CN1272926A - 测量人在运动中脚的触地时间和脚的腾空时间 - Google Patents

测量人在运动中脚的触地时间和脚的腾空时间 Download PDF

Info

Publication number
CN1272926A
CN1272926A CN98809743A CN98809743A CN1272926A CN 1272926 A CN1272926 A CN 1272926A CN 98809743 A CN98809743 A CN 98809743A CN 98809743 A CN98809743 A CN 98809743A CN 1272926 A CN1272926 A CN 1272926A
Authority
CN
China
Prior art keywords
pin
contact time
user
foot
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN98809743A
Other languages
English (en)
Inventor
保罗·J·高德特
托马斯·P·布莱克达
斯蒂文·R·奥利文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Personal Electronic Devices Inc
Original Assignee
Personal Electronic Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Personal Electronic Devices Inc filed Critical Personal Electronic Devices Inc
Publication of CN1272926A publication Critical patent/CN1272926A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G21/00Input or output devices integrated in time-pieces
    • G04G21/02Detectors of external physical values, e.g. temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1123Discriminating type of movement, e.g. walking or running
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6831Straps, bands or harnesses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers
    • G01C22/006Pedometers
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G21/00Input or output devices integrated in time-pieces
    • G04G21/02Detectors of external physical values, e.g. temperature
    • G04G21/025Detectors of external physical values, e.g. temperature for measuring physiological data

Abstract

一种通过处理和分析加速度计(34)的输出信号来确定使用者迈步期间脚接触地面的时间周期和使用者迈步之间脚不接触地面的时间周期的方法。加速度计(34)是这样安装在使用者身上的,以致其加速度敏感轴感受到的是基本平行于使用者脚底方向的加速度。加速度计(34)的输出经过高通滤波(36)、放大(38)、然后传送到微控制器(40)的输入端,该微控制器监视这个信号,其中该信号的正和负的尖峰分别代表使用者的脚离开地面的瞬间和脚开始踏地的瞬间。通过测定这些正负尖峰之间的时间间隔,可以分别计算使用者的“脚触地时间”和“脚腾空时间”的平均值。为了推算使用者的步调,如果平均的脚触地时间在400毫秒(ms)以下,将它乘以第一常数;如果该触地时间大于400ms则将它乘以第二常数。这个步调值可以依次用于计算使用者的行走距离。

Description

测量人在运动中脚的触地时间和脚的腾空时间
本发明的技术领域
本发明涉及监视人的矫形运动,更具体地说涉及测量人在运动中的脚触地时间、脚腾空时间、速度和/或步调。
本发明的现有技术
众所周知,有用的信息可以依据人在运动中“脚的触地时间”来推算,其中所述的“脚的触地时间”指的是在人迈步期间人的脚与地面接触的时间周期。如果知道人的脚触地时间,其他的信息(如行走速率、行走的距离和步行消耗的能量)都可以根据这个实测的脚触地时间进行计算。
过去,脚触地时间是通过将压敏传感器或开关(如电阻型传感器)放在鞋根和鞋尖中并且测量鞋根传感器输出的第一信号(该信号表示脚开始接触地面)和鞋尖传感器输出的第二信号(该信号表示脚离开地面)之间的时间差。但是,这些传感器承受鞋内的高冲击环境,因此频繁地出现故障。此外,当使用者在鞋根传感器或鞋尖传感器未被激活的情况下迈步时,例如使用者用脚尖跑步时,可能产生不精确的脚触地时间测量结果。
另一种技术上已知的装置是计步器。计步器通常装在使用者的腰上并且其结构适合借助测量使用者在行走期间身体上下运动的次数来完成使用者的脚步计数。众所周知,现有技术的计步器设计用安装在弹簧上的重物来数使用者在行走期间身体上下运动的次数。按照使用者以前实测的步长通过适当地校准可以用该计步器测量使用者的行走距离。但是,因为在跑步期间重物过分地颤动,这些“摆锤型”计步器一般不能测量跑步者的行走距离,并且因为这种颤动往往使脚步被“加倍计数”,从而产生不准确的结果。因此,这些装置不可以在不同的训练计划(例如行走、漫步和奔跑)中使用。
另一种现有技术的计步器装置使用加速度计来测量使用者在运动时脚开始踏地的次数。这就是将加速度计安装在鞋上,以便产生表示脚开始踏地的信号,该信号具有明显的向下隆起的峰。因此,这些装置在数出使用者的步数时仅仅产生类似于现有技术的“摆锤型”计步器装置的结果,并且为了计算使用者的行走距离必须按照使用者的步长进行标定。因此,这些基于加速度的装置受到类似于“摆锤型”装置的限制,并且不能测量使用者在运动时的脚触地时间。
所以,为买得起的、可靠的、容易使用的准确的计步器提供一种新方法是本发明的一般目的。
本发明的概述
本发明揭示了一种方法和器件,其中一种不需要压缩力就能感受运动的运动敏感元件的输出被用于确定:(1)在运动中使用者的脚离开表面的瞬间,和(2)使用者的脚开始踏地的瞬间。通过测量每次脚开始踏地的瞬间与接下来的脚离开地面的瞬间之间的时间差,可以准确而可靠地在使用者迈步行走期间测量若干个脚与地面接触的时间周期,即脚触地时间。通过计算这几个实测的脚触地时间的平均值,可以确定平均的脚触地时间,依据这个平均的脚触地时间可以计算诸如使用者的步调、行走速率、行走距离之类的信息。另外,通过测量使用者的脚离开地面的瞬间和随后脚开始踏地的瞬间之间的时间差,还可以计算使用者在两次迈步之间脚不接触地面的平均时间周期,即平均的脚腾空时间。
按照本发明的一个方面,分析脚相对地面运动的方法包括利用不需要压缩力就能感受运动的运动敏感元件的输出来确定脚离开地面的瞬间。
按照本发明的另一方面,代表脚的加速度的运动敏感元件的输出信号可以送到信号处理电路,该电路是为了分析所述信号以确定脚离开地面的瞬间而设计制作的。
按照另一方面,运动敏感元件的输出还可以用来确定脚开始接触地面的那个瞬间。
按照又一方面,脚触地时间还可以根据脚开始接触地面的那个瞬间与脚离开地面的瞬间之间的时间差来确定,或者脚的腾空时间可以根据在脚离开地面的瞬间与脚开始接触地面的瞬间之间的时间差来确定。
按照本发明的又一个方面,实测的脚触地时间可以用来确定使用者相对地面的运动速率。进而,通过测量使用者的运动时间间隔,可以确定使用者已经走过的距离,其方法是使用者的运动速率乘以确定该速率测量结果所用的时间间隔。
按照另一个方面,基于脚相对地面移动确定使用者的运动速率的方法包括下述步骤:
(a)确定在运动中使用者的脚触地时间;
(b)如果脚触地时间小于第一时间量,那么按照包含脚触地时间的第一方程推算使用者的运动速率;以及
(c)如果脚触地时间大于第二时间量,(该时间量大于第一时间量),那么按照包含脚触地时间的第二方程推算使用者的运动速率。
按照本发明的另一个方面,分析脚相对地面的运动的装置包括一个不需要压缩力就能感受运动状态的运动敏感元件和一个信号处理电路。所述的运动敏感元件相对脚支撑,并且其结构和布局适合提供代表脚的运动的输出信号。所述的信号处理电路与所述的运动敏感元件耦合以便接收来自所述元件的输出信号,并且该电路的结构适合分析所述的输出信号以确定至少一个脚离开地面的瞬间。
按照本发明的另一个方面,运动敏感元件可以包括加速度计。
按照另一个方面,所述的处理电路的结构还适合分析输出信号,以便确定至少一个脚开始接触地面的瞬间。
按照又一个方面,所述的处理电路也可以为下述目的构成:(1)分析输出信号,以便确定在脚迈步期间至少一个脚接触地面的时间周期;和/或(2)分析输出信号,以便确定在脚迈步之间脚不接触地面的时间周期。
按照另一方面,用于确定运动中使用者的运动速率的装置包括适合接收关于脚触地时间的信息的处理电路。该处理电路是这样构成的,以致如果脚触地时间少于第一时间量,那么该处理电路按照包含所述的脚触地时间的第一方程推算使用者的运动速率;如果脚触地时间大于比第一时间量还大(或相等)的第二时间量,那么所述的处理电路按照包含所述的脚触地时间的第二方程推算使用者的运动速率。
附图的简要说明
图1是可以使用本发明的网络方框图。
图2是说明如何相对使用者安装本发明的示意图。
图3是可以使用本发明的系统方框图。
图4是按照本发明的电路的一个实施方案的方框图。
图5是图4所示的电路的示意图。
图6是两张图,它们说明图5所示的电路两个节点在使用者散步期间的信号。
图7是按照本发明经过放大/滤波的加速度计输出与利用现有技术的电阻型传感器得到的数据进行比较的两张图。
图8是两张图,它们说明图5所示电路的两个节点在使用者跑步期间的信号。
图9是按照本发明经过放大/滤波的加速度计输出与利用现有技术的电阻型传感器所得到的数据在使用者跑步期间进行比较的两张图。
图10是按照本发明测量脚触地时间的方法的连续循环部分的高级流程图。
图11是按照本发明测量脚触地时间的方法的中断部分的高级流程图。
图12是图10所示方法的连续循环部分的更详细的流程图。
图13是图11所示方法的中断部分的更详细的流程图。
图14是图解说明如何根据使用者的脚的平均实测脚触地时间确定使用者运动中的步调的图表。
本发明的详细描述
图1展示可以使用本发明的网络70的方框图。如图所示,网络70包括网络处理电路系统30、存储器单元28、用户界面32、显示器26A和声音或振动指示器26B。网络处理电路系统30还与一个或多个监视装置(如脚触地时间/脚腾空时间发生器20A和20B、心率监视器22和呼吸监视器24)耦合以便接收来自它们的输入。图1所示装置可以结合在一起,例如,借助硬连接线路或电容耦合通过使用射频(RF)或红外(IR)的发射机/接收机或者借助熟悉这项技术的人所知道的任何其它信息传输媒介形成链路。
网络处理电路系统30可以包括个人计算机或任何其它能够处理来自网络70的各种输入信息的装置。存储器单元28与网络处理电路系统30耦合,用于储存提供给网络处理电路系统30的程序和数据和/或由电路系统30处理的运行纪录数据。用户界面32也与网络处理电路系统30耦合并且允许使用者(如步行者、漫跑者、或赛跑者)选择通过软件例行程序实现的具体特征、输入特定的操作参数、或选择适合显示器26 A和/或声音或者振动指示器26B的特定的输出。心率监视器22和呼吸监视器24按照已知的方法运行并且为网络处理电路系统30提供输入。
每个脚触地时间/脚腾空时间发生器20A和20B按照本发明操作,并且分别为网络处理电路系统30提供输入。通过接收来自脚触地时间/脚腾空时间发生器20A和20B、心率监视器22和呼吸监视器24的输出以及来自任何其它类型的健康状况电子监视设备的输入的信息,网络处理电路系统30能够处理所有的这类信息并且将健康度量标准或对理疗、康复等有用的与健康有关的其它信息提供给使用者,以便帮助使用者以可能的最有效的方式达到最健康的水平。
图2说明根据本发明的装置是怎样安装到使用者身上的。图2所示的每个器件20A-20C都具有特定的感受加速度的轴,即加速度敏感轴。按照本发明的一个实施方案,每个器件都应当这样安装,使该器件的加速度敏感轴的取向基本上平行于使用者的脚底表面。例如,器件20A安装在使用者的脚踝上,器件20B安装在使用者的鞋上或鞋内,而器件20C安装在使用者的腰上,这些器件的加速度敏感轴的取向分别用箭头80A、80B和80C表示。人们已经发现加速度敏感轴的这种定位在任何情况下都将产生最强有力地表示(1)使用者的脚离开地面的瞬间和(2)使用者的脚开始接触地面的瞬间的输出信号。假定这是真实的,因为器件感受到的大部分加速度变化首先是由使用者的鞋与地面之间的摩擦引起的,而不是通过鞋对地面的冲击引起的,后者是以现有技术的加速度计为基础的计步器所遇到的情况。
图3展示根据本发明的系统72。如图所示,系统72包括脚触地时间/脚腾空时间发生器20(它可以与图1所示的脚触地时间/脚腾空时间发生器20A和20B两者之一相对应)、存储器单元54、用户界面58、显示器56 A和声音或振动指示器56B。按照一个实施方案,脚触地时间/脚腾空时间发生器20包括微控制器,该微控制器实际上具有所有板内的电路系统,如存储器、定时器和模/数(A/D)转换器,以致存储器单元54只需用于完成象永久储存脚触地时间/脚腾空时间发生器20所产生的数据那样的功能。
用户界面58可以按常规通过按动按钮、开关或其他的物理装置被激活,或者借助市售的声控装置通过声音被激活。正象下面将要更详细地讨论的那样,用户界面58可以用于(1)按照本发明任意调整几个在软件例行程序中使用的参数、(2)任意选择几种可能提供给使用者的输出,例如能在显示器56 A上显示的输出或者能借助声音或振动指示器56B为使用者提供声音或振动指示的输出、或者(3)选择通过自动响应使用者的输入的软件例行程序来实现的特征。
图4展示图3所示的脚触地时间/脚腾空时间发生器的20的示范性实施方案。如图所示,脚触地时间/脚腾空时间发生器20包括加速度计34、放大器电路38(高通滤波器36已被包括在内)和微控制器40。加速度计34的输出端被接在放大器电路38的输入端上,而放大器电路38的输出端被接在微控制器40的输入端上。
图5更详细地展示图4所示的脚触地时间/脚腾空时间发生器20。如图5所示,加速度计32的输出50提供给包括在放大器电路38中的输入电容器C1。放大器电路38进一步包括运算放大器62和电阻器R1-R4。按照一个实施方案,加速度计32可以包括由“模拟设备股份有限公司(Analog Devices Inc.)制造的部分数字式的ADXL250,而运算放大器62可以包括MAXIM股份有限公司(MAXINM Inc.)生产的部分数字式的MAX418。
如图5所示,电阻器R1被连接在输入电容器C1和运算放大器62的反相输入端之间,而电阻器R2以反馈形式连接在运算放大器62的输出端52与反相输入端之间。因此,输入电容器C1和电阻器R1结合形成高通滤波器,并且电阻器R1和R2的位置将放大器电路放在增益因数取决于电阻器R1和R2的相对值的反相结构里。在图示的实施方案中,电阻器R2的阻值是1兆欧,而R1的阻值是150千欧,以致放大器的增益因数近似为-6.6。此外,按照图示的实施方案,电容器C1的数值为0.15微法,以致放大器电路38的高通滤波器部分36将频率低于大约7.07赫兹的输入信号滤掉。
电阻器R3被连接在VCC电源节点44和运算放大器62的非反相输入端60之间,而电阻器R4被连接在非反相输入端60和接地节点42之间。VCC电源节点44相对接地节点42保持在大约5伏上(例如从6伏的电池调整到该数值),电阻器R3和R4的阻值相等(例如每个50千欧),以致在非反相输入节点60处的电压近似地保持在VCC电源节点44对地电压的中点(即大约2.5伏)。
放大器电路38的输出端52被接在低功率微处理器40的第一A/D的输入端46上,而放大器电路38的节点60被接在微控制器40的第二A/D的输入端48上。按照一个实施方案,微控制器40可以包括“微芯片股份有限公司(Microchip Inc.)制造的部分数字式的PIC:16C73。这种微处理器包括板内存储器、A/D转换器和计时器。微控制器40的A/D输入端48作为零基准,保持在大约2.5伏上(如上所述),微控制器40的输入端46作为在0和5伏之间波动的可变输入。微处理器40以大约每秒500个子样的采样速率在输入端46和48进行电压采样,把这些子样转换成无符号的8位数字值,并且计算两个输入端之间的电压差,这个差值在下面详细讨论的软件例行程序的运行期间将被使用。
图6展示沿着同一时间轴的两条曲线。这些曲线表示在使用者行走期间图5所示电路的节点50和52的电压的无符号的8位数字值。这就是说,图6中的曲线50W(数字化)表示在使用者行走期间加速度计32的输出端50在滤波和放大以前的电压,而曲线46W和48W分别(数字化)表示在使用者行走期间微控制器40的输入端46和48的电压。尽管曲线46W、48W和50W共享公用的时间轴,但是曲线46W和48W的电压幅度轴与曲线50W有显著区别。所以,将曲线50W安排在曲线46W和48W的上方并没有预示曲线50W的幅度高于曲线46W和48W的幅度的意思。
如图6所示,因为放大器电路38是为了获得负增益因数而设计的,所以曲线50W的高尖峰51W与曲线46W的低尖峰47W相对应。但是,曲线46W的高尖峰49W看来不与曲线50W的低尖峰相对应。换言之,加速度计34的输出只有在经过放大器电路38滤波和放大之后,高尖峰49W才是可确定的。指示使用者在运动期间脚离开地面的瞬间的正是曲线46W的高尖峰49W。
类似地,曲线46W的低尖峰47W指示使用者在运动期间脚开始踏地的瞬间。通过测量曲线46W的低尖峰47W和高尖峰49W之间的时间差,可以确定使用者在运动时脚触地时间。本文所说的“脚触地时间”指的是使用者的脚开始踏地的瞬间与随后脚离开地面的瞬间之间的时间周期。
用类似的方法,可以确定使用者运动时脚的腾空时间。这就是说通过测量曲线46W中的高尖峰49W和低尖峰53W之间的时间差可以确定脚腾空时间。本文中所说的“脚腾空时间”指的是使用者的脚离开地面的瞬间与下一次脚开始接触地面的瞬间之间的时间周期。
图7展示使用者行走时(1)分别安装在鞋根和鞋尖上的电阻型传感器所产生的两条曲线55H和55T与(2)按照本发明经过放大和滤波的加速度计输出之间的对应关系。换言之,曲线55H表示安装在鞋根中的电阻型传感器的输出,曲线55T表示安装在鞋尖中的电阻型传感器的输出,而曲线46W表示图5所示的电路20的节点52的电压。这些测量结果全部是在使用者行走时取得的。尽管曲线55H、55T和46W共享一条公用的时间轴,但是曲线55H和55T的电压幅度轴与曲线46W的电压幅度轴有明显的区别。所以,将曲线55H和55T安排在曲线46W上面并没有预示曲线55H和55T的幅度高于曲线46W的幅度的意思。
如图7中的虚线所示,曲线55H从高向低的过渡(这表示使用者的鞋开始踏地)与曲线46的低尖峰47W相对应,而曲线55T从低向高过渡(这表示使用者的鞋离开地面)与曲线46W的高尖峰49W相对应。因此,在使用者行走时通过在经过高通滤波/放大的(如上所述安装的)加速度计输出曲线上测量高尖峰与低尖峰之间以及低尖峰与高尖峰之间的时间差所获得的脚触地时间和脚腾空时间似乎将产生至少与用现有技术的电阻型传感器产生的结果同样准确的结果。
图8展示两条曲线,它们分别表示使用者奔跑时图5所示电路节点50和52处的无符号的8位数字电压值。换言之,图8中的曲线50R表示在使用者奔跑期间加速度计32的输出50在滤波和放大前的电压,而曲线46R和48R分别表示在使用者奔跑期间微控制器40的输入端46和48的电压。尽管曲线46R、48R和50R共享公用的时间轴,但是曲线的46R和48R的电压幅度轴与曲线50R的电压幅度轴有明显的区别。所以,将曲线50R安排曲线46R和48R上面并没有预示曲线50R的幅度高于曲线46R和48R的意思。
如图8所示,因为放大器电路38是为了获得负增益因数而设计的,所以曲线50R的高尖峰51R与曲线46R的低尖峰47R相对应。但是,曲线46R的高尖峰49R看来不与曲线50R的低尖峰相对应。换言之,加速度计34的输出只有在经过放大器电路38滤波和放大之后,高尖峰49R才是可确定的。指示使用者在奔跑时脚离开地面的瞬间的正是曲线46R中的高尖峰49R。
类似地,曲线46R的低尖峰47R指示使用者在奔跑时脚开始踏地的瞬间。通过测量曲线46R的低尖峰47R和高尖峰49R之间的时间差,可以确定使用者奔跑时的脚触地时间。用类似的方法,可以确定使用者奔跑时的脚腾空时间。这就是说通过测量曲线46R中的高尖峰49R和低尖峰53R之间的时间差就可以确定使用者在奔跑时的脚腾空时间。
图9展示使用者奔跑时相应的(1)分别安装在鞋根和鞋尖上的电阻型传感器所产生的两条曲线55H和55T,与(2)按照本发明经过放大和滤波的加速度计输出之间的对应关系。换言之,曲线57H表示安装在鞋根中的电阻型传感器的输出,曲线57T表示安装在鞋尖中的电阻型传感器的输出,而曲线46R表示图5所示电路20的节点52处的电压(如图5所示)。这些测量结果全部是在使用者奔跑时取得的。尽管曲线57H、57T和46R共享一条公用的时间轴,但是曲线57H和57T的电压幅度轴与曲线46R的电压幅度轴有明显的区别。所以,将曲线57H和57T安排在曲线46R上面并没有预示曲线57H和57T的幅度高于曲线46R的意思。
如图9中的虚线所示,曲线57H的从高向低过渡(这表示使用者的鞋开始踏地)与曲线46R的低尖峰47R相对应,而曲线57T的从低向高过渡(这表示使用者的鞋离开地面)与曲线46R的高尖峰49R相对应。因此,在使用者奔跑时通过在经过高通滤波/放大的(如上所述安装的)加速度计输出曲线上测量高尖峰与低尖峰之间以及低尖峰与高尖峰之间的时间差所获得的脚触地时间和脚腾空时间似乎将产生至少与用现有技术的电阻型传感器产生的结果同样准确的结果。
如图4和图5所示,来自加速度计34的输出信号是由微控制器的40利用下面两个主要的软件例行程序进行分析的:(1)连续循环例行程序,该程序按照循环通过逐次叠代将诸如脚触地时间和脚腾空时间之类的数据累加起来;和(2)中断例行程序,该程序中断连续循环例行程序并且分析在中断开始时通过连续循环例行程序已累积起来的数据。这些例行程序可以用任何软件语言编写并且优选储存在(图4和图5所示的)微控制器40的板内存储器(未示出)中。这些例行程序可以被使用者启动,或者优选在微控制器40上电时自动启动。这些主要的软件例行程序中的每个程序所完成的具体步骤将在下面详细阐述。
简要地回顾一下图5,因为微控制器40的每个输入端46和48的电压都被转换成8位数字的字,所以每个输入端的电压幅度将被表示成256个离散级之一。再者,电阻器R3和R4在节点60处形成大约为2.5伏的电压,即大约在5伏电源对地电压的中点,在输入端48处的零基准将保持在256级的中点附近,即近似为第128级。
现在参照图10,由图5所示的微控制器40完成的连续循环例行程序的高级的流程图被展示出来。本质上,连续循环部分101连续地监视微控制器40的输入端46和48之间的电压,以便确定何时(输入端46和48之间)的负的和正的电压差超过预定的门限值。这些负的和正的电压差分别表示使用者的脚接触地面和离开地面。
如图10所示,连续循环101包括步骤100、102、104、106、108、110、112和114。这些高级步骤中有许多步骤包括几个较低级的子步骤,下面将结合图12详细地予以介绍。
在执行循环101的步骤100期间,微控制器40连续地监视输入端的电压,以便确定输入端46的电压何时下降到输入端48的电压以下超过某个特定的电压。按照一个实施方案,输入端46的电压比输入端48的零基准级低(256个可能的电压级中的)50级以上被看成“负尖峰事件”,于是软件假定使用者的脚在发生负尖峰事件的瞬间已经接触地面。发生负尖峰事件使微控制器40中“腾空时间”(Ta)计时器停止并且使“触地时间”(Tc)计时器启动。由腾空时间(Ta)计时器测量的时间代表最后的“正尖峰事件”(下面定义)与刚刚检测到的负尖峰事件之间的时间差。在发生负尖峰事件时,“StepCount”值(即使用者的脚步计数)也加1。
接下来,在执行步骤102期间,对刚刚计算出来并储存在存储器中的三个最近的腾空时间(即腾空时间(Ta)的数值)进行被称作FIFO平滑处理的技术处理,这项技术的作用是删除看来错误的腾空时间(Ta)测量结果。用来完成这个FIFO平滑处理的例行程序将在下面详细介绍。
在执行步骤104期间,正在运行的总腾空时间(Ta)值(TaSum)加上可利用的最近的腾空时间(Ta)值,并且包括在当前的TaSum值中的腾空时间(Ta)值的总数(Tasteps)加1。保存这些数值,以致平均的腾空时间(Ta)值(TaAverage)最终可以通过TaSum值除以TaSteps值来计算。
在完成步骤100、102和104之后完成的步骤106期间,该系统“睡眠”一个时间周期,该周期等于使用者可能的最小的脚触地时间(Tc),例如122毫秒(ms),以致该系统将不把在这个睡眠周期中发生的正尖峰当作正尖峰事件(下面定义)。
除了确定脚触地时间(Tc)而不是脚腾空时间(Ta)之外,步骤108、110、112和114分别与步骤100、102、104和106类似。
在执行循环101的步骤108期间,微控制器40连续地监视输入端46和48,以确定两者之间的特定的电压差。按照一个实施方案,输入端46比输入端48的零基准级高(256个可能的电压级中的)10级以上的正电压被看成“正尖峰事件”,于是软件假定使用者的脚在发生正尖峰事件的瞬间已经离开地面。发生正尖峰事件使“触地时间”(Tc)计时器停止并且使“腾空时间”(Ta)计时器启动。由触地时间(Tc)计时器测量的时间代表最后的负尖峰事件与刚刚检测到的正尖峰事件之间的时间差。
在执行步骤110期间,对刚刚计算出来并储存在存储器中的三个最近的触地时间(Tc)的数值进行FIFO平滑处理,这项处理的作用是删除看来错误的触地时间(Tc)测量结果。
在执行步骤112期间,正在运行的总触地时间(Tc)值(TcSum)加上可利用的最近的触地时间(Tc)值,并且包括在当前的TcSum值中的触地时间(Tc)值的总数(Tcsteps)加1。保存这些数值,以致平均的触地时间(Tc)值(TcAverage)最终可以通过TcSum值除以TcSteps值来计算。
在完成步骤108、110和112之后完成的步骤114期间,该系统“睡眠”一个时间周期,该周期等于使用者可能的最小的脚触地时间,以致该系统将不把在这个睡眠周期中发生的负尖峰当作负尖峰事件。在步骤114的睡眠周期之后,例行程序返回到步骤100,继续重复循环101,直至检测到中断(下面讨论)为止。
现在参照图11,简要地解释高级的中断例行程序115,较详细地介绍每个高级步骤以及随后将结合图13介绍的与其相关的较低级的子步骤。
中断例行程序115可以通过编程按任何给定的时间间隔运行,但是应当优选其运行的频繁程度不超过每两秒一次,以使有意义的数据可以在用例行程序115评估它们之前通过循环101收集起来。
例行程序115的步骤116使该例行程序中断连续循环101。接下来,步骤118计算使用者这几步的触地时间(Tc)的平均值(TcAverage),并将循环101中的TcSum和TcSteps值复位到零。类似地,步骤120计算腾空时间(Ta)的平均值(TaAverage),并且将循环101中的TaSum和TaSteps值复位到零。
在步骤122中,根据计算出来的TcAverage和TaAverage值(按下面介绍的方式)确定使用者的步频,并且通过来自循环101的StepCount值乘以2计算使用者的总步数。
接下来在步骤124中,按照下边介绍的算法计算使用者的步调,并且,按照用计算出来的步调值和确定该步调值所用的时间周期作为变量的方程(下面介绍)计算使用者的行走距离。这个距离测量结果可以累加到过去的距离测量结果上,以确定总的行走距离。所以,累计距离值将是可以由使用者复位的,这样使用者就能够从零基准点开始测量行走距离。
最后,在完成步骤124中的计算或任何其它所需的计算之后,步骤126将中断例行程序115返回到连续循环101,以便进一步测量触地时间(Tc)值和腾空时间(Ta)值。
图12展示连续循环101的较低级的流程图。如图所示,图10所示的高级步骤100包括5个较低级的子步骤100A-100E。
在步骤100A和100B中,微控制器40的输入端46和48的模拟电压(在步骤100A中)被采样,直到(在步骤100B中)在输入端46的电压中检测到指示使用者的脚开始踏地的负尖峰事件为止。按照一个实施方案,输入端46和48的模拟电压被采样,直至输入端46的电压降低到比输入端48的基准电平低50级(有256个可能的电压级)为止,其中所述基准电平应当近似地保持在第128级(即在5伏标尺上大约为2.5伏)。50级对应于5伏的标尺上的大约0.98伏。这种采样是以每秒500个子样的速率进行的。
由于放大器电路的温度变化等因素输入端48的基准电平可能轻微地上下浮动。但是,因为外界因素(如温度变化)在输入端48引起的任何基准电平的变化有可能与这些因素在输入端46引起的信号级的变化相对应,所以节点46与48之间的电压差应当只受加速度计所产生的起伏信号的影响,而不受电路工作条件变化的影响。
一旦在步骤100B中检测到负尖峰事件,腾空时间(Ta)计时器就被停止(在步骤100C中)而脚触地时间(Tc)计时器被启动(在步骤100D中)。对检测表示使用者的脚离开地面的正尖峰事件(在下边描述)敏感的腾空时间(Ta)计时器在连续循环例行程序101的上一个循环期间应当已被启动。因此,触地时间(Ta)计时器在步骤100C中被停止时提供使用者脚步之间的腾空时间的测量结果,即使用者的脚最后离开地面的时间(即最后一个正尖峰事件)与脚重新接触地面的时间(即刚刚检测到的负尖峰事件)之间的时间周期。
此外,在对检测到负尖峰事件作出反应时,变量StepCount的值加1(在步骤100E中)。变量StepCount在使用者的训练计划开始前被复位,以使其正在运行的总数准确地测量在训练期间使用者的一只脚迈出的步数。
在更新变量StepCount(步骤100E在中)之后,连续循环101转到包括在图10所示的高级例行程序的“FIFO平滑处理”步骤100中的步骤102A-102E。在执行步骤102A-102E期间,对已经储存在存储器中的腾空时间的三个最近的数值(即三个最近的腾空时间(Ta)值)进行下述分析。
首先,在执行步骤102A期间,将三个最近的腾空时间(Ta)值(来自循环101更早的几次叠代)移位,以便安排新获得的腾空时间(Ta)值(在步骤100C中)。具体地说,将现有的腾空时间(Ta)的第三最近值废除,将现有的腾空时间(Ta)第二最近值变成新的第三最近值,将现有的第一最近值变成新的第二最近值,而将新近获得的腾空时间(Ta)值变成新的第一最近值。
接下来,在步骤102B和102C中,比较腾空时间(Ta)的三个最近值(如下所述),以确定腾空时间(Ta)的中值(即腾空时间(Ta)的第二最近值)看起来是否异常。异常的腾空时间(Ta)的测量结果(即异常的腾空时间(Ta)值)有可能发生,例如在使用者迈步攀登岩石时或在水上或冰上滑行时。如果腾空时间(Ta)的第二最近值看上去是错误测量的结果,那么(在步骤102D中)用腾空时间(Ta)的第一和第三最近值的平均值来代替它。因此,因为(按照步骤102E)只有腾空时间(Ta)的第三最近值被用于未来的全部计算,所以替换异常的腾空时间(Ta)的第二最近值起滤除偶然出现的异常测量结果即平滑处理的作用。
具体地说,在步骤102B中,腾空时间(Ta)的第一和第三最近值被比较。如果这些值在彼此特定的百分比范围内(例如,如果腾空时间(Ta)的第一最近值比第三最近值大或小5%),那么该例行程序转到步骤102C。如果第一和第三腾空时间(Ta)值不在彼此特定的百分比范围内,那么该例行程序直接进行步骤102E。这就是说如果在腾空时间(Ta)的第一和第三最近的测量结果之间有太大的差别,那么假定使用者在这两次测量之间已经改变了速率,而且在这种情况下将腾空时间(Ta)的第二最近值复位有可能导致不准确的腾空时间(Ta)值,而不是在腾空时间(Ta)的第一和第三最近值相似时获得的经平滑处理的数值。
如果进入步骤102C,则对腾空时间(Ta)的第一和第二最近值进行比较。如果腾空时间(Ta)的第一最近值不在腾空时间(Ta)的第二最近值的某个特定的百分比范围内,(例如,如果腾空时间(Ta)的第一最近值不是比腾空时间(Ta)的第二最近值大或小5%),那么(在步骤102D中)用腾空时间(Ta)的第一和第三最近值的平均值代替腾空时间(Ta)的第二最近值,借此删除看起来异常的第二个最近的腾空时间(Ta)测量结果。
最后,按照步骤102E,将腾空时间(Ta)的第三最近值(Ta)用于未来涉及腾空时间(Ta)测量结果的全部计算。因此,由于这个腾空时间(Ta)的第三最近值在循环101的前一次叠代中曾经是腾空时间(Ta)的第二最近值,它已经根据在上述步骤102B和102C中所进行的比较在它看来异常的那次叠代期间经过“平滑处理”了。
图10所示的高级步骤104包括子步骤104A和104B。如图12所示,在步骤104A中,来自循环101的以前数次叠代的腾空时间(Ta)的测量结果的总累计值(TaSum)用来自步骤102E的腾空时间(Ta)的第三最近值进行更新,以便获得更新的TaSum值(即TaSum=TaSum+Ta)。
接下来在步骤104B中,腾空时间(Ta)步骤的总运行次数(TaSteps)加1(即TaSteps=TaSteps+1)。每当正尖峰事件(在步骤108B中识别的,下面介绍)后面跟着一个负尖峰事件(在步骤100B中识别的)时就要完成一次腾空时间步骤。
在循环101的步骤106中,该系统在转入步骤108A之前将在一段特定的时间里被置于睡眠模式。按照一个实施方案,这个睡眠模式的持续时间等于使用者以最快的速度奔跑时可能发生的最短的脚触地时间(Tc)(例如122毫秒(ms))。这个睡眠周期被用来防止微控制器在检测到负尖峰事件之后误将加速度计的输出信号中发生的瞬时扰动识别成随后的正尖峰事件。此外,在睡眠周期中为了保存系统中的电力可以降低或取消给电路中非关键零部件的电力供应。
在步骤106的睡眠模式之后,循环101转到组成图10所示高级步骤108的步骤108A-108E。在步骤108A和108B中,微控制器40的输入端46和48的模拟电压被采样(在步骤108A中),直到(在步骤108B中)在输入端46的电压中检测到表示使用者的脚离开地面的正尖峰事件为止。按照一个实施方案,输入端46和48的模拟电压被采样,直至输入端46的电压升高到比输入端48的基准电平高(256个可能的电压级中的)10级为止,其中所述基准电平应当近似地保持在第128级(即在5伏标尺上大约为2.5伏)。10级在5伏标尺上相当于大约0.20伏。这种采样以每秒500个子样的速率进行。
一旦在步骤108B中检测到正尖峰事件,脚触地时间(Tc)计时器就被停止(在步骤108C中)而脚腾空时间(Ta)计时器则被启动(在步骤108D中)。(在步骤100B中)对检测负尖峰事件敏感的脚触地时间(Tc)计时器在连续循环例行程序101的上一个循环期间应当已(在步骤100D中)被启动。因此,触地时间(Tc)计时器在步骤108C中被停止时提供使用者在迈步期间脚触地时间的测量结果,即使用者的脚在迈步期间实际接触地面的时间周期。
在步骤108E中,对触地时间(Tc)计时器所测量的时间进行评估,以确定它是否落在可接受的脚触地时间范围内。如果实测的触地时间(Tc)不在这个可接受的范围内,那么该例行程序返回步骤100A,以便识别另一个负尖峰事件。按照一个实施方案,脚触地时间的可接受范围在140ms和900ms之间。
在(用步骤108E)评估实测的触地时间(Tc)值之后,连续循环101转入步骤110A-110E,这些步骤被包括在图10所示的高级例行程序的“FIFO平滑处理”步骤110中。在执行步骤110A-110E期间,对已经储存在存储器中的脚触地时间的三个最近的数值(即三个最近的脚触地时间(Tc)值)进行下述分析。
首先,在执行步骤110A期间,将来自循环101早期叠代的三个最近的脚触地时间(Tc)值移位,以便(在步骤108C中)考虑新获得的触地时间(Tc)值。具体地说,将现有的第三最近的触地时间(Tc)值废除,将现有的第二最近的脚触地时间(Tc)值变成新的第三最近值,将现有的第一最近值变成新的第二最近值,而将新近获得的脚触地时间(Tc)值变成新的第一最近值。
接下来,在步骤110B和110C中,对(经步骤110A移位后的)三个触地时间(Tc)最近值进行比较(如下所述),以确定触地时间(Tc)的中值(即触地时间(Tc)的第二最近值)看起来是否异常。异常的触地时间(Tc)测量结果(即异常的触地时间(Tc)值)有可能发生,例如在使用者迈步攀登岩石时或在水上或冰上滑行时。如果触地时间(Tc)的第二最近值看上去是错误的测量结果,那么(在步骤110D中)用触地时间(Tc)的第一和第三最近值的平均值来代替它。因此,由于(按照步骤110E)只有触地时间(Tc)的第三最近值被用于未来的全部计算,所以替换异常的第二触地时间(Tc)的最近值起滤除偶然出现的异常测量结果即平滑处理的作用。
具体地说,在步骤110B中,比较触地时间(Tc)的第一和第三最近值。如果这些值在彼此特定的百分比范围内(例如,如果触地时间(Tc)的第一最近值比第三最近值大或小5%),那么该例行程序转到步骤110C。如果第一和第三触地时间(Tc)值不在彼此特定的百分比范围内,那么该例行程序直接转到步骤110E。这就是说如果在触地时间(Tc)的第一和第三最近的测量结果之间有太大的差别,那么假定使用者在那两次测量之间已经改变了步调,而且在这种情况下将触地时间(Tc)的第二最近值复位有可能导致不准确性,而不是在触地时间(Tc)的第一和第三最近测量结果相似时获得的经平滑处理的数值。
如果进入步骤110C,则对触地时间(Tc)的第一和第二最近值进行比较。如果触地时间(Tc)的第一最近值不在触地时间(Tc)的第二最近值的某个特定的百分比范围内,(例如,如果触地时间(Tc)的第一最近值不比触地时间(Tc)的第二最近值大或小5%),那么(在步骤110D中)用触地时间(Tc)的第一和第三最近值的平均值代替触地时间(Tc)的第二最近值,借此删除看起来异常的第二个最近的触地时间(Tc)测量结果。
最后,按照步骤110E,将触地时间(Tc)的第三最近值用于未来涉及脚触地时间(Tc)测量结果的全部计算。因此,由于这个触地时间(Tc)的第三最近值在循环101的前一次叠代中是触地时间(Tc)的第二最近值,它已经根据在上述步骤110B和110C中所进行的比较在它出现异常的那次叠代期间经过“平滑处理”了。
虽然在图12中没有展示,但是实测的脚触地时间也可以被用于确定在使用者每次迈步期间使用者的脚处在“零位置”的瞬间,即使用者的脚底表面平行于使用者正在上面行走、漫步或奔跑的表面的瞬间。比如说这个瞬间可以这样确定,即假设使用者的脚在针对每次迈步实测的脚触地时间里始终处于其零位置的中点(或某个特定的百分比)。
高级步骤112(如图10所示)包括子步骤112A和112B。如图12所示,在步骤112A中,用来自步骤110E的触地时间(Tc)的第三最近值更新在循环101的过去几次叠代中获得的触地时间(Tc)测量结果的总累计值(TcSum),以便获得变量TcSum更新后的数值(即TcSum=TcSum+Tc)。
接下来在步骤112B中,触地时间(Tc)步骤的总运行次数(TcSteps)加1(即TcSteps=TcSteps+1)。如上所述,每当负尖峰事件(在步骤100中识别)后面跟着一个正尖峰事件(在步骤108B中识别)时就要完成一次脚触地时间步骤(TcStep)。
在循环101的步骤114中,该系统在返回步骤100A之前的一段特定的时间里将被置于睡眠模式。按照一个实施方案,这个睡眠模式的持续时间等于使用者以最快的速度奔跑时可能发生的最短的脚触地时间(Tc)(例如122ms)。这个睡眠周期被用来防止微控制器在检测到正尖峰事件之后误将加速度计的输出信号中发生的瞬时扰动识别成随后的负尖峰事件。此外,在睡眠周期中为了保存系统中的电力可以降低或取消给电路中非关键零部件的电力供应。
图13展示中断例行程序115的较低级的流程图。如上所述,中断例行程序115定期地中断连续循环101,以使它可以评估和分析通过该循环的多次叠代累加的数据,例如脚触地时间和脚腾空时间。中断例行程序115可以通过编程按任何给定的时间间隔运行,但是应当优选其运行频繁程度不超过每两秒一次,以使有意义的数据可以在用例行程序115分析和评估它们之前通过循环101收集起来。
中断例行程序115的步骤116使该例行程序中断连续循环101。接下来,组成图11所示高级步骤118的步骤118A-118D基于使用者迈出的几步计算触地时间(Tc)的平均值(TcAverage),并且将循环101中的TcSum和TcSteps值复位到零。具体地说,步骤118A和118B分别评估TcSteps和TcSum的当前值,以保证它们每个都大于零。这样做为的是防止微控制器进行任何被零除的除法运算。接下来在步骤118C中,通过TcSum的值除以TcSteps的值计算脚触地时间平均值(TcAverage),即:TcAverage=TcSum/TcSteps,其中“/”是除法运算符。最后在步骤118D中将TcSum和TcSteps复位到零,以便在返回循环101时可以从头开始进行脚触地时间的测量。
类似地,组成图11所示高级步骤120的步骤120A-120D基于使用者迈出的几步计算腾空时间(Ta)的平均值(TaAverage),并且将循环101中的TaSum和TaSteps值复位到零。具体地说,步骤120A和120B分别评估TaSteps和TaSum的当前值,以保证它们每个都大于零。接下来在步骤120C中,通过TaSum的值除以TaSteps的值计算脚腾空时间平均值(TaAverage),即:TaAverage=TaSum/TaSteps。最后在步骤120D中将TaSum和TaSteps复位到零,以便在返回循环101时可以从头开始进行脚腾空时间的测量。
在组成图11所示高级步骤122的步骤122A-122C中,根据计算出来的TcAverage和TaAverage值确定使用者的步频,并且通过来自循环101的StepCount值乘以2计算使用者的总步数。具体地说,步骤122评估TcAverage的当前值,以保证它大于零。这样做为的是防止微控制器进行任何被零除的除法运算。接下来在步骤122B中,通过取腾空时间平均值(TaAverage)加触地时间平均值(TcAverage)的倒数的两倍计算使用者的步频,即步频=2*(1/(TaAverage+TcAverage)),其中“*”是乘法运算符。
接下来在步骤124A-124E中,按照已知的算法(下边介绍)计算使用者的步调(Pace),并且通过确定步调所用的时间周期乘以使用者的运动速率来计算使用者的行走距离。使用者的速率(单位为英尺/秒)等于参变量(5280/(Pace*60))。这个距离测量结果可以累加到过去的距离测量结果上,以确定总的行走距离。所以,累计距离值将是可以由使用者复位的,这样使用者就能够从零基准点开始测量行走的距离。
具体地说,在步骤124A中对在步骤118C中计算出来的脚触地时间平均值(TcAverage)进行评估,以确定它究竟是大于还是小于400ms。如果TcAverage小于400ms,那么在步骤124B中将变量“Slope”设置为数值24,如果TcAverage大于400ms,那么在步骤124C中将变量Slope设置为数值28.5。接下来在步骤124D中计算使用者的步调(Pace),其方法是将TcAverage值乘以变量Slope(即Pace=TcAverage*Slope)。
本发明的发明者已经发现至少使用两个迥然不同的方程将有利于依据实测的脚触地时间推算使用者的步调。换言之,对于实测的脚触地时间小于某个特定值(例如400ms)的情况,应当用第一方程推算使用者的步调,而对于实测的脚触地时间大于某个特定值(例如400ms)的情况,则应当使用第二方程。
参照图14,这张图展示发明者发现的脚触地时间(Tc)与使用者的步调(Pace)之间的关系。如图所示,曲线90具有迥然不同的几个部分90A、90B和90C。线段90A和90C具有不同的斜率,但是两者在零分钟/英里处分享共同的Y轴截距值。业已发现使用者的脚触地时间平均值不论使用者究竟是在行走、漫步、还是奔跑都没有落在线段90B覆盖的范围内的倾向。所以,线段90A或90C之一总可以被用于根据实测的脚触地时间确定使用者的步调。如图14所示,线段90A的斜率是24。当实测的脚触地时间的平均值落在线段90A之内时,即TcAverage小于400ms时,这个斜率被用作变量Slope(在图13的步骤124B中)。类似地,线段90C的斜率是28.5,所以在实测的脚触地时间的平均值落在线段90C之内时(即TcAverage大于400ms时)这个斜率被用作变量Slope(在图13的步骤124C中)。
再次参照图13,在步骤124E中,使用者在运动中行走的距离(Distance)是利用下面的方程计算的:Distance=(time*(5280/(Pace*60))),其中“time”是中断例行程序115的中断周期(例如2秒或更多)。
最后,在完成步骤124A-124E中的计算和/或任何其它需要的计算之后,步骤126将中断例行程序115返回到连续循环101,以便进一步进行触地时间(Tc)和腾空时间(Ta)的测量。
除了计算使用者的步调、行走速率和行走距离之外,还可以根据使用者的实测脚触地时间计算代谢能量消耗。根据脚触地时间度量代谢能量消耗的一种方法是本发明的两位发明者在未审的美国专利申请第08/255,820号(1994年4月11日申请)中介绍的方法,在此通过引证将它并入。
现在简要地回顾一下图1和图3,按照一个实施方案,有几个变量或参数可以由使用者输入,以便使用上述的软件例行程序。例如,可以借助图1中的用户界面32或图3中的用户界面58输入这些变量或参数。尽管本发明倾向于自动调整的例行程序,在理想条件下应当不需要输入任何使用者特有的数据,但是,也考虑到某些参数或变量可以是使用者可调整的,以适应个体使用者的需要。例如,(1)可以调整正或负尖峰事件的门限值(分别在图12的步骤108B和100B中识别);(2)可以调整图12的步骤106和114的睡眠时间;(3)可以调整图14中,线段90各个部分的斜率,或者添加补充线段,或者用另一种触地时间/步调方程代替它们;或者(4)可以变更在图12的步骤108E中确定的脚触地时间(Tc)的可接受范围。
这些参数或变量可以有预先编入系统程序的缺省值,用户可以按照某些使用者特有的判据(如高度、体重或鞋的硬度)来调整这些缺省值。另外,这些参数或变量可以根据用户输入的资料(例如使用者在开始穿越已知距离时和完成穿越时两次按动按钮)自动地借助软件进行调整。
应当理解,尽管在此已经介绍了本发明使用特定的加速度计和特定的微控制器完成其各种功能的情况,但是任何能完成类似的功能的器件(包括硬连接的电路系统)同样可以在不脱离本发明的倾向性范围的情况下予以使用。此外,尽管在此介绍了高通滤波/放大器电路的特定的实施方案,但是本发明不倾向于受这个实施方案的具体特征的限制。再者,尽管在此介绍了非常特殊的软件例行程序,但是也不应当将这个例行程序的具体特征看作是对本发明的范围的限制。
在介绍了至少一个本发明的说明性实施方案之后,对于熟悉这项技术的人各种各样的替代方案、修改方案和改进方案将不难产生。这些替代方案、修改方案和改进方案将倾向于在本发明的精神和范围之内。因此,前面的介绍仅仅是举例说明,没有任何限制的倾向。本发明只受权利要求书及其等价物的限制。

Claims (32)

1.一种用于分析脚相对某表面运动的方法,该方法包括:
(a)利用无需施加压缩力就能感受运动状态的运动敏感元件的输出确定脚离开该表面瞬间的步骤。
2.根据权利要求的1方法,该方法进一步包括:
(b)利用所述运动敏感元件感受脚的加速度并提供表示脚的加速度的信号作为所述运动敏感元件的输出的步骤;以及
步骤(a)进一步包括步骤(a1):
(al)将来自运动敏感元件的信号提供给信号处理电路,通过分析所述信号确定脚离开该表面的瞬间。。
3.根据权利要求的2方法,其中所述运动敏感元件具有加速度敏感方向,并且步骤(b)包括相对脚确定运动敏感元件的方向以使运动敏感元件的加速度敏感方向不垂直于脚底表面。
4.根据权利要求的3方法,其中步骤(b)包括相对脚确定运动敏感元件的方向以使运动敏感元件的加速度敏感方向平行于脚底表面。
5.根据权利要求2的方法,其中步骤(a)包括步骤(a2):
(a2)利用信号处理电路来识别表示脚离开表面的信号特征。
6.根据权利要求的5方法,其中步骤(a2)包括利用信号处理电路来识别表示脚离开表面的信号中的高电平或低电平。
7.根据权利要求6的方法,其中步骤(a2)包括在识别高电平或低电平之前对所述信号进行频率滤波。
8.根据权利要求7的方法,其中步骤(a2)包括在识别高电平或低电平之前将所述信号放大。
9.根据权利要求5的方法,其中步骤(a2)包括在识别所述信号特征之前进行高通滤波。
10.根据权利要求1的方法,进一步包括步骤(b):
(b)利用运动敏感元件的输出来确定脚与表面开始接触的瞬间。
11.根据权利要求10的方法,进一步包括步骤(c):
(c)根据在步骤(b)中确定的脚与地面开始接触的瞬间与在步骤(a)中确定的脚离开地面的瞬间之间的时间差来确定脚的触地时间。
12.根据权利要求11的方法,其中步骤(c)包括在完成步骤(b)之后等待预定的时间周期,以便完成步骤(a)。
13.根据权利要求11的方法,进一步包括步骤(d)和步骤(e):
(d)重复步骤(a)、(b)和(c)以确定数个脚触地时间;
(e)根据在步骤(d)中确定的数个脚触地时间计算平均的脚触地时间。
14.根据权利要求13的方法,其中步骤(d)包括舍弃在预定的可接受的脚触地时间范围之外的脚触地时间。
15.根据权利要求13的方法,进一步包括步骤(f):
(f)利用在步骤(e)中确定的平均脚触地时间来确定使用者相对该表面的运动速率。
16.根据权利要求15的方法,其中步骤(f)包括:如果平均的脚触地时间小于第一时间量,那么按照包含平均脚触地时间的第一方程推算使用者的移动速率,以及,如果平均的脚触地时间大于第二时间量,那么按照包含平均脚触地时间的第二方程推算使用者的移动速率。
17.根据权利要求15的方法,进一步包括步骤(g)和步骤(h):
(g)测定使用者的运动时间间隔;以及
(h)通过在步骤(f)中确定的使用者的运动速率乘以在步骤(g)中确定的运动时间间隔来确定使用者的行走距离。
18.根据权利要求11的方法,进一步包括步骤(d)和步骤(e):
(d)重复步骤(a)、(b)和(c)以便确定包括第一最近的触地时间、第二最近的触地时间和第三最近的触地时间在内的数个最近的脚触地时间并将它们储存在存储器中;以及
(e)如果第一最近的触地时间在大于或小于第三最近的触地时间的第一百分比范围之内,而且第一最近的触地时间不在大于或小于第二最近的触地时间的第二百分比范围之内,那么将第二最近的触地时间设定为第一最近的触地时间与第三最近的触地时间的平均值。
19.根据权利要求10的方法,进一步包括步骤(c):
(c)根据在步骤(a)中确定的脚离开地面的瞬间与在步骤(b)中确定的脚开始与地面接触的瞬间之间的时间差来确定脚的腾空时间。
20.根据权利要求19的方法,其中步骤(c)包括在完成步骤(a)之后等待预定的时间周期,以便完成步骤(b)。
21.根据权利要求19的方法,进一步包括步骤(d)和步骤(e):
(d)重复步骤(a)、(b)和(c),以便确定数个脚腾空时间;
(e)计算在步骤(d)中确定的数个脚腾空时间的平均值,以便确定平均的脚腾空时间。
22.根据权利要求19的方法,进一步包括步骤(d)和步骤(e):
(d)重复步(a)、(b)和(c),以便确定包括第一最近的腾空时间、第二最近的腾空时间和第三最近的腾空时间在内的数个最近的腾空时间,并将它们储存在存储器中;
(e)如果第一最近的腾空时间在大于或小于第三最近的腾空时间的第一百分比范围之内,而且第一最近的腾空时间在大于或小于第二最近的腾空时间的第二百分比范围内,那么将第二最近的腾空时间设定为第一最近的腾空时间与第三最近的腾空时间的平均值。
23.一种确定使用者的脚相对某表面的运动速率的方法,该方法包括下述步骤:
(a)确定使用者在运动中脚的触地时间;以及
(b)如果脚触地时间小于第一时间量,那么按照包含平均触地时间的第一方程推算使用者的运动速率;以及
(c)如果脚触地时间大于比第一时间量大的第二时间量,那么按照包含平均脚触地时间的第二方程推算使用者的运动速率。
24.一种分析脚相对某表面运动的器件,该器件包括:与脚保持支撑关系的运动敏感元件,所述运动敏感元件的结构和布局适合提供表示脚的运动的输出信号并且不需要压缩力就能感受运动状态;以及
与所述运动敏感元件耦合并接收其输出的信号处理电路,所述处理电路的结构适合分析运动敏感元件的输出信号以确定至少一个脚离开该表面的瞬间。
25.根据权利要求24的分析脚相对表面运动的器件,其中所述处理电路的结构适合分析运动敏感元件的输出信号以确定至少一个脚触及该表面的瞬间。
26.根据权利要求25的分析脚相对地面运动的器件,其中所述处理电路的结构适合分析运动敏感元件的输出信号,以便根据至少一个脚开始接触地面的瞬间与至少一个脚离开地面的瞬间之间的时间差来确定在脚跨出至少一步期间脚与地面接触的时间周期。
27.根据权利要求25的分析脚相对地面运动的器件,其中所述处理电路的结构适合分析运动敏感元件的输出信号,以便根据至少一个脚离开地面瞬间与至少一个脚开始接触地面瞬间之间的时间差来确定至少一个在迈步之间脚不接触地面的时间周期。
28.根据权利要求24的分析脚相对地面运动的器件,其中所述处理电路的结构适合分析运动敏感元件的输出信号,以便确定脚在迈步期间与地面接触的时间周期或确定脚在迈步之间不与地面接触的时间周期。
29.根据权利要求24的分析脚相对地面运动的器件,其中所述信号处理电路包括高通滤波器,以便在分析运动敏感元件的输出信号之前给该输出信号滤波。
30.根据权利要求29的分析脚相对地面运动的器件,其中所述信号处理电路包括放大器,以便在分析所述的输出信号之前将该输出信号放大。
31.根据权利要求24的器件,其中所述的运动敏感元件包括加速度计。
32.一种用于确定使用者在运动中的运动速率的器件,该器件包括:
一个处理电路,该电路适合接收关于至少一个脚触地时间的信息并且其结构致使:
如果所述的至少一个脚触地时间比第一时间量短,那么所述的处理电路按照包含所述的至少一个脚触地时间的第一方程推算使用者的运动速率;以及
如果所述的至少一个脚触地时间比第二时间量长(第二时间量比第一时间量长),那么按照包含所述的至少一个脚触地时间的第二方程推算使用者的运动速率。
CN98809743A 1997-10-02 1998-07-15 测量人在运动中脚的触地时间和脚的腾空时间 Pending CN1272926A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/942,802 US6018705A (en) 1997-10-02 1997-10-02 Measuring foot contact time and foot loft time of a person in locomotion
US08/942,802 1997-10-02

Publications (1)

Publication Number Publication Date
CN1272926A true CN1272926A (zh) 2000-11-08

Family

ID=25478622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98809743A Pending CN1272926A (zh) 1997-10-02 1998-07-15 测量人在运动中脚的触地时间和脚的腾空时间

Country Status (7)

Country Link
US (2) US6018705A (zh)
EP (1) EP1019789B1 (zh)
JP (2) JP4448901B2 (zh)
CN (1) CN1272926A (zh)
AU (1) AU8404798A (zh)
CA (1) CA2303882A1 (zh)
WO (1) WO1999018480A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103519819A (zh) * 2012-07-06 2014-01-22 王振兴 步态分析方法及步态分析系统
CN103674053A (zh) * 2013-12-12 2014-03-26 苏州市峰之火数码科技有限公司 步行计程器
CN103781420A (zh) * 2011-07-01 2014-05-07 耐克国际有限公司 基于传感器的运动活动测量
CN106153067A (zh) * 2015-03-30 2016-11-23 联想(北京)有限公司 一种电子设备、测距方法及运算处理部件
CN107303181A (zh) * 2017-05-17 2017-10-31 浙江利尔达物联网技术有限公司 一种基于六轴传感器的脚步运动识别方法
CN111081346A (zh) * 2020-01-14 2020-04-28 深圳市圆周率智能信息科技有限公司 运动效率分析方法、装置、可穿戴设备和计算机可读存储介质
CN106455745B (zh) * 2013-12-02 2020-12-04 耐克创新有限合伙公司 腾空时间
CN112244820A (zh) * 2020-11-13 2021-01-22 青岛迈金智能科技有限公司 一种三轴加速度计测量跑步步态的方法
CN115188063A (zh) * 2021-04-06 2022-10-14 广州视源电子科技股份有限公司 基于跑步机的跑姿分析方法、装置、跑步机及存储介质

Families Citing this family (397)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885971B2 (en) * 1994-11-21 2005-04-26 Phatrat Technology, Inc. Methods and systems for assessing athletic performance
US7386401B2 (en) * 1994-11-21 2008-06-10 Phatrat Technology, Llc Helmet that reports impact information, and associated methods
US6266623B1 (en) 1994-11-21 2001-07-24 Phatrat Technology, Inc. Sport monitoring apparatus for determining loft time, speed, power absorbed and other factors such as height
US6539336B1 (en) * 1996-12-12 2003-03-25 Phatrat Technologies, Inc. Sport monitoring system for determining airtime, speed, power absorbed and other factors such as drop distance
US8280682B2 (en) * 2000-12-15 2012-10-02 Tvipr, Llc Device for monitoring movement of shipped goods
US7739076B1 (en) 1999-06-30 2010-06-15 Nike, Inc. Event and sport performance methods and systems
US6611789B1 (en) 1997-10-02 2003-08-26 Personal Electric Devices, Inc. Monitoring activity of a user in locomotion on foot
US6298314B1 (en) * 1997-10-02 2001-10-02 Personal Electronic Devices, Inc. Detecting the starting and stopping of movement of a person on foot
US6493652B1 (en) 1997-10-02 2002-12-10 Personal Electronic Devices, Inc. Monitoring activity of a user in locomotion on foot
US6882955B1 (en) 1997-10-02 2005-04-19 Fitsense Technology, Inc. Monitoring activity of a user in locomotion on foot
US6898550B1 (en) 1997-10-02 2005-05-24 Fitsense Technology, Inc. Monitoring activity of a user in locomotion on foot
US6167356A (en) * 1998-07-01 2000-12-26 Sportvision, Inc. System for measuring a jump
US6175608B1 (en) 1998-10-28 2001-01-16 Knowmo Llc Pedometer
US6473483B2 (en) 1998-10-28 2002-10-29 Nathan Pyles Pedometer
US20060061551A1 (en) * 1999-02-12 2006-03-23 Vega Vista, Inc. Motion detection and tracking system to control navigation and display of portable displays including on-chip gesture detection
US20060279542A1 (en) * 1999-02-12 2006-12-14 Vega Vista, Inc. Cellular phones and mobile devices with motion driven control
US20060061550A1 (en) * 1999-02-12 2006-03-23 Sina Fateh Display size emulation system
US9802129B2 (en) * 2000-05-12 2017-10-31 Wilbert Q. Murdock Internet sports computer cellular device
FI108579B (fi) * 1999-05-28 2002-02-15 Polar Electro Oy Menetelmä ja mittausjärjestely juoksijan, kävelijän tai muun liikkuvan elävän kohteen nopeuden määrittämiseen
AU6065600A (en) * 1999-06-30 2001-01-31 Phatrat Technology, Inc. Event and sport performance methods and systems
AU6121299A (en) * 1999-10-05 2001-05-10 Zeno Buratto S.P.A. A device for detecting motion data of a person and a method for processing said data, particularly for detecting the speed of said person
US8956228B2 (en) * 1999-12-03 2015-02-17 Nike, Inc. Game pod
US6585622B1 (en) 1999-12-03 2003-07-01 Nike, Inc. Interactive use an athletic performance monitoring and reward method, system, and computer program product
US7187924B2 (en) 2000-02-08 2007-03-06 Fitsense Technology, Inc. Intelligent data network with power management capabilities
US8645137B2 (en) 2000-03-16 2014-02-04 Apple Inc. Fast, language-independent method for user authentication by voice
US7171331B2 (en) 2001-12-17 2007-01-30 Phatrat Technology, Llc Shoes employing monitoring devices, and associated methods
JP2002197437A (ja) * 2000-12-27 2002-07-12 Sony Corp 歩行検出システム、歩行検出装置、デバイス、歩行検出方法
US20020109673A1 (en) * 2001-01-04 2002-08-15 Thierry Valet Method and apparatus employing angled single accelerometer sensing multi-directional motion
AU2002255568B8 (en) 2001-02-20 2014-01-09 Adidas Ag Modular personal network systems and methods
EP1256316A1 (en) * 2001-05-07 2002-11-13 Move2Health B.V. Portable device comprising an acceleration sensor and method of generating instructions or advice
US6934812B1 (en) * 2001-10-22 2005-08-23 Apple Computer, Inc. Media player with instant play capability
US6614352B2 (en) * 2001-10-31 2003-09-02 Nokia Corporation Accurate stepmeter for location-based services
KR100422473B1 (ko) * 2001-12-17 2004-03-11 박찬국 관성센서를 이용한 사람의 이동거리 측정장치 및 방법
US8151259B2 (en) 2006-01-03 2012-04-03 Apple Inc. Remote content updates for portable media devices
US7433546B2 (en) * 2004-10-25 2008-10-07 Apple Inc. Image scaling arrangement
US6813582B2 (en) * 2002-07-31 2004-11-02 Point Research Corporation Navigation device for personnel on foot
US6842991B2 (en) * 2002-07-31 2005-01-18 Robert W. Levi Gyro aided magnetic compass
US7103471B2 (en) 2002-09-20 2006-09-05 Honeywell International Inc. Multi-mode navigation device and method
ATE454195T1 (de) 2002-10-30 2010-01-15 Nike International Ltd Kleidungsstücke mit bewegungserfassungsmarker für videospiele
US8206219B2 (en) 2002-10-30 2012-06-26 Nike, Inc. Interactive gaming apparel for interactive gaming
US7631382B2 (en) * 2003-03-10 2009-12-15 Adidas International Marketing B.V. Intelligent footwear systems
US7225565B2 (en) * 2003-03-10 2007-06-05 Adidas International Marketing B.V. Intelligent footwear systems
US7188439B2 (en) * 2003-03-10 2007-03-13 Adidas International Marketing B.V. Intelligent footwear systems
US7724716B2 (en) 2006-06-20 2010-05-25 Apple Inc. Wireless communication system
US7831199B2 (en) * 2006-01-03 2010-11-09 Apple Inc. Media data exchange, transfer or delivery for portable electronic devices
NL1025233C2 (nl) * 2004-01-14 2005-07-18 Henk Kraaijenhof Botontkalkingsschoen.
US20050174243A1 (en) * 2004-02-10 2005-08-11 Katherine Musil Emergency alarm for shoes
BE1015914A6 (nl) * 2004-02-24 2005-11-08 Verhaert New Products & Servic Inrichting voor het bepalen van de weg afgelegd door een persoon te voet.
US20050195094A1 (en) * 2004-03-05 2005-09-08 White Russell W. System and method for utilizing a bicycle computer to monitor athletic performance
WO2005115242A2 (en) * 2004-05-24 2005-12-08 Equusys, Incorporated Animal instrumentation
WO2006009959A2 (en) * 2004-06-21 2006-01-26 Equestron Llc Method and apparatus for evaluating animals' health and performance
US7487043B2 (en) * 2004-08-30 2009-02-03 Adams Phillip M Relative positioning system
DE102004045176B4 (de) * 2004-09-17 2011-07-21 Adidas International Marketing B.V. Blase
US7706637B2 (en) 2004-10-25 2010-04-27 Apple Inc. Host configured for interoperation with coupled portable media player device
US7373820B1 (en) 2004-11-23 2008-05-20 James Terry L Accelerometer for data collection and communication
US7254516B2 (en) 2004-12-17 2007-08-07 Nike, Inc. Multi-sensor monitoring of athletic performance
US7593782B2 (en) 2005-01-07 2009-09-22 Apple Inc. Highly portable media device
DE102005014709C5 (de) 2005-03-31 2011-03-24 Adidas International Marketing B.V. Schuh
US8300841B2 (en) * 2005-06-03 2012-10-30 Apple Inc. Techniques for presenting sound effects on a portable media player
US8028443B2 (en) 2005-06-27 2011-10-04 Nike, Inc. Systems for activating and/or authenticating electronic devices for operation with footwear
US20070006489A1 (en) * 2005-07-11 2007-01-11 Nike, Inc. Control systems and foot-receiving device products containing such systems
US20090197749A1 (en) 2005-08-01 2009-08-06 Merkel Carolyn M Wearable fitness device and fitness device interchangeable with plural wearable articles
US7590772B2 (en) 2005-08-22 2009-09-15 Apple Inc. Audio status information for a portable electronic device
US20070054778A1 (en) * 2005-08-29 2007-03-08 Blanarovich Adrian M Apparatus and system for measuring and communicating physical activity data
US8677377B2 (en) 2005-09-08 2014-03-18 Apple Inc. Method and apparatus for building an intelligent automated assistant
US7647175B2 (en) * 2005-09-09 2010-01-12 Rembrandt Technologies, Lp Discrete inertial display navigation
US20070057911A1 (en) * 2005-09-12 2007-03-15 Sina Fateh System and method for wireless network content conversion for intuitively controlled portable displays
US7237446B2 (en) 2005-09-16 2007-07-03 Raymond Chan System and method for measuring gait kinematics information
EP1770368B1 (en) 2005-10-03 2009-05-27 STMicroelectronics S.r.l. Pedometer device and step detection method using an algorithm for self-adaptive computation of acceleration thresholds.
US7911339B2 (en) 2005-10-18 2011-03-22 Apple Inc. Shoe wear-out sensor, body-bar sensing system, unitless activity assessment and associated methods
US7930369B2 (en) 2005-10-19 2011-04-19 Apple Inc. Remotely configured media device
WO2007064735A2 (en) * 2005-11-29 2007-06-07 Ll International Shoe Company, Inc. Data system for an article of footwear
US20070129907A1 (en) * 2005-12-05 2007-06-07 Demon Ronald S Multifunction shoe with wireless communications capabilities
US8654993B2 (en) 2005-12-07 2014-02-18 Apple Inc. Portable audio device providing automated control of audio volume parameters for hearing protection
WO2007070478A2 (en) 2005-12-13 2007-06-21 Pallets Unlimited, Llc Method and associated system for manufacturing pallets
WO2007073484A2 (en) * 2005-12-20 2007-06-28 Arbitron Inc. Methods and systems for conducting research operations
US8255640B2 (en) 2006-01-03 2012-08-28 Apple Inc. Media device with intelligent cache utilization
US7673238B2 (en) * 2006-01-05 2010-03-02 Apple Inc. Portable media device with video acceleration capabilities
EP1813916B1 (en) 2006-01-30 2014-04-30 STMicroelectronics Srl Inertial device with pedometer function and portable electronic appliance incorporating said inertial device
US7848527B2 (en) * 2006-02-27 2010-12-07 Apple Inc. Dynamic power management in a portable media delivery system
US8055469B2 (en) * 2006-03-03 2011-11-08 Garmin Switzerland Gmbh Method and apparatus for determining the attachment position of a motion sensing apparatus
US7467060B2 (en) * 2006-03-03 2008-12-16 Garmin Ltd. Method and apparatus for estimating a motion parameter
US7827000B2 (en) * 2006-03-03 2010-11-02 Garmin Switzerland Gmbh Method and apparatus for estimating a motion parameter
US8188868B2 (en) 2006-04-20 2012-05-29 Nike, Inc. Systems for activating and/or authenticating electronic devices for operation with apparel
US7607243B2 (en) 2006-05-03 2009-10-27 Nike, Inc. Athletic or other performance sensing systems
US20070271116A1 (en) * 2006-05-22 2007-11-22 Apple Computer, Inc. Integrated media jukebox and physiologic data handling application
US7643895B2 (en) * 2006-05-22 2010-01-05 Apple Inc. Portable media device with workout support
US9137309B2 (en) * 2006-05-22 2015-09-15 Apple Inc. Calibration techniques for activity sensing devices
US20070270663A1 (en) * 2006-05-22 2007-11-22 Apple Computer, Inc. System including portable media player and physiologic data gathering device
US8073984B2 (en) * 2006-05-22 2011-12-06 Apple Inc. Communication protocol for use with portable electronic devices
US8358273B2 (en) 2006-05-23 2013-01-22 Apple Inc. Portable media device with power-managed display
GB0611442D0 (en) 2006-06-09 2006-07-19 Pal Technologies Ltd An activity monitor
US20080006700A1 (en) * 2006-07-06 2008-01-10 Zume Life Method and apparatus for identifying and scheduling medicine intake
US7813715B2 (en) * 2006-08-30 2010-10-12 Apple Inc. Automated pairing of wireless accessories with host devices
US7913297B2 (en) * 2006-08-30 2011-03-22 Apple Inc. Pairing of wireless devices using a wired medium
US9318108B2 (en) 2010-01-18 2016-04-19 Apple Inc. Intelligent automated assistant
US8341524B2 (en) * 2006-09-11 2012-12-25 Apple Inc. Portable electronic device with local search capabilities
US8090130B2 (en) * 2006-09-11 2012-01-03 Apple Inc. Highly portable media devices
US7729791B2 (en) 2006-09-11 2010-06-01 Apple Inc. Portable media playback device including user interface event passthrough to non-media-playback processing
US8924248B2 (en) 2006-09-26 2014-12-30 Fitbit, Inc. System and method for activating a device based on a record of physical activity
US7768415B2 (en) 2006-09-28 2010-08-03 Nike, Inc. Sensor device with persistent low power beacon
WO2008042765A1 (en) * 2006-09-29 2008-04-10 Admir Dado Kantarevic Athletic equipment including a health and/or impact sensor
JP4830789B2 (ja) * 2006-10-30 2011-12-07 オムロンヘルスケア株式会社 体動検出装置、情報送信装置、ノルディックウォーキング用ストック、および歩行運動量算出システム
US8214007B2 (en) 2006-11-01 2012-07-03 Welch Allyn, Inc. Body worn physiological sensor device having a disposable electrode module
JP5270580B2 (ja) 2007-02-14 2013-08-21 ナイキ インターナショナル リミテッド 運動情報の収集および表示の方法
EP3267228B1 (en) 2007-02-16 2020-05-27 NIKE Innovate C.V. Real-time comparison of athletic information
US20080216593A1 (en) * 2007-02-22 2008-09-11 Jacobsen Stephen C Device for promoting toe-off during gait
US7589629B2 (en) * 2007-02-28 2009-09-15 Apple Inc. Event recorder for portable media device
US7698101B2 (en) 2007-03-07 2010-04-13 Apple Inc. Smart garment
US8977255B2 (en) 2007-04-03 2015-03-10 Apple Inc. Method and system for operating a multi-function portable electronic device using voice-activation
US20080294462A1 (en) * 2007-05-23 2008-11-27 Laura Nuhaan System, Method, And Apparatus Of Facilitating Web-Based Interactions Between An Elderly And Caregivers
US20080306762A1 (en) * 2007-06-08 2008-12-11 James Terry L System and Method for Managing Absenteeism in an Employee Environment
FI122712B (fi) * 2007-07-11 2012-06-15 Vti Technologies Oy Menetelmä ja laite liikkujan etenemisen mittaamiseksi
US7774156B2 (en) 2007-07-12 2010-08-10 Polar Electro Oy Portable apparatus for monitoring user speed and/or distance traveled
US8221290B2 (en) * 2007-08-17 2012-07-17 Adidas International Marketing B.V. Sports electronic training system with electronic gaming features, and applications thereof
US8360904B2 (en) 2007-08-17 2013-01-29 Adidas International Marketing Bv Sports electronic training system with sport ball, and applications thereof
US8702430B2 (en) 2007-08-17 2014-04-22 Adidas International Marketing B.V. Sports electronic training system, and applications thereof
US7676332B2 (en) * 2007-12-27 2010-03-09 Kersh Risk Management, Inc. System and method for processing raw activity energy expenditure data
US9330720B2 (en) 2008-01-03 2016-05-03 Apple Inc. Methods and apparatus for altering audio output signals
US20090204422A1 (en) * 2008-02-12 2009-08-13 James Terry L System and Method for Remotely Updating a Health Station
US20090216629A1 (en) * 2008-02-21 2009-08-27 James Terry L System and Method for Incentivizing a Healthcare Individual Through Music Distribution
EP2247351B1 (en) 2008-02-27 2015-01-07 NIKE Innovate C.V. Interactive athletic training log
EP2252955A1 (en) 2008-03-03 2010-11-24 Nike International Ltd. Interactive athletic equipment system
US9591993B2 (en) 2008-03-20 2017-03-14 University Of Utah Research Foundation Method and system for analyzing gait and providing real-time feedback on gait asymmetry
US7921716B2 (en) * 2008-03-20 2011-04-12 University Of Utah Research Foundation Method and system for measuring energy expenditure and foot incline in individuals
EP2265341A1 (en) 2008-04-02 2010-12-29 Nike International Ltd. Wearable device assembly having athletic functionality
US8996376B2 (en) 2008-04-05 2015-03-31 Apple Inc. Intelligent text-to-speech conversion
US10496753B2 (en) 2010-01-18 2019-12-03 Apple Inc. Automatically adapting user interfaces for hands-free interaction
US10070680B2 (en) 2008-06-13 2018-09-11 Nike, Inc. Footwear having sensor system
CN102143695A (zh) * 2008-06-13 2011-08-03 耐克国际有限公司 具有传感器系统的鞋
US9549585B2 (en) 2008-06-13 2017-01-24 Nike, Inc. Footwear having sensor system
US9002680B2 (en) * 2008-06-13 2015-04-07 Nike, Inc. Foot gestures for computer input and interface control
US9297709B2 (en) 2013-03-15 2016-03-29 Nike, Inc. System and method for analyzing athletic activity
US20100016742A1 (en) * 2008-07-19 2010-01-21 James Terry L System and Method for Monitoring, Measuring, and Addressing Stress
US20100030549A1 (en) 2008-07-31 2010-02-04 Lee Michael M Mobile device having human language translation capability with positional feedback
US9959870B2 (en) 2008-12-11 2018-05-01 Apple Inc. Speech recognition involving a mobile device
US9192831B2 (en) 2009-01-20 2015-11-24 Nike, Inc. Golf club and golf club head structures
US9149693B2 (en) 2009-01-20 2015-10-06 Nike, Inc. Golf club and golf club head structures
US20120311585A1 (en) 2011-06-03 2012-12-06 Apple Inc. Organizing task items that represent tasks to perform
US10241752B2 (en) 2011-09-30 2019-03-26 Apple Inc. Interface for a virtual digital assistant
US10241644B2 (en) 2011-06-03 2019-03-26 Apple Inc. Actionable reminder entries
US9858925B2 (en) 2009-06-05 2018-01-02 Apple Inc. Using context information to facilitate processing of commands in a virtual assistant
US9431006B2 (en) 2009-07-02 2016-08-30 Apple Inc. Methods and apparatuses for automatic speech recognition
WO2011028386A1 (en) 2009-09-04 2011-03-10 Nike International Ltd. Monitoring and tracking athletic activity
JP5695052B2 (ja) 2009-09-04 2015-04-01 ナイキ イノベイト セー. フェー. 運動活動のモニタリングおよび追跡の方法
US8467979B2 (en) * 2009-10-08 2013-06-18 Alluvial Joules, Inc. Intelligent sport shoe system
US10276170B2 (en) 2010-01-18 2019-04-30 Apple Inc. Intelligent automated assistant
US10679605B2 (en) 2010-01-18 2020-06-09 Apple Inc. Hands-free list-reading by intelligent automated assistant
US10705794B2 (en) 2010-01-18 2020-07-07 Apple Inc. Automatically adapting user interfaces for hands-free interaction
US10553209B2 (en) 2010-01-18 2020-02-04 Apple Inc. Systems and methods for hands-free notification summaries
DE202011111062U1 (de) 2010-01-25 2019-02-19 Newvaluexchange Ltd. Vorrichtung und System für eine Digitalkonversationsmanagementplattform
US8682667B2 (en) 2010-02-25 2014-03-25 Apple Inc. User profiling for selecting user specific voice input processing information
US11117033B2 (en) 2010-04-26 2021-09-14 Wilbert Quinc Murdock Smart system for display of dynamic movement parameters in sports and training
CH703381B1 (fr) 2010-06-16 2018-12-14 Myotest Sa Dispositif portable intégré et procédé pour calculer des paramètres biomécaniques de la foulée.
TWI455742B (zh) 2010-06-28 2014-10-11 Nike Innovate Cv 用以監測與追蹤運動活動之裝置及方法及執行其的電腦可讀取媒體
US9532734B2 (en) 2010-08-09 2017-01-03 Nike, Inc. Monitoring fitness using a mobile device
JP5718465B2 (ja) 2010-08-09 2015-05-13 ナイキ イノベイト シーブイ モバイルデバイスを用いるフィットネス・モニタリングの方法、装置、コンピュータ読取り可能媒体、及びシステム
US9940682B2 (en) 2010-08-11 2018-04-10 Nike, Inc. Athletic activity user experience and environment
US8768648B2 (en) 2010-09-30 2014-07-01 Fitbit, Inc. Selection of display power mode based on sensor data
US8812259B2 (en) 2010-09-30 2014-08-19 Fitbit, Inc. Alarm setting and interfacing with gesture contact interfacing controls
US8954290B2 (en) 2010-09-30 2015-02-10 Fitbit, Inc. Motion-activated display of messages on an activity monitoring device
US9188460B2 (en) 2010-09-30 2015-11-17 Fitbit, Inc. Methods, systems and devices for generating real-time activity data updates to display devices
US8762102B2 (en) 2010-09-30 2014-06-24 Fitbit, Inc. Methods and systems for generation and rendering interactive events having combined activity and location information
US10983945B2 (en) 2010-09-30 2021-04-20 Fitbit, Inc. Method of data synthesis
US9148483B1 (en) 2010-09-30 2015-09-29 Fitbit, Inc. Tracking user physical activity with multiple devices
US9253168B2 (en) 2012-04-26 2016-02-02 Fitbit, Inc. Secure pairing of devices via pairing facilitator-intermediary device
US8805646B2 (en) 2010-09-30 2014-08-12 Fitbit, Inc. Methods, systems and devices for linking user devices to activity tracking devices
US8712724B2 (en) 2010-09-30 2014-04-29 Fitbit, Inc. Calendar integration methods and systems for presentation of events having combined activity and location information
US8620617B2 (en) 2010-09-30 2013-12-31 Fitbit, Inc. Methods and systems for interactive goal setting and recommender using events having combined activity and location information
US8738321B2 (en) 2010-09-30 2014-05-27 Fitbit, Inc. Methods and systems for classification of geographic locations for tracked activity
US8762101B2 (en) 2010-09-30 2014-06-24 Fitbit, Inc. Methods and systems for identification of event data having combined activity and location information of portable monitoring devices
US8849610B2 (en) 2010-09-30 2014-09-30 Fitbit, Inc. Tracking user physical activity with multiple devices
US9167991B2 (en) 2010-09-30 2015-10-27 Fitbit, Inc. Portable monitoring devices and methods of operating same
US9241635B2 (en) 2010-09-30 2016-01-26 Fitbit, Inc. Portable monitoring devices for processing applications and processing analysis of physiological conditions of a user associated with the portable monitoring device
US9310909B2 (en) 2010-09-30 2016-04-12 Fitbit, Inc. Methods, systems and devices for physical contact activated display and navigation
US11243093B2 (en) 2010-09-30 2022-02-08 Fitbit, Inc. Methods, systems and devices for generating real-time activity data updates to display devices
US8615377B1 (en) 2010-09-30 2013-12-24 Fitbit, Inc. Methods and systems for processing social interactive data and sharing of tracked activity associated with locations
US10004406B2 (en) 2010-09-30 2018-06-26 Fitbit, Inc. Portable monitoring devices for processing applications and processing analysis of physiological conditions of a user associated with the portable monitoring device
US8954291B2 (en) 2010-09-30 2015-02-10 Fitbit, Inc. Alarm setting and interfacing with gesture contact interfacing controls
US8781791B2 (en) 2010-09-30 2014-07-15 Fitbit, Inc. Touchscreen with dynamically-defined areas having different scanning modes
US8744803B2 (en) 2010-09-30 2014-06-03 Fitbit, Inc. Methods, systems and devices for activity tracking device data synchronization with computing devices
US8744804B2 (en) 2010-09-30 2014-06-03 Fitbit, Inc. Methods, systems and devices for automatic linking of activity tracking devices to user devices
US8775120B2 (en) 2010-09-30 2014-07-08 Fitbit, Inc. Method of data synthesis
US8751194B2 (en) 2010-09-30 2014-06-10 Fitbit, Inc. Power consumption management of display in portable device based on prediction of user input
US9390427B2 (en) 2010-09-30 2016-07-12 Fitbit, Inc. Methods, systems and devices for automatic linking of activity tracking devices to user devices
US8694282B2 (en) 2010-09-30 2014-04-08 Fitbit, Inc. Methods and systems for geo-location optimized tracking and updating for events having combined activity and location information
US8738323B2 (en) 2010-09-30 2014-05-27 Fitbit, Inc. Methods and systems for metrics analysis and interactive rendering, including events having combined activity and location information
KR101560955B1 (ko) 2010-11-10 2015-10-15 나이키 이노베이트 씨.브이. 시간 기반 체육 활동 측정 및 표시를 위한 시스템 및 방법
US9687705B2 (en) 2010-11-30 2017-06-27 Nike, Inc. Golf club head or other ball striking device having impact-influencing body features
EP2902079B1 (en) 2010-11-30 2018-08-08 NIKE Innovate C.V. Golf club heads or other ball striking devices having distributed impact response and a stiffened face plate
BR112013015089A2 (pt) 2010-12-16 2016-08-09 Nike International Ltd métodos e sistemas para incentivar a atividade atlética
US10762293B2 (en) 2010-12-22 2020-09-01 Apple Inc. Using parts-of-speech tagging and named entity recognition for spelling correction
EP2658434B1 (en) 2010-12-30 2015-12-02 AR Innovation AG Method for configuring a motion sensor as well as a configurable motion sensor and a system for configuring such a motion sensor
US8475367B1 (en) 2011-01-09 2013-07-02 Fitbit, Inc. Biometric monitoring device having a body weight sensor, and methods of operating same
US9202111B2 (en) 2011-01-09 2015-12-01 Fitbit, Inc. Fitness monitoring device with user engagement metric functionality
US9642415B2 (en) 2011-02-07 2017-05-09 New Balance Athletics, Inc. Systems and methods for monitoring athletic performance
US10363453B2 (en) 2011-02-07 2019-07-30 New Balance Athletics, Inc. Systems and methods for monitoring athletic and physiological performance
KR101741238B1 (ko) 2011-02-17 2017-05-29 나이키 이노베이트 씨.브이. 센서 시스템을 구비한 풋웨어
BR112013021140A2 (pt) 2011-02-17 2018-08-07 Nike Int Ltd calçado com sistema de sensor
KR101810751B1 (ko) 2011-02-17 2017-12-19 나이키 이노베이트 씨.브이. 물리적 활동 데이터와 영상 데이터간의 선택 및 상관
US9381420B2 (en) 2011-02-17 2016-07-05 Nike, Inc. Workout user experience
BR112013021137A2 (pt) 2011-02-17 2018-12-04 Nike Int Ltd calçado tendo sistema sensor
EP3178338B1 (en) 2011-02-17 2021-01-06 NIKE Innovate C.V. Insert, port, article of footwear and system having sensor system
JP5733503B2 (ja) * 2011-02-28 2015-06-10 国立大学法人広島大学 測定装置、測定方法、及び、測定プログラム
US9262612B2 (en) 2011-03-21 2016-02-16 Apple Inc. Device access using voice authentication
US9375624B2 (en) 2011-04-28 2016-06-28 Nike, Inc. Golf clubs and golf club heads
US9409076B2 (en) 2011-04-28 2016-08-09 Nike, Inc. Golf clubs and golf club heads
US9433844B2 (en) 2011-04-28 2016-09-06 Nike, Inc. Golf clubs and golf club heads
US9409073B2 (en) 2011-04-28 2016-08-09 Nike, Inc. Golf clubs and golf club heads
US9925433B2 (en) 2011-04-28 2018-03-27 Nike, Inc. Golf clubs and golf club heads
US8986130B2 (en) 2011-04-28 2015-03-24 Nike, Inc. Golf clubs and golf club heads
US9433845B2 (en) 2011-04-28 2016-09-06 Nike, Inc. Golf clubs and golf club heads
US9186547B2 (en) 2011-04-28 2015-11-17 Nike, Inc. Golf clubs and golf club heads
US8506370B2 (en) 2011-05-24 2013-08-13 Nike, Inc. Adjustable fitness arena
KR101241368B1 (ko) * 2011-05-25 2013-03-11 삼육대학교산학협력단 보시간 측정기
US10057736B2 (en) 2011-06-03 2018-08-21 Apple Inc. Active transport based notifications
US8738925B1 (en) 2013-01-07 2014-05-27 Fitbit, Inc. Wireless portable biometric device syncing
WO2013028889A1 (en) 2011-08-23 2013-02-28 Nike International Ltd. Golf club head with a void
US8994660B2 (en) 2011-08-29 2015-03-31 Apple Inc. Text correction processing
RU2014115428A (ru) 2011-09-22 2015-10-27 Реджион Нордюлланд, Ольборг Сюгехус Чувствительное устройство с датчиком растяжения
CA2815224C (en) 2011-11-10 2016-11-01 Nike International Ltd. Consumer useable testing kit
US9700222B2 (en) 2011-12-02 2017-07-11 Lumiradx Uk Ltd Health-monitor patch
US9734304B2 (en) 2011-12-02 2017-08-15 Lumiradx Uk Ltd Versatile sensors with data fusion functionality
US9339691B2 (en) 2012-01-05 2016-05-17 Icon Health & Fitness, Inc. System and method for controlling an exercise device
US9352207B2 (en) * 2012-01-19 2016-05-31 Nike, Inc. Action detection and activity classification
US11016111B1 (en) * 2012-01-31 2021-05-25 Thomas Chu-Shan Chuang Stride monitoring
US11071344B2 (en) 2012-02-22 2021-07-27 Nike, Inc. Motorized shoe with gesture control
EP2816918B1 (en) 2012-02-22 2019-03-27 NIKE Innovate C.V. Footwear having sensor system
US8739639B2 (en) 2012-02-22 2014-06-03 Nike, Inc. Footwear having sensor system
US11684111B2 (en) 2012-02-22 2023-06-27 Nike, Inc. Motorized shoe with gesture control
US20130213147A1 (en) 2012-02-22 2013-08-22 Nike, Inc. Footwear Having Sensor System
US20130213144A1 (en) 2012-02-22 2013-08-22 Nike, Inc. Footwear Having Sensor System
US10134385B2 (en) 2012-03-02 2018-11-20 Apple Inc. Systems and methods for name pronunciation
US9483461B2 (en) 2012-03-06 2016-11-01 Apple Inc. Handling speech synthesis of content for multiple languages
US9280610B2 (en) 2012-05-14 2016-03-08 Apple Inc. Crowd sourcing information to fulfill user requests
US9409068B2 (en) 2012-05-31 2016-08-09 Nike, Inc. Adjustable golf club and system and associated golf club heads and shafts
US9033815B2 (en) 2012-05-31 2015-05-19 Nike, Inc. Adjustable golf club and system and associated golf club heads and shafts
US9721563B2 (en) 2012-06-08 2017-08-01 Apple Inc. Name recognition system
US10321873B2 (en) 2013-09-17 2019-06-18 Medibotics Llc Smart clothing for ambulatory human motion capture
US10602965B2 (en) 2013-09-17 2020-03-31 Medibotics Wearable deformable conductive sensors for human motion capture including trans-joint pitch, yaw, and roll
US9588582B2 (en) 2013-09-17 2017-03-07 Medibotics Llc Motion recognition clothing (TM) with two different sets of tubes spanning a body joint
US9582072B2 (en) 2013-09-17 2017-02-28 Medibotics Llc Motion recognition clothing [TM] with flexible electromagnetic, light, or sonic energy pathways
US10716510B2 (en) 2013-09-17 2020-07-21 Medibotics Smart clothing with converging/diverging bend or stretch sensors for measuring body motion or configuration
US9641239B2 (en) 2012-06-22 2017-05-02 Fitbit, Inc. Adaptive data transfer using bluetooth
US9495129B2 (en) 2012-06-29 2016-11-15 Apple Inc. Device, method, and user interface for voice-activated navigation and browsing of a document
US9576574B2 (en) 2012-09-10 2017-02-21 Apple Inc. Context-sensitive handling of interruptions by intelligent digital assistant
US9547647B2 (en) 2012-09-19 2017-01-17 Apple Inc. Voice-based media searching
US9797743B2 (en) * 2012-11-01 2017-10-24 Verizon Telematics Inc. Method and system for determining whether to reset a height in a height determining device based on the occurrence of steps
US9043004B2 (en) 2012-12-13 2015-05-26 Nike, Inc. Apparel having sensor system
US10599816B2 (en) * 2012-12-13 2020-03-24 Nike, Inc. Monitoring fitness using a mobile device
US9039614B2 (en) 2013-01-15 2015-05-26 Fitbit, Inc. Methods, systems and devices for measuring fingertip heart rate
US9728059B2 (en) 2013-01-15 2017-08-08 Fitbit, Inc. Sedentary period detection utilizing a wearable electronic device
US8827906B2 (en) 2013-01-15 2014-09-09 Fitbit, Inc. Methods, systems and devices for measuring fingertip heart rate
US9743861B2 (en) 2013-02-01 2017-08-29 Nike, Inc. System and method for analyzing athletic activity
US11006690B2 (en) 2013-02-01 2021-05-18 Nike, Inc. System and method for analyzing athletic activity
US10926133B2 (en) 2013-02-01 2021-02-23 Nike, Inc. System and method for analyzing athletic activity
BR112015018905B1 (pt) 2013-02-07 2022-02-22 Apple Inc Método de operação de recurso de ativação por voz, mídia de armazenamento legível por computador e dispositivo eletrônico
DE102013202485B4 (de) 2013-02-15 2022-12-29 Adidas Ag Ball für eine Ballsportart
EP2770454A1 (en) * 2013-02-22 2014-08-27 NIKE Innovate C.V. Activity monitoring, tracking and synchronization
US9368114B2 (en) 2013-03-14 2016-06-14 Apple Inc. Context-sensitive handling of interruptions
WO2014153158A1 (en) 2013-03-14 2014-09-25 Icon Health & Fitness, Inc. Strength training apparatus with flywheel and related methods
WO2014144579A1 (en) 2013-03-15 2014-09-18 Apple Inc. System and method for updating an adaptive speech recognition model
EP3225167B1 (en) 2013-03-15 2021-04-21 Lumiradx Uk Ltd Versatile sensors with data fusion functionality
KR101759009B1 (ko) 2013-03-15 2017-07-17 애플 인크. 적어도 부분적인 보이스 커맨드 시스템을 트레이닝시키는 것
US9087234B2 (en) 2013-03-15 2015-07-21 Nike, Inc. Monitoring fitness using a mobile device
WO2014197334A2 (en) 2013-06-07 2014-12-11 Apple Inc. System and method for user-specified pronunciation of words for speech synthesis and recognition
US9582608B2 (en) 2013-06-07 2017-02-28 Apple Inc. Unified ranking with entropy-weighted information for phrase-based semantic auto-completion
WO2014197336A1 (en) 2013-06-07 2014-12-11 Apple Inc. System and method for detecting errors in interactions with a voice-based digital assistant
WO2014197335A1 (en) 2013-06-08 2014-12-11 Apple Inc. Interpreting and acting upon commands that involve sharing information with remote devices
CN105264524B (zh) 2013-06-09 2019-08-02 苹果公司 用于实现跨数字助理的两个或更多个实例的会话持续性的设备、方法、和图形用户界面
US10176167B2 (en) 2013-06-09 2019-01-08 Apple Inc. System and method for inferring user intent from speech inputs
CN105265005B (zh) 2013-06-13 2019-09-17 苹果公司 用于由语音命令发起的紧急呼叫的系统和方法
JP6163266B2 (ja) 2013-08-06 2017-07-12 アップル インコーポレイテッド リモート機器からの作動に基づくスマート応答の自動作動
JP6152763B2 (ja) 2013-09-19 2017-06-28 カシオ計算機株式会社 運動支援装置及び運動支援方法、運動支援プログラム
US9063164B1 (en) 2013-10-02 2015-06-23 Fitbit, Inc. Collaborative activity-data acquisition
EP3086865B1 (en) 2013-12-26 2020-01-22 Icon Health & Fitness, Inc. Magnetic resistance mechanism in a cable machine
US20150185043A1 (en) * 2013-12-27 2015-07-02 Motorola Mobility Llc Shoe-based sensor system for determining step length of a user
US9031812B2 (en) 2014-02-27 2015-05-12 Fitbit, Inc. Notifications on a user device based on activity detected by an activity monitoring device
US10433612B2 (en) 2014-03-10 2019-10-08 Icon Health & Fitness, Inc. Pressure sensor to quantify work
US9449409B2 (en) 2014-04-11 2016-09-20 Fitbit, Inc. Graphical indicators in analog clock format
US9449365B2 (en) 2014-04-11 2016-09-20 Fitbit, Inc. Personalized scaling of graphical indicators
US9344546B2 (en) 2014-05-06 2016-05-17 Fitbit, Inc. Fitness activity related messaging
US9620105B2 (en) 2014-05-15 2017-04-11 Apple Inc. Analyzing audio input for efficient speech and music recognition
US10592095B2 (en) 2014-05-23 2020-03-17 Apple Inc. Instantaneous speaking of content on touch devices
US9502031B2 (en) 2014-05-27 2016-11-22 Apple Inc. Method for supporting dynamic grammars in WFST-based ASR
US9785630B2 (en) 2014-05-30 2017-10-10 Apple Inc. Text prediction using combined word N-gram and unigram language models
US10170123B2 (en) 2014-05-30 2019-01-01 Apple Inc. Intelligent assistant for home automation
US10289433B2 (en) 2014-05-30 2019-05-14 Apple Inc. Domain specific language for encoding assistant dialog
US10078631B2 (en) 2014-05-30 2018-09-18 Apple Inc. Entropy-guided text prediction using combined word and character n-gram language models
US9430463B2 (en) 2014-05-30 2016-08-30 Apple Inc. Exemplar-based natural language processing
US9715875B2 (en) 2014-05-30 2017-07-25 Apple Inc. Reducing the need for manual start/end-pointing and trigger phrases
US9760559B2 (en) 2014-05-30 2017-09-12 Apple Inc. Predictive text input
US9842101B2 (en) 2014-05-30 2017-12-12 Apple Inc. Predictive conversion of language input
US9633004B2 (en) 2014-05-30 2017-04-25 Apple Inc. Better resolution when referencing to concepts
US9734193B2 (en) 2014-05-30 2017-08-15 Apple Inc. Determining domain salience ranking from ambiguous words in natural speech
EP3149728B1 (en) 2014-05-30 2019-01-16 Apple Inc. Multi-command single utterance input method
US10426989B2 (en) 2014-06-09 2019-10-01 Icon Health & Fitness, Inc. Cable system incorporated into a treadmill
US9168435B1 (en) 2014-06-20 2015-10-27 Nike, Inc. Golf club head or other ball striking device having impact-influencing body features
WO2015195965A1 (en) 2014-06-20 2015-12-23 Icon Health & Fitness, Inc. Post workout massage device
US10659851B2 (en) 2014-06-30 2020-05-19 Apple Inc. Real-time digital assistant knowledge updates
US9338493B2 (en) 2014-06-30 2016-05-10 Apple Inc. Intelligent automated assistant for TV user interactions
US10446141B2 (en) 2014-08-28 2019-10-15 Apple Inc. Automatic speech recognition based on user feedback
JP6667233B2 (ja) 2014-09-02 2020-03-18 ナイキ イノベイト シーブイ モバイル装置を用いた健康の監視
US9818400B2 (en) 2014-09-11 2017-11-14 Apple Inc. Method and apparatus for discovering trending terms in speech requests
US10789041B2 (en) 2014-09-12 2020-09-29 Apple Inc. Dynamic thresholds for always listening speech trigger
WO2016044831A1 (en) 2014-09-21 2016-03-24 Athlete Architect Llc Methods and apparatus for power expenditure and technique determination during bipedal motion
JP6390303B2 (ja) * 2014-09-22 2018-09-19 カシオ計算機株式会社 測定装置、測定方法及び測定プログラム
US9886432B2 (en) 2014-09-30 2018-02-06 Apple Inc. Parsimonious handling of word inflection via categorical stem + suffix N-gram language models
US9668121B2 (en) 2014-09-30 2017-05-30 Apple Inc. Social reminders
US10127911B2 (en) 2014-09-30 2018-11-13 Apple Inc. Speaker identification and unsupervised speaker adaptation techniques
US9646609B2 (en) 2014-09-30 2017-05-09 Apple Inc. Caching apparatus for serving phonetic pronunciations
US10074360B2 (en) 2014-09-30 2018-09-11 Apple Inc. Providing an indication of the suitability of speech recognition
JP6483419B2 (ja) 2014-12-01 2019-03-13 トヨタ自動車株式会社 荷重判定方法
US10552013B2 (en) 2014-12-02 2020-02-04 Apple Inc. Data detection
WO2016087358A1 (en) * 2014-12-03 2016-06-09 Koninklijke Philips N.V. Device, method and system for counting the number of cycles of a periodic movement of a subject
EP3032455A1 (en) * 2014-12-09 2016-06-15 Movea Device and method for the classification and the reclassification of a user activity
US9711141B2 (en) 2014-12-09 2017-07-18 Apple Inc. Disambiguating heteronyms in speech synthesis
US10391361B2 (en) 2015-02-27 2019-08-27 Icon Health & Fitness, Inc. Simulating real-world terrain on an exercise device
US9865280B2 (en) 2015-03-06 2018-01-09 Apple Inc. Structured dictation using intelligent automated assistants
US9721566B2 (en) 2015-03-08 2017-08-01 Apple Inc. Competing devices responding to voice triggers
US9886953B2 (en) 2015-03-08 2018-02-06 Apple Inc. Virtual assistant activation
US10567477B2 (en) 2015-03-08 2020-02-18 Apple Inc. Virtual assistant continuity
US9899019B2 (en) 2015-03-18 2018-02-20 Apple Inc. Systems and methods for structured stem and suffix language models
US9842105B2 (en) 2015-04-16 2017-12-12 Apple Inc. Parsimonious continuous-space phrase representations for natural language processing
GB2537644A (en) * 2015-04-22 2016-10-26 Tintro Ltd Electronic equipment for the treatment and care of living beings
WO2016185290A2 (en) * 2015-05-15 2016-11-24 Motion Metrics, LLC System and method for physical activity performance analysis
US10083688B2 (en) 2015-05-27 2018-09-25 Apple Inc. Device voice control for selecting a displayed affordance
US10127220B2 (en) 2015-06-04 2018-11-13 Apple Inc. Language identification from short strings
US9578173B2 (en) 2015-06-05 2017-02-21 Apple Inc. Virtual assistant aided communication with 3rd party service in a communication session
US10101822B2 (en) 2015-06-05 2018-10-16 Apple Inc. Language input correction
US10255907B2 (en) 2015-06-07 2019-04-09 Apple Inc. Automatic accent detection using acoustic models
US10186254B2 (en) 2015-06-07 2019-01-22 Apple Inc. Context-based endpoint detection
US11025565B2 (en) 2015-06-07 2021-06-01 Apple Inc. Personalized prediction of responses for instant messaging
EP3112811B1 (en) * 2015-07-02 2019-02-27 Embedded Sensor Solutions B.V. System and method for processing a foot acceleration signal
US10671428B2 (en) 2015-09-08 2020-06-02 Apple Inc. Distributed personal assistant
US10747498B2 (en) 2015-09-08 2020-08-18 Apple Inc. Zero latency digital assistant
US9697820B2 (en) 2015-09-24 2017-07-04 Apple Inc. Unit-selection text-to-speech synthesis using concatenation-sensitive neural networks
US10366158B2 (en) 2015-09-29 2019-07-30 Apple Inc. Efficient word encoding for recurrent neural network language models
US11010550B2 (en) 2015-09-29 2021-05-18 Apple Inc. Unified language modeling framework for word prediction, auto-completion and auto-correction
US11587559B2 (en) 2015-09-30 2023-02-21 Apple Inc. Intelligent device identification
US11103030B2 (en) 2015-10-07 2021-08-31 Puma SE Article of footwear having an automatic lacing system
US11033079B2 (en) 2015-10-07 2021-06-15 Puma SE Article of footwear having an automatic lacing system
US11185130B2 (en) 2015-10-07 2021-11-30 Puma SE Article of footwear having an automatic lacing system
US10691473B2 (en) 2015-11-06 2020-06-23 Apple Inc. Intelligent automated assistant in a messaging environment
EP3383211B1 (de) 2015-12-02 2019-09-25 Puma Se Verfahren zum schnüren eines schuhs, insbesondere eines sportschuhs
US10049668B2 (en) 2015-12-02 2018-08-14 Apple Inc. Applying neural network language models to weighted finite state transducers for automatic speech recognition
US10223066B2 (en) 2015-12-23 2019-03-05 Apple Inc. Proactive assistance based on dialog communication between devices
US11047706B2 (en) * 2016-02-01 2021-06-29 One Two Free Inc. Pedometer with accelerometer and foot motion distinguishing method
US10080530B2 (en) * 2016-02-19 2018-09-25 Fitbit, Inc. Periodic inactivity alerts and achievement messages
US10446143B2 (en) 2016-03-14 2019-10-15 Apple Inc. Identification of voice inputs providing credentials
FR3048868A1 (fr) * 2016-03-17 2017-09-22 Parrot Drones Dispositif et procede pour la determination de parametre de foulee d'une course a pied.
US10272317B2 (en) 2016-03-18 2019-04-30 Icon Health & Fitness, Inc. Lighted pace feature in a treadmill
US10493349B2 (en) 2016-03-18 2019-12-03 Icon Health & Fitness, Inc. Display on exercise device
US10625137B2 (en) 2016-03-18 2020-04-21 Icon Health & Fitness, Inc. Coordinated displays in an exercise device
JP6690343B2 (ja) * 2016-03-24 2020-04-28 カシオ計算機株式会社 測定装置、測定方法、及び測定プログラム
US10137347B2 (en) 2016-05-02 2018-11-27 Nike, Inc. Golf clubs and golf club heads having a sensor
US10226681B2 (en) 2016-05-02 2019-03-12 Nike, Inc. Golf clubs and golf club heads having a plurality of sensors for detecting one or more swing parameters
US10220285B2 (en) 2016-05-02 2019-03-05 Nike, Inc. Golf clubs and golf club heads having a sensor
US10159885B2 (en) 2016-05-02 2018-12-25 Nike, Inc. Swing analysis system using angular rate and linear acceleration sensors
US9934775B2 (en) 2016-05-26 2018-04-03 Apple Inc. Unit-selection text-to-speech synthesis based on predicted concatenation parameters
US9972304B2 (en) 2016-06-03 2018-05-15 Apple Inc. Privacy preserving distributed evaluation framework for embedded personalized systems
US10249300B2 (en) 2016-06-06 2019-04-02 Apple Inc. Intelligent list reading
US10049663B2 (en) 2016-06-08 2018-08-14 Apple, Inc. Intelligent automated assistant for media exploration
DK179588B1 (en) 2016-06-09 2019-02-22 Apple Inc. INTELLIGENT AUTOMATED ASSISTANT IN A HOME ENVIRONMENT
US10586535B2 (en) 2016-06-10 2020-03-10 Apple Inc. Intelligent digital assistant in a multi-tasking environment
US10490187B2 (en) 2016-06-10 2019-11-26 Apple Inc. Digital assistant providing automated status report
US10509862B2 (en) 2016-06-10 2019-12-17 Apple Inc. Dynamic phrase expansion of language input
US10192552B2 (en) 2016-06-10 2019-01-29 Apple Inc. Digital assistant providing whispered speech
US10067938B2 (en) 2016-06-10 2018-09-04 Apple Inc. Multilingual word prediction
DK179415B1 (en) 2016-06-11 2018-06-14 Apple Inc Intelligent device arbitration and control
DK179343B1 (en) 2016-06-11 2018-05-14 Apple Inc Intelligent task discovery
DK179049B1 (en) 2016-06-11 2017-09-18 Apple Inc Data driven natural language event detection and classification
DK201670540A1 (en) 2016-06-11 2018-01-08 Apple Inc Application integration with a digital assistant
US10043516B2 (en) 2016-09-23 2018-08-07 Apple Inc. Intelligent automated assistant
US10671705B2 (en) 2016-09-28 2020-06-02 Icon Health & Fitness, Inc. Customizing recipe recommendations
US9855485B1 (en) 2016-11-03 2018-01-02 Ronald J. Meetin Information-presentation structure with intelligently controlled impact-sensitive color change
CA3042273C (en) 2016-11-22 2023-05-23 Puma SE Method for putting on or taking off a piece of clothing onto the wearer or from the wearer thereof or for closing, putting on, opening, or taking off a piece of luggage carried by a person
MX2019005959A (es) 2016-11-22 2019-07-10 Puma SE Procedimiento para atar un zapato, en particular una zapatilla de deporte, y zapato, en particular zapatilla de deporte.
EP3332697B1 (fr) * 2016-12-12 2019-08-14 The Swatch Group Research and Development Ltd Procédé de détection et de calcul de durée d'un saut
US10593346B2 (en) 2016-12-22 2020-03-17 Apple Inc. Rank-reduced token representation for automatic speech recognition
WO2018159731A1 (ja) * 2017-03-03 2018-09-07 株式会社ジャパンヘルスケア 歩行分析システム
DK201770439A1 (en) 2017-05-11 2018-12-13 Apple Inc. Offline personal assistant
DK179745B1 (en) 2017-05-12 2019-05-01 Apple Inc. SYNCHRONIZATION AND TASK DELEGATION OF A DIGITAL ASSISTANT
DK179496B1 (en) 2017-05-12 2019-01-15 Apple Inc. USER-SPECIFIC Acoustic Models
DK201770432A1 (en) 2017-05-15 2018-12-21 Apple Inc. Hierarchical belief states for digital assistants
DK201770431A1 (en) 2017-05-15 2018-12-20 Apple Inc. Optimizing dialogue policy decisions for digital assistants using implicit feedback
DK179549B1 (en) 2017-05-16 2019-02-12 Apple Inc. FAR-FIELD EXTENSION FOR DIGITAL ASSISTANT SERVICES
EP3730196A4 (en) * 2017-12-19 2021-06-09 Sony Corporation INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD AND PROGRAM
CN108268140A (zh) * 2018-02-08 2018-07-10 青岛真时科技有限公司 一种监测腕部运动的方法和可穿戴设备
US11105696B2 (en) * 2018-05-14 2021-08-31 Mindmaze Holding Sa System and method for multi-sensor combination for indirect sport assessment and classification
US11350853B2 (en) 2018-10-02 2022-06-07 Under Armour, Inc. Gait coaching in fitness tracking systems
USD906657S1 (en) 2019-01-30 2021-01-05 Puma SE Shoe tensioning device
USD889805S1 (en) 2019-01-30 2020-07-14 Puma SE Shoe
USD899053S1 (en) 2019-01-30 2020-10-20 Puma SE Shoe
US11484089B2 (en) 2019-10-21 2022-11-01 Puma SE Article of footwear having an automatic lacing system with integrated sound damping
US20210259579A1 (en) * 2020-02-21 2021-08-26 Chapman University Device for treating idiopathic toe walking
WO2024049986A1 (en) 2022-08-31 2024-03-07 Nike Innovate C.V. Electromechanical ambulatory assist device

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974491A (en) * 1974-07-22 1976-08-10 Smithkline Corporation Load signaling device for a patient's foot
US3972038A (en) * 1975-03-28 1976-07-27 Nasa Accelerometer telemetry system
US4408183A (en) * 1977-06-06 1983-10-04 Wills Thomas A Exercise monitoring device
US4409992A (en) * 1980-10-16 1983-10-18 Sidorenko Georgy I Electronic ergometer
JPS57169881A (en) * 1981-04-13 1982-10-19 Matsushita Electric Works Ltd Pedometer
US4578769A (en) * 1983-02-09 1986-03-25 Nike, Inc. Device for determining the speed, distance traversed, elapsed time and calories expended by a person while running
US4499394A (en) * 1983-10-21 1985-02-12 Koal Jan G Polymer piezoelectric sensor of animal foot pressure
US4649552A (en) * 1984-03-19 1987-03-10 Matsushita Electric Works, Ltd. Electronic pedometer with step sensor in removable insole
JPS60200120A (ja) * 1984-03-24 1985-10-09 Matsushita Electric Works Ltd 歩数計数器
US5033013A (en) * 1985-04-22 1991-07-16 Yamasa Tokei Meter Co., Ltd. Method and apparatus for measuring the amount of exercise
JPS6232936A (ja) * 1985-04-22 1987-02-12 山佐時計計器株式会社 運動量測定方法
US4771394A (en) * 1986-02-03 1988-09-13 Puma Aktiengesellschaft Rudolf Dassler Sport Computer shoe system and shoe for use therewith
US4745564B2 (en) * 1986-02-07 2000-07-04 Us Agriculture Impact detection apparatus
US4774679A (en) * 1986-02-20 1988-09-27 Carlin John A Stride evaluation system
JPS62233175A (ja) * 1986-04-03 1987-10-13 竹井機器工業株式会社 走行デ−タ検出装置
US4814661A (en) * 1986-05-23 1989-03-21 Washington State University Research Foundation, Inc. Systems for measurement and analysis of forces exerted during human locomotion
DE3617591A1 (de) * 1986-05-24 1987-11-26 Dassler Puma Sportschuh Verfahren zum messen von bewegungsablaeufen bei laufdisziplinen
US4757714A (en) * 1986-09-25 1988-07-19 Insight, Inc. Speed sensor and head-mounted data display
CA1270306A (en) * 1987-08-07 1990-06-12 Dennis Furlong Electronic monitoring of ground contact by an athlete's shoes
US4855942A (en) * 1987-10-28 1989-08-08 Elexis Corporation Pedometer and/or calorie measuring device and method
AU612488B2 (en) * 1988-05-19 1991-07-11 Standard St Sensortechnik Ag Process for studying the mode of locomotion of a living organism
EP0359595B1 (en) * 1988-06-22 1994-06-01 Fujitsu Limited Small size apparatus for measuring and recording acceleration
US4830021A (en) * 1988-08-29 1989-05-16 Thornton William E Monitoring system for locomotor activity
WO1993006779A1 (en) * 1991-10-10 1993-04-15 Neurocom International, Inc. Apparatus and method for characterizing gait
WO1993011681A1 (en) * 1991-12-11 1993-06-24 L.A. Gear, Inc. Athletic shoe having plug-in-module
US5437289A (en) * 1992-04-02 1995-08-01 Liverance; Howard L. Interactive sports equipment teaching device
US5269081A (en) * 1992-05-01 1993-12-14 Gray Frank B Force monitoring shoe
US5357696A (en) * 1992-05-01 1994-10-25 Gray Frank B Device for measuring force applied to a wearer's foot
CA2078270C (en) * 1992-09-15 1999-01-12 Nicholas A. Rodgers Signalling footwear
US5323650A (en) * 1993-01-14 1994-06-28 Fullen Systems, Inc. System for continuously measuring forces applied to the foot
US5361778A (en) * 1993-01-26 1994-11-08 Seitz Ronald H Method and apparatus for sensing and evaluating foot borne motion
GB2278198B (en) * 1993-05-20 1997-01-29 Mini Agriculture & Fisheries Condition indicator
US5343445A (en) * 1993-07-06 1994-08-30 David Stern Athletic shoe with timing device
US5526290A (en) * 1993-08-04 1996-06-11 Casio Computer Co., Ltd. Pace calculation devices
US5485402A (en) * 1994-03-21 1996-01-16 Prosthetics Research Study Gait activity monitor
US5636146A (en) * 1994-11-21 1997-06-03 Phatrat Technology, Inc. Apparatus and methods for determining loft time and speed
US5720200A (en) * 1995-01-06 1998-02-24 Anderson; Kenneth J. Performance measuring footwear
US5583776A (en) * 1995-03-16 1996-12-10 Point Research Corporation Dead reckoning navigational system using accelerometer to measure foot impacts
US5724265A (en) * 1995-12-12 1998-03-03 Hutchings; Lawrence J. System and method for measuring movement of objects
CA2218242C (en) * 1996-10-11 2005-12-06 Kenneth R. Fyfe Motion analysis system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10265579B2 (en) 2011-07-01 2019-04-23 Nike, Inc. Sensor-based athletic activity measurements
CN103781420A (zh) * 2011-07-01 2014-05-07 耐克国际有限公司 基于传感器的运动活动测量
US11013959B2 (en) 2011-07-01 2021-05-25 Nike, Inc. Sensor-based athletic activity measurements
CN105488334B (zh) * 2011-07-01 2020-12-08 耐克创新有限合伙公司 基于传感器的运动活动测量
CN105488334A (zh) * 2011-07-01 2016-04-13 耐克创新有限合伙公司 基于传感器的运动活动测量
US9446287B2 (en) 2011-07-01 2016-09-20 Nike, Inc. Sensor-based athletic activity measurements
US10814169B2 (en) 2011-07-01 2020-10-27 Nike, Inc. Sensor-based athletic activity measurements
CN103781420B (zh) * 2011-07-01 2016-01-20 耐克创新有限合伙公司 基于传感器的运动活动测量
CN103519819A (zh) * 2012-07-06 2014-01-22 王振兴 步态分析方法及步态分析系统
US11862334B2 (en) 2013-12-02 2024-01-02 Nike, Inc. Flight time
CN106455745B (zh) * 2013-12-02 2020-12-04 耐克创新有限合伙公司 腾空时间
CN103674053A (zh) * 2013-12-12 2014-03-26 苏州市峰之火数码科技有限公司 步行计程器
CN106153067A (zh) * 2015-03-30 2016-11-23 联想(北京)有限公司 一种电子设备、测距方法及运算处理部件
CN107303181A (zh) * 2017-05-17 2017-10-31 浙江利尔达物联网技术有限公司 一种基于六轴传感器的脚步运动识别方法
CN107303181B (zh) * 2017-05-17 2019-12-24 浙江利尔达物芯科技有限公司 一种基于六轴传感器的脚步运动识别方法
CN111081346A (zh) * 2020-01-14 2020-04-28 深圳市圆周率智能信息科技有限公司 运动效率分析方法、装置、可穿戴设备和计算机可读存储介质
CN112244820A (zh) * 2020-11-13 2021-01-22 青岛迈金智能科技有限公司 一种三轴加速度计测量跑步步态的方法
CN115188063A (zh) * 2021-04-06 2022-10-14 广州视源电子科技股份有限公司 基于跑步机的跑姿分析方法、装置、跑步机及存储介质

Also Published As

Publication number Publication date
AU8404798A (en) 1999-04-27
WO1999018480A1 (en) 1999-04-15
JP2001519185A (ja) 2001-10-23
EP1019789A4 (en) 2011-12-28
US6052654A (en) 2000-04-18
JP2009160392A (ja) 2009-07-23
US6018705A (en) 2000-01-25
EP1019789B1 (en) 2014-05-21
CA2303882A1 (en) 1999-04-15
EP1019789A1 (en) 2000-07-19
JP4448901B2 (ja) 2010-04-14
JP5268616B2 (ja) 2013-08-21

Similar Documents

Publication Publication Date Title
CN1272926A (zh) 测量人在运动中脚的触地时间和脚的腾空时间
US20200221817A1 (en) Unitless activity assessment and associated methods
US7172563B2 (en) Gait detection system, gait detection apparatus, device, and gait detection method
US6298314B1 (en) Detecting the starting and stopping of movement of a person on foot
JP4286328B2 (ja) 運動中の性能を測定する方法及びシステムと、このシステムにおいて使用する運動靴
CN103781420B (zh) 基于传感器的运动活动测量
EP2255209B1 (en) Method and apparatus for determining the attachment position of a motion sensing apparatus
CN101394788A (zh) 步态分析
JPWO2011114977A1 (ja) 歩行用靴
JP2010167275A (ja) 生体情報取得装置
KR20160124179A (ko) 건강 모니터
CN113891681A (zh) 信息处理设备、个人识别设备、个人识别系统、信息处理方法及存储介质
US20170151463A1 (en) Method and apparatus for optimizing running performance of an individual
EP2889853A1 (en) A method for optimizing running performance for an individual
CN108186025A (zh) 一种运动量脚底检测装置
KR20190016753A (ko) 주행 및 보행 시 좌우 불균형 평가 방법 및 장치
KR102251104B1 (ko) 착용형 보행 분석 장치
CN110037707B (zh) 精准识别步态的可穿戴足底-地面接触力测量装置及方法
CN109106375B (zh) 一种促进足部健康的系统
KR20150136313A (ko) 양 발 무게 정보를 기반으로 양 발 사용 특성을 분석하는 방법 및 장치
CN111712154A (zh) 步伐分析设备
Coddington et al. Step Rate Monitor to be used during Gait Analysis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication