CN1341003A - 用于内窥镜的自发荧光成象系统 - Google Patents

用于内窥镜的自发荧光成象系统 Download PDF

Info

Publication number
CN1341003A
CN1341003A CN00804257A CN00804257A CN1341003A CN 1341003 A CN1341003 A CN 1341003A CN 00804257 A CN00804257 A CN 00804257A CN 00804257 A CN00804257 A CN 00804257A CN 1341003 A CN1341003 A CN 1341003A
Authority
CN
China
Prior art keywords
light
image
tissue
endoscope
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN00804257A
Other languages
English (en)
Inventor
小斯蒂芬·F·富尔格休姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Newton Laboratories Inc
Original Assignee
Newton Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/238,664 external-priority patent/US6537211B1/en
Priority claimed from US09/362,806 external-priority patent/US6364829B1/en
Application filed by Newton Laboratories Inc filed Critical Newton Laboratories Inc
Publication of CN1341003A publication Critical patent/CN1341003A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00121Connectors, fasteners and adapters, e.g. on the endoscope handle
    • A61B1/00126Connectors, fasteners and adapters, e.g. on the endoscope handle optical, e.g. for light supply cables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0669Endoscope light sources at proximal end of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters

Abstract

这项发明揭示了一种通过影像内窥镜使组织的自发荧光成象的系统和方法,该系统包括能提供能诱发组织自发荧光的紫外光和几乎或根本不诱发自发荧光的可见光的光源;把两种波长范围的光线以同样的表观空间和角强度分布发送给组织的光学系统;在内窥镜远端利用单一的成象探测器数字化地获取由此产生的可见的荧光和可见的反射图象的手段;以及数字化处理所述的图象以产生最终的指出组织发育异常区域的伪彩色显示图象的手段。这个系统既可以被添加到现有的影像内窥镜上,也可以被合并到其结构中。合并后的系统可以借助电子设备在正常的白光成象和荧光成象之间切换。

Description

用于内窥镜的自发荧光成象系统
政府的支持
这项发明通过国家医疗卫生研究所批准的“ImagingSpectrofluorimeter for Colonic Dysplasia(供检查结肠发育异常使用的成象光谱荧光计)”项目(批准号R44CA72626)全部或部分地得到政府的支持。政府对这项发明有某些权利。相关的专利申请
这份申请是1999年7月28日提交的美国专利申请第09/362,806号的部分继续申请,而第09/362,806号申请又是1999年1月26日提交的美国专利申请第09/238,664号的部分继续申请,通过在此引证将上述的专利申请的全部内容并入本文。
本发明的现有技术
晚期癌症难以有效地治疗,所以重要的是在它们恶化前期对它们(例如,发育异常或癌)进行原位检测。当前,最广泛使用的早期检测方法是通过内窥镜进行目测检查,这依赖于鉴别与发育异常相关联的总体结构的变化。目测检查对检测类似溃疡性结肠炎和和巴雷特食管(Barrett's esophagus)的平面发育异常的表面损伤不大有效。在这些情况下,监视要求为活组织检查随后的组织学分析选定典型部位。在结肠之类的大表面上只有非常小的部分能以这种方式进行检查,而且小面积的发育异常可能没有发现。更有效的检测平面发育异常的方法将提供减少癌症、致死率和成本的有效手段。
就内窥镜检查期间检测发育异常而言有前途的技术包括用适当波长的光照亮组织和观察由此产生的荧光。组织产生的荧光发生在比激发照明波长长的波长下,并且通常非常微弱,以致为了对它进行检测通常需要光谱技术。使用荧光信息的诊断方法通常可以被分为两组。第一组方法在给患者用药的同时观测来自累积在肿瘤组织中的药物的荧光。第二组方法观察由某些物质引起的内生荧光或自发荧光,这些物质就组织本身而言是天然的并且当组织变得发育异常时它们将改变它们的相对浓度。在这两组一般的荧光方法中,需要提前用药的第一种方法具有更大的侵入性。应用这些药物将花费额外的时间,并且有可能引起不良的副作用。基于检测自发荧光的方法侵入性比较小并且更适合用于普查目的的内窥镜检查。
例如,正常的结肠组织在用370纳米的紫外光照明时呈现峰值在450纳米的广谱蓝色荧光,如图1所示。这种荧光来源于胶原,结缔组织的主要蛋白质,它是在薄粘膜层内发现的并且是粘膜下层中占支配位置的成分。发育异常的结肠组织由于其结构和化学性质发生变化所以在同样的照明条件下其荧光强度通常只有原来的1/2至1/3。由紫外到紫色的激发光产生的可见的蓝绿色自发荧光的这种减弱已作为发育异常的组织的主要指标被识别。680纳米下的荧光与600纳米下的相比强度的增加是发育异常的次要指标。
检测自发荧光的诊断仪器通常可以分为两类。第一类包括利用光纤探针完成对组织进行点测量的仪器。第二类包括产生详细的二维图象的仪器。点检测的仪器具有提供更完整的与组织有关的光谱信息的优点,但是就大组织区域的例行普查而言实在太慢并且有可能错过小范围的发育异常。荧光成象内窥镜更适合于结肠之类的大组织区域的普查。
为检测已施于感性趣区域的荧光标志的浓度而设计的荧光成象系统最适宜测定比较高的荧光水平,没有测定原本微弱的自发荧光所必需的补充性仪器特征。具体地说,它们没有办法把充分的频带外的滤光提供给允许有效地测量强度通常比激发强度低1000倍以上的自发荧光的激发照明。
为测定自发荧光专门设计的内窥镜可以根据选定的激发波长和用来定量地确定自发荧光减弱程度的方法被进一步分成几组。这些设计的选定直接关系到仪器制造商需要考虑的一些事情,例如,它们对必要的成象器件的数量、仪器的光学机械的复杂性和实际使用中仪器的操纵特性的影响。
现有的荧光成象内窥镜采用激发波长在440纳米附近的蓝色的可见光,从而导致荧光峰值在500纳米附近。这些仪器使用波长为442纳米的氦-镉激光器作为明亮的易于控制的激发光源。氦-镉激光器的高成本使它们作为商用仪器的光源是不切实际的。
多台摄像机和机械切换的光学元器件和/或滤光片要求在相干成象的光纤束的基础上使用内窥镜,所以摄像机和滤光片可以定位在内窥镜的近端,在那里有供它们使用的舱室。相干成象的光纤束引入相当大的光损失,并且不提供象现在用影像内窥镜提供的那些图象那样清晰的图象。
本发明的概述
本发明涉及成象内窥镜,具体地说涉及使来自上皮组织的自发荧光成象以便突出发育异常区域的内窥镜系统和方法。用来检测组织发育异常的系统将利用在结肠、食管、口腔、子宫颈和肺中发现的那类粘膜组织的自发荧光。用于本发明的内窥镜的荧光成象装置利用选定的激发光波长范围和荧光标准化方法。这些选择提供一种改进的内窥镜,它需要一个在影像内窥镜远端用于白光成象和荧光成象两者的不增亮的图象探测器。这个图象探测器可以是象素化的集成电路器件,例如,CMOS成象器件、电荷耦合器件(CCD)或者其它的能够在可见光和红外波段检测的小型二维图象传感器。
本发明的系统有能力靠电子电路在白光和荧光目测检查方法之间来回切换,因此不需要移动在内窥镜之内的零部件。取消位于内窥镜近端的摄像机和成象光学器件将大大改进其操纵特性。基于计算机的成象系统允许以诸如10赫兹或更高的刷新率显示定量的组织图象。优选的实施方案使用容易看清楚的伪彩色覆盖层表示可能有组织发育异常的区域。我们想说的是:“伪彩色”意味着给每个像素分配一个表示其特定的荧光强度水平的色值。为了提供适合给定类型的组织条件成象的彩色系统,可以给数据处理系统编程。该系统既可以与带彩色转盘(例如,使用单色的CCD)的影像内窥镜一起使用,又可以与带彩色图象传感器的内窥镜一起使用。
在优选的实施方案中,象Wang等人在1998年1月26日提交的美国专利临时申请第60/072,455号中介绍的那样选择近紫外光作为激发波长。这种在300-420纳米范围内的选择由于在影像内窥镜中使用的标准的电子图象传感器对激发光不敏感这一事实将减少或者取消在组织和图象探测器之间追加滤光片的需求。为了获得参照图象,选择图象探测器非常敏感的红色可见光给组织提供照明。这个参照光将通过与激发光相同的光导管传送,并且以与激发光相同的标准化的空间分布和角分布给组织提供照明。通过使供反射图象使用的光与供荧光图象使用的光在空间强度和角分布上相关,提供一种更精确而且在诊断上更有用的成象系统。本发明的这个系统允许使用参照图象将荧光图象标准化,以致荧光强度的局部降低可以被精确的量化。在另一个优选实施方案中,使用带彩色转盘(单色的CCD)的影像内窥镜,参照光和激发光是按顺序施加的。在另一个优选的实施方案中,使用的彩色CCD影像内窥镜,荧光激发光和参照光是同时施加的。
补充性的参照图象可以利用影像结肠镜的第三个彩色信道获取。为这幅图象引导到组织上的参照光以蓝色为主,其中心波长和带宽近似于由UV激发光诱发的荧光光谱。这幅蓝色图象B与红色参照图象R在逐个象素对比的基础上的比率B/R标识成象组织的区域,在这些区域中某些化学成分(主要是血红蛋白)在天然荧光离开组织成象之前将其一部分吸收。获得荧光图象F与红色参照图象R的比率F/R必然提供两个参数,F/R和B/R,这两个参数可以被用于在逐个象素对比的基础上确定在感性趣的成象区域中否类存在发育异常之类的反常的组织。
附图简要说明
图1图解说明正常的和发育异常的结肠组织受波长为370纳米的UV光激发形成荧光光谱。
图2a和图2b是依据本发明的光纤递送探针系统的示意图。
图3是本发明的荧光成象内窥镜的实施方案的示意图,该实施方案使用单独的光纤导管递送UV激发光通过带彩色转盘(单色CCD)的影像内窥镜的活组织检查管道。
图4是产生输出图象的流程图。
图5图解说明按照本发明获取、分析和显示图象全过程的时序图。
图6a至图6c图解说明按照本发明来自汞弧光灯的UV输出是怎样随脉冲电流变化的。
图7是依据本发明受计算机控制的脉冲灯电源的示意图。
图8a至图8d图解说明依据本发明的脉冲光源的光学机械元件的细节。
图9a至图9c图解说明依据本发明使用的发送光纤的构造。
图10a和图10b是成象系统的优选实施方案的示意图,该实施方案使用单独的光纤导管递送UV激发光通过彩色CCD影像内窥镜的活组织检查管道。
图11a至图11d是成象系统的优选的实施方案的示意图,该实施方案把透射紫外线的照明光导管并入内窥镜并且把外部的UV激发源用适当的模块连接到标准的白光光源上。
图12是成象系统的优选实施方案的示意图,该实施方案把激发光源和白光光源全部并入配备了透射紫外线的照明光导管的内窥镜的照明系统中。
图13a和图13b图解说明照明和收集式内窥镜成象系统的另一个优选实施方案。
本发明的上述和其它目的、特征和优点通过下面对用附图图解说明的本发明的优选实施方案的更具体的介绍将变得明显,在这些附图中相同的参考符号始终指代同样的零部件。这些附图不必按比例绘制,而是把重点放在图解说明本发明的原则上。本发明的详细说明
本发明涉及为了突出发育异常的区域使来自上皮组织成的自发荧光成象的系统和方法。依据本发明的组织自发荧光成象系统以其最简单的方式对先前的技术状态作了改进,它可以在不修改内窥镜本身而仅仅在内窥镜的可见光光源的路径中追加一个光闸的情况下被添加到现有的影像内窥镜上。因此,内窥镜的操纵特性不会由于在需要时用当前市售的荧光成象系统在近端追加图象增强器和外部摄像机而受到负面影响。在正常的可见光成象(全色)和荧光成象之间切换是通过电子开关而不是通过临床医师实际操作完成的,这也是现在的系统所需要的。由此产生的荧光视频图象是用计算机处理的,以致临床医师所看到的诊断图象是由众所周知的可见光图象(按灰度)构成的,其中伪彩色覆盖层指出图象中的一些区域,在那些区域中来自组织的荧光与来自正常组织的荧光相比被减少了。这种图象比当前的系统所提供的红色/绿色合并的原始荧光图象更容易解释,对于红/绿色盲的临床医师尤其是这样。
本发明的系统仅仅使用一个在内窥镜远端的成象探测器来获取正常的彩色图象、荧光图象和可见的参照图象。使用波长从紫外到深紫的荧光激发光(对于这个波段CCD摄像机是不敏感的或者可以利用固定的滤光片使之不敏感)将有可能在远端使用摄像机。这允许大范围地收集由此产生的波长从蓝到红的组织自发荧光,从而导致有足以提供有效的视频信号的光线,不需要补充性的图象增强。这种方式的体内荧光成象已经被Wang等人在1999年1月26日提交的美国专利申请第09/238,664号“Fluorescence Imaging Endoscope(荧光成象内窥镜)”中介绍过,在此通过引证将其全部内容并入本文。
先前的自发荧光成象系统依靠在红色波段的非常微弱的成象荧光提供图象,以便与在蓝绿色波段获得的荧光图象进行比较。为了提供可用的红色荧光图象,补充性的图象增强尤其是必不可少的。本发明的自发荧光成象系统和方法为了获得参照图象通过把补充性的可见红光照明提供给组织而避免这项开支和困难。但是,为了奏效,UV激发光和可见的参照光必须通过公用的光导管交付组织并且以同样的角分布从同一个照明光瞳射出。这要求仔细设计激发和参照光源的光学元件。为了消除人为现象(例如,在荧光图象中不发生的镜面反射),参照图象的处理包括其它特征,例如直方图分析。
依据本发明的各种系统特征的组合可以以几种不同的方法予以实现,取决于与自发荧光成象系统结合的内窥镜。另外,这些特征中有一些可以随着临床医师逐步接受这项技术被分阶段地装入内窥镜。
在优选的实施方案中,激发照明和参照照明是由同一个弧光灯光源产生的,并且通过同一个光纤探针穿过内窥镜的活组织检查管道交付给组织的。在其它的实施方案中,激发光可能是用单独的光源产生的,但是通过作为标准的吸收紫外线的玻璃束的替代品装入内窥镜的透射紫外线的光纤束交付给组织的。参照照明来自正常的白光照明光源并且通过接入允许红光通过的滤光片将可能干扰以蓝色荧光为主荧光成象的蓝色和绿色波长的光吸收。深红色的光源或近红外线(例如,在670纳米以上)可以在不影响正常的可见光照明的情况下被使用,并且可以与双折射元件合并,以便沿着公用的路径发送。在进一步的实施方案中,激发光源可以与标准的白光照明光源合并,并且用透射紫外线的光纤照明束通过内窥镜交付给组织。为了完成荧光成象和可见光成象,转轮光源也可经过改造产生四种颜色:紫外、蓝色、绿色和红色。
图2a和图2b展示优选实施方案的一般组成部分,其中激发光和可见的参照光是通过独立的光纤探针交付给组织的。光纤探针200穿过标准的影像内窥镜202的活组织检查管道,其末端最终被置于内窥镜远端204或远端附近。当脚踏开关206被临床医师踩踏时,来自内窥镜光源和视频处理器208的正常的白光照明被光闸关闭。这种白光在正常情况下通过两个在内窥镜远端的的照明口210和212照亮组织。同时,激发和参照照明光源214中辅助光闸被打开,以致激发光和参照光可以通过光纤探针200。激发光和参照光从光纤探针的末端216射出并且照亮组织218。视频图象检测系统220把由此产生的荧光图象信号和参照图象信号反向通过内窥镜202发送给视频处理器208,在那里它们按国家电视标准委员会(NTSC)制定的标准的红、绿、蓝视频格式被变换成不同的彩色信道。这两个信道在计算机系统222中用视频帧接收器数字化。数字化的荧光图象和参照图象被一起实时处理,以便将与正常组织相比荧光减少的图象区域量化。荧光减少是发育异常的主要指标。在经过处理的组织图象(它显示在计算机的监视器224上并且以高达10赫兹的速率被刷新)中,有可能发育异常的组织的区域用伪彩色显现出来。因此,用图3a和图3b表示的优选实施方案对于目前的内窥镜/视频处理器系统是附加的组成部分,它仅仅需要在内窥镜系统的视频处理器中把一个内部的光闸添加到白色光源中。就带彩色转盘的(单色的CCD)影像内窥镜而言,激发光源214的构造适合提供连续的激发照明和参照照明,其更多的细节在下文中予以描述。就彩色CCD影像内窥镜而言,激发光源214同时提供激发照明和参照照明,其更多的细节也在下文中予以描述。
Wang等人论证的自发荧光成象系统使用氩-离子激光器作为UV激发源。其它的尺寸比较小且低功率操作的激光源(包括在380纳米至420纳米的波长下操作的固态激光器,例如,氮化镓激光二极管)都可以被使用。依据本发明的系统使用汞弧光灯作为UV激发光源,其谱带在365纳米的汞线附加。汞弧光源与氩-离子激光器相比更小而且便宜,需要比较少的功率,并且是用空气冷却的。就与带彩色转盘的(单色CCD)影像内窥镜一起使用的自发荧光成象系统而言,提供给弧光灯的电流可以是脉冲电流。在带彩色转盘的视频系统中,正常的光源为了提供彩色图象与视频处理器合并在33毫秒的视频帧期间里按顺序提供红色、绿色和蓝色的光脉冲。在自发荧光成象模式中,这些系统用UV脉冲代替正常的蓝色光脉冲,用通过与UV脉冲相同的光纤发送的(名义上红色的)参照光脉冲代替绿色的光脉冲。通过在正常情况下发送蓝光的8毫秒的时间周期内产生弧光灯电流脉冲,UV光源可以把与CW灯的强度在33毫秒的视频帧周期内全部累积起来可能提供的激发能量密度相比同样多或更多的激发能量密度提供给组织。
就带彩色转盘的视频系统和彩色CCD成象系统而言,自发荧光成象模式是用脚踏开关启动的,其中脚踏开关控制着激发/参照光源和正常的内窥镜白色光源上的辅助光闸。为了使来自组织的微弱的荧光成象,关闭正常的内窥镜照明是必不可少的。采用了两种不同的自发荧光成象模式。在一种模式中,一帧来自经过处理的自发荧光图象的伪彩色覆盖层与前一帧(或后一帧)彩色图象合并并且被冻结在(或者计算机屏幕上。在第二种模式中,只要脚踏开关被踩住,经过处理的荧光图象就(以图象处理时间所允许大约7.5赫兹到10赫兹的速率)被连续地刷新。在连续操作模式中,可见的图象被显示成灰度图象(因为它是用单色的参照照明获取的),而伪彩色覆盖层显示可能有发育异常的区域。
图3展示与带彩色转盘的(单色CCD)影像内窥镜一起使用的荧光成象系统的优选实施方案的总示意图。就与带彩色转盘的影像内窥镜的正常操作模式而言,为彩色转盘影像内窥镜的操作的正常的方式,内窥镜300的远端插入体内的空心器官,以便观察组织302的区域,该区域可能包含发育异常的区域304。CCD成象器件和透镜子系统(视频摄像机)位于正常的照明光瞳308和310两侧。
正常的照明光是用光纤束312传送的,该光纤束穿过内窥镜的长度并且在其远端附近分叉,一直延伸到光瞳308和310为止。介于照明光源和光纤束之间光闸314受数字信号315的控制,允许在不关闭光源灯316的情况下将白光照明关闭。在所示类型的内窥镜中,正常的彩色图象是通过把借助旋转的滤光转盘318提供的红色、绿色和蓝色的光脉冲获取的三幅连续的图象合并获得的。在这种类型的内窥镜中CCD检测器对400纳米和700纳米之间所有的波长都是敏感的,但是对激发自发荧光的在365纳米附近的激发波长是不敏感的。这是由硅传感器阵列的设计和用来实际保护该阵列表面的光学材料的选择造成的。CCD检测器连续地累积所有照射在它表面上的光线,所以当CCD的行下移到读出电子设备时,照明必须被关闭,否则在图象上将看到带条纹的效果。红色、绿色和蓝色的光脉冲具有大约6毫秒的持续时间,后面跟着的是读出摄像机象素的5毫秒的黑暗周期,从而得到满足NTSC标准的大约为33毫秒的总视频帧周期或每秒29.97帧。从CCD摄像机读出的模拟信号通过光缆320被传送到视频处理器322。
三幅连续的单色图象被数字化并且在视频帧结束时被合并成标准的彩色视频信号。处理器有两组标准的红色、绿色、蓝色(三原色)加同步输出。彩色信号324的一组输出被送到内窥镜的视频监视器326,以便显示组织328的正常的彩色图象。另一组彩色信号330被送到在将获得和处理自发荧光图象和参照图象的荧光成象计算机系统334中的视频帧接收器332。来自视频处理器的标准的混成彩色信号输出336根据视频合成分离器(National LM1881 Video Sync Separator)被送到同步电路338。这个同步电路338确定交错的偶数场和奇数场何时在视频信号中发生并且输出在奇数场期间高、在偶数场期间低的二进制数字信号340。这个信号340在荧光成象系统中始终被内窥镜的视频处理器用于使其功能与时序设定同步。
为了启动自发荧光成象模式的操作,临床医师把脚踏开关341压下,这将在电缆342上把信号发送到计算机334。如同同步信号340所确定的那样,在适合与下一个机会同步的时间把信号在光闸触发线路315上发送给在正常的照明光源上的光闸314和在激发/参照光源上的光闸343。这些光闸是互补的,以致线315上的信号在打开光闸343的同时关闭光闸314。然后,通过光闸转盘在光学组件350中旋转产生的激发光脉冲和参照光脉冲被传送到光纤探针344中。探针344被插入活组织检查管道的开口345,并且顺着该管道往下滑,直到其末端窗346处在或恰好探出内窥镜300的远端。激发和参照光脉冲照亮了内窥镜的视场的中心部分。照明的角度取决于光学元件350、光纤的数值孔径和光纤探针末端窗346的光学特性。
激发光脉冲和参照光脉冲必须发生在三个正常的照明脉冲周期中适合获取自发荧光图象和参照图象的两个脉冲周期期间。这些图象出现在与来自内窥镜视频处理器的三个视频输出信道中的两个有关的下一个视频输出帧上。适当的时序是通过在光学组件350的激发(UV)和参照(红)路径中分别旋转光闸352和354实现的。这些光闸是由可以借助改变供电电压控制其转速的直流(DC)电机356和358驱动的。在光闸边缘附近的基准孔与光源和探测器相结合随着光闸旋转产生参照脉冲,而且为每个脉冲的相位作记号。每个电机(358和356)的锁相环路(PLL)362和360分别调整电机电压,以致每个参照脉冲都与同步脉冲340的上升沿相匹配,从而为视频奇数场的起点作记号。
通过使光闸上的孔适当地定位,激发光脉冲和参照光脉冲可以被定时到摄像机的曝光周期。激发脉冲被定时,以致它与正常的蓝色曝光相匹配,因为这个曝光周期比其它的曝光周期略微长一些(8.1毫秒)。参照光脉冲被定时,以致它与正常的绿色光线曝光相匹配(5毫秒),因为它是正常的曝光周期的下一个最长者。紧跟在正常的蓝色曝光周期之后的正常的红色曝光周期目前不被使用,但是为了获得用于其它光谱分析的补充性的自发荧光图象或参照图象或补充性的可见光反射图象可能被使用。在激发曝光期间,给汞灯的电流可以被提升到更高的水平,以便增大激发光输出。灯电源利用DC电流部分366,为的是维持无功电流和启动灯。
与DC部分366并联的受计算机控制的脉冲电流部分368可以在多重并联的恒流电源之间迅速地切换,以便按照成象系统的需要改变灯的输出功率。电流脉冲同样利用起锁定旋转光闸作用的同步脉冲340与视频系统同步。计算机的数字输入/输出(I/O)部分370输出与定时脉冲340合并的数字脉冲372,以便在激发曝光期间提高灯电流。被平行触发的恒流部分的数量在需要时可以被一组控制线374改变。如果组织充分靠近激发/参照发送探针窗346,则可能不需要升压。如果自发荧光图象的峰值降至可接受的最低水平,如同受总控程序378监控的计算机图象分析程序376所确定的那样,那么补充性的电流提升部分将按需要在下一次曝光时被启动。
一旦自发荧光图象和参照图象已被计算机中的数字式帧接收器获取,分析就可以开始。用内窥镜的摄像机系统取得的反射(不发荧光的)图象测定其视场中的组织表面的亮度。就作为朗伯(非镜面的)漫反射体的组织表面而言,反射图象信号(该信号被视频帧接收器针对视频图象中每个离散的像素逐一数字化)与组织距单一的照明光源的距离成正比(或者与距多重光源的加权距离成正比),并且与在那个视频帧期间激发照明的累积能量成正比。激发/参照发送探针的末端窗346不在从摄像机透镜到组织的定向视线中,所以将有可见的阴影。因此,反射图象可以被用来测定在摄像机可见的组织表面(包括存在于自发荧光图象中的阴影)的激发照明。请注意,如同上文描述的那样,只有激发照明和可见光照明如同光源设计所提供的那样具有同样的横向强度分布和角发散而且从同一个光瞳射出,这才是真实的。例如,用来自标准的内窥镜的照明束的光线获取的可见的反射图象对确定来自穿过那个内窥镜的活组织检查管道的独立的光纤的激发照明来说是不可接受的。但是,还应该注意:同样的光瞳/同样的发散条件可以借助通过内窥镜的照明束传送激发光脉冲和参照光脉冲而得到满足。
利用可见的参照图象和自发荧光图象获得发育异常可能性的伪彩色指示的步骤顺序如下。两幅图象首先对视频处理器(它通常被接在视频监视器上而不是接在帧接收器上)施加给视频信号的γ因子进行校正。这保证计算机中的帧接收器所获得的数字图象是照明能量密度(按时间累积的强度)的线性函数。然后,两幅图象被标准化到它们的峰值,这些峰值通常在视场中某个没有发育异常的组织区。由于参照照明的镜面反射,在参照图象里有为数不多的几个像素是饱和的。这些象素通过产生参照图象的直方图和使图象标准化到峰值被有效地消除。这通常包括大约99%的像素。
然后,所有在1以上(镜面反射)的标准化的参照图象的像素都被重新设定到数值1。在自发荧光图象里没有镜面反射,所以这种基于直方图的标准化是不必要的。然后,在一个象素接一个象素的基础上,把自发荧光图象的数值除以经过校正的参照图象的数值,以便产生比率图象。为了提供可靠的测量结果,这种除法运算仅仅在自发荧光图象的象素值和参照图象的像素值高于最小值门限条件时才被实行,以保证在照明太低的情况下不试图进行分析。
如果比率图象的象素值在预定值(通常是1/2到1/3)以下,那么那个像素代表组织表面上荧光减少的区域,即发育异常的表征区域。然后,在经过处理的输出图象中相应的像素可以被设定成伪彩色状态,以便指出发育异常的相对概率。如果比率图象的象素值在1/3以下,相应的经过处理的输出图象的象素的红色值,那么它被设定为参照图象的象素值,而那个象素的绿色值和蓝色值被设定为零(它是暗红色的,表示发育异常的高概率)。如果比率图象的像素值在1/2和1/3之间,那么经过处理的输出图象的象素的绿色值,它被设定到参照图象值,而红色值和蓝色值被设定为零(它是暗绿色的,表示发育异常的中等概率)。如果比率图象的象素值在1/2以上,那么经过处理的输出图象像素的红色值、绿色值和蓝色值全部被设定给参照图象值(它是暗灰色,表示组织正常的概率)。这个经过处理的输出图象386被显示在被安装到系统计算机334上的LCD监视器384上。
图4图解说明患者已准备好内窥镜插入体腔即人和内窥镜的远端已被置于适合感性趣的区域成象的位置之后的处理顺序400。在这个特定的例子中,获取可见的参照图象402。校正这个参照数据404,产生直方图406,使数据标准化408,将选定的象素复位410和施加门限值412。在获得荧光图象420之后,校正图象422,使之标准化424,施加门限值426和产生比率图象430。然后,将由此产生的输出图象或表达与基准进行比较432,并且确定给定的区域是正常的440或发育异常的450。
图5展示一个周期的成象过程的时序图。如同NTSC标准所设定的那样,最大的视频输出速率是29.97赫兹。这张图指出系统需要一个帧象周期用于获取,2至3个帧象周期用于分析和不足一个帧象周期用于把结果传送给输出图象缓冲区。由此产生的用于分析图象的刷新率是每秒7.5帧。采用一个快速处理器,分析时间可以被减少,而刷新率相应地增加到每秒10或15帧。另外,图象分析可以以高达每秒30帧的输出速率被完成,例如,在获取和显示之间只有为数不多的几帧延迟的情况下通过使用两个并行操作的处理器。但是,为了维持平均的灯能耗不超过100瓦,增高的刷新率要求降低给灯的脉冲电流的上限。图5还表明汞灯电流是怎样仅仅在导致自发荧光图象的蓝色曝光周期期间被提升的。在其它的时间灯在低功率下闲置。
图6a和图6b表明来自100瓦的汞弧光灯的UV输出功率(脉冲持续8毫秒,70%以上无功电流)至少在5倍于其名义额定功率以下基本上是其输入功率的线性函数。在UV曝光周期期间提升灯电流将增大灯的输出功率,这本身又将允许扫描更大面积的组织,看看有无发育异常。它还在一个脉冲接一个脉冲的基础上为最佳的视频曝光提供调节灯输出的手段。由于灯的放电不管电流大小都维持电弧两端几乎恒定不变的电压降,所以灯的输出功率基本上与电流成正比。但是,为了保持汞处于汽相,必须总是维持给灯大约70%的功率。图6c表明可以以7.5赫兹的速率连续重复产生5倍于额定的CW电流以下的电流脉冲。
图7展示灯的供电电源与汞弧光灯700连接时的方框图。DC无功电流电路702和高压(HV)启动脉冲电路704是通过为CW100瓦汞弧光灯设计的一个商用供电电源处理的。恒流触发脉冲电路706是为符合荧光成象内窥镜的特殊要求而设计的。这些电路中4个电路是这样并联的,以致弧光灯的输出可以被数字化地设定为5种不同的功率水平之一(包括闲置)。每个电路都由MOSFET电源开关组成,该开关调节其电阻使通过的电流保持在固定的水平,通常等价于4安培的正常的DC电流。每逢为了适当地照亮组织需要提升电流时,这些电路都可以被计算机个别地触发。每个电路都从储能电容器708得到其电流,该电容器是由供电电源710通过限流器712充电的。这种限流设计把可能引起弧光灯的允许功率容量过载的故障条件的可能性减少到最小。
图8a、8b、8c和8d展示激发/参照照明光源的光学系统的细节。图8a中单一的汞弧光灯800被用作两种波长的来源,因为UV/紫色的激发光和红色/近红外的参照光需要在内窥镜的远端具有相同的表观光源体积802。小型的100瓦汞弧光灯具有0.5至1.0毫米的电弧尺寸,这个尺寸足够小,足以有效地耦合到用来把光交付给内窥镜的末端的光纤中。分开的灯可以被用于激发和参照光束,但是用于光源的光学系统的允差和光源电弧的准直则是更关键的。在图8a所示的优选的单灯光源设计中,收集光线的光学元件804被示意地表示成一个透射紫外线的融凝硅石透镜。在实践中,多元透镜设计或基于反射镜的Schwarzschild物镜被用于减少与收集到的光束有关的光学象差。这样的收集光学系统也可以使来自作为替代光源的市售的备有固定的预先准直的椭圆形反射器的汞弧光灯的焦点体积的光线准直。收集光学系统804使来自灯的光线这样准直,以致它可以借助反射UV和/或深紫波长而透射可见光波长的分色镜806滤光变成UV分量和可见光分量。
如上所述,分成两条路径是如此必要,以致两个旋转光闸808和810可以在视频帧期间的不同时间产生UV激发光脉冲和可见光参照脉冲。反射镜812(它紧接在分色镜后面)上的反射紫外线的表面涂层反射那条路径中几乎100%的符合要求的紫外光并且把来自分色镜反射的大部分不符合要求的可见光吸收到它的衬底中。用元件814表示的补充性的UV滤光片可以包括吸收滤光片(例如,Schott UG-1玻璃)以及中心在365纳米的汞线上的多层电介质的带通滤光片。由于460纳米的组织荧光的效率仅仅是大约0.1%,所以UV路径拒绝接受可见光达到相当高的程度。在UV曝光周期里泄漏可见光源的光线将降低自发荧光图象的对比度。一些对这种泄漏的校正在数字图象处理期间是可能的,但是,校正总是把少量的噪声加到结果上。
参照路径中的第一个元件是用来为对与UV相比在可见光波长折射率比较低的融凝硅石准直透镜804进行校正的弱透镜816。请注意,如果在透镜804的位置使用的是Schwarzschild物镜,透镜816将不是必不可少的,因为这样的设计只使用反射镜并因此是全消色的。消光器可以被非必选地在位置817插入参照路径,以防止参照图象在近距离检查时饱和。为了保持参照照明需要的均匀一致的角强度分布,在参照光束穿过的区域上这个消光器必须是均匀一致的。这种衰减可以用可变的正交偏振棱镜、差动滑移的线性衰减光楔或靠电动机械切换的固定值消光器组来完成。当连续发生的激发光束/参照光束被用在图示的那种系统中时,参照路径中的可见光滤光片818与UV滤光片相比显得次要一些。参照光束波长的选定是为了避开血红蛋白吸收带,因为重大的吸收将把误差引入假定参照图象等价于激发照明强度的测量结果的分析。旋转光闸808和810被置于滤光片后面。
沿着可见光路径继续往下,在光闸808后面是有宽带可见光反射涂层的转向镜820。与分色镜806完全相同的第二分色镜822把UV激发光束和可见的参照光束再次合并到共同的路径上。一个附加的转向镜824(它反射UV和可见光)把两个光束引向聚焦光学系统826,该聚焦系统把光束耦合到发送光纤828中。转向镜824使该系统在UV和可见光两条路径中的反射次数相等。在反射次数相等的情况下,相对收集光学系统804的位置汞弧802的位置的任何变化将导致对于激发光束和参照光束两者相同的角度偏移。相等的偏移角保持激发光束和参照光束在组织上重叠。图8a至图8c所示的系统(其中合并后的光束按照与入射光束的方向相同的方向射出该光学系统)还使输出光束的方向在作为整体平移和小幅度旋转该光学系统时保持不变。
图8a中的孔径光阑830保证UV激发光束和可见的参照光束在进入发送光纤828时具有同样的角收敛。两个光束在聚焦光学系统826的位置上的横向尺寸将一成不变地略有不同,因为在两条路径中光学元件的位置存在小误差而在两个波长下弧光的有效发射体积也有轻微的差异。孔径光阑830是这样设置的,以致两个光束在它们的外边缘受到轻微地限制,从而保证对光纤最大的角输入对于两者是相同的。图8b表明每次在光纤范围内反射时相对光纤轴线对光纤的输入角在很大程度上都被保持。用来自单一方向的准直光束的光纤照明通常导致从光纤的另一端发出的锥形光束,它相对所述轴线具有同样的角度。光线在光纤的出口光瞳上从空间上说是均衡的,但是角度当它顺着内窥镜的长度通过时由于光纤的弯曲慢慢地增大。图示的实施方案保证激发照明和参照照明的标准化的角强度分布如同自发荧光标准化方法所要求的那样是紧密配合的。例如,如果标准化的参照照明如图8c所示在区域831中局部地超过标准化激发照明,那么分析将错误地指出在这个区域自发荧光减少。如果标准化的参照照明比标准化的激发大两倍,那么分析将提供错误的发育异常阳性指示,在这种情况下门限条件被设置到50%。类似地,如果标准化的参照照明在某个区域中比激发照明低一半,那么即使在那个区域中自发荧光实际上同样降低了一半分析仍然指示组织正常。这样的大错误在照明区域的中心未必存在,但是在照明降低到噪声水平的区域边缘却可能发生。放在参照图象和自发荧光图象上的门限条件保证不试图在太容易受噪声或边缘效应的情况下进行分析。一般的说,描述它为的是使参照光强度分布中的任何变化相对激发光的强度分布沿着组合器和组织表面之间的光学路径在任何一点都如同在860(标准化的)看到的那样维持在不足20%。最重要的是实现在组织表面强度变化最小。这样,从光纤862射出的光线将在角度θ定义的圆锥范围内,而沿着波前864强度的变化应该处处不足20%,以使错误图象的风险降低到最低限度。
图8d是激发/参照光源中的旋转光闸设计的更详细的视图。在一个视频帧33.3毫秒中,每个膜窗旋转一次。激发光闸的膜窗810上的光瞳832所对的角度对应于正常的蓝色曝光周期8.1毫秒。相对于视频帧UV曝光的时序是由锁相环路设定的,从而使通过激发膜窗基准点834的光脉冲的上升沿与同步信号340上的奇数场标记的上升沿如同用图3表示的那样匹配。激发光束在光学系统中的表观位置是用虚线圆836标柱的。就光束直径对光闸直径的相对直径而言,光脉冲的总上升时间是1.7毫秒,这与脉冲的总长度相比是可接受的。膜窗810很薄,重量轻,不透明,它是用不锈钢或玻璃纤维增强的环氧树脂制成的。
使转动惯量减至最小将简化用PLL锁定光闸的旋转速率。不透明对于防止光泄漏是重要的。转盘的中心轮毂840周围的挖去部分838留下薄膜窗肋842,它允许转盘在保持垂直于电机旋转轴线旋转时轻微地弯曲,从而使作用在电机支承上的振动和应力减少到最小。光闸的连续外缘起携带时序基准点(该基准点在距离轴线最远也是最敏感的位置)的作用,而且在组装和试验期间还对意外的接触起安全保护作用。在可见的参照光闸844上光瞳是这样定位的,它与视频定时顺序的正常的绿色或者红色周期相匹配。这种仪器既可以为每个脚踏开关信号提供单一的伪彩色图象,又可以以等于30赫兹的约量的帧频提供一系列经过处理的图象。
标准的个人计算机系统可以以每秒10帧的速率处理获得的数据和更新伪彩色图象,这个速率对于保存平稳运动的视觉印象是足够快的而且对于允许脉冲灯电流大幅度增加是足够慢的。在比较低的30赫兹的约量(7.5或6赫兹)下操作仍然提供适当的实时反馈并且允许比较高的脉冲电流(并因此允许比较高的UV照明),而且灯中的平均功耗不超过100瓦。
图9a至图9c展示把来自上述的光源的UV和参照光脉冲通过内窥镜中的活组织检查管道交付给在内窥镜远端的组织的光纤探针的细节。发送光纤900必须传送UV和参照两种波长的光线,有效地与光源耦合,并且足够柔软以致不显著影响内窥镜尖端的柔软性。
光纤可以由多条小直径融凝硅石纤维制成,但是优选的系统使用单一的透射紫外线的丙烯酸纤维,其直径从1.5毫米到2毫米。一种适当的丙烯酸光纤是由Toray Industries公司制造的Raytela Polymer Optical Fiber(Raytela牌聚合物光纤)。单纤系统通过消除多纤束的敛集率损失提高耦合效率。消除内腔的多样性还增加每次操作之间消毒处理的可靠性。
如图9b所示,探针尖端的窗902是用套筒904和间隙906、908和910中的低荧光环氧固定的。薄薄的生物相容的热缩性管状护套保护光纤的薄金属覆面。在位置914处,光纤900、护套912和套筒904之间的间隙中的环氧树脂带在消毒时密封该探针并且把护套就地固定。这种类型的光纤的数值孔径为0.5,这意味着光线是在60度全角圆锥范围内出射的。带平面窗的探针仅仅照亮典型的内窥镜的120度的最大的视场的大约一半。
图9c展示用来替代平面窗902的凹透镜916,而且在透镜和光纤末端之间有空隙918。凹透镜以激发照明强度为代价增加大照明的视场。附加的凹透镜将进一步增大视场。如同图9c所示的那种探针设计最适合大面积扫描,而图9b的平面窗设计最适合比较局域化的发育异常区域扫描。这些窗或透镜可以用融凝硅石或UBK-7制造,以便优化UV的传输。但是,毫米厚度的普通玻璃(例如BK7)不吸收绝大部分的激发照明。另外,如果蓝色荧光在特定类型的发送光纤中的水平降低荧光图象的质量,透镜或窗可以用透射紫外线、阻断蓝光但透射红光的玻璃(例如,Schott UG-1)制造。这种附加的滤光在使用Raytela光纤的探针设计中至今尚不需要。
在优选的实施方案中,用透射紫外线的塑料构成上述的探针与融凝硅石构造相比将把成本降低到使用一次之后就可以把整个探针废弃的程度。
图10a和图10b展示图3所示的自发荧光成象系统怎样才能被改造成适合与标准的彩色CCD影像内窥镜1000一起使用。在这种类型的内窥镜中,图象检测系统1002同时用CCD探测器上经过分立滤光的像素检测红、绿、蓝色的光。供这种类型的视频系统使用的照明源1008发出连续的宽带白光,为了与经过改造的自发荧光成象系统一起使用它仍然需要接通和关闭光闸1010。在这实施方案中,激发/参照光源101 8用光学系统1020同时产生两种波长,并且高度拒斥在自发荧光达到高峰的蓝色和绿色波长的光(大于1000∶1)。连续照明的光谱示于图10b。
为了检测自发荧光,互补的光闸1010和1024依旧被触发,从而使组织同时得到激发光和参照光两者的照明。然后,UV诱发的自发荧光(以460纳米为主)被CCD摄像机中负责蓝色的像素检测。同时,红色的参照反射图象被负责红色的像素检测。彩色CCD摄像机通常使用电子快门,所以它们不需要供它们读数的黑暗周期。在这个实施方案中,如果自发荧光系统仅仅与彩色影像内窥镜一起使用,在激发/参照光源1018中的旋转光闸要么与用制动器停在打开的位置上,要么被完全拆除。因此,UV照明整整持续一帧33毫秒,从而增强累积的可见荧光信号和参照信号以及取消对脉冲电源的需求。灯电源1022仍然可以在不使灯过热的情况下为一幅图象不时地产生脉冲。分析将照旧进行,参照图象出现在RGB NTSC信号的红色信道上而自发荧光图象出现在蓝色信道上。
在依据本发明的荧光图象内窥镜中,UV激发光脉冲和可见的参照光脉冲两者都是通过从标准内窥镜的活组织检查管道穿过的光纤探针交付给组织的。如果内窥镜的照明光纤束被改为传送UV以及可见光波长的光线,那么激发和参照光可以交替地通过该光纤束传送。必要条件将一直是即使由不同的光源产生的激发光和参照光在它们从内窥镜的远端射出时也具有相同的角分布。
图11a至图11展示自发荧光成象系统的实施方案,该实施方案使用透射UV的内窥镜、用于正常成象的标准的白色光源、单独的激发光源和耦合箱。如果在专用光源用把一个单元白光、激发和参照的功能合并之前打算研制改进的内窥镜,则使用这个系统。在这个过渡仪器中,适配盒1100将安装在标准白光照明器1102和透射紫外线的影像内窥镜的电/光连接插头1104之间。在正常情况下,光学连接插头1106直接安装到可见光源1102中,以便收集照明光并且把它传送到内窥镜的照明光纤束中。但是,在这个实施方案中,光学连接插头1106将被安装到适配器1100上,而在适配器另一端完全一样的光学连接插头1108将安装到可见光源1102上。一套成象光学系统1110将把来自插头1108的出口光瞳的光线转移到插头1106的入口光瞳。另外,这套成象光学系统的还将把来自单独的光源从光纤1112射出的激发光转移到插入1106的入口光瞳。
这套成象光学系统是用图11b予以详细说明的。照射在公用轴线上的激发照明与可见光照明相结合是用分色光束分离器立方体1114完成的。消色差透镜1116使从插头1108的出口光瞳上的点1118射出的可见光变成平行光。第二消色差透镜1120使这束光再次聚焦到插头1106的入口光瞳上的点1122上。一套融凝硅石透镜1124和1126名义上是使来自激发光发送光纤1112的出口光瞳上的点1128的光线准直。这些透镜的位置实际上是为了在点1122上提供点1128的最佳图象而被调整的,因为消色差透镜1120将不对UV波长进行校正。
在这个实施方案中,参照照明来源于来自可见光源的正常的红色照明光。滤光片1130是用强烈地衰减UV波长、蓝色和绿色波长的红色的吸收玻璃制成的。滤光片1130被安装在图11C所示的导向轨座1134上,并且在打算使用自发荧光成象时借助机电设备被夹在光路中。UV光源中的光闸被同时打开。于是,组织将得到UV光和参照光两者的照明,如果使用的是彩色影像内窥镜则被同时照亮,如果使用的是带彩色转盘的影像内窥镜则按顺序被照明。滤光片1132是透明玻璃,它透射全部正常的可见光波长。当这样使用正常的照明以使透镜1116的焦点保持恒定不变时,滤光片1132借助机电设备被夹在光路中。
就透射紫外线、柔软且经久耐用的内窥镜照明光纤束1136而言,它必须是由融凝硅石光线制成的,而不是由普通玻璃纤维制成的。除了透明度之外,两种材料之间主要的光学差异在于融凝硅石光纤通常具有比玻璃纤维低的数值孔径。这意味着在融凝硅石光纤中光以比较小的偏离轴线的角度被收集和发出。照明光纤束在点1138处分叉,并且延伸到在内窥镜远端的光学出口1140和1142。在出口1140和1142中的透镜元件也必须被改造(使之变成度数更高的负透镜),以便维持与现有的基于玻璃纤维的内窥镜相同的照明角度。
在内窥镜远端的视频成象检测系统1144把它的信号顺着内窥镜内的电线1146往回传送到连接器插头1104上的电连接器1147。适配器盒1100上配对的连接器收集这些跨过适配器1100被转移给与插头1147完全一样的连接器插头1148的信号,插头1148完成对视频处理器的电连接。于是,自发荧光图象和参照图象的分析照旧进行。
一旦有UV能力的内窥镜可以利用,激发光源就可以被装入内窥镜光源和视频处理器,以致所有的自发荧光成象能力都被包括在内窥镜系统本身内,这个优选的实施方案是用图12示意地表示的。电/光连接插头1200直接与激发/参照/白色的光源和视频处理器1202配对。这个系统如同用图11a至图11b所示的实施方案那样利用分色立方体光束组合器系统1204和参照光的滤光系统1206正确地操作,但是不再需要外部的适配器。
可见的蓝绿色自发荧光的全面减少是成象系统用来描述这点的组织发育异常的主要指标。这些成象系统用单一参数描述组织图象中每个像素的自发荧光减少的特征。这些减少的特定原因Zonios等人已经在“Morphological Model of Human ColonTissue Fluorescence(人类结肠组织的荧光形态学模型)”,(IEEETrans.,Biomed.Eng.,43(2),113-122,1996)中介绍过,在此通过引证将它并入本文。主要的荧光团是骨胶原,一种结缔组织中的蛋白质,它是在薄薄的粘膜层内发现的,并且是粘膜下层的主体组成部分。当粘膜层中的细胞增大并且把骨胶原挤出时以及当组织中的血红蛋白由于增多的血管形成而增加时,在发育异常的组织中自发荧光就会减少。血红蛋白吸收一些自发荧光。为了正确地确定发育异常的或然率,描述组织固有的荧光(不存在吸收)和组织中血红蛋白含量两者特征的能力将提高成象系统的能力。
上述的成象系统利用标准彩色转盘(单色CCD)影像结肠镜的33毫秒目标获取周期中三个可用的成象周期当中的两个。在一个周期中,紫外线激发光照亮组织并且获得自发荧光图象F。在第二个周期中,可见的红光照亮组织并且获得参照图象R,该图象确定组织上紫外线照明的强度分布。这两幅图象的比率对图象中每个像素产生一个参数F/R,该参数代表那个点的总自发荧光的相对水平。用来使图象中可能发育异常的部分增亮的算法主要是把适当的门限值分配给每个像素的F/R参数。
下面介绍用图13a和13b展示的经过改进的成象系统,该系统利用第三个成象周期获取附加的可见光反射图象,以便考虑更完整的光谱分析。在这个系统中,以蓝色为主的光线被引导到组织上,这种蓝光具有近似于UV激发光诱发的荧光光谱的中心波长和带宽。如同前面介绍的那样,这种蓝光从同样的照明口射出并且具有与紫外线激发照明和和可见的红色参照照明相同的角强度分布。由此产生的蓝色的反射图象B指出组织中在这些蓝色波长下吸收光线的化学成分所在的区域以及由于这些吸收过程减少了固有的自发荧光的组织所在的区域。如上所述,红色参照图象R是作为在组织表面全部三种波长的照明强度的度量标准使用的。因此,在一个象素挨着一个象素的基础上指出(主要是血红蛋白)吸收的特定参数是比率B/R。这两个参数F/R和B/R都可以在一个象素挨着一个象素的基础上用于确定表示发育异常的组织成象区域。两种基本的方法可以采用。在一种方法中,比率F/R可以用参数B/R予以校正,以便更精确地指出固有荧光的真实值,这将产生一个照旧对它施加门限的经过修改的参数F/R。第二种方法使用由参数F/R和B/R定义的二维表面,该表面能够表示发育异常的概率。在这两种情况下,用来确定增亮区域的门限值是通过临床试验期间F/R和B/R的实测值与关于取自那些部位的活组织检查样品的病理学报告的结果进行比较确定的。
图13a和13b中的系统照旧使用汞弧光灯光源1300。同样的光学元件1302和1304被用来收集所产生的包括紫外线波长和整个可见光波段的光线并使之变成平行光。紫外线照明的光学路径仍然是相同的。二色性反射镜1306把大部分紫外光和一些可见光反射给反射紫外线的转向反射镜1308。当大部分可见光被1308的衬底吸收时大部分紫外光被再一次反射。紫外线带通滤光片1310几乎把剩余的可见光全部除掉,以致只有紫外光抵达定时转盘1312。定时转盘1312保证继续前进的紫外光仅仅在影像结肠镜的一个曝光周期期间通过。另一个二色性反射镜1314和(反射紫外线和可见光两者的)全反射镜1316把紫外光束引导到聚焦透镜1318上。可变光阑1320定义紫外光进入发送光纤1322的角度。发送光纤1322把各种照明波长全部传送到结肠镜的末端,以便照亮组织。
改进的自发荧光成象系统与前面介绍过系统之间的差异在于可见光波长通过该系统的路径。蓝色和红色两种波长的光线射向可见光定时转盘1324。这个转盘有两个光瞳,它们允许光线在影像结肠镜的两个剩余的曝光周期期间通过。转盘光瞳之一被红色滤光片1326覆盖着,该滤光片允许适合参照图象R的波长通过。之所以选定这些波长是为了避开血红蛋白吸收波段和用来把光交付给组织的光纤中的吸收波段两者。经过滤光的光线被如此恰当地准直,以致可以采用多层二色性涂层,但是用着色的玻璃或塑料制作的简单的吸收滤光片是适当的。定时转盘1324的第二个光瞳被宽带蓝色滤光片覆盖着,该滤光片的频谱近似于激发光产生的固有荧光的频谱。这个滤光片的特定宽带频谱可以包含被血红蛋白吸收的波长,并且具有如此充分的再现性以致由此产生的分析程序可以被其它仪器使用。第二个光瞳与影像结肠镜的第三个曝光周期相匹配。对通过图13b所示的两个转盘上的定时孔1330和1332的光线作出响应的光电探测器把电脉冲提供给锁相环路,该锁相环路保持定时转盘与影像结肠镜的影像获得系统同步。
改进的三色诊断系统和二色系统之间剩余的差异包括宽带反射镜1334和无色的长焦距透镜1336,前者必须反射蓝色和红色两种可见的波长,而后者在可见光波长下就融凝硅石会聚透镜1306比较长的焦距进行校正。
尽管这项发明已参照其优选实施方案被具体地展示和介绍,但是熟悉这项技术的人应该理解不脱离纳入权利要求书的本发明的范围可以在形式和细节上作出各种各样的变化。

Claims (25)

1.一种荧光成象系统,该系统包括:
光源,它产生在组织中诱发可见的荧光的激发光和参照光;
光学组合器,它把所述的激发光和所述的参照光合并到共同的路径上,合并后的光被耦合到光导管中,该光导管把合并后的光交付给组织;
图象传感器,它检测组织的荧光图象和参照图象;以及
数据处理器,它处理荧光图象和所述的参照图象,以便产生经过处理的组织的输出图象。
2.根据权利要求1的系统,其中光源是弧光灯。
3.根据权利要求2的系统,其中弧光灯的电源是脉冲电源。
4.根据权利要求1的系统,其中光导管是通过内窥镜的活组织检查管道延伸的可拆卸的光纤。
5.根据权利要求1的方法,其中图象传感器定位在内窥镜的远端。
6.根据权利要求1的系统,其中激发光和参照光是这样按顺序发出的,以致单色的图象传感器在第一时间周期里检测荧光图象,在第二时间周期里检测反射图象。
7.根据权利要求1的系统,其中激发光和参照光是这样同时发出的,以致各自的图象被色敏的图象传感器检测,蓝色信道检测荧光图象,红色信道检测参照图象。
8.根据权利要求1的系统,其中激发光在300~420纳米的范围内。
9.根据权利要求1的系统,其中光源进一步包括波长在红或红外波段中的参照光源。
10.根据权利要求1的系统,其中光导管包括远端安装透镜的光纤。
11.根据权利要求1的系统,其中激发光具有与参照光的角取向相同的角取向。
12.根据权利要求1的系统,其中进一步包括包选定波长的参照照明,以便提供第二参照图象。
13.根据权利要求12的系统,进一步包括光源和滤光轮,后者对来自光源的光线滤光,以便提供第一参照光照明波长和第二照明波长。
14.根据权利要求1的系统,进一步包括滤光轮,该滤光轮具有对来自光源的光线进行滤光以提供荧光照明的滤光片。
15.一种使组织荧光成象的方法,该方法包括:
检测组织的荧光图象和组织的参照图象;以及
与所述的参照图象一起处理所述的荧光图象,以便产生组织的输出图象。
16.根据权利要求15的方法,进一步包括提供弧光灯光源。
17.根据权利要求16的方法,进一步包括弧光灯的脉冲电源。
18.根据权利要求15的方法,进一步包括用单色的图象传感器按顺序成象。
19.根据权利要求15的方法,进一步包括用色敏的图象传感器检测图象,该传感器有检测自发荧光图象的蓝色信道和检测参照图象的红色信道。
20.根据权利要求15的方法,进一步包括使激发光和参照光这样耦合到光纤上,以致在参照光的标准化的强度和激发光的标准化的强度方面的变化沿着使激发光和参照光合并的组合器之间的路径在波前中任何点上都不足20%。
21.一种用来使组织荧光成象的方法,该方法包括:
提供波长在300纳米至420纳米范围内的激发光;
提供参照光;
把所述的激发光和所述的参照光这样合并到共同的路径上,以致激发光的强度沿着所述路径在任何点的变化相对标准化的参照光强度不足20%;
用在内窥镜探针的远端的图象传感器检测由所述的激发光造成的组织的荧光图象和由反射的参照光造成的参照图象;以及
处理所述的荧光图象和所述的参照图象,以便产生组织的输出图象。
22.根据权利要求21的方法,进一步包括确定荧光图象和参照图象的比率。
23.根据权利要求21的方法,进一步包括调整参照光相对激发光的相对强度或角分布。
24.根据权利要求21的方法,进一步包括检测具有不同波长的第一和第二参照图象。
25.根据权利要求24的方法,进一步包括检测蓝色和红色参照图象,以及由蓝色和红色图象的逐个像素的比率形成第三参照图象。
CN00804257A 1999-01-26 2000-01-26 用于内窥镜的自发荧光成象系统 Pending CN1341003A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/238,664 US6537211B1 (en) 1998-01-26 1999-01-26 Flourescence imaging endoscope
US09/238,664 1999-01-26
US09/362,806 US6364829B1 (en) 1999-01-26 1999-07-28 Autofluorescence imaging system for endoscopy
US09/362,806 1999-07-28

Publications (1)

Publication Number Publication Date
CN1341003A true CN1341003A (zh) 2002-03-20

Family

ID=26931853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00804257A Pending CN1341003A (zh) 1999-01-26 2000-01-26 用于内窥镜的自发荧光成象系统

Country Status (11)

Country Link
US (2) US7846091B2 (zh)
EP (2) EP1632173B1 (zh)
JP (1) JP5088990B2 (zh)
KR (1) KR20010110420A (zh)
CN (1) CN1341003A (zh)
AT (1) ATE309739T1 (zh)
AU (1) AU3349200A (zh)
CA (1) CA2359637A1 (zh)
DE (1) DE60024059T2 (zh)
NZ (2) NZ529432A (zh)
WO (1) WO2000042910A1 (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100443044C (zh) * 2003-07-28 2008-12-17 索普洛股份公司 检测及表征生物组织的设备
CN101184427B (zh) * 2005-07-15 2011-04-13 奥林巴斯医疗株式会社 内窥镜及内窥镜装置
CN102057681A (zh) * 2008-06-12 2011-05-11 奥林匹斯冬季和Ibe有限公司 用于改进内窥镜图像的方法和内窥镜
CN102119846A (zh) * 2010-01-08 2011-07-13 富士胶片株式会社 医疗设备和内窥镜设备
CN101155545B (zh) * 2005-04-07 2011-10-05 奥林巴斯医疗株式会社 内窥镜装置
CN102333473A (zh) * 2009-03-24 2012-01-25 奥林巴斯医疗株式会社 荧光观察装置
CN103140161A (zh) * 2011-06-14 2013-06-05 奥林巴斯医疗株式会社 医疗设备
CN103169446A (zh) * 2013-04-15 2013-06-26 叶衍铭 适用于内窥镜的早期癌症可疑病灶检查装置
CN103262522A (zh) * 2010-12-14 2013-08-21 奥林巴斯医疗株式会社 摄像装置
CN103330545A (zh) * 2005-01-04 2013-10-02 沙丘医疗设备有限公司 体内操作的内窥镜系统
CN103393391A (zh) * 2013-06-20 2013-11-20 中国科学院苏州生物医学工程技术研究所 一种多功能消化道内窥手术医疗器械
CN103690136A (zh) * 2013-12-11 2014-04-02 宋伯根 固有荧光诊断内窥镜系统
CN104379047A (zh) * 2012-08-07 2015-02-25 奥林巴斯医疗株式会社 扫描型内窥镜装置、图像处理装置、图像处理方法
US9526460B2 (en) 2005-08-04 2016-12-27 Dune Medical Devices Ltd. Tissue-characterization probe with effective sensor-to-tissue contact
CN107072520A (zh) * 2014-08-29 2017-08-18 莱英罗斯有限责任公司 以可见光波长和红外波长并行成像的内窥镜系统
CN108836262A (zh) * 2018-04-11 2018-11-20 秦少平 一种诱导荧光光谱图像融合影像光路
CN110072427A (zh) * 2017-01-06 2019-07-30 Hoya株式会社 校准用固体试样、内窥镜系统、以及固体试样的制备方法
CN110198653A (zh) * 2017-01-20 2019-09-03 威里利生命科学有限责任公司 同时的可见的和荧光内窥镜成像
CN110381804A (zh) * 2017-03-10 2019-10-25 索尼奥林巴斯医疗解决方案公司 内窥镜设备
WO2020052623A1 (zh) * 2018-09-12 2020-03-19 上海逸思医学影像设备有限公司 一种用于可见光和激发荧光实时成像的系统和方法
CN112120655A (zh) * 2020-10-12 2020-12-25 温州市人民医院 一种精确插空肠的辅助装置
CN112384130A (zh) * 2018-06-28 2021-02-19 贝克顿·迪金森公司 用于标准化血液培养测量系统中的信号的系统和方法
CN113424048A (zh) * 2019-03-25 2021-09-21 人工智能生物医学公司 组织检测系统及其使用方法

Families Citing this family (230)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8229549B2 (en) 2004-07-09 2012-07-24 Tyco Healthcare Group Lp Surgical imaging device
US6288043B1 (en) 1999-06-18 2001-09-11 Orquest, Inc. Injectable hyaluronate-sulfated polysaccharide conjugates
DE60014702T2 (de) * 1999-12-22 2006-02-02 Xillix Technologies Corp., Richmond Tragbares system zur ermittlung von hautanomalien
US6603552B1 (en) 1999-12-22 2003-08-05 Xillix Technologies Corp. Portable system for detecting skin abnormalities based on characteristic autofluorescence
EP1167951B1 (en) 2000-06-26 2005-04-13 Fuji Photo Film Co., Ltd. Fluorescent image obtaining apparatus
EP1731087A3 (en) 2000-07-14 2008-08-06 Novadaq Technologies Inc. Compact fluorescent endoscopy video system
JP2002034913A (ja) * 2000-07-27 2002-02-05 Asahi Optical Co Ltd 電子内視鏡システムの光源装置の光学系
JP4321697B2 (ja) * 2000-08-02 2009-08-26 富士フイルム株式会社 蛍光画像表示方法および装置
US6582363B2 (en) * 2000-08-25 2003-06-24 Pentax Corporation Video endoscope system and illumination optical system
JP2002065582A (ja) * 2000-08-25 2002-03-05 Asahi Optical Co Ltd 電子内視鏡装置
JP2002095634A (ja) * 2000-09-26 2002-04-02 Fuji Photo Film Co Ltd 内視鏡装置
US7181265B2 (en) 2000-12-04 2007-02-20 Fuji Photo Film Co., Ltd. Fluorescent image obtaining apparatus
IL157158A0 (en) * 2001-03-02 2004-02-08 Spectrx Inc System and method for determining tissue characteristics
WO2002080376A2 (en) * 2001-03-29 2002-10-10 Given Imaging Ltd. A method for timing control
DE10116859C2 (de) 2001-04-04 2003-10-09 Wolf Gmbh Richard Vorrichtung zur bildgebenden Diagnose von Gewebe
US7123756B2 (en) * 2001-04-27 2006-10-17 Fuji Photo Film Co., Ltd. Method and apparatus for standardized fluorescence image generation
US7172553B2 (en) 2001-05-16 2007-02-06 Olympus Corporation Endoscope system using normal light and fluorescence
US7113217B2 (en) 2001-07-13 2006-09-26 Xenogen Corporation Multi-view imaging apparatus
US6863651B2 (en) * 2001-10-19 2005-03-08 Visionscope, Llc Miniature endoscope with imaging fiber system
US20070167681A1 (en) * 2001-10-19 2007-07-19 Gill Thomas J Portable imaging system employing a miniature endoscope
DE10153900B4 (de) * 2001-11-02 2006-04-27 Richard Wolf Gmbh Vorrichtung zur bildgebenden Diagnose von Gewebe
US20060241496A1 (en) 2002-01-15 2006-10-26 Xillix Technologies Corp. Filter for use with imaging endoscopes
AU2003269438A1 (en) * 2002-09-30 2004-04-19 Given Imaging Ltd. In-vivo sensing system
WO2004059568A1 (en) * 2002-12-26 2004-07-15 Given Imaging Ltd. In vivo imaging device and method of manufacture thereof
DE102004001856B4 (de) 2003-01-14 2019-05-23 J. Morita Mfg. Corp. Bilderstellungsgerät für Diagnosezwecke
JP4475923B2 (ja) * 2003-01-14 2010-06-09 株式会社モリタ製作所 診断用撮影器
JP4521180B2 (ja) * 2003-12-05 2010-08-11 株式会社モリタ製作所 診断用撮影器
JP4394356B2 (ja) * 2003-02-07 2010-01-06 Hoya株式会社 電子内視鏡装置
DE10305599A1 (de) * 2003-02-11 2004-08-26 Richard Wolf Gmbh Vorrichtung zur bildgebenden Diagnose von Gewebe
JP4394395B2 (ja) * 2003-08-19 2010-01-06 Hoya株式会社 内視鏡システム
US20050113641A1 (en) * 2003-11-22 2005-05-26 Bala John L. Endoscopic imaging and intervention system
US20080017787A1 (en) * 2004-04-30 2008-01-24 J. Morita Manufacturing Corporation Living Body Observing Apparatus, Intraoral Imaging Apparatus and Medical Treatment Appliance
JP4611674B2 (ja) * 2004-06-29 2011-01-12 Hoya株式会社 電子内視鏡システム
US8109981B2 (en) 2005-01-25 2012-02-07 Valam Corporation Optical therapies and devices
JP4814529B2 (ja) * 2005-02-16 2011-11-16 Hoya株式会社 画像処理装置
JP2006242678A (ja) * 2005-03-02 2006-09-14 Pentax Corp 回転位置検出装置および内視鏡装置
EP1889039B1 (de) * 2005-05-31 2015-04-22 W.O.M. World of Medicine AG Verfahren und vorrichtung zur optischen charakterisierung von gewebe
US20070122344A1 (en) 2005-09-02 2007-05-31 University Of Rochester Medical Center Office Of Technology Transfer Intraoperative determination of nerve location
US20080312502A1 (en) * 2005-12-02 2008-12-18 Christopher Paul Swain System and Device for in Vivo Procedures
WO2007106624A2 (en) 2006-02-07 2007-09-20 Novadaq Technologies Inc. Near infrared imaging
JP4974586B2 (ja) * 2006-05-24 2012-07-11 オリンパス株式会社 顕微鏡用撮像装置
US11001881B2 (en) 2006-08-24 2021-05-11 California Institute Of Technology Methods for detecting analytes
US11525156B2 (en) 2006-07-28 2022-12-13 California Institute Of Technology Multiplex Q-PCR arrays
WO2008011722A1 (en) 2006-07-28 2008-01-31 Novadaq Technologies Inc. System and method for deposition and removal of an optical element on an endoscope objective
WO2008014485A2 (en) 2006-07-28 2008-01-31 California Institute Of Technology Multiplex q-pcr arrays
FR2904927B1 (fr) * 2006-08-17 2018-05-18 Mauna Kea Technologies Utilisation d'un systeme d'imagerie par fluorescence confocale fibre in vivo in situ, systeme et procede d'imagerie par fluorescence confocale fibres in vivo in situ
US11560588B2 (en) 2006-08-24 2023-01-24 California Institute Of Technology Multiplex Q-PCR arrays
US20080161744A1 (en) 2006-09-07 2008-07-03 University Of Rochester Medical Center Pre-And Intra-Operative Localization of Penile Sentinel Nodes
US8498695B2 (en) 2006-12-22 2013-07-30 Novadaq Technologies Inc. Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
JP2008161550A (ja) * 2006-12-28 2008-07-17 Olympus Corp 内視鏡システム
FR2911965B1 (fr) * 2007-01-30 2009-06-26 Univ Claude Bernard Lyon Sonde miniaturisee pour la mesure d'un rayonnement haute energie et dispositif de mesure en faisant application
US7996068B2 (en) * 2007-03-14 2011-08-09 The Board Of Trustees Of The Leland Stanford Junior University Surgical method and apparatus for identification of fluorescence
JP5000379B2 (ja) * 2007-05-22 2012-08-15 新日本製鐵株式会社 レーザ誘起蛍光分析法及びレーザ誘起蛍光分析プローブ
US9072445B2 (en) * 2008-01-24 2015-07-07 Lifeguard Surgical Systems Inc. Common bile duct surgical imaging system
US8406860B2 (en) 2008-01-25 2013-03-26 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
JP2009201940A (ja) * 2008-02-29 2009-09-10 Hoya Corp 内視鏡光源システム、内視鏡光源装置、内視鏡プロセッサ、および内視鏡ユニット
JP2009207584A (ja) * 2008-03-03 2009-09-17 Hoya Corp 内視鏡装置
KR101517264B1 (ko) 2008-03-18 2015-05-04 노바다크 테크놀러지즈 인코포레이티드 결합된 풀-칼라 반사 및 근-적외선 이미지용 이미지 시스템
JP5226352B2 (ja) * 2008-03-21 2013-07-03 オリンパス株式会社 生体観察装置及び生体観察方法
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
EP3372250B1 (en) 2008-05-02 2019-12-25 Novadaq Technologies ULC Methods for production and use of substance-loaded erythrocytes for observation and treatment of microvascular hemodynamics
TR201901658T4 (tr) 2008-05-20 2019-02-21 Univ Health Network Floresan bazli görüntüleme ve i̇zleme i̇çi̇n ci̇haz ve metot
JP5435916B2 (ja) * 2008-09-18 2014-03-05 富士フイルム株式会社 電子内視鏡システム
EP2359176A1 (en) * 2008-11-14 2011-08-24 Koninklijke Philips Electronics N.V. Optical fiber scanning probe
US8300093B2 (en) * 2009-01-12 2012-10-30 Fujifilm Corporation Endoscope image processing method and apparatus, and endoscope system using the same
US9339221B1 (en) * 2009-03-24 2016-05-17 Vioptix, Inc. Diagnosing intestinal ischemia based on oxygen saturation measurements
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
EP3811847A1 (en) 2009-06-18 2021-04-28 EndoChoice, Inc. Multi-camera endoscope
US9101268B2 (en) 2009-06-18 2015-08-11 Endochoice Innovation Center Ltd. Multi-camera endoscope
US9872609B2 (en) 2009-06-18 2018-01-23 Endochoice Innovation Center Ltd. Multi-camera endoscope
US9706903B2 (en) 2009-06-18 2017-07-18 Endochoice, Inc. Multiple viewing elements endoscope system with modular imaging units
US9713417B2 (en) 2009-06-18 2017-07-25 Endochoice, Inc. Image capture assembly for use in a multi-viewing elements endoscope
US11278190B2 (en) 2009-06-18 2022-03-22 Endochoice, Inc. Multi-viewing element endoscope
US9901244B2 (en) 2009-06-18 2018-02-27 Endochoice, Inc. Circuit board assembly of a multiple viewing elements endoscope
US11864734B2 (en) 2009-06-18 2024-01-09 Endochoice, Inc. Multi-camera endoscope
US9642513B2 (en) 2009-06-18 2017-05-09 Endochoice Inc. Compact multi-viewing element endoscope system
US9402533B2 (en) 2011-03-07 2016-08-02 Endochoice Innovation Center Ltd. Endoscope circuit board assembly
US10165929B2 (en) 2009-06-18 2019-01-01 Endochoice, Inc. Compact multi-viewing element endoscope system
WO2012120507A1 (en) 2011-02-07 2012-09-13 Peermedical Ltd. Multi-element cover for a multi-camera endoscope
US9492063B2 (en) 2009-06-18 2016-11-15 Endochoice Innovation Center Ltd. Multi-viewing element endoscope
US8926502B2 (en) 2011-03-07 2015-01-06 Endochoice, Inc. Multi camera endoscope having a side service channel
US9101287B2 (en) 2011-03-07 2015-08-11 Endochoice Innovation Center Ltd. Multi camera endoscope assembly having multiple working channels
US11547275B2 (en) 2009-06-18 2023-01-10 Endochoice, Inc. Compact multi-viewing element endoscope system
JP2013505763A (ja) * 2009-09-24 2013-02-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 増加した走査速度を持つ光プローブシステム
US8696653B2 (en) * 2009-10-02 2014-04-15 Cardiofocus, Inc. Cardiac ablation system with pulsed aiming light
DE102010009476A1 (de) * 2009-12-15 2011-06-16 Testo Ag Verfahren und Vorrichtung zur Visualisierung von ortsaufgelösten Messergebnissen von nicht unmittelbar für das menschliche Auge sichtbaren Eigenschaften
EP2359745A1 (en) 2010-02-12 2011-08-24 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Method and device for multi-spectral photonic imaging
JP5562683B2 (ja) * 2010-03-03 2014-07-30 オリンパス株式会社 蛍光観察装置
JP5690327B2 (ja) 2010-03-09 2015-03-25 オリンパス株式会社 蛍光内視鏡装置
SE534835C2 (sv) * 2010-05-18 2012-01-17 Gynius Ab Portabel anordning för cervisk undersökning innefattande flera ljusemitterande dioder anordnade i grupper
JP4879374B2 (ja) * 2010-05-19 2012-02-22 オリンパスメディカルシステムズ株式会社 内視鏡及び内視鏡装置
US9211058B2 (en) * 2010-07-02 2015-12-15 Intuitive Surgical Operations, Inc. Method and system for fluorescent imaging with background surgical image composed of selective illumination spectra
US10682198B2 (en) * 2010-07-02 2020-06-16 Intuitive Surgical Operations, Inc. Method and system for fluorescent imaging with background surgical image composed of selective illumination spectra
US8295693B2 (en) * 2010-07-02 2012-10-23 Intuitive Surgical Operations, Inc. Dual optical path prism and camera in a minimally invasive surgical system
EP2848190B1 (en) 2010-09-08 2016-11-02 Covidien LP Catheter with imaging assembly
US9560953B2 (en) 2010-09-20 2017-02-07 Endochoice, Inc. Operational interface in a multi-viewing element endoscope
EP3718466B1 (en) 2010-09-20 2023-06-07 EndoChoice, Inc. Endoscope distal section comprising a unitary fluid channeling component
JP5371920B2 (ja) * 2010-09-29 2013-12-18 富士フイルム株式会社 内視鏡装置
CN101940463B (zh) * 2010-10-09 2012-02-08 华中科技大学 活体荧光内窥成像系统
JP5122027B2 (ja) * 2010-10-25 2013-01-16 オリンパスメディカルシステムズ株式会社 内視鏡のコネクタ
CN103403605A (zh) * 2010-10-28 2013-11-20 恩多巧爱思创新中心有限公司 用于多传感器内窥镜的光学系统
EP3420886B8 (en) 2010-12-09 2020-07-15 EndoChoice, Inc. Flexible electronic circuit board multi-camera endoscope
US11889986B2 (en) 2010-12-09 2024-02-06 Endochoice, Inc. Flexible electronic circuit board for a multi-camera endoscope
JP6054874B2 (ja) 2010-12-09 2016-12-27 エンドチョイス イノベーション センター リミテッド マルチカメラ内視鏡用フレキシブル電子回路基板
KR20140000329A (ko) 2011-03-08 2014-01-02 노바다크 테크놀러지즈 인코포레이티드 풀 스펙트럼 led 조명기
US8900126B2 (en) 2011-03-23 2014-12-02 United Sciences, Llc Optical scanning device
EP2735257A4 (en) * 2011-07-22 2015-05-27 Olympus Corp FLUORESCENCE ENDOSCOPE SYSTEM
WO2013027034A1 (en) * 2011-08-19 2013-02-28 Malvern Instruments Limited Dual-mode characterization of particulates
JP5926909B2 (ja) 2011-09-07 2016-05-25 オリンパス株式会社 蛍光観察装置
EP2744396B1 (en) 2011-10-13 2022-02-09 Koninklijke Philips N.V. Medical probe with multi-fiber lumen
EP2604172B1 (en) 2011-12-13 2015-08-12 EndoChoice Innovation Center Ltd. Rotatable connector for an endoscope
EP3659491A1 (en) 2011-12-13 2020-06-03 EndoChoice Innovation Center Ltd. Removable tip endoscope
US10244927B2 (en) 2011-12-29 2019-04-02 Cook Medical Technologies Llc Space-optimized visualization catheter with camera train holder
US9668643B2 (en) 2011-12-29 2017-06-06 Cook Medical Technologies Llc Space-optimized visualization catheter with oblong shape
EP3150106B1 (en) 2011-12-29 2024-03-27 Cook Medical Technologies LLC Space-optimized visualization catheter having a camera train holder in a catheter with off-centered lumens
EP2796085A4 (en) * 2012-02-17 2015-10-07 Olympus Medical Systems Corp ENDOSCOPIC DEVICE
US8900125B2 (en) 2012-03-12 2014-12-02 United Sciences, Llc Otoscanning with 3D modeling
US9061082B2 (en) * 2012-04-16 2015-06-23 Sensor Electronic Technology, Inc. Ultraviolet-based sterilization
US9999782B2 (en) 2012-04-16 2018-06-19 Sensor Electronic Technology, Inc. Ultraviolet-based sterilization
JP6103824B2 (ja) * 2012-06-04 2017-03-29 オリンパス株式会社 蛍光内視鏡装置
WO2013187148A1 (ja) 2012-06-15 2013-12-19 オリンパス株式会社 画像処理装置、顕微鏡システム、内視鏡システム及び画像処理方法
US10278585B2 (en) 2012-06-21 2019-05-07 Novadaq Technologies ULC Quantification and analysis of angiography and perfusion
US9560954B2 (en) 2012-07-24 2017-02-07 Endochoice, Inc. Connector for use with endoscope
USD735343S1 (en) 2012-09-07 2015-07-28 Covidien Lp Console
US9517184B2 (en) 2012-09-07 2016-12-13 Covidien Lp Feeding tube with insufflation device and related methods therefor
USD716841S1 (en) 2012-09-07 2014-11-04 Covidien Lp Display screen with annotate file icon
USD717340S1 (en) 2012-09-07 2014-11-11 Covidien Lp Display screen with enteral feeding icon
US9198835B2 (en) 2012-09-07 2015-12-01 Covidien Lp Catheter with imaging assembly with placement aid and related methods therefor
JP6542130B2 (ja) * 2013-01-28 2019-07-10 オスロ ユニヴェルジテットサイケフス ホーエフ 循環不全の評価
US9986899B2 (en) 2013-03-28 2018-06-05 Endochoice, Inc. Manifold for a multiple viewing elements endoscope
US9993142B2 (en) 2013-03-28 2018-06-12 Endochoice, Inc. Fluid distribution device for a multiple viewing elements endoscope
US10499794B2 (en) 2013-05-09 2019-12-10 Endochoice, Inc. Operational interface in a multi-viewing element endoscope
DE102014107342B4 (de) 2014-05-24 2023-05-04 Frank Braun Vorrichtung und Verfahren zur Erkennung von Krebstumoren und anderen Gewebeveränderungen
CN115919256A (zh) 2014-07-24 2023-04-07 大学健康网络 用于诊断目的的数据的收集和分析
CN104305957B (zh) * 2014-08-28 2016-09-28 中国科学院自动化研究所 头戴式分子影像导航系统
WO2016032729A1 (en) * 2014-08-29 2016-03-03 Reinroth Gmbh Endoscope system with concurrent imaging in visible and infrared wavelengths
CN107209118B (zh) 2014-09-29 2021-05-28 史赛克欧洲运营有限公司 在自体荧光存在下生物材料中目标荧光团的成像
CN107427247B (zh) 2014-10-09 2021-06-04 史赛克欧洲运营有限公司 使用荧光介导的光电容积描记法的组织中的绝对血液流动的定量
WO2016079808A1 (ja) * 2014-11-18 2016-05-26 オリンパス株式会社 内視鏡用光源システム
WO2016117049A1 (ja) * 2015-01-21 2016-07-28 オリンパス株式会社 内視鏡装置
JP6485694B2 (ja) * 2015-03-26 2019-03-20 ソニー株式会社 情報処理装置および方法
US10244987B2 (en) * 2015-08-13 2019-04-02 Pixart Imaging Inc. Physiological detection system with adjustable signal source and operating method thereof
JP6409978B2 (ja) * 2015-08-28 2018-10-24 パナソニックIpマネジメント株式会社 撮像装置および撮像方法
WO2017079844A1 (en) 2015-11-13 2017-05-18 Novadaq Technologies Inc. Systems and methods for illumination and imaging of a target
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
WO2017155858A1 (en) 2016-03-07 2017-09-14 Insilixa, Inc. Nucleic acid sequence identification using solid-phase cyclic single base extension
US10293122B2 (en) 2016-03-17 2019-05-21 Novadaq Technologies ULC Endoluminal introducer with contamination avoidance
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
DE102016210357A1 (de) * 2016-06-10 2017-12-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Erfassung einer Belegung einer Oberfläche mittels induzierter Fluoreszenz
CA3027592A1 (en) 2016-06-14 2017-12-21 John Josef Paul FENGLER Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
DE112016007048T5 (de) * 2016-07-05 2019-03-21 Olympus Corporation Schmalband-Lichtquellen umfassende Beleuchtungsvorrichtung
US10141158B2 (en) * 2016-12-05 2018-11-27 Taiwan Semiconductor Manufacturing Co., Ltd. Wafer and DUT inspection apparatus and method using thereof
EP3562376A4 (en) 2016-12-27 2020-11-11 DePuy Synthes Products, Inc. SYSTEMS, METHODS AND DEVICES FOR PROVIDING LIGHTING IN AN ENDOSCOPIC IMAGING ENVIRONMENT
US10918456B2 (en) * 2017-02-03 2021-02-16 Sony Olympus Medical Solutions Inc. Protective cover and medical observation apparatus
US11140305B2 (en) 2017-02-10 2021-10-05 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods
US20200397266A1 (en) * 2017-03-10 2020-12-24 Transenterix Surgical, Inc. Apparatus and method for enhanced tissue visualization
CA3063187A1 (en) * 2017-05-16 2018-11-22 Research Development Foundation Apparatus and methods for endometrial tissue identification
EP3685733A4 (en) * 2017-09-22 2021-06-23 Toray Industries, Inc. PLASTIC OPTICAL FIBER FOR MEDICAL DEVICE LIGHTING AND MEDICAL DEVICE LIGHTING USING IT
WO2019123796A1 (ja) * 2017-12-22 2019-06-27 オリンパス株式会社 内視鏡システム
KR20200104373A (ko) 2017-12-27 2020-09-03 에티컨, 엘엘씨 광 결핍 환경에서의 형광 이미징
JP7337073B2 (ja) * 2018-08-17 2023-09-01 富士フイルム株式会社 医用画像処理装置及び内視鏡システム並びに医用画像処理装置の作動方法
CN113228228A (zh) 2018-12-06 2021-08-06 埃塞力达技术新加坡有限私人贸易公司 激光维持等离子体及内窥镜光源
USD908161S1 (en) 2019-01-15 2021-01-19 Moleculight, Inc. Handheld imaging device
USD910182S1 (en) 2019-01-17 2021-02-09 Sbi Alapharma Canada, Inc. Handheld multi-modal imaging device
USD908881S1 (en) 2019-01-17 2021-01-26 Sbi Alapharma Canada, Inc. Handheld endoscopic imaging device
CN113613550A (zh) * 2019-01-17 2021-11-05 Sbi 艾拉制药加拿大有限公司 用于使肿瘤可视化和移除的装置、系统和方法
US11819193B2 (en) 2019-02-26 2023-11-21 Ai Biomed Corp. Tissue detection system and methods for use thereof
WO2020186252A1 (en) * 2019-03-14 2020-09-17 Insilixa, Inc. Methods and systems for time-gated fluorescent-based detection
JP2022525322A (ja) 2019-03-14 2022-05-12 インシリクサ, インコーポレイテッド 時間ゲート蛍光ベースの検出のための方法およびシステム
US11924535B2 (en) 2019-06-20 2024-03-05 Cila GmbH International Controlling integral energy of a laser pulse in a laser mapping imaging system
US11457154B2 (en) * 2019-06-20 2022-09-27 Cilag Gmbh International Speckle removal in a pulsed hyperspectral, fluorescence, and laser mapping imaging system
US11398011B2 (en) 2019-06-20 2022-07-26 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed laser mapping imaging system
US11892403B2 (en) 2019-06-20 2024-02-06 Cilag Gmbh International Image synchronization without input clock and data transmission clock in a pulsed fluorescence imaging system
US11187657B2 (en) 2019-06-20 2021-11-30 Cilag Gmbh International Hyperspectral imaging with fixed pattern noise cancellation
US20200400502A1 (en) * 2019-06-20 2020-12-24 Ethicon Llc Driving light emissions according to a jitter specification in a hyperspectral imaging system
US10952619B2 (en) 2019-06-20 2021-03-23 Ethicon Llc Hyperspectral and fluorescence imaging and topology laser mapping with minimal area monolithic image sensor
US11671691B2 (en) 2019-06-20 2023-06-06 Cilag Gmbh International Image rotation in an endoscopic laser mapping imaging system
US11172810B2 (en) 2019-06-20 2021-11-16 Cilag Gmbh International Speckle removal in a pulsed laser mapping imaging system
US11012599B2 (en) 2019-06-20 2021-05-18 Ethicon Llc Hyperspectral imaging in a light deficient environment
US11187658B2 (en) 2019-06-20 2021-11-30 Cilag Gmbh International Fluorescence imaging with fixed pattern noise cancellation
US11622094B2 (en) * 2019-06-20 2023-04-04 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for fluorescence imaging
US11432706B2 (en) 2019-06-20 2022-09-06 Cilag Gmbh International Hyperspectral imaging with minimal area monolithic image sensor
US11141052B2 (en) 2019-06-20 2021-10-12 Cilag Gmbh International Image rotation in an endoscopic fluorescence imaging system
US11233960B2 (en) * 2019-06-20 2022-01-25 Cilag Gmbh International Fluorescence imaging with fixed pattern noise cancellation
US11533417B2 (en) 2019-06-20 2022-12-20 Cilag Gmbh International Laser scanning and tool tracking imaging in a light deficient environment
US11700995B2 (en) * 2019-06-20 2023-07-18 Cilag Gmbh International Speckle removal in a pulsed fluorescence imaging system
US11412920B2 (en) 2019-06-20 2022-08-16 Cilag Gmbh International Speckle removal in a pulsed fluorescence imaging system
US11134832B2 (en) 2019-06-20 2021-10-05 Cilag Gmbh International Image rotation in an endoscopic hyperspectral, fluorescence, and laser mapping imaging system
US11172811B2 (en) 2019-06-20 2021-11-16 Cilag Gmbh International Image rotation in an endoscopic fluorescence imaging system
US11154188B2 (en) 2019-06-20 2021-10-26 Cilag Gmbh International Laser mapping imaging and videostroboscopy of vocal cords
US11276148B2 (en) 2019-06-20 2022-03-15 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed fluorescence imaging system
US11540696B2 (en) 2019-06-20 2023-01-03 Cilag Gmbh International Noise aware edge enhancement in a pulsed fluorescence imaging system
US11389066B2 (en) 2019-06-20 2022-07-19 Cilag Gmbh International Noise aware edge enhancement in a pulsed hyperspectral, fluorescence, and laser mapping imaging system
US11237270B2 (en) * 2019-06-20 2022-02-01 Cilag Gmbh International Hyperspectral, fluorescence, and laser mapping imaging with fixed pattern noise cancellation
US11221414B2 (en) 2019-06-20 2022-01-11 Cilag Gmbh International Laser mapping imaging with fixed pattern noise cancellation
US11633089B2 (en) 2019-06-20 2023-04-25 Cilag Gmbh International Fluorescence imaging with minimal area monolithic image sensor
US11294062B2 (en) 2019-06-20 2022-04-05 Cilag Gmbh International Dynamic range using a monochrome image sensor for hyperspectral and fluorescence imaging and topology laser mapping
US11589819B2 (en) 2019-06-20 2023-02-28 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a laser mapping imaging system
US10841504B1 (en) * 2019-06-20 2020-11-17 Ethicon Llc Fluorescence imaging with minimal area monolithic image sensor
US11471055B2 (en) 2019-06-20 2022-10-18 Cilag Gmbh International Noise aware edge enhancement in a pulsed fluorescence imaging system
US20200397267A1 (en) * 2019-06-20 2020-12-24 Ethicon Llc Speckle removal in a pulsed fluorescence imaging system
US20200397240A1 (en) * 2019-06-20 2020-12-24 Ethicon Llc Laser mapping with minimal area monolithic image sensor
US10979646B2 (en) 2019-06-20 2021-04-13 Ethicon Llc Fluorescence imaging with minimal area monolithic image sensor
US11617541B2 (en) 2019-06-20 2023-04-04 Cilag Gmbh International Optical fiber waveguide in an endoscopic system for fluorescence imaging
US11218645B2 (en) * 2019-06-20 2022-01-04 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for fluorescence imaging
US20200397246A1 (en) 2019-06-20 2020-12-24 Ethicon Llc Minimizing image sensor input/output in a pulsed hyperspectral, fluorescence, and laser mapping imaging system
US11898909B2 (en) 2019-06-20 2024-02-13 Cilag Gmbh International Noise aware edge enhancement in a pulsed fluorescence imaging system
US11624830B2 (en) 2019-06-20 2023-04-11 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for laser mapping imaging
US11674848B2 (en) 2019-06-20 2023-06-13 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for hyperspectral imaging
US11937784B2 (en) 2019-06-20 2024-03-26 Cilag Gmbh International Fluorescence imaging in a light deficient environment
US11758256B2 (en) 2019-06-20 2023-09-12 Cilag Gmbh International Fluorescence imaging in a light deficient environment
US11793399B2 (en) 2019-06-20 2023-10-24 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed hyperspectral imaging system
US11375886B2 (en) 2019-06-20 2022-07-05 Cilag Gmbh International Optical fiber waveguide in an endoscopic system for laser mapping imaging
US11925328B2 (en) 2019-06-20 2024-03-12 Cilag Gmbh International Noise aware edge enhancement in a pulsed hyperspectral imaging system
US11903563B2 (en) 2019-06-20 2024-02-20 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a fluorescence imaging system
US20200400795A1 (en) * 2019-06-20 2020-12-24 Ethicon Llc Noise aware edge enhancement in a pulsed laser mapping imaging system
US11716543B2 (en) 2019-06-20 2023-08-01 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for fluorescence imaging
US11412152B2 (en) 2019-06-20 2022-08-09 Cilag Gmbh International Speckle removal in a pulsed hyperspectral imaging system
US11360028B2 (en) * 2019-06-20 2022-06-14 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed hyperspectral, fluorescence, and laser mapping imaging system
US11122968B2 (en) 2019-06-20 2021-09-21 Cilag Gmbh International Optical fiber waveguide in an endoscopic system for hyperspectral imaging
US11288772B2 (en) 2019-06-20 2022-03-29 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed fluorescence imaging system
US11516388B2 (en) 2019-06-20 2022-11-29 Cilag Gmbh International Pulsed illumination in a fluorescence imaging system
US11931009B2 (en) 2019-06-20 2024-03-19 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a hyperspectral imaging system
US11265491B2 (en) * 2019-06-20 2022-03-01 Cilag Gmbh International Fluorescence imaging with fixed pattern noise cancellation
US11716533B2 (en) 2019-06-20 2023-08-01 Cilag Gmbh International Image synchronization without input clock and data transmission clock in a pulsed fluorescence imaging system
US11550057B2 (en) 2019-06-20 2023-01-10 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a fluorescence imaging system
US11516387B2 (en) 2019-06-20 2022-11-29 Cilag Gmbh International Image synchronization without input clock and data transmission clock in a pulsed hyperspectral, fluorescence, and laser mapping imaging system
EP4179297A1 (en) * 2020-07-09 2023-05-17 Axon Imaging, LLC Advanced nervous tissue imaging system
DE102021001955B4 (de) 2021-04-14 2023-03-23 Baumer Inspection Gmbh Vorrichtung und Verfahren zur fluoreszenzbasierten Inspektion sowie Prüfanordung mit einer solchen Vorrichtung
WO2023086971A1 (en) * 2021-11-11 2023-05-19 Black Light Surgical, Inc. Systems and methods for tissue characterization

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US599844A (en) * 1898-03-01 Half to alexander rambo
US4261344A (en) 1979-09-24 1981-04-14 Welch Allyn, Inc. Color endoscope
US4253447A (en) 1978-10-16 1981-03-03 Welch Allyn, Inc. Color endoscope with charge coupled device and television viewing
FR2521727A2 (fr) * 1981-03-25 1983-08-19 Cilas Dispositif pour mesurer l'etat d'oxydo-reduction d'un organe vivant in situ
US4535758A (en) * 1983-10-07 1985-08-20 Welch Allyn Inc. Signal level control for video system
JPS60137342A (ja) 1983-12-27 1985-07-20 オリンパス光学工業株式会社 電子スコ−プ
US4746203A (en) 1984-08-15 1988-05-24 Olympus Optical Co., Ltd. Optical system for endoscope
JPS61113428A (ja) * 1984-11-07 1986-05-31 オリンパス光学工業株式会社 内視鏡装置
US4791479A (en) * 1986-06-04 1988-12-13 Olympus Optical Co., Ltd. Color-image sensing apparatus
JPS63122421A (ja) 1986-11-12 1988-05-26 株式会社東芝 内視鏡装置
US5255087A (en) 1986-11-29 1993-10-19 Olympus Optical Co., Ltd. Imaging apparatus and endoscope apparatus using the same
GB8701521D0 (en) 1987-01-23 1993-12-01 British Aerospace Multi-parameter imaging polarimeter
US4746283A (en) * 1987-04-01 1988-05-24 Hobson Gerald R Head tooling parison adapter plates
US4852579A (en) * 1987-04-20 1989-08-01 Karl Storz Endoscopy Gmbh And Company Photocharacterization and treatment of normal abnormal and ectopic endometrium
JPH0828839B2 (ja) 1987-04-21 1996-03-21 オリンパス光学工業株式会社 テレビカメラ装置
JP2858458B2 (ja) * 1987-05-20 1999-02-17 オリンパス光学工業株式会社 画像記録再生装置
EP0380586B1 (en) 1987-09-24 1999-12-08 Massachusetts Institute Of Technology Catheter system for imaging
JP2732462B2 (ja) 1987-09-30 1998-03-30 オリンパス光学工業株式会社 オートフォーカス付きビデオエンドスコープ装置
DE3817915C2 (de) 1988-05-26 1997-08-28 Storz Karl Gmbh & Co Flexibles Endoskop
SE462092B (sv) * 1988-10-17 1990-05-07 Nitro Nobel Ab Initieringselement foer primaerspraengaemnesfria spraengkapslar
US5143054A (en) 1988-12-28 1992-09-01 Adair Edwin Lloyd Cervical videoscope with detachable camera unit
JP2987816B2 (ja) * 1989-01-30 1999-12-06 オリンパス光学工業株式会社 蛍光観察装置
US5697885A (en) * 1989-01-30 1997-12-16 Olympus Optical Co., Ltd. Endoscope for recording and displaying time-serial images
US5421337A (en) * 1989-04-14 1995-06-06 Massachusetts Institute Of Technology Spectral diagnosis of diseased tissue
JP2991299B2 (ja) * 1989-08-04 1999-12-20 株式会社東芝 内視鏡装置
JP2810717B2 (ja) * 1989-09-08 1998-10-15 オリンパス光学工業株式会社 蛍光観察用内視鏡
US5050568A (en) * 1990-03-08 1991-09-24 Siemens Automotive Limited Regulated flow canister purge system
DE4026821A1 (de) 1990-08-24 1992-03-05 Philips Patentverwaltung Verfahren zur erfassung von anomalien der haut, insbesondere von melanomen, sowie vorrichtung zur durchfuehrung des verfahrens
JP3164609B2 (ja) * 1990-10-31 2001-05-08 オリンパス光学工業株式会社 内視鏡装置
US5265200A (en) * 1990-11-01 1993-11-23 International Business Machines Corporation System and method for automatic image saturation, gamma, and exposure correction in a digitizing video capture system
JP3160914B2 (ja) * 1990-12-26 2001-04-25 豊田合成株式会社 窒化ガリウム系化合物半導体レーザダイオード
JPH06505183A (ja) 1991-02-26 1994-06-16 マサチユセツツ・インスチチユート・オブ・テクノロジー 組織を診断するための分子分光計のシステムおよび方法
JPH0595900A (ja) 1991-04-11 1993-04-20 Olympus Optical Co Ltd 内視鏡画像処理装置
CA2042075C (en) * 1991-05-08 2001-01-23 Branko Palcic Endoscopic imaging system
US5769792A (en) * 1991-07-03 1998-06-23 Xillix Technologies Corp. Endoscopic imaging system for diseased tissue
US5255887A (en) * 1991-07-15 1993-10-26 Spinnaker Industries Inc. Support for air conditioning unit
US5228438A (en) 1991-10-08 1993-07-20 Siemens Pacesetter, Inc. Implantable pacemaker including means and method of terminating a pacemaker-mediated tachycardia during rate adaptive pacing
US5467767A (en) * 1991-11-25 1995-11-21 Alfano; Robert R. Method for determining if tissue is malignant as opposed to non-malignant using time-resolved fluorescence spectroscopy
DE4200741C2 (de) * 1992-01-14 2000-06-15 Kaltenbach & Voigt Einrichtung zum Erkennen von Karies an Zähnen
US5241170A (en) 1992-02-19 1993-08-31 Itt Corporation Fiber optic imaging device and methods
WO1993025137A1 (en) 1992-06-05 1993-12-23 Adair Edwin Lloyd Operative electronic video endoscope
US6449006B1 (en) 1992-06-26 2002-09-10 Apollo Camera, Llc LED illumination system for endoscopic cameras
US5452723A (en) 1992-07-24 1995-09-26 Massachusetts Institute Of Technology Calibrated spectrographic imaging
US5482607A (en) * 1992-09-21 1996-01-09 Nissin Electric Co., Ltd. Film forming apparatus
US5381784A (en) 1992-09-30 1995-01-17 Adair; Edwin L. Stereoscopic endoscope
WO1994009694A1 (en) 1992-10-28 1994-05-11 Arsenault, Dennis, J. Electronic endoscope
US5298741A (en) 1993-01-13 1994-03-29 Trustees Of Tufts College Thin film fiber optic sensor array and apparatus for concurrent viewing and chemical sensing of a sample
EP0689597A4 (en) * 1993-03-16 1998-10-21 Austin Research Inst USE OF PIG GAL-g (a) (1,3) GALACTOSYL TRANSFERASE FOR XENOGENE THERAPIES
US5512940A (en) * 1993-03-19 1996-04-30 Olympus Optical Co., Ltd. Image processing apparatus, endoscope image sensing and processing apparatus, and image processing method for performing different displays depending upon subject quantity
US5438975A (en) 1993-03-24 1995-08-08 Machida Endoscope Co., Ltd. Distal tip of endoscope having spirally coiled control wires
AU6622494A (en) 1993-04-07 1994-10-24 Optik, Inc. Endoscope provided with a distally located color ccd
US5413108A (en) * 1993-04-21 1995-05-09 The Research Foundation Of City College Of New York Method and apparatus for mapping a tissue sample for and distinguishing different regions thereof based on luminescence measurements of cancer-indicative native fluorophor
US5421339A (en) 1993-05-12 1995-06-06 Board Of Regents, The University Of Texas System Diagnosis of dysplasia using laser induced fluoroescence
WO1995011624A2 (en) 1993-10-29 1995-05-04 Feld Michael S A raman endoscope
US5749830A (en) 1993-12-03 1998-05-12 Olympus Optical Co., Ltd. Fluorescent endoscope apparatus
US5590660A (en) 1994-03-28 1997-01-07 Xillix Technologies Corp. Apparatus and method for imaging diseased tissue using integrated autofluorescence
US5547455A (en) 1994-03-30 1996-08-20 Medical Media Systems Electronically steerable endoscope
US5546475A (en) * 1994-04-29 1996-08-13 International Business Machines Corporation Produce recognition system
JP3455289B2 (ja) 1994-06-23 2003-10-14 ペンタックス株式会社 蛍光診断用内視鏡装置
DE19535114B4 (de) 1994-09-21 2013-09-05 Hoya Corp. Endoskopsystem mit Fluoreszenzdiagnose
US5579773A (en) * 1994-09-30 1996-12-03 Martin Marietta Energy Systems, Inc. Laser-induced differential normalized fluorescence method for cancer diagnosis
JP3411737B2 (ja) 1995-03-03 2003-06-03 ペンタックス株式会社 生体の蛍光診断装置
US5891816A (en) * 1995-06-07 1999-04-06 Industrial Technology Research Institute Single site catalysts with MAO or borate free and their application for polyolefins
US5840017A (en) * 1995-08-03 1998-11-24 Asahi Kogaku Kogyo Kabushiki Kaisha Endoscope system
DE19627369A1 (de) * 1995-09-26 1997-10-09 Herrmann Dr Heinrich Verfahren und Anordnung zur nichtinvasiven Bestimmung des oxidativen Streßzustandes
EP0957750A1 (en) * 1995-10-23 1999-11-24 Cytometrics, Inc. Method and apparatus for reflected imaging analysis
JP3435268B2 (ja) 1995-11-09 2003-08-11 ペンタックス株式会社 蛍光観察内視鏡装置
US5719399A (en) 1995-12-18 1998-02-17 The Research Foundation Of City College Of New York Imaging and characterization of tissue based upon the preservation of polarized light transmitted therethrough
US5751838A (en) * 1996-01-26 1998-05-12 Nec Research Institute, Inc. Correction of camera motion between two image frames
US5647368A (en) 1996-02-28 1997-07-15 Xillix Technologies Corp. Imaging system for detecting diseased tissue using native fluorsecence in the gastrointestinal and respiratory tract
DE19612536A1 (de) 1996-03-29 1997-10-02 Freitag Lutz Dr Anordnung und Verfahren zur Diagnose von malignem Gewebe durch Fluoreszenzbetrachtung
DE19646236C2 (de) * 1996-11-08 1998-11-19 Wolf Gmbh Richard Vorrichtung zur endoskopischen Diagnose und Behandlung von Gewebe
US6293911B1 (en) * 1996-11-20 2001-09-25 Olympus Optical Co., Ltd. Fluorescent endoscope system enabling simultaneous normal light observation and fluorescence observation in infrared spectrum
US6059720A (en) * 1997-03-07 2000-05-09 Asahi Kogaku Kogyo Kabushiki Kaisha Endoscope system with amplification of fluorescent image
CA2283949A1 (en) 1997-03-13 1998-09-17 Haishan Zeng Methods and apparatus for detecting the rejection of transplanted tissue
US5999844A (en) 1997-04-23 1999-12-07 Accumed International, Inc. Method and apparatus for imaging and sampling diseased tissue using autofluorescence
US6081740A (en) 1997-04-23 2000-06-27 Accumed International, Inc. Method and apparatus for imaging and sampling diseased tissue
JP3923595B2 (ja) * 1997-05-13 2007-06-06 オリンパス株式会社 蛍光観察装置
ES2403051T3 (es) * 1997-06-11 2013-05-13 Nalco Chemical Company Monitorización de la concentración de un producto de tratamiento químico en una muestra de suspensión o de polvo usando un fluorómetro
US6124597A (en) 1997-07-07 2000-09-26 Cedars-Sinai Medical Center Method and devices for laser induced fluorescence attenuation spectroscopy
US6422994B1 (en) * 1997-09-24 2002-07-23 Olympus Optical Co., Ltd. Fluorescent diagnostic system and method providing color discrimination enhancement
US6091984A (en) * 1997-10-10 2000-07-18 Massachusetts Institute Of Technology Measuring tissue morphology
DE19800312A1 (de) * 1998-01-07 1999-07-08 Wolf Gmbh Richard Diagnosegerät zur bildgebenden Aufnahme fluoreszierender biologischer Gewebebereiche
US6462770B1 (en) 1998-04-20 2002-10-08 Xillix Technologies Corp. Imaging system with automatic gain control for reflectance and fluorescence endoscopy
US5979423A (en) * 1998-05-29 1999-11-09 Ford Global Technologies, Inc. Fiber-optic gas composition sensor for exhaust gases
AU9119498A (en) 1998-06-16 2000-01-05 Bhaskar Banerjee Detection of cancer using cellular autofluorescence
EP1101083A1 (en) 1998-07-27 2001-05-23 Cedars-Sinai Medical Center Spectral topography of mammalian matter
JP3717675B2 (ja) 1998-08-21 2005-11-16 フジノン株式会社 内視鏡用光源装置
JP3309276B2 (ja) 1999-03-17 2002-07-29 エーカポット・パンナチェート 蛍光電子内視鏡システム
DE29910795U1 (de) 1999-06-21 1999-09-02 Wolf Gmbh Richard Elektronisches Endoskop
JP3505107B2 (ja) 1999-07-09 2004-03-08 ペンタックス株式会社 蛍光内視鏡用励起光フィルタ
US6730019B2 (en) 2000-10-24 2004-05-04 Karl Storz Gmbh & Co. Kg Endoscope with LED illumination

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100443044C (zh) * 2003-07-28 2008-12-17 索普洛股份公司 检测及表征生物组织的设备
CN103330545A (zh) * 2005-01-04 2013-10-02 沙丘医疗设备有限公司 体内操作的内窥镜系统
CN101155545B (zh) * 2005-04-07 2011-10-05 奥林巴斯医疗株式会社 内窥镜装置
CN101184427B (zh) * 2005-07-15 2011-04-13 奥林巴斯医疗株式会社 内窥镜及内窥镜装置
US9526460B2 (en) 2005-08-04 2016-12-27 Dune Medical Devices Ltd. Tissue-characterization probe with effective sensor-to-tissue contact
CN102057681B (zh) * 2008-06-12 2013-09-25 奥林匹斯冬季和Ibe有限公司 用于改进内窥镜图像的方法和内窥镜
CN102057681A (zh) * 2008-06-12 2011-05-11 奥林匹斯冬季和Ibe有限公司 用于改进内窥镜图像的方法和内窥镜
CN102333473A (zh) * 2009-03-24 2012-01-25 奥林巴斯医疗株式会社 荧光观察装置
CN102119846A (zh) * 2010-01-08 2011-07-13 富士胶片株式会社 医疗设备和内窥镜设备
CN103262522A (zh) * 2010-12-14 2013-08-21 奥林巴斯医疗株式会社 摄像装置
CN103140161A (zh) * 2011-06-14 2013-06-05 奥林巴斯医疗株式会社 医疗设备
CN103140161B (zh) * 2011-06-14 2015-06-17 奥林巴斯医疗株式会社 医疗设备
CN104379047B (zh) * 2012-08-07 2016-06-29 奥林巴斯株式会社 扫描型内窥镜装置
CN104379047A (zh) * 2012-08-07 2015-02-25 奥林巴斯医疗株式会社 扫描型内窥镜装置、图像处理装置、图像处理方法
CN103169446A (zh) * 2013-04-15 2013-06-26 叶衍铭 适用于内窥镜的早期癌症可疑病灶检查装置
CN103169446B (zh) * 2013-04-15 2016-08-10 叶衍铭 适用于内窥镜的早期癌症可疑病灶检查装置
CN103393391A (zh) * 2013-06-20 2013-11-20 中国科学院苏州生物医学工程技术研究所 一种多功能消化道内窥手术医疗器械
CN103690136B (zh) * 2013-12-11 2015-07-29 宋伯根 固有荧光诊断内窥镜系统
CN103690136A (zh) * 2013-12-11 2014-04-02 宋伯根 固有荧光诊断内窥镜系统
CN107072520A (zh) * 2014-08-29 2017-08-18 莱英罗斯有限责任公司 以可见光波长和红外波长并行成像的内窥镜系统
CN110072427A (zh) * 2017-01-06 2019-07-30 Hoya株式会社 校准用固体试样、内窥镜系统、以及固体试样的制备方法
CN110072427B (zh) * 2017-01-06 2021-12-28 Hoya株式会社 校准用固体试样、内窥镜系统、以及固体试样的制备方法
CN110198653A (zh) * 2017-01-20 2019-09-03 威里利生命科学有限责任公司 同时的可见的和荧光内窥镜成像
CN110198653B (zh) * 2017-01-20 2022-05-17 威里利生命科学有限责任公司 同时的可见的和荧光内窥镜成像
CN110381804A (zh) * 2017-03-10 2019-10-25 索尼奥林巴斯医疗解决方案公司 内窥镜设备
CN108836262A (zh) * 2018-04-11 2018-11-20 秦少平 一种诱导荧光光谱图像融合影像光路
CN112384130A (zh) * 2018-06-28 2021-02-19 贝克顿·迪金森公司 用于标准化血液培养测量系统中的信号的系统和方法
WO2020052623A1 (zh) * 2018-09-12 2020-03-19 上海逸思医学影像设备有限公司 一种用于可见光和激发荧光实时成像的系统和方法
CN113424048A (zh) * 2019-03-25 2021-09-21 人工智能生物医学公司 组织检测系统及其使用方法
CN112120655A (zh) * 2020-10-12 2020-12-25 温州市人民医院 一种精确插空肠的辅助装置

Also Published As

Publication number Publication date
US20110213252A1 (en) 2011-09-01
DE60024059D1 (de) 2005-12-22
WO2000042910A9 (en) 2001-10-25
JP2002535025A (ja) 2002-10-22
NZ529432A (en) 2005-07-29
EP1632173A1 (en) 2006-03-08
EP1148810B1 (en) 2005-11-16
US8764643B2 (en) 2014-07-01
EP1632173B1 (en) 2013-04-03
ATE309739T1 (de) 2005-12-15
US7846091B2 (en) 2010-12-07
JP5088990B2 (ja) 2012-12-05
AU3349200A (en) 2000-08-07
EP1148810A1 (en) 2001-10-31
WO2000042910A1 (en) 2000-07-27
NZ513117A (en) 2004-04-30
CA2359637A1 (en) 2000-07-27
KR20010110420A (ko) 2001-12-13
DE60024059T2 (de) 2006-07-20
US20020161282A1 (en) 2002-10-31

Similar Documents

Publication Publication Date Title
CN1341003A (zh) 用于内窥镜的自发荧光成象系统
JP5283731B2 (ja) 内視鏡用の自己蛍光画像化システム
EP2108943B1 (de) Vorrichtung und Verfahren zur Fluoreszenz-Bildgebung
CN106901679B (zh) 荧光显微内窥成像系统及荧光显微内窥成像方法
US20070213593A1 (en) Endoscope system
CN102215732A (zh) 具有内置偏振led照明和计算机化临床数据管理系统的高分辨率数字视频阴道镜
CN109310296A (zh) 内窥镜成像装置及方法
JP2001504739A (ja) 皮膚診断用蛍光スコープシステム
CN102274000B (zh) 窄带多光谱荧光阴道检查装置
CN101744611A (zh) 用于光动力治疗和摄影检测的装置
CA2527205A1 (en) Methods and apparatus for fluorescence imaging using multiple excitation-emission pairs and simultaneous multi-channel image detection
CN106901683A (zh) 一种荧光内窥成像系统
JP2003535659A (ja) 走査型単一光ファイバシステムを用いる医療用画像化、診断および治療
WO1999001749A1 (en) Fluorescence imaging system
EP1482831A1 (en) Cancer detection and adaptive dose optimization treatment system
CN107440669A (zh) 一种双通道内窥式成像系统
CN102665559A (zh) 用于可视化目标癌组织的激发、检测和投射系统
EP2335555A1 (de) Verfahren zum Prüfen einer optischen Vorrichtung
US20030216626A1 (en) Fluorescence judging method and apparatus
CN204207717U (zh) 内窥镜照射光谱选择装置及超光谱内窥镜成像系统
CN101940463A (zh) 活体荧光内窥成像系统
CN207613757U (zh) 荧光内窥成像系统
CN104352216B (zh) 内窥镜照射光谱选择装置及超光谱内窥镜成像系统
CN1119972C (zh) 共轴微光—荧光肺癌诊断和定位仪器
CN208705565U (zh) 一种用于流行病分析的显微成像系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication