将该活塞输出对操作者的机械手作为力学感觉进行显示。在图10中,电粘滞性流体106从泵114排出,在升降桥115中循环,再流回到容器116内。
图11是表示升降桥115的结构的剖面图。升降桥115由具有双重圆筒式的电极的4个电粘滞性流体管117、118、119、120和活塞121构成。通过控制向这4个管加的电压,便可使活塞121自由地运动。例如,在使电粘滞性流体106循环的状态下,将电压加到管117和119上,使这2个管部分的电粘滞性流体的黏度增大,实际上就是使管成为封闭状态,同时,如果不将电压加到管118和120上从而使之成为开放状态,活塞121便向上运动。相反,如果解除管117和119的电压而将电压加到管118和120上,活塞121便向上运动。这样,通过控制外加电场,便可自由地调整活塞121的方向、速度和输出。活塞121的输出的最大值由泵114和电粘滞性流体106的功率决定。
图12是表示使用升降桥式的活塞121的力学感觉显示设备的图。手指套145安装在汽缸144和活塞杆121a的端部。该力学感觉显示设备,作为图11的力学感觉显示设备1与计算机4连接。
用摄像机7监视远程地的物体和机器人5的手套部分,在图像显示装置3上显示,通过用计算机4使安装在手套上的压力传感器6的信号与活塞121的运动连动,可以向操作者显示与远程地的物体的接触感。
该升降桥115可以用细的软性管制作成紧凑的形式,从而可以用1个泵向多个升降桥供给电粘滞性流体。因此,按照这一方式,便可简便而紧凑地制造以更现实的感觉显示进行多自由度运动的远程世界的力学感觉显示设备。本实施例的远程现实感系统与使用机械的流体阀控制液压及空气压的先有的系统相比,具有应答性好、可以显示临场感优异的力学感觉并且可以将装置制造得非常紧凑的优点。
实施例4
图13是表示本发明的远程存在系统的实施例4的部分剖面图,是将本发明应用于显示主动的力学感觉的汽车驾驶模拟系统的例子。图9所示的实施例2是显示被动的力学感觉的汽车驾驶模拟系统,但是,本实施例是进而显示主动的力学感觉的系统。
在图13中,安装着圆筒电极123的上下2个圆盘124固定在方向盘110的转轴122上,转轴122由上下2个位置的衬套125支持。另外,设有圆环状的深沟126的上下2个法兰127通过衬套125a安装在转轴122上,可以自由转动。各圆筒电极123以与深沟126的内壁面保持1.0mm的间隙的状态分别插入到法兰127的深沟126内,可以自由转动。另外,各法兰127通过皮带128与电机129连接,以同一速度在相反方向转动。
电粘滞性流体106注入到深沟126与圆筒电极123之间的间隙内指定量,可以将电压分别独立地加到上下圆筒电极123上。另外,以角度和转动加速度的形式检测方向盘110的位置和动作的加速度传感器2安装在转轴122的下端。
现在,在未向圆筒电极123加电压的状态下,如果利用电机129使上下法兰127以同一速度转动,就会对上下圆筒电极123以相同的大小发生相反方向的转动力,从而不会有任何转动力传递给方向盘110。其次,如果只将电压加到上面的圆筒电极123上,则注入上面的深沟126内的电粘滞性流体106的粘性便增大,从而方向盘110便以与其粘性增大成正比的力转动。相反,如果只将电压加到下面的圆筒电极123上,则方向盘110便向相反方向转动。
这样,通过控制加到上下圆筒电极123上的电压,便可自由地调整方向盘110的转动方向和转动力。特别是通过使圆筒电极123及法兰127的材质为轻质材料,可以减小惯性力,所以,还可以使方向盘110发生具有所希望的加速度的转动力和具有所希望的频率的振动。
按照该虚拟现实感系统,由计算机4根据传感器2的信号和供给运转模拟的图像显示装置3的信号计算加到力学感觉显示设备1上的电压,计算的电压供给圆筒电极123,向操作者显示力学的感觉。这样,便可向操作者显示比实施例2的汽车驾驶模拟系统现实性更高的力学感觉。图像显示装置3的图像是计算机图形学的图像,也应答加速器及制动器等传感器的信号而动作。
实施例5
图14和15是表示本发明的远程存在系统的实施例5的图,图14是是表示可以显示XY平面上的力学感觉的力学感觉显示设备1的斜视图,图15是表示使用该力学感觉显示设备1的虚拟现实感系统的框图。本实施例的力学感觉显示设备1采用使用了2台安装皮带轮131的平行链的形式,取代图13的方向盘110。
在图14和15中,132是注入电粘滞性流体106的电粘滞性流体部,该部分的结构与图13的对应部分相同。即,是将圆筒电极123插入到在法兰127上形成的深沟126内并将电粘滞性流体106注入到其间隙内的结构。因此,电粘滞性流体部132根据加在其上的电压,改变电机129的输出转矩,并传递给皮带轮131。
皮带轮131a和131b分别安装在平行链(形成平行四边形)的4条框架条内相邻的2条框架条133和134上。这两个皮带轮131a和131b通过皮带128与另外的皮带轮131接续,将它们的转动力分别传递给平行链的相邻框架条133和134。框架条133和134固定在同心双重转轴135上,可以自由转动。另外,平行链的4条框架条安装成相互可以自由转动,控制杆136安装在与转轴135相对的位置。因此,当未从皮带轮131传递转动力时,控制杆136在框架长度的范围内,可以在转轴135周围的XY平面内自由地移动。
另一方面,当从2个或任意1个电粘滞性流体部132的皮带轮131向平行链的皮带轮131a和/或131b传递转动力时,框架条133和/或134便随之转动,在力传递给控制杆136的同时控制杆136的位置移动。
传感器2检测以转轴135为中心的框架条133和134的角度和角加速度,并根据检测结果输出框架条133和134的位置和移动速度。
在这样的结构中,使2台电机129以一定速度转动,通过将由计算机4根据控制杆136的位置和移动计算的电压加到电粘滞性流体部13上,便可控制传递给控制杆136的力的大小和方向。
例如,假定控制杆136为在图像显示装置3上显示出的虚拟的室内窗户的把手,便可通过控制杆136显示开关窗户时的力学感觉。即,将与窗户的运动对应的微妙的力学感觉和与窗户碰到墙壁时的振动等对应的数据预先存储到计算机4内,便可将通过计算机4的运算处理而设定的电压加到电粘滞性流体部132上。
实施例6
图16~18是表示本发明的远程存在系统的实施例6的图,图16是表示以力学感觉显示设备1为中心的总体结构,图17是平行板电极139,图18是用5个手指握持虚拟物体9时的状态。本实施例是将握持柔软的虚拟物体9时作用到手指上的力通过力学感觉显示设备1向操作者显示的例子。该力学感觉显示设备1也是通过控制加到电粘滞性流体上的电场强度来改变其粘性,显示力学感觉的。
在这些图中,电极单元150装在各手指上。电极单元150具有金属薄膜电极138和金属平行板电极139。金属薄膜电极138的一端通过金属绝缘部137安装在手指的背部,另一端深深地插入到平行板电极139的间隙的中央部。平行板电极139的表面粘贴绝缘性的薄的合成纤维的无纺布,该无纺布构成衬垫105。衬垫105将金属薄膜电极138和平行板电极139之间绝缘,同时使它们的间隔保持一定。另外,电粘滞性流体106填充到金属薄膜电极138与平行板电极139之间的间隙内。
在各金属薄膜电极138和平行板电极139之间,分别独立地供给由计算机4计算的电压,控制加到电粘滞性流体106上的电场强度。另外,由位置传感器2检测手指的活动,并将其输出信号反馈给计算机4。
在这样的结构中,通过由计算机4根据手指的活动计算的电压加到电极138和139上,便可将握持在图像显示装置3上按计算机图形学形成的虚拟物体时的力学感觉向操作者显示。
在这一方法中,虽然难于显示主动的力学感觉,但是,结构简单、可以具有上下方向、左右方向和绕垂直纸面的轴的共计3个自由度。另外,作用在手指上的力即显示力作用在指腹部分的法线方向。在先有的机械手式的显示装置中,为了发生所希望的显示力,必须使用变换矩阵个别地控制各调节器,是非常复杂的系统。本实施例的力学感觉显示设备由于金属薄膜电极138与手指保持为直角,流动阻力与显示力的方向几乎一致,所以,不必进行特别的控制,即使是复杂形状的物体,也可以很好地显示以各种各样的握持形式所具有的感觉。
实施例7
图19是在本发明的远程存在系统的实施例7中使用的力学感觉显示设备。图中,电极单元150具有金属薄膜电极138、平行板电极139和封入到它们之间的间隙内的电粘滞性流体106。在各金属薄膜电极138上,力感传感器(应变传感器)2安装在手指的附近部分。另外,电机129安装在电极单元150的手腕一侧。
在这样的结构中,通过根据力感传感器2的信息反馈控制加到电粘滞性流体106上的电场和平行板电极139的移动,便可实现主动的力学感觉的显示。在很多情况下,用手指握持的虚拟物体9的主动的感觉主要是在伸开手指的方向上的显示,所以,即使电机129的自由度对1个手指是1个自由度,也可以显示很多状态。
上述实施例6的问题是随着手指弯曲,金属薄膜电极138便逐渐地从平行板电极139中拔出,从而将减小电极的有效面积。为了改进这一点,必须时时刻刻测量金属薄膜电极138的长度、调整加到电粘滞性流体106上的电压,并且必须将金属薄膜电极138的长度设定得非常大。本实施例由于可以利用电机129移动电极单元150,所以,可以解决这一问题。例如,通过由安装在金属薄膜电极138上的位置传感器2b检测手指的弯曲量、利用电机129改变电极单元150的位置,便可将有效电极面积控制为尽可能大并且接近于一定。作为这样的位置传感器2b,可以使用LED。实施例8
图20是表示本发明的远程存在系统的实施例8的图。本实施例8是将虚拟现实感系统应用于钓鱼游戏的例子。
操作者利用钓杆42的操作,将鱼钩移动到在图像现实装置3上显示出来的目标鱼的嘴边。这时,图像显示装置3的图像和鱼钩在计算机4的控制下连动。即,计算机4内装着数据库和程序,用以只要将鱼钩顺利地移动到鱼的嘴边,鱼就会上钩,从而可以获得与该鱼对应的中彩及拉鱼的手劲的感觉。
通过采用使用了电粘滞性流体的力学感觉显示设备1和张力传感器2,即使是短的刚性的钓杆,也可以具有现实感地显示与鱼的种类及大小对应的手劲的感觉。例如,通过将电粘滞性流体封入到2块平行的转动圆盘电极间,控制加到该电粘滞性流体上的电场强度,便可使用改变传递转矩、调整张力的力学感觉显示设备
本发明是以实时间使利用计算机制作的图像(虚拟世界)、以机器人等作为媒体的实际存在的远程地的世界(远程世界)和电粘滞性流体连动从而向操作者显示力学感觉的系统,简便、紧凑并且可以以接近现实的感觉现实多自由度的活动。作为所谓的虚拟现实和远程现实的系统,可以应用于设计、教育、训练、娱乐、危险作业、微细/超微细作业领域。例如,在娱乐领域,有滑雪、钓鱼、空中飞行、海中游泳、高尔夫、棒球、自行车运动等;在训练领域,有汽车驾驶、宇宙作业等;在教育领域,有熟练作业的规格及标准化等;在危险作业及微细作业领域,有核物质处理作业、深海作业、微细的加工、组装、处理等作业;在医疗领域,有肌肉等的功能恢复、在摄像机监视下的手术等;在设计领域,有机器类及住宅室内设备的操作性的设计等。另外,作为利用高速网络的多媒体的基础技术之一,本发明的力学感觉显示设备作为与鼠标器、键盘、显示器及扬声器同等的信息终端的输入输出设备,除了先有的文字、图像、声音等信息的传递外,,还可以传递关于触、握、抚等体性感觉的信息。

Claims (28)

1.一种远程存在系统,应答于操作者对以图像的形式给定的环境采取的动作,对上述操作者显示力学感觉,具有:
根据给定的图像信号显示上述图像的图像显示装置;
发生与上述力学感觉对应的力感信号的计算机;
力学感觉显示设备,其包括根据上述力感信号利用电场作用改变电粘滞性流体的流动阻力的控制装置、和将由上述流动阻力所控制的力提供给上述操作者的力感提供装置、以及
检测上述力学感觉显示系统的力学的各量的传感器,该传感器的输出信号反馈给上述计算机,上述计算机利用上述传感器的输出信号控制上述力学感觉显示设备和上述图像显示装置中的至少一种装置,
其特征在于:上述力学感觉显示设备还具有驱动上述力感提供装置的驱动系统。
2.按权利要求1所述的远程存在系统,其特征在于:以图像的形式给定的上述环境是远程世界,具有拍摄该远程世界并输出上述图像信号的摄影装置、和检测该远程世界的力学作用并将该输出信号反馈给上述计算机的远程世界传感器,
上述计算机根据从上述摄影装置输出的上述图像信号和上述远程世界传感器的输出信号中的至少一种信号发生上述力感信号,供给上述力学感觉显示设备。
3.按权利要求1所述的远程存在系统,其特征在于:以图像的形式给定的上述环境是虚拟世界,上述计算机也可以预先存储该虚拟世界的图像,根据上述虚拟世界的图像将上述图像信号供给上述图像显示装置,同时根据上述虚拟世界的图像将上述力感信号供给上述力学感觉显示设备。
4.按权利要求1所述的远程存在系统,其特征在于:上述电粘滞性流体是当施加电场时呈现宾厄姆性流动的电粘滞性流体。
5.按权利要求1所述的远程存在系统,其特征在于:上述电粘滞性流体是当施加电场时呈现牛顿性流动的电粘滞性流体。
6.按权利要求1所述的远程存在系统,其特征在于:上述电粘滞性流体是当施加电场时呈现牛顿性流动的电粘滞性流体和呈现宾厄姆性流动的电粘滞性流体。
7.按权利要求1所述的远程存在系统,其特征在于:上述的力学感觉显示装置的形式为一个球。
8.按权利要求1所述的远程存在系统,其特征在于还包括用于输出于上述图象有关的语音的语音输出装置。
9.按权利要求1所述的远程存在系统,其特征在于:上述的力学感觉显示装置的形式为汽车手柄。
10.按权利要求1所述的远程存在系统,其特征在于:上述的力学感觉显示装置通过推动操作者的手指来提供触觉。
11.按权利要求1所述的远程存在系统,其特征在于:上述的力学感觉显示装置包括一根钓鱼杆,该力学感觉显示装置对上述的钓鱼杆提供一个张力。
12.按权利要求1所述的远程存在系统,其特征在于:两个电极之间的空间中充满上述的电粘滞性流体的上述控制装置通过对上述的电粘滞性流体施加一个电场的方法改变上述的电粘滞性流体的流动阻力。
13.按权利要求12所述的远程存在系统,其特征在于:上述的两个电极被设置成固定状态。
14.按权利要求12所述的远程存在系统,其特征在于:上述两个电极中的一个被设置成固定状态,另一个则被设置成可动状态。
15.一种在远程存在系统中根据操作者对以图象的形式给定的环境采取的动作对上述操作者显示力学感觉的方法,上述的远程存在系统包括:显示单元;计算机;包含控制单元力学感觉提供单元和驱动系统的力感显示设备;以及用来检测上述力学感觉显示设备的各种机械变量的传感器,
其特征在于上述的方法包括如下步骤:
由上述的图象显示单元根据给定的图象信号显示出上述的图象;
产生一个与上述的力感相对应的力感信号;
由上述的控制单元根据上述的力感信号改变电粘滞性流体的流动阻力,向上述的操作者提供一个由上述的流动阻力所控制的力;
将上述传感器的输出信号反馈给上述计算机,由该计算机利用上述传感器的输出信号控制上述的力学感觉显示设备和上述图象显示装置中的至少一种装置;以及
用上述的驱动系统来驱动上述的力学感觉提供单元。
16.按权利要求15所述的方法,其特征在于:
以图象形式给出的上述环境是一个远程世界,上述的远程存在系统还包括拍摄该远程世界的摄影装置、和远程世界传感器,
上述的方法还包括如下的步骤:从上述的摄影装置输出上述的图象信号;用上述的远程世界传感器检测上述远程世界中的机械动作,将上述的远程世界传感器的输出信号反馈给上述的计算机,根据从上述的摄影装置输出的上述图象信号和从上述的远程世界传感器的输出信号中的至少一种信号产生出上述的力感信号,并将该力感信号提供给上述的力学感觉显示装置。
17.按权利要求15所述的方法,其特征在于:
以图象形式给出的上述环境是一个虚拟世界,上述计算机预先存储该虚拟世界的图象,
上述的方法还包括如下的步骤:根据上述虚拟世界的图象将上述图象信号提供给上述的图象显示单元,并根据上述虚拟世界的图象将上述力感信号供给上述的力学感觉显示装置。
18.按权利要求15所述的方法,其特征在于:所述的电粘滞性流体是当施加电场时呈现宾厄姆性流动的电粘滞性流体。
19.按权利要求15所述的方法,其特征在于:所述的电粘滞性流体是当施加电场时呈现牛顿性流动的电粘滞性流体。
20.按权利要求15所述的方法,其特征在于:所述的电粘滞性流体由当施加电场时呈现宾厄姆性流动的电粘滞性流体和呈现牛顿性流动的电粘滞性流体所构成。
21.按权利要求15所述的方法,其特征在于:上述的力学感觉显示装置的形式为一个球。
22.按权利要求15所述的方法,其特征在于:上述的远程存在系统还包括一个语音输出装置,上述的方法还包括如下的步骤:通过上述语音输出装置输出与上述图象有关的语音。
23.按权利要求15所述的方法,其特征在于:上述的力学感觉显示装置的形式为汽车手柄。
24.按权利要求15所述的方法,其特征在于:上述的力学感觉显示装置通过推动操作者的手指来提供触觉。
25.按权利要求15所述的方法,其特征在于:上述的力学感觉显示装置包括一根钓鱼杆,该力学感觉显示装置对上述的钓鱼杆提供一个张力。
26.按权利要求15所述的方法,其特征在于:两个电极之间的空间中充满上述的电粘滞性流体的上述控制装置通过对上述的电粘滞性流体施加一个电场的方法改变上述的电粘滞性流体的流动阻力。
27.按权利要求26所述的方法,其特征在于:上述的两个电极被设置成固定状态。
28.按权利要求26所述的方法,其特征在于:上述两个电极中的一个被设置成固定状态,另一个则被设置成可动状态。
CNB95194777XA 1994-07-19 1995-07-18 假想现实感和远程现实感系统 Expired - Fee Related CN1135480C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP166791/94 1994-07-19
JP16679194 1994-07-19
JP166791/1994 1994-07-19

Publications (2)

Publication Number Publication Date
CN1156513A CN1156513A (zh) 1997-08-06
CN1135480C true CN1135480C (zh) 2004-01-21

Family

ID=15837744

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB95194777XA Expired - Fee Related CN1135480C (zh) 1994-07-19 1995-07-18 假想现实感和远程现实感系统

Country Status (9)

Country Link
US (1) US6310604B1 (zh)
EP (1) EP0775961B1 (zh)
JP (1) JP3585498B2 (zh)
KR (1) KR100222628B1 (zh)
CN (1) CN1135480C (zh)
CA (1) CA2195227C (zh)
DE (1) DE69523323T2 (zh)
RU (1) RU2131621C1 (zh)
WO (1) WO1996002887A1 (zh)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7113166B1 (en) * 1995-06-09 2006-09-26 Immersion Corporation Force feedback devices using fluid braking
DE19528457C2 (de) * 1995-08-03 2001-03-08 Mannesmann Vdo Ag Bedieneinrichtung
US6297805B1 (en) 1997-08-29 2001-10-02 Xerox Corporation Multiple interacting computers interfaceable through a physical manipulatory grammar
US6243075B1 (en) 1997-08-29 2001-06-05 Xerox Corporation Graspable device manipulation for controlling a computer display
US6243074B1 (en) 1997-08-29 2001-06-05 Xerox Corporation Handedness detection for a physical manipulatory grammar
US6268857B1 (en) 1997-08-29 2001-07-31 Xerox Corporation Computer user interface using a physical manipulatory grammar
JP4149574B2 (ja) * 1997-08-29 2008-09-10 ゼロックス コーポレイション ユーザインターフェースサポートデバイス、及び情報入力方法
US6297838B1 (en) 1997-08-29 2001-10-02 Xerox Corporation Spinning as a morpheme for a physical manipulatory grammar
US7159009B2 (en) * 1997-12-17 2007-01-02 Sony Corporation Method and apparatus for automatic sending of e-mail and automatic sending control program supplying medium
US6195085B1 (en) * 1998-04-07 2001-02-27 International Business Machines Corporation Apparatus in a computer system for pliant ergonomic pointing device
US6339419B1 (en) * 1998-11-10 2002-01-15 Lord Corporation Magnetically-controllable, semi-active haptic interface system and apparatus
KR20000042575A (en) * 1998-12-26 2000-07-15 Daewoo Electronics Co Ltd Vr system for exercise
KR20000043370A (en) * 1998-12-29 2000-07-15 Daewoo Electronics Co Ltd Vr system for exercise
US6976215B1 (en) * 1999-12-20 2005-12-13 Vulcan Patents Llc Pushbutton user interface with functionality preview
BR0108399A (pt) * 2000-02-15 2004-01-06 Yong-Nam Park Sistema de comunicação de pedido estendido com base em internet e método do mesmo
KR100542016B1 (ko) * 2000-03-21 2006-01-10 주식회사 한발 참여자 자신과 동일한 스프라이트를 이용한 실시간 가상공간 운영방법
US7196688B2 (en) * 2000-05-24 2007-03-27 Immersion Corporation Haptic devices using electroactive polymers
US7084854B1 (en) 2000-09-28 2006-08-01 Immersion Corporation Actuator for providing tactile sensations and device for directional tactile sensations
US6491649B1 (en) * 2000-10-06 2002-12-10 Mark P. Ombrellaro Device for the direct manual examination of a patient in a non-contiguous location
AU1159402A (en) * 2000-10-06 2002-04-15 Mark P Ombrellaro Device for the direct manual examination of a patient in a non-contiguous location
US20050149364A1 (en) * 2000-10-06 2005-07-07 Ombrellaro Mark P. Multifunction telemedicine software with integrated electronic medical record
US7176895B2 (en) * 2000-12-29 2007-02-13 International Business Machines Corporation Wearable keyboard apparatus
JP4618661B2 (ja) * 2001-06-22 2011-01-26 株式会社Ihiエアロスペース 画像供給システム
DE10138537B4 (de) * 2001-08-06 2006-07-06 Siemens Ag Taktiles Feedback zur Darstellung von Gewebeelastizität
US7623114B2 (en) 2001-10-09 2009-11-24 Immersion Corporation Haptic feedback sensations based on audio output from computer devices
US7008231B2 (en) * 2002-01-23 2006-03-07 Patrick Pesnell Catching training apparatus
US7471280B2 (en) * 2002-06-19 2008-12-30 Koninklijke Philips Electronics N.V. Tactile device
JP2004213350A (ja) * 2002-12-27 2004-07-29 Seiko Epson Corp 力覚提示装置及び画像補正方法
JP2005348779A (ja) * 2004-06-08 2005-12-22 Asahi Kasei Engineering Kk 運動機能回復訓練システム
US8232969B2 (en) 2004-10-08 2012-07-31 Immersion Corporation Haptic feedback for button and scrolling action simulation in touch input devices
JP2006247280A (ja) * 2005-03-14 2006-09-21 Osaka Univ 上肢リハビリ装置
US7825903B2 (en) 2005-05-12 2010-11-02 Immersion Corporation Method and apparatus for providing haptic effects to a touch panel
JP4944692B2 (ja) * 2007-07-13 2012-06-06 今在家精工株式会社 可動部材用の動き制御装置及び運動機能トレーニング装置
MX2008014783A (es) 2008-02-05 2009-08-27 Krueger Int Inc Armazon para silla con soporte hueco ergonomico integral.
US8350843B2 (en) * 2008-03-13 2013-01-08 International Business Machines Corporation Virtual hand: a new 3-D haptic interface and system for virtual environments
US8203529B2 (en) * 2008-03-13 2012-06-19 International Business Machines Corporation Tactile input/output device and system to represent and manipulate computer-generated surfaces
KR101557025B1 (ko) * 2008-11-14 2015-10-05 삼성전자주식회사 3차원 인터페이스 장치 및 이를 이용한 인터페이스 방법
JP2011039647A (ja) * 2009-08-07 2011-02-24 Sony Corp 情報提供装置および方法、端末装置および情報処理方法、並びにプログラム
FR2950187B1 (fr) * 2009-09-17 2011-11-18 Centre Nat Rech Scient Procede de simulation de mouvements propres par retour haptique et dispositif mettant en oeuvre le procede
US8542105B2 (en) 2009-11-24 2013-09-24 Immersion Corporation Handheld computer interface with haptic feedback
KR101685922B1 (ko) * 2010-04-05 2016-12-13 삼성전자주식회사 가상 세계 처리 장치 및 방법
CN103250203B (zh) * 2011-01-13 2015-07-01 英派尔科技开发有限公司 使用电流变流体的触觉反馈装置
TWI490628B (zh) * 2011-09-23 2015-07-01 Nat Inst Chung Shan Science & Technology Virtual reality video control method
CA2878554A1 (en) * 2012-06-18 2013-12-27 Matthias Rath Integrated interactive system and method for visualizing human physiology, disease, treatment options and use
KR101490617B1 (ko) * 2013-08-30 2015-02-05 주식회사 포스코 근력 전달 장치 및 이를 포함하는 근력 지원 로봇
CN104308844A (zh) * 2014-08-25 2015-01-28 中国石油大学(华东) 一种五指仿生机械手的体感控制方法
RU2592392C2 (ru) * 2014-08-27 2016-07-20 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента Б.Н. Ельцина" Устройство для обработки информации и 3d-изображений проблемного объекта
CN104323859B (zh) * 2014-11-10 2016-08-24 上海速介机器人科技有限公司 血管介入手术机器人导丝阻力触觉还原装置及其控制方法
CN113817529A (zh) * 2015-12-04 2021-12-21 旭化成株式会社 电流变液以及电设备
CN206643787U (zh) * 2016-01-07 2017-11-17 昭和电工气体产品株式会社 抛丸装置用附件及抛丸装置
JP6600269B2 (ja) * 2016-03-22 2019-10-30 日本放送協会 三次元形状提示システム及び触力覚提示装置
CN105922262A (zh) * 2016-06-08 2016-09-07 北京行云时空科技有限公司 机器人及其远程控制设备和方法
RU176660U1 (ru) * 2017-06-07 2018-01-24 Федоров Александр Владимирович Перчатка виртуальной реальности
RU176318U1 (ru) * 2017-06-07 2018-01-16 Федоров Александр Владимирович Перчатка виртуальной реальности
CN107566510B (zh) * 2017-09-20 2020-12-01 歌尔光学科技有限公司 远程医疗诊断服务系统
JP6874149B2 (ja) * 2017-10-26 2021-05-19 株式会社ソニー・インタラクティブエンタテインメント 画像処理装置、画像処理方法およびプログラム
RU2673406C1 (ru) * 2017-10-27 2018-11-26 Федоров Александр Владимирович Способ изготовления перчатки виртуальной реальности
JP6959991B2 (ja) * 2017-12-19 2021-11-05 株式会社ソニー・インタラクティブエンタテインメント 情報処理装置、情報処理方法、及びプログラム
US20200286298A1 (en) * 2019-03-06 2020-09-10 Immersion Corporation Systems and methods for a user interaction proxy
JP7319813B2 (ja) * 2019-04-17 2023-08-02 日本放送協会 力覚提示システム、力覚提示装置、及びプログラム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IS2972A7 (is) * 1985-01-21 1986-01-21 Style Ltd., Ragnar Magnusson Sjálfvirk, örtölvustýrð færavinda.
US5071581A (en) * 1990-03-01 1991-12-10 The Dow Chemical Company Electrorheological fluids based on crown ethers and quaternary amines
US5143505A (en) 1991-02-26 1992-09-01 Rutgers University Actuator system for providing force feedback to a dextrous master glove
GB2263179B (en) 1992-01-04 1996-03-27 British Aerospace Apparatus for selectively controlling movement
GB2265746B (en) 1992-04-04 1995-07-19 Gareth John Monkman Electrorheological tactile display
US5830065A (en) * 1992-05-22 1998-11-03 Sitrick; David H. User image integration into audiovisual presentation system and methodology
JP3170875B2 (ja) * 1992-05-30 2001-05-28 ソニー株式会社 入力装置
US5316261A (en) * 1992-10-26 1994-05-31 Northern Research & Engineering Corp. Fluid conduit having a variable inner diameter
US5451924A (en) * 1993-01-14 1995-09-19 Massachusetts Institute Of Technology Apparatus for providing sensory substitution of force feedback
US5749807A (en) * 1993-01-19 1998-05-12 Nautilus Acquisition Corporation Exercise apparatus and associated method including rheological fluid brake
JP3444638B2 (ja) * 1993-01-25 2003-09-08 旭化成株式会社 制御量制御装置
US5734373A (en) * 1993-07-16 1998-03-31 Immersion Human Interface Corporation Method and apparatus for controlling force feedback interface systems utilizing a host computer
DE4332580A1 (de) 1993-09-24 1995-03-30 Deutsche Aerospace Vorrichtung zur Nachbildung oder Simulation des Tastsinns in einem chirurgischen Instrument
US5577981A (en) * 1994-01-19 1996-11-26 Jarvik; Robert Virtual reality exercise machine and computer controlled video system

Also Published As

Publication number Publication date
DE69523323D1 (de) 2001-11-22
EP0775961B1 (en) 2001-10-17
EP0775961A4 (en) 1997-10-22
CA2195227A1 (en) 1996-02-01
KR970705095A (ko) 1997-09-06
DE69523323T2 (de) 2002-07-04
US6310604B1 (en) 2001-10-30
EP0775961A1 (en) 1997-05-28
CN1156513A (zh) 1997-08-06
RU2131621C1 (ru) 1999-06-10
CA2195227C (en) 2002-10-29
WO1996002887A1 (en) 1996-02-01
JP3585498B2 (ja) 2004-11-04
KR100222628B1 (ko) 1999-10-01

Similar Documents

Publication Publication Date Title
CN1135480C (zh) 假想现实感和远程现实感系统
CN100342422C (zh) 使用电活性聚合物的触觉装置
CN102520793A (zh) 基于手势识别的会议演示交互方法
CN100355539C (zh) 三自由度力觉交互装置
CN1439149A (zh) 用于牙科学的虚拟现实训练系统和方法
CN1511306A (zh) 图像处理装置和游戏装置
CN1578964A (zh) 在与虚拟宠物交互中提供触觉反馈的方法和装置
CN101042822A (zh) 手持式虚拟实验室系统及其实现方法
CN2822902Y (zh) 力觉反馈数据手套
CN101739129B (zh) 一种具有抓持力反馈的四自由度柔索驱动人机交互装置
CN107961533A (zh) 一种驾驶模拟器
CN106502393A (zh) 一种面向触摸屏的手指外骨架可穿戴式力触觉交互装置
Preechayasomboon et al. Chasm: A screw based expressive compact haptic actuator
CN115155034A (zh) 一种虚拟现实的交互平台
Zhu et al. TapeTouch: A handheld shape-changing device for haptic display of soft objects
Maeda et al. Fingeret: a wearable fingerpad-free haptic device for mixed reality
CN1736670A (zh) 指套式力觉反馈发生器
CN101441448A (zh) 可移动物体的互动信号产生装置及方法
CN1293522C (zh) 照明模拟装置
Kojima et al. Grip-Type Pseudo Force Display with Normal and Tangential Skin Stimulation
CN204498221U (zh) 一种红木工艺品三维设计系统
Minamizawa et al. Interactive representation of virtual object in hand-held box by finger-worn haptic display
CN1255252C (zh) 柔性触觉感知装置
CN103876866B (zh) 一种少输入多模式输出的假肢手驱动机构
Huang et al. A skin-integrated multimodal haptic interface for immersive tactile feedback

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20010629

Applicant after: Asahi Kasei Kogyo K. K.

Applicant before: Asahi Kasei Kogyo K. K.

C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: GU CHUNCI

Free format text: FORMER OWNER: ASAHI KASEI CORPORATION

Effective date: 20031229

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20031229

Address after: Osaka Japan

Patentee after: In ancient times Zhuangchun

Address before: Osaka

Patentee before: Asahi Kasei Kogyo K. K.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040121

Termination date: 20110718