CN1271979C - 脉管用斯滕特固定模 - Google Patents

脉管用斯滕特固定模 Download PDF

Info

Publication number
CN1271979C
CN1271979C CNB998015296A CN99801529A CN1271979C CN 1271979 C CN1271979 C CN 1271979C CN B998015296 A CNB998015296 A CN B998015296A CN 99801529 A CN99801529 A CN 99801529A CN 1271979 C CN1271979 C CN 1271979C
Authority
CN
China
Prior art keywords
stent
vessels
line
undergauge
blood vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB998015296A
Other languages
English (en)
Other versions
CN1277560A (zh
Inventor
伊垣敬二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Igaki Iryo Sekkei KK
Original Assignee
Igaki Iryo Sekkei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Igaki Iryo Sekkei KK filed Critical Igaki Iryo Sekkei KK
Publication of CN1277560A publication Critical patent/CN1277560A/zh
Application granted granted Critical
Publication of CN1271979C publication Critical patent/CN1271979C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M29/00Dilators with or without means for introducing media, e.g. remedies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/88Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • D01F6/625Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters derived from hydroxy-carboxylic acids, e.g. lactones
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91575Adjacent bands being connected to each other connected peak to trough
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/16Materials with shape-memory or superelastic properties

Abstract

本发明提供装在生物体脉管内的斯滕特固定模,该斯滕特固定模备有用线形成为筒状的斯滕特固定模本体,上述线是用具有形状记忆功能的生物体吸收性聚合物构成。上述斯滕特固定模本体,记忆着置留在脉管内时的大小。斯滕特固定模本体在被外力缩径的状态下装入生物体脉管内,借助生物体体温的加温而扩径。斯滕特固定模本体,是把生物体吸收性聚合物制的线一边弯折成锯齿状、一边卷绕成筒状而形成的,以线的弯折部作为变位部被扩径或缩径。

Description

脉管用斯滕特固定模
技术领域
本发明涉及装在生物体的血管、淋巴管、胆管或尿管等脉管内、将脉管内腔保持为一定状态的脉管用斯滕特固定模(stent)。
背景技术
现有技术中,生物体的脉管、尤其是动脉等血管内产生狭窄部时,要进行经皮血管成形术(PTA),该血管成形术,是把设在气球导管前端部附近的气球形成部插入该狭窄部,使气球形成部膨张而形成气球,这样扩张血管狭窄部,使血液流通良好。
但是,即使施行了经皮血管成形术,在原来狭窄的部分产生再狭窄的机率仍很高。
为了防止该再狭窄,要在施行血管成形术的部分装上筒状的斯滕特固定模。该斯滕特固定模以缩径状态插入血管内,然后扩径,便装在血管内。这样,从内部支承血管,可防止在血管中产生再狭窄。
这种斯滕特固定模,有气球扩张型斯滕特固定模和自身扩张型斯滕特固定模两种。
气球扩张型斯滕特固定模,以折叠缩径的状态被设在导管上的气球覆盖住,与气球一起插入血管内产生狭窄的病变部位等目标部位后,通过使气球膨张而扩径,支承血管的内面。气球扩张型斯滕特固定模,一旦扩径后,便固定在该扩径后状态,不能与血管壁的脉动连动地进行变形。另外,气球扩张型斯滕特固定模被扩径并装在血管内后,如果发生变形则不能恢复到原来的扩径状态,不能切实支承血管的内面。
自身扩张型斯滕特固定模,被缩径并收容在管等的保持体内,该保持体的外径小于血管内安装目标部位的内径。在收容在保持体内的状态插入血管内的安装目标部位。插入了血管内安装目标部位的斯滕特固定模,从保持体被推出或抽出,利用斯滕特固定模自身的复原力扩径到缩径前的状态,这样,保持着支承血管内壁的状态。
这种自身扩张型斯滕特固定模,是把不锈钢等金属制的线状体弯折成正弦波状,或者弯折成锯齿状,并形成为筒形而构成的。
采用金属制线状体的自身扩张型斯滕特固定模,不容易高精度地控制扩张时的外径,与安装血管的内径相比,可能会产生过度扩张。另外,该斯滕特固定模,保持为缩径状态的保持力一旦释放,就急剧扩径。插入血管内的斯滕特固定模急剧扩径时,会损伤血管内壁。
另外,提出了自身扩张型斯滕特固定模用Ti-Ni系合金、Ti-Ni-Cu系合金、Ti-Ni-Fe系合金等形状记忆合金形成的方案。
采用形状记忆合金的斯滕特固定模,先形状记忆被装在血管内目标部位时的大小,然后缩径,以缩径的状态插入血管内。该斯滕特固定模插入血管内目标部位后,用气球扩径到所记忆的大小,然后,显示生物体的体温引起的超弹性,由此保持住支承血管内壁的状态。
形状记忆合金,其刚性与血管相比非常高,所以,对血管内壁的局部作用极大的力学上的压力,可能会损伤血管。另外,采用形状记忆合金的斯滕特固定模,装在血管内目的部位时,常常不能对血管内壁均匀地扩径。若斯滕特固定模的局部先与血管内壁相接开始扩径,则不能均匀地将血管扩径。血管的先与斯滕特固定模局部相接的部分,被过大地扩径,容易受损伤。
另外,采用形状记忆合金等金属的斯滕特固定模,一旦装在血管等脉管内后,如果不实施外科手术取出,便永久地留在生物体内。
发明内容概要
本发明的目的是提供一种脉管用斯滕特固定模,该斯滕特固定模不会损伤血管等的脉管,能切实地保持使脉管扩径的状态。
本发明的另一目的是提供一种脉管用斯滕特固定模,该斯滕特固定模装在脉管内一定期间后,可以消失,不需要在病变部恢复后用手术从脉管中取出。
本发明的另一目的是提供一种脉管用斯滕特固定模,该斯滕特固定模能用均匀的支撑血管等脉管。
本发明的另一目的是提供一种脉管用斯滕特固定模,该斯滕特固定模能跟随性良好地插入弯曲的血管等脉管内,可容易且切实地装在脉管内的安装目标部位。
为了实现上述目的,本发明的脉管用斯滕特固定模,备有用线形成为筒状的斯滕特固定模本体,上述线是用具有形状记忆功能的生物体吸收性聚合物构成的。该斯滕特固定模本体形状记忆住置留在脉管内时的大小。斯滕特固定模本体在被外力缩径的状态装入生物体脉管内,借助生物体体温的加温而扩径。
这里所用的线,是一根连续的单丝,或者是若干根单丝一体化后形成的复丝。
斯滕特固定模本体,是把生物体吸收性聚合物制的线一边弯折成锯齿状、一边卷绕成筒状而形成的,以线的弯折部作为变位部被扩径或缩径。
斯滕特固定模本体,其被弯折成锯齿状并被卷绕成筒状的线的相邻的至少一部分的弯折部是连结着的。这样,在缩径或扩径时,可切实保持一定的筒状形态。
另外,形成为筒状的斯滕特固定模本体,是将弯折成锯齿状并连结成环状的多根线沿着轴方向并列配置而形成的。
形成斯滕特固定模本体的线,是由玻化温度为70℃以下的生物体吸收性聚合物形成的。在接近生物体温度的温度下,扩径为所形状记忆的状态。
另外,形成斯滕特固定模本体的线是用聚乳酸(PLLA)、聚乙二醇酸(PGA)、聚乙二醇酸和聚乳酸的共聚物、二噁烷酮(ポリジオキサノン)、碳酸亚丙脂和乙交酯的共聚物、聚乙二醇酸或聚乳酸和ε-己内酯共聚物的一种或将2种以上复合的生物体吸收性聚合物形成的。
通过在线中混入或付着X射线不透过剂,可用X射线从生物体外容易地确认置留在脉管内的状态。
通过在用生物体吸收性聚合物形成的线中,混入或覆盖抗血栓剂、抑制新生内膜加增殖的药剂,可在与斯滕特固定模溶解的同时持续投入抗血栓剂等的药剂。
通过在用生物体吸收性聚合物形成的线中,混入或覆盖放射β射线的放射线源、放射γ射线的放射线源,可在斯滕特固定模插入生物体的同时,对患部进行放射线照射,可持续地进行放射线照射。
本发明的其它目的以及本发明所具有优点,可从以下说明的实施例中清楚地了解。
附图简单说明
图1是表示本发明之脉管用斯滕特固定模的平面图。
图2是表示构成本发明之斯滕特固定模的线的立体图。
图3是表示构成本发明之斯滕特固定模的线的另一例的立体图。
图4是表示构成斯滕特固定模本体的线的弯折状态的平面图。
图5是将扩张本体局部放大表示的平面图。
图6是表示对脉管用斯滕特固定模赋予形状记忆的状态的立体图。
图7是表示把形状记忆住扩径状态的脉管用斯滕特固定模缩径后状态的立体图。
图8是表示脉管用斯滕特固定模被缩径时的线的弯折状态的平面图。
图9是表示缩径状态的脉管用斯滕特固定模的平面图。
图10是表示本发明之脉管斯滕特固定模的温度特性的特性图。
图11是表示本发明之脉管斯滕特固定模的另一例的立体图。
图12是表示把本发明之脉管用斯滕特固定模插入血管内状态的侧面图。
实施发明的最佳形态
下面,参照附图具体说明本发明的脉管用斯滕特固定模。
本发明的脉管用斯滕特固定模1,例如用于插入生物体的冠状动脉血管内,如图1所示,备有由线形成为筒状的斯滕特固定模本体3。该线2是由具有形状记忆功能的生物体吸收性聚合物构成的。
线2是用装在人体等生物体上时对生物体不产生坏影响的生物体吸收性聚合物形成。该生物体吸收性聚合物,可采用聚乳酸(PLLA)、聚乙二醇酸(PGA)、ポリグラクチン(聚乙二醇酸和聚乳酸的共聚物)、二噁烷酮(ポリジオキサノン)、ポリグリコネト(碳酸亚丙脂和乙交脂的共聚物)、聚乙二醇酸或聚乳酸和ε-己内酯共聚物等。另外,也可以采用复合2种以上的上述材料的生物体吸收性聚合物。
生物体吸收性聚合物制的线2,可采用螺旋挤出机形成。采用螺旋挤出机形成线2时,把用生物体吸收性聚合物形成的颗粒,以融点Tm以下的温度在加热的状态下减压干燥,把该颗粒投入螺旋挤压机的漏斗内,在压缸内一边加热到融点Tm附近或融点以上热分解以下、一边压缩使其溶融。把该溶融的生物体吸收性聚合物从设定为融点Tm以下的温度即玻化温度Tg以上温度的管咀中挤出。通过卷绕该挤出的生物体吸收性聚合物而形成线状体。再将该线状体进行延伸,形成为本发明中采用的线2。
这里,形成的线2如图2所示,是由一根连续的生物体吸收性聚合物的单丝形成的。
本发明中采用的线2,不限于是单丝,如图3所示,也可以由若干根单线2a形成为一体的复丝形成。
采用上述的生物体吸收性聚合物并用上述那样的螺旋挤出机形成的线2,聚合物分子交联,具有形状记忆特性。
本发明中采用的线2,其断面形状不限于圆形,也可以是扁平的断面形状。
上述那样形成的线2,如图4所示,通过一边呈锯齿状地被弯折成连续的V字形、一边被卷绕成螺旋状,而形成为筒状的斯滕特固定模本体3。这时,通过将线2的呈V字形的一个弯折部4的一边做成为短线部4a,把另一边做成为长线部4b,从而得到卷绕成螺旋状的形状。形成在线2中途部的弯折部4的张开角θ1基本相同,通过使弯折部4的短线部4a和长线部4b的长度基本相同,如图5所示,相邻的弯折部4的顶点相互接触。相互接触的弯折部4的顶点中的几个或全部被相互融接。形成斯滕特固定模本体3的线2,使弯折部4的顶点相互接触的部分被融接,这样,可切实地保持着筒状状态。
使顶点相互接触的弯折部4的融接,是把接合部分加热到融点Tm以上,使其溶融粘接。
如上所述,用形成为筒状的斯滕特固定模本体3构成的斯滕特固定模1,形状记忆住置留在血管内的状态的大小。该形状记忆如图6所示,把斯滕特固定模1套装在轴状的模101上,该模101具有斯滕特固定模1装在生物体脉管内时的大小,加热到构成线2的生物体吸收性聚合物的玻化温度Tg以上的温度即融点Tm以下的温度,使其变形为模101的大小。然后,把套装在模101上的斯滕特固定模1与模101一起冷却到玻化温度Tg以下,斯滕特固定模1固定为变形后状态,并形状记忆住该状态。
使斯滕特固定模1变形并赋予形状记忆的加热是采用加热炉等进行的。
这里得到的斯滕特固定模1,如图1所示,形状记忆住直径(R1)约为3~5mm,长度(L1)为10~15mm的大小。该大小具有置留在生物体血管内的状态的直径或比其大一些的直径。
装在模101上并被进行形状记忆的斯滕特固定模1,从模101上取下后被缩径。该缩径这样进行:即,斯滕特固定模1在被冷却到玻化温度Tg以下的状态,从斯滕特固定模本体3的周围一边加力学上的压力、一边使其变形。例如,如图7所示,是把斯滕特固定模本体3推入设在缩径模201上的缩径沟槽202内进行的。该缩径沟槽202是将模201的平面侧开放的凹槽,这样,便于插入长条状的斯滕特固定模1。
被推入模子201的缩径沟槽202内的斯滕特固定模1,通过使弯折部4变位,使弯折部4的张开角θ1如图8所示地成为小的角θ2,这样被缩径。该通过使弯折部4变位进行的缩径,是使被冷却到玻化温度Tg以下的线2的弯折部4变形而进行的。这时,斯滕特固定模1被缩径到能容易插入生物体脉管的直径。例如,记忆住直径(R1)约3~5mm大小的斯滕特固定模1,如图9所示,其直径(R2)被缩径为约为1~2mm的大小。
形状记忆着扩径状态的斯滕特固定模1通过被缩径沿长度方向延伸从而比记忆状态长度稍长。
被推入设在缩径模201上的缩径沟槽202中并被缩径了的斯滕特固定模1,从缩径沟槽202的开放端部203取出。采用由生物体吸收性聚合物形成的线2形成的斯滕特固定模1,从缩径模201中取出后,将其保持在至少玻化温度Tg以下,这样,赋予变位部即弯折部4的变形被保存住,可保持缩径状态。
使形状记忆了扩径状态的斯滕特固定模1缩径的方法,不限于上述采用缩径模201的方法,还可采用各种方法。例如,也可以不采用模等地从已形状记忆了的斯滕特固定模1外周施加力学上的压力,使其缩径。
如上所述那样,被施加外压而缩径了的斯滕特固定模1,当被加热到玻化温度Tg以上时,赋予弯折部4的变形被释放,被弯折为小开角θ2的弯折部4伸展,其开角变成为θ1,回复到初期形状记忆的形状。即,斯滕特固定模1通过再次被加热到玻化温度Tg以上,如图1所示,被扩径到初期记忆的大小。
本发明的脉管用斯滕特固定模1,用于插入生物体的例如冠状动脉血管内,在插入了血管时,而扩径为记忆的状态,支承住血管内壁。形成脉管用斯滕特固定模1的斯滕特固定模本体3的线2,为了能在生体的体温或接近体温的温度下恢复形状,是采用玻化温度Tg为70℃以下的生物体吸收性聚合物。
用玻化温度Tg在70℃以下、可借助生物体体温恢复形状的线2形成的斯滕特固定模1,为扩径为形状记忆的状态,加热时,可用使生物体血管不会产生热损伤的温度进行。
另外,以缩径状态装在血管内的斯滕特固定模1,借助设在导管上的气球,扩径为与血管内壁接触的大小。斯滕特固定模1由于是用气球与血管内壁接触地扩径,所以,可均匀地与血管内壁接触,可借助体温均匀加温并恢复形状。
为了使斯滕特固定模1恢复形状,通过导管向气球内注入加温的造影剂时,其温度为50℃左右,这样可切实防止生物体血管产生热损伤。
下面,说明两种线2形成的斯滕特固定模1的形状恢复与温度的关系。一种是采用玻化温度Tg约57℃的聚乳酸(PLLA)制的线2,用该线2形成斯滕特固定模1。另一种是采用玻化温度Tg约37℃的聚乙二醇酸(PGA)制的线2,用该线2形成斯滕特固定模1。
这里所采用的线2,是把聚乳酸(PLLA)以及聚乙二醇酸(PGA)用上述的螺旋挤出机形成为直径50μm~300μm的延伸单线而形成的。各斯滕特固定模1,是将该线2如上述那样一边弯折成锯齿状、一边卷绕成筒状而形成的,并形状记忆住直径(R1)为4mm的大小,再被缩径成直径(R2)为1.4mm的大小。各斯滕特固定模1在形状记忆状态,其长度(L1)为12mm。
由聚乳酸(PLLA)制的线2形成的斯滕特固定模1,如图10中A所示,在70℃时仅用0.2秒恢复形状;在50℃时用13秒恢复形状;在接近体温的37℃时,用约20分钟慢慢地恢复形状。在接近室温的20℃以下时,不恢复形状,保持着缩径状态。
这样,由聚乳酸(PLLA)制的线2形成的斯滕特固定模1,通过控制加热温度,可控制恢复形状所需的时间,所以,可控制适当的形状恢复速度,以适应安装着斯滕特固定模1的血管状态等。
由聚乙二醇酸(PGA)制的线2形成的斯滕特固定模1,如图10中B所示,在45℃时仅用0.5秒就恢复形状;在接近体温的37℃时,约用1秒钟恢复形状,在低于体温的30℃时,用10秒钟恢复形状。在接近室温的15℃以下,不恢复形状,保持着缩径状态。
由玻化温度Tg低的聚乙二醇酸(PGA)制的线2形成的斯滕特固定模1,插入血管时借助体温急剧地恢复形状,所以,适用于装入血管后需要立即扩径的场合。另外,由于不必加热,借助体温可迅速恢复形状,所以,使斯滕特固定模1恢复形状的加热控制变容易。
上述的脉管用斯滕特固定模1,是把将弯曲部形成在中途部地被弯折成锯齿状的一根线2卷绕成螺旋状而形成为斯滕特固定模本体3。但也可以把将弯曲部形成在中途部地被弯折成锯齿状的一根线2形成为环状,把卷绕成该环状的若干根线21如图11所示地沿轴方向并列配置,形成为筒状的斯滕特固定模本体23。
该斯滕特固定模本体23,也是将并列配置的各线21的弯折部24的顶点相互接触,将接触部分融接,从而可切实保持筒状形态。
采用该斯滕特固定模本体23形成的斯滕特固定模1,也与上述斯滕特固定模1同样地,装在轴状模101上,加热到构成线21的生物体吸收性聚合物的玻化温度Tg以上的温度即融点Tm以下的温度,使其形状记忆住置留在生物体脉管内时的大小,然后,用缩径模子201等将其缩径到容易插入脉管内的粗细程度。
本发明的斯滕特固定模1,只要将线2一边弯折成锯齿状、一边卷绕成筒状地形成即可,其卷绕方法可采用各种方法。
上述已有技术中,斯滕特固定模所用的形状记忆合金的形状记忆恢复力约为数十kg/mm2,而本发明斯滕特固定模所用的构成线的生物体吸收性聚合物的形状记忆恢复力,约为数kg/mm2。因此,具有形状记忆功能的生物体吸收性聚合物与形状记忆合金相比,其恢复力极小。另外,具有形状记忆功能的生物体吸收性聚合物回复到所记忆状态的速度也为形状记忆合金的10倍以上。用具有该特性的、具有形状记忆功能的生物体吸收性聚合物制的线形成的斯滕特固定模,与采用形状记忆合金的斯滕特固定模相比,可用10倍以上的时间回复到所记忆的状态。
这样,用形状记忆回复力小、并且回复到所记忆状态的时间长的生物体吸收性聚合物制的线形成的斯滕特固定模,以缩径状态插入血管内后进行扩径时,不是急剧地扩径,而是均匀地扩径,而且对血管内壁不施加过度的力学上的压力,因此,可切实防止损伤血管。
另外,具有形状记忆功能的生物体吸收性聚合物制的线与形状记忆合金等金属制的线相比,其摩擦系数小,所以,在斯滕特固定模的扩径过程中,即使与血管内壁的局部相接触,也能在血管内壁面上滑动地均匀地进行扩径,可防止损伤血管。
通常,用于防止血管再狭窄的斯滕特固定模,在置留在血管内后数周间至数月间,虽然仍保持其形态,但是从临床经验看,希望安装后数月以内最好消失。
本发明的斯滕特固定模,由于是用生物体吸收性聚合物制的线形成的,所以,置留在生物体血管内后,虽然在数周间至数月间仍保持其形态,但置留在血管内数月后,可被生物体组织吸收而消失。
在聚合物纤维制的线中可混入各种药剂。在纺制纤维的时刻,通过混入X射线不透过剂,可用X射线观察置留在血管内的脉管用斯滕特固定模的状态。通过预先混入肝素、尿激酶或t-PA等血栓溶解剂或抗血栓剂,可防止血管的血栓性再狭窄。另外,可持续地投入药剂,通过混入或覆盖放射β线的放射线源、放射γ线的放射线源,可容易地对生物体内患部进行集中的放射线照射,而且可持续地进行放射线的照射。
另外,在线内混入抑制新生内膜加增殖的药剂,可持续地抑制新生内膜的加增殖。
这些X射线不透过剂、血栓溶解剂和抗血栓剂、或者抑制新生内膜加增殖的药剂、放射线源,可在纺线后,通过涂敷在该线的表面而覆盖住线。
本发明的斯滕特固定模1,由于是把具有形状记忆功能的生物体吸收性聚合物制的线相互不重合地卷绕成筒状而形成的,所以,如图12所示,在长度方向容易挠曲变形,能对于弯曲的血管301随从性好地进行插入。尤其是在采用中途设有弯折部的线形成的斯滕特固定模1,在长度方向极容易变形,能对于弯曲的血管301随从性更好地插入。
本发明的斯滕特固定模1,使线2不重合地形成,把该线2的弯折部4作为变位部,变位为形状记忆状态,所以,受不到因线2的重合产生的阻力,可顺利地恢复形状。
另外,本发明的斯滕特固定模1,由于将线2不重合地卷绕而形成,所以,成为无重合接缝的形状,可减少对血管壁的损伤。
工业利用性
本发明的脉管用斯滕特固定模,由于是采用具有形状记忆功能的生物体吸收性聚合物形成的,所以,可形状记忆住置留在脉管内状态的大小,不损伤血管等的脉管,可切实地将脉管保持为扩径状态。
另外,本发明的脉管用斯滕特固定模,装到血管等脉管内后,可容易地进行扩径,并且可用均匀的力支承血管等脉管,所以,可以稳定的状态将脉管保持为扩径状态。
特别是,本发明的脉管用斯滕特固定模,由于是采用生物体吸收性聚合物形成,所以,虽然在置留在脉管内数周间至数月间保持其形态,但安装后数月内可消失,可提供临床理想的斯滕特固定模。

Claims (9)

1.脉管用斯滕特固定模,用于插入生物体的脉管内,其特征在于,备有用线形成为筒状的斯滕特固定模本体,上述线是用具有形状记忆功能的生物体吸收性聚合物构成;其中,上述斯滕特固定模本体被外力缩径,并且当置入生物体脉管内时扩径到其形状记忆的大小;并且
所述斯滕特固定模本体形状记忆着能够置入脉管内的大小,其中,所述本体是将上述线一边弯折成锯齿状一边卷绕成筒状而形成的,其中,所述本体以所述线的弯折部作为变位部被扩长或缩径,并且其中,所述弯折部被折成一个将本体缩径的第一角度且记忆着一个当插入生物体的脉管时将被恢复的第二角度。
2.如权利要求1所述的脉管用斯滕特固定模,其特征在于,上述线是一根连续的单丝。
3.如权利要求1所述的脉管用斯滕特固定模,其特征在于,上述线是将若干根单丝一体化后的复丝。
4.如权利要求1所述的脉管用斯滕特固定模,其特征在于,上述斯滕特固定模本体,其上述线的相邻的至少一部分弯折部是连结着的。
5.如权利要求1所述的脉管用斯滕特固定模,其特征在于,上述斯滕特固定模本体,是将弯折成锯齿状并连结成环状的多根线,沿着斯滕特固定模本体的轴方向并列配置而形成为筒状。
6.如权利要求1所述的脉管用斯滕特固定模,其特征在于,上述线,是由玻化温度为70℃以下的生物体吸收性聚合物形成的。
7.如权利要求1所述的脉管用斯滕特固定模,其特征在于,上述线,是用聚乳酸、聚乙二醇酸、聚乙二醇酸和聚乳酸的共聚物、二噁烷酮、碳酸亚丙脂和乙交脂的共聚物、聚乙二醇酸或聚乳酸和ε-己内酯共聚物的一种或2种以上生物体吸收性聚合物形成的。
8.如权利要求1所述的脉管用斯滕特固定模,其特征在于,上述线,是用混入了X射线不透过剂、抗血栓剂、抑制新生内膜加增殖的药剂、放射β射线的放射线源、放射γ射线的放射线源中的1种或2种以上的高分子聚合物形成的。
9.如权利要求1所述的脉管用斯滕特固定模,其特征在于,在上述线的表面覆盖了X射线不透过剂、抗血栓剂、抑制新生内膜加增殖的药剂、放射β射线的放射线源、放射γ射线的放射线源中的1种或2种以上。
CNB998015296A 1998-09-08 1999-09-08 脉管用斯滕特固定模 Expired - Fee Related CN1271979C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP25427898 1998-09-08
JP254278/1998 1998-09-08

Publications (2)

Publication Number Publication Date
CN1277560A CN1277560A (zh) 2000-12-20
CN1271979C true CN1271979C (zh) 2006-08-30

Family

ID=17262754

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998015296A Expired - Fee Related CN1271979C (zh) 1998-09-08 1999-09-08 脉管用斯滕特固定模

Country Status (9)

Country Link
US (4) US6500204B1 (zh)
EP (4) EP2138137A3 (zh)
JP (4) JP4889151B2 (zh)
KR (1) KR100617375B1 (zh)
CN (1) CN1271979C (zh)
AU (1) AU760819B2 (zh)
CA (1) CA2308434C (zh)
ES (2) ES2620130T3 (zh)
WO (1) WO2000013737A1 (zh)

Families Citing this family (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
CN1271979C (zh) * 1998-09-08 2006-08-30 株式会社伊垣医疗设计 脉管用斯滕特固定模
US9522217B2 (en) 2000-03-15 2016-12-20 Orbusneich Medical, Inc. Medical device with coating for capturing genetically-altered cells and methods for using same
US8088060B2 (en) 2000-03-15 2012-01-03 Orbusneich Medical, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
US8460367B2 (en) 2000-03-15 2013-06-11 Orbusneich Medical, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
AU2001267075A1 (en) * 2000-06-13 2001-12-24 Scimed Life Systems, Inc. Disintegrating stent and method of making same
JP2002200175A (ja) * 2000-12-27 2002-07-16 Gunze Ltd 生体管路ステント
JP4707227B2 (ja) * 2000-12-27 2011-06-22 グンゼ株式会社 生体管路ステント
US6664436B2 (en) 2001-07-24 2003-12-16 Kimberly-Clark Worldwide, Inc. Disposable products having humidity activated materials with shape-memory
US6933421B2 (en) 2001-07-24 2005-08-23 Kimberly-Clark Worldwide Inc. Methods of making disposable products having humidity activated materials with shape-memory
US6627673B2 (en) 2001-07-24 2003-09-30 Kimberly-Clark Worldwide, Inc. Methods of making humidity activated materials having shape-memory
US7008446B1 (en) * 2001-08-17 2006-03-07 James Peter Amis Thermally pliable and carbon fiber stents
WO2004028615A1 (ja) 2002-09-25 2004-04-08 Kabushikikaisha Igaki Iryo Sekkei 脈管ステント用糸及びこの糸を用いた脈管用ステント
US7976936B2 (en) * 2002-10-11 2011-07-12 University Of Connecticut Endoprostheses
US7794494B2 (en) * 2002-10-11 2010-09-14 Boston Scientific Scimed, Inc. Implantable medical devices
CA2518960C (en) 2003-03-14 2013-08-27 Sinexus, Inc. Sinus delivery of sustained release therapeutics
EP1637176B1 (en) * 2003-05-23 2016-01-06 Kabushikikaisha Igaki Iryo Sekkei Stent supplying device
DE10357742A1 (de) * 2003-06-13 2005-03-10 Mnemoscience Gmbh Temporäre Stents zur nicht-vaskulären Verwendung
EP1633410B1 (de) * 2003-06-13 2017-05-17 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Bioabbaubare stents
AU2004246998A1 (en) * 2003-06-16 2004-12-23 Nanyang Technological University Polymeric stent and method of manufacture
EP1958657A1 (en) * 2003-07-18 2008-08-20 Boston Scientific Limited Medical devices
US8088156B2 (en) * 2003-10-07 2012-01-03 Cordis Corporation Graft material attachment device and method
AU2004281122B2 (en) * 2003-10-15 2010-04-15 Kabushikikaisha Igaki Iryo Sekkei Vessel stent feeder
US7232461B2 (en) * 2003-10-29 2007-06-19 Cordis Neurovascular, Inc. Neck covering device for an aneurysm
US20050107867A1 (en) * 2003-11-17 2005-05-19 Taheri Syde A. Temporary absorbable venous occlusive stent and superficial vein treatment method
US7377939B2 (en) * 2003-11-19 2008-05-27 Synecor, Llc Highly convertible endolumenal prostheses and methods of manufacture
WO2005096992A1 (en) * 2004-04-02 2005-10-20 Arterial Remodelling Technologies, Inc. Polymer-based stent assembly
US8999364B2 (en) * 2004-06-15 2015-04-07 Nanyang Technological University Implantable article, method of forming same and method for reducing thrombogenicity
US20110066222A1 (en) * 2009-09-11 2011-03-17 Yunbing Wang Polymeric Stent and Method of Making Same
US8268228B2 (en) * 2007-12-11 2012-09-18 Abbott Cardiovascular Systems Inc. Method of fabricating stents from blow molded tubing
US8012402B2 (en) 2008-08-04 2011-09-06 Abbott Cardiovascular Systems Inc. Tube expansion process for semicrystalline polymers to maximize fracture toughness
US20060020330A1 (en) 2004-07-26 2006-01-26 Bin Huang Method of fabricating an implantable medical device with biaxially oriented polymers
US8501079B2 (en) * 2009-09-14 2013-08-06 Abbott Cardiovascular Systems Inc. Controlling crystalline morphology of a bioabsorbable stent
US8747878B2 (en) * 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US20140107761A1 (en) 2004-07-26 2014-04-17 Abbott Cardiovascular Systems Inc. Biodegradable stent with enhanced fracture toughness
US7731890B2 (en) * 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US8778256B1 (en) 2004-09-30 2014-07-15 Advanced Cardiovascular Systems, Inc. Deformation of a polymer tube in the fabrication of a medical article
US20060052822A1 (en) * 2004-08-31 2006-03-09 Mirizzi Michael S Apparatus and material composition for permanent occlusion of a hollow anatomical structure
US8173062B1 (en) 2004-09-30 2012-05-08 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube in fabricating a medical article
US8043553B1 (en) 2004-09-30 2011-10-25 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US7875233B2 (en) * 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
JPWO2006051912A1 (ja) 2004-11-12 2008-05-29 株式会社 京都医療設計 脈管用ステント
TW200635566A (en) 2005-01-25 2006-10-16 Vnus Med Tech Inc Structures for permanent occlusion of a hollow anatomical structure
JP4824747B2 (ja) * 2005-03-24 2011-11-30 メドトロニック カルディオ ヴァスキュラー インコーポレイテッド 血管内ステントおよび血管内ステント搬送システム
EP1871306A4 (en) * 2005-04-01 2012-03-21 Univ Colorado DEVICE AND METHOD FOR FIXING GRAFT
CA2603081C (en) 2005-04-04 2013-09-03 Sinexus, Inc. Device and methods for treating paranasal sinus conditions
US8192483B2 (en) * 2005-10-06 2012-06-05 Kaneka Corporation Stent to be placed in the living body
DE102005050386A1 (de) 2005-10-20 2007-04-26 Campus Gmbh & Co. Kg Temporär in einem Körperhohlgefäß ablegbarer Stent
US20070162110A1 (en) * 2006-01-06 2007-07-12 Vipul Bhupendra Dave Bioabsorbable drug delivery devices
US20070160672A1 (en) * 2006-01-06 2007-07-12 Vipul Bhupendra Dave Methods of making bioabsorbable drug delivery devices comprised of solvent cast films
US20070158880A1 (en) * 2006-01-06 2007-07-12 Vipul Bhupendra Dave Methods of making bioabsorbable drug delivery devices comprised of solvent cast tubes
WO2007105067A1 (en) * 2006-03-14 2007-09-20 Arterial Remodeling Technologies, S.A. Method of monitoring positioning of polymeric stents
US9017361B2 (en) 2006-04-20 2015-04-28 Covidien Lp Occlusive implant and methods for hollow anatomical structure
AU2007249229B2 (en) * 2006-05-12 2013-05-23 Cardinal Health 529, Llc Balloon expandable bioabsorbable drug eluting flexible stent
US20070290412A1 (en) * 2006-06-19 2007-12-20 John Capek Fabricating a stent with selected properties in the radial and axial directions
US7740791B2 (en) * 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US8099849B2 (en) * 2006-12-13 2012-01-24 Abbott Cardiovascular Systems Inc. Optimizing fracture toughness of polymeric stent
US20080236601A1 (en) * 2007-03-28 2008-10-02 Medshape Solutions, Inc. Manufacturing shape memory polymers based on deformability peak of polymer network
KR100824074B1 (ko) 2007-04-24 2008-04-21 주식회사 엠아이텍 스텐트
US7666342B2 (en) * 2007-06-29 2010-02-23 Abbott Cardiovascular Systems Inc. Method of manufacturing a stent from a polymer tube
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
AU2008308474B2 (en) 2007-10-04 2014-07-24 Trivascular, Inc. Modular vascular graft for low profile percutaneous delivery
JP5384359B2 (ja) 2007-10-16 2014-01-08 株式会社 京都医療設計 脈管ステント用の管状体形成エレメント及び脈管ステント
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
WO2009072172A1 (ja) 2007-12-03 2009-06-11 Goodman Co., Ltd. ステント及びその製造方法
CZ303081B6 (cs) * 2007-12-13 2012-03-21 Ella-Cs, S. R. O. Zpusob výroby samoexpanzního biodegradabilního stentu
EP3791826A1 (en) 2007-12-18 2021-03-17 Intersect ENT, Inc. Self-expanding devices
US7972373B2 (en) * 2007-12-19 2011-07-05 Advanced Technologies And Regenerative Medicine, Llc Balloon expandable bioabsorbable stent with a single stress concentration region interconnecting adjacent struts
US20090163945A1 (en) * 2007-12-20 2009-06-25 Boston Scientific Scimed, Inc. Polymeric slotted tube coils
US8206636B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US8206635B2 (en) * 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US10898620B2 (en) 2008-06-20 2021-01-26 Razmodics Llc Composite stent having multi-axial flexibility and method of manufacture thereof
KR101547200B1 (ko) * 2008-06-27 2015-09-04 가부시키가이샤 교토 이료 세케이 맥관용 스텐트
US20100170521A1 (en) * 2008-07-24 2010-07-08 Medshape Solutions, Inc. Method and apparatus for deploying a shape memory polymer
US8069858B2 (en) * 2008-07-24 2011-12-06 Medshape Solutions, Inc. Method and apparatus for deploying a shape memory polymer
US8430933B2 (en) * 2008-07-24 2013-04-30 MedShape Inc. Method and apparatus for deploying a shape memory polymer
CA2732355A1 (en) 2008-08-01 2010-02-04 Intersect Ent, Inc. Methods and devices for crimping self-expanding devices
US20100244304A1 (en) * 2009-03-31 2010-09-30 Yunbing Wang Stents fabricated from a sheet with increased strength, modulus and fracture toughness
CN102573981B (zh) 2009-05-15 2016-06-22 因特尔赛克特耳鼻喉公司 可展开装置及其使用方法
US8992601B2 (en) * 2009-05-20 2015-03-31 480 Biomedical, Inc. Medical implants
US9265633B2 (en) 2009-05-20 2016-02-23 480 Biomedical, Inc. Drug-eluting medical implants
DK2434984T3 (en) * 2009-05-30 2016-05-30 Inst Für Textil Und Faserforschung Denkendorf Stiftung Des Öffentlichen Rechts Deutsche medical Product
WO2010144325A1 (en) * 2009-06-08 2010-12-16 Boston Scientific Scimed, Inc. Crosslinked bioabsorbable medical devices
US8435437B2 (en) * 2009-09-04 2013-05-07 Abbott Cardiovascular Systems Inc. Setting laser power for laser machining stents from polymer tubing
US8568471B2 (en) 2010-01-30 2013-10-29 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US8370120B2 (en) 2010-04-30 2013-02-05 Abbott Cardiovascular Systems Inc. Polymeric stents and method of manufacturing same
CA2804261A1 (en) * 2010-07-20 2012-01-26 Kyoto Medical Planning Co., Ltd. Stent covering member and stent apparatus
WO2012011261A1 (ja) 2010-07-20 2012-01-26 株式会社 京都医療設計 ステント装置
US9345602B2 (en) * 2010-09-23 2016-05-24 Abbott Cardiovascular Systems Inc. Processes for making crush recoverable polymer scaffolds
US8381742B2 (en) 2011-01-24 2013-02-26 Leonard G. Lorch Dental floss
JP5650013B2 (ja) 2011-02-28 2015-01-07 株式会社 京都医療設計 ステント装置
US9427493B2 (en) 2011-03-07 2016-08-30 The Regents Of The University Of Colorado Shape memory polymer intraocular lenses
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
US8968387B2 (en) 2012-07-23 2015-03-03 Abbott Cardiovascular Systems Inc. Shape memory bioresorbable polymer peripheral scaffolds
US10582998B1 (en) * 2012-10-17 2020-03-10 Medshape, Inc. Shape memory polymer fabrics
JP6399663B2 (ja) 2013-03-14 2018-10-03 インターセクト エント, インコーポレイテッド 副鼻腔状態を処置するためのシステム、デバイスおよび方法
US10004621B2 (en) 2013-04-05 2018-06-26 Sanford Health Anchoring guidewire and methods for use
WO2014165754A1 (en) * 2013-04-05 2014-10-09 Sanford Health Anchoring guidewire and methods for use
US20150137416A1 (en) * 2013-11-14 2015-05-21 The Board Of Trustees Of The University Of Illinois Advanced Thermal Processing Techniques of "Sacrificial" Polylactic Acid
CN104667356A (zh) * 2013-11-27 2015-06-03 山东瑞安泰医疗技术有限公司 一种体内可降解的形状记忆高分子冠脉支架系统及其制备方法
JP2017505817A (ja) 2014-02-04 2017-02-23 アボット カーディオバスキュラー システムズ インコーポレイテッド コーティングに対するnovolimusの結合が最小限になるように、novolimusとラクチドとをベースにするコーティングを有する薬物送達足場またはステント
JP6294564B2 (ja) * 2014-12-08 2018-03-14 サンテック・カンパニー・リミテッドSuntech Co.,Ltd. 生分解性ステントおよびその形状記憶拡張方法
WO2018101400A1 (ja) 2016-11-30 2018-06-07 株式会社ジェイ・エム・エス ステント
CN110267627B (zh) 2016-12-09 2023-07-11 真复灵公司 用于在前列腺尿道中准确展开植入物的系统、装置和方法
EP3391852A3 (en) * 2017-04-21 2018-11-14 Cook Medical Technologies LLC Reinforced graft prosthesis
KR102221074B1 (ko) 2018-12-24 2021-03-02 부산대학교 산학협력단 생분해성 고분자 및 니티놀을 포함하는 스텐트 및 이의 제조방법
US11890213B2 (en) 2019-11-19 2024-02-06 Zenflow, Inc. Systems, devices, and methods for the accurate deployment and imaging of an implant in the prostatic urethra

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
JPS61194204A (ja) * 1985-02-21 1986-08-28 Teijin Ltd 紡糸口金装置
US5527337A (en) 1987-06-25 1996-06-18 Duke University Bioabsorbable stent and method of making the same
JP2561853B2 (ja) * 1988-01-28 1996-12-11 株式会社ジェイ・エム・エス 形状記憶性を有する成形体及びその使用方法
US5019090A (en) * 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
EP0528993A1 (en) * 1990-05-18 1993-03-03 STACK, Richard S. Intraluminal stent
US5160341A (en) * 1990-11-08 1992-11-03 Advanced Surgical Intervention, Inc. Resorbable urethral stent and apparatus for its insertion
ES2134205T3 (es) * 1991-03-08 1999-10-01 Keiji Igaki Stent para vasos, estructura de sujecion de dicho stent, y dispositivo para montar dicho stent.
US5232648A (en) * 1991-07-19 1993-08-03 United States Surgical Corporation Bioabsorbable melt spun fiber based on glycolide-containing copolymer
US5500013A (en) * 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
WO1993006792A1 (en) * 1991-10-04 1993-04-15 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
JP2961287B2 (ja) * 1991-10-18 1999-10-12 グンゼ株式会社 生体管路拡張具、その製造方法およびステント
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
DE69318614T2 (de) * 1992-03-25 1998-11-05 Cook Inc Einrichtung zur Aufweitung von Blutgefässen
JP3739411B2 (ja) * 1992-09-08 2006-01-25 敬二 伊垣 脈管ステント及びその製造方法並びに脈管ステント装置
US5288516A (en) * 1993-02-11 1994-02-22 E. I. Du Pont De Nemours And Company Process of producing bioabsorbable filaments
FR2702954B1 (fr) * 1993-03-03 1997-09-26 Andrew H Cragg Prothèse et implant intraluminaire.
US5441515A (en) * 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5716410A (en) * 1993-04-30 1998-02-10 Scimed Life Systems, Inc. Temporary stent and method of use
JPH078520A (ja) * 1993-06-17 1995-01-13 Mitsui Toatsu Chem Inc 使い捨ておむつ
US5913897A (en) * 1993-09-16 1999-06-22 Cordis Corporation Endoprosthesis having multiple bridging junctions and procedure
KR970004845Y1 (ko) 1993-09-27 1997-05-21 주식회사 수호메디테크 내강확장용 의료용구
DE69430291T2 (de) * 1993-11-18 2002-10-24 Mitsui Chemicals Inc Geformte Gegenstände aus abbaubarem aliphatischem Polyester
CA2188563C (en) * 1994-04-29 2005-08-02 Andrew W. Buirge Stent with collagen
US5554181A (en) * 1994-05-04 1996-09-10 Regents Of The University Of Minnesota Stent
US5575816A (en) 1994-08-12 1996-11-19 Meadox Medicals, Inc. High strength and high density intraluminal wire stent
EP1181904B1 (en) * 1994-10-17 2009-06-24 Kabushikikaisha Igaki Iryo Sekkei Stent for liberating drug
US5817152A (en) 1994-10-19 1998-10-06 Birdsall; Matthew Connected stent apparatus
JPH08196643A (ja) * 1995-01-24 1996-08-06 Jms Co Ltd 中空器官治療用器具
US5556414A (en) * 1995-03-08 1996-09-17 Wayne State University Composite intraluminal graft
WO1997014375A1 (en) * 1995-10-20 1997-04-24 Bandula Wijay Vascular stent
JP3261028B2 (ja) * 1995-12-05 2002-02-25 株式会社島津製作所 自己接着性複合繊維
CA2199890C (en) * 1996-03-26 2002-02-05 Leonard Pinchuk Stents and stent-grafts having enhanced hoop strength and methods of making the same
DE19641335A1 (de) * 1996-10-08 1998-04-09 Inst Textil & Faserforschung Triblockterpolymer, seine Verwendung für chirurgisches Nahtmaterial und Verfahren zur Herstellung
US5871437A (en) * 1996-12-10 1999-02-16 Inflow Dynamics, Inc. Radioactive stent for treating blood vessels to prevent restenosis
US6245103B1 (en) * 1997-08-01 2001-06-12 Schneider (Usa) Inc Bioabsorbable self-expanding stent
CN1271979C (zh) * 1998-09-08 2006-08-30 株式会社伊垣医疗设计 脉管用斯滕特固定模

Also Published As

Publication number Publication date
JP2009000553A (ja) 2009-01-08
US20030060874A1 (en) 2003-03-27
ES2527282T3 (es) 2015-01-22
KR100617375B1 (ko) 2006-08-29
CN1277560A (zh) 2000-12-20
US6500204B1 (en) 2002-12-31
EP2138137A3 (en) 2013-06-12
AU5647799A (en) 2000-03-27
EP2138135A3 (en) 2014-05-07
US7335226B2 (en) 2008-02-26
JP4889699B2 (ja) 2012-03-07
JP4889151B2 (ja) 2012-03-07
CA2308434C (en) 2008-02-05
JP4889698B2 (ja) 2012-03-07
AU760819B2 (en) 2003-05-22
WO2000013737A1 (fr) 2000-03-16
EP2138136A3 (en) 2014-05-28
CA2308434A1 (en) 2000-03-16
JP2008307405A (ja) 2008-12-25
ES2620130T3 (es) 2017-06-27
US7066952B2 (en) 2006-06-27
US7331988B2 (en) 2008-02-19
EP1033145B1 (en) 2014-12-17
KR20010031832A (ko) 2001-04-16
US20030055488A1 (en) 2003-03-20
EP2138136A2 (en) 2009-12-30
EP2138135A2 (en) 2009-12-30
JP2008296041A (ja) 2008-12-11
US20040215330A1 (en) 2004-10-28
EP1033145A1 (en) 2000-09-06
EP2138137A2 (en) 2009-12-30
EP1033145A4 (en) 2009-07-22
EP2138135B1 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
CN1271979C (zh) 脉管用斯滕特固定模
US5591222A (en) Method of manufacturing a device to dilate ducts in vivo
AU653159B2 (en) Bioabsorbable stent
JP4794732B2 (ja) 生体崩壊性ステント
US9283094B2 (en) Polymer-based stent assembly
US20090105800A1 (en) Methods of minimizing stent contraction following deployment
CN105992571B (zh) 由生物可吸收聚合物制得的具有高疲劳强度和径向强度的薄支撑件支架及其制造方法
JP2002508196A (ja) インビボ分解のプログラムパターンを有するステント
WO2004023985A2 (en) Drawn expanded stent
JPH11313895A (ja) ベロ―ズ医療構造体および当該構造体を使用する装置
JP2008522732A (ja) 変更された侵食速度を有するポリマー製体内プロテーゼ及び製法
CN104474593B (zh) 使在加工聚(l-丙交酯)支架中断链和单体产生最小化的方法
CN208552143U (zh) 一种血管内支架和制品
CN112826988A (zh) 一种可定向降解自脱落镁金属胆道支架及其制备方法
JP5282069B2 (ja) ポリマーベースのステントアセンブリ
JP2001314517A (ja) 生体吸収性プラスチック製ステントおよびその使用方法
CN107811734A (zh) 一种血管内支架及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060830

Termination date: 20140908

EXPY Termination of patent right or utility model