CN1342966A - 电光学装置的驱动方法、驱动电路和电光学装置及其电子仪器 - Google Patents

电光学装置的驱动方法、驱动电路和电光学装置及其电子仪器 Download PDF

Info

Publication number
CN1342966A
CN1342966A CN01132641A CN01132641A CN1342966A CN 1342966 A CN1342966 A CN 1342966A CN 01132641 A CN01132641 A CN 01132641A CN 01132641 A CN01132641 A CN 01132641A CN 1342966 A CN1342966 A CN 1342966A
Authority
CN
China
Prior art keywords
mentioned
pixel
electro
optical device
tone data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01132641A
Other languages
English (en)
Other versions
CN1231884C (zh
Inventor
石井良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of CN1342966A publication Critical patent/CN1342966A/zh
Application granted granted Critical
Publication of CN1231884C publication Critical patent/CN1231884C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3659Control of matrices with row and column drivers using an active matrix the addressing of the pixel involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependant on signal of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0857Static memory circuit, e.g. flip-flop
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/04Partial updating of the display screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals

Abstract

一种低功耗且能够进行高质量、高清晰度的色调显示的电光学装置及其驱动方法以及使用了该电光学装置的电子仪器。本发明的电光学装置具有多个象素,各象素具有象素电极、存储上述色调数据的存储器和脉冲宽度控制电路,该脉冲宽度控制电路以与已写入上述存储器的色调数据对应的时间密度对上述象素电极施加使象素导通的电压或使象素截止的电压。若按照所述电光学装置,通过使各象素导通或截止,可以实现有效值控制的色调显示。此外,在多个象素中,只对应变更已写入象素内的存储器中的色调数据的象素的存储器写入色调数据,所以,可以以很低的功耗进行显示。

Description

电光学装置的驱动方法、 驱动电路和电光学装置及其电子仪器
技术领域
本发明涉及可进行色调显示的电光学装置及其驱动电路和驱动方法和电子仪器。
背景技术
电光学装置,例如,使用了作为电光学材料的液晶的液晶显示装置作为代替阴极射线管(CRT)的显示器件被广泛地用于各种信息处理装置的显示部或壁挂式电视机等。
先有的电光学装置,例如构成如下。即,先有的电光学装置由排列成矩阵状的象素电极、与该象素电极连接的设有象TFT(薄膜晶体管)那样的的开关元件等的元件衬底、形成了与象素电极相向的对置电极的对置衬底和由充填在两衬底间的作为电光学材料的液晶构成。而且,在这样的结构中,若经扫描线对开关元件施加扫描信号,上述开关元件变成导通状态。在该导通状态下,若经数据线对象素电极施加与色调对应的电压的图像信号,在上述象素电极和对置电极间的液晶层积蓄与图像信号的电压对应的电荷。即使在电荷积蓄后上述开关元件为截止状态,上述液晶中的电荷的积蓄由液晶层自身的电容或积蓄电容等来维持。这样,若驱动各开关元件并与色调对应控制积蓄的电荷量,因液晶的取向状态随每一个象素变化,故每一个象素的浓度发生变化。因此,可以实现色调显示。
这时,因使各象素的液晶层积蓄电荷只在一部分期间即可,所以,第1,利用扫描驱动电路顺次选择各扫描线,同时,第2,在扫描线的选择期间利用数据驱动电路来顺次选择数据线,第3,利用在已选择的数据线上对与色调对应的电压的图像信号进行采样的结构,可以实现对多个象素使扫描线和数据线共通的时分多路驱动。
但是,施加在数据线上的图像信号是与色调对应的电压、即模拟信号。因此,电光学装置的外围电路必需要D/A转换器和运算放大器等,所以,整个装置的成本高。进而,由于这些D/A转换电路、运算放大器等的特性和各种布线阻抗的不均匀而出现不均匀显示。所以,存在很难实现高质量显示的问题。特别在进行高清晰度显示时问题更突出。
进而,在上述先有的电光学装置中,必须每隔一定时间间隔对所有的象素施加上述图像信号。即,每隔一定时间间隔,利用扫描线驱动电路顺次选择所有的扫描线,同时,必须在所有各选择期间对所有的数据线供给与色调对应的电压的图象信号。因此,还存在功耗大的问题。此外,当要谋求高清晰度且作为图象信号供给对象的象素的个数增加时,上述问题特别突出。另一方面,虽然以往提供了各种各样的技术用来降低功耗,但是,在必须每隔一定时间间隔对所有的象素施加图像信号这一点上一直没变,现实状况是低功耗不能突破某个界限。
发明内容
本发明是鉴于上述情况而提出的,其目的在于提供一种电光学装置及其驱动方法以及使用了该电光学装置的电子仪器,该电光学装置可以实现高质量、高清晰度的色调显示,而且,可以低功耗驱动。
为了解决上述课题,本发明的第1方面是一种电光学装置的驱动方法,该电光学装置包括分别具有K(K=1、2、3、…的自然数)比特的存储器的多个象素,与K比特的色调数据对应进行K比特的色调显示,其特征在于:向上述象素存储器写入所述色调数据,根据已写入上述存储器的色调数据和K比特的色调信号,生成具有与上述色调数据对应的时间密度的脉冲信号,与上述脉冲信号对应,对上述象素施加使象素导通的电压或使象素截止的电压。
若按照本发明的第1方面,以与色调数据对应的时间密度设定象素的导通状态或截止状态,结果,变成利用有效值控制来进行色调显示。即,只有通过使各象素为导通状态或截止状态才能实现色调显示,所以,能够抑制由于元件特性和布线阻抗等的不均匀而出现的不均匀显示。结果,能够实现高质量和高清晰度的显示。
进而,若按照本发明的第1方面,各象素具有存储器,以与存储在上述存储器中的色调数据对应的时间密度设定象素的导通状态或截止状态,所以,不必每隔一定时间间隔(例如每一场)对所有的象素加色调数据。即,通过只对色调数据的内容有变更的象素写入色调数据就可以实现色调显示。因此,与每隔一定时间间隔对所有的象素加色调数据的电光学装置相比,具有可以大大降低功耗的优点。
再有,在本发明中,所谓1场过去是指通过与水平扫描信号和垂直扫描信号同步进行水平扫描和垂直扫描来形成1幅光栅图像所需要的时间。因此请注意,在非隔行扫描等方式中,1帧就相当于本发明中所说的1场。
这里,在上述本发明的第1方面中,上述K比特的色调信号,其各比特的选择期间也可以分别设定为可进行20、21、22、…2k-1的色调显示的时间密度。进而,也可以根据上述色调数据选择与上述色调信号对应的比特的色调信号,通过合成已选择的各色调信号的选择期间来生成上述脉冲信号,根据上述脉冲信号,对上述象素电极施加使象素导通的电压或使象素截止的电压。由此,通过具有包括20、21、22、…2k-1的时间密度的脉冲信号和与色调数据对应合成色调信号的选择期间,可以生成包括K比特的任意时间密度的脉冲信号,与该脉冲信号的时间密度对应设定象素的导通状态或截止状态,从而,实现有效值控制的色调显示。
此外,在上述本发明的第1方面中,上述K比特的色调信号是K比特的计数器的输出信号,维持上述输出信号表示的各计数值的期间也可以设定为可进行K比特的色调显示的时间密度。进而,也可以构成为将上述K比特的色调数据与上述色调信号的K比特的计数值进行比较,并根据比较结果生成上述脉冲信号,根据上述脉冲信号,对上述象素电极施加使象素导通的电压或使象素截止的电压。由此,通过与电光学材料的色调特性对应任意设定各K比特计数值的时间密度并将该计数值与色调数据进行比较,可以生成具有K比特的任意时间密度的脉冲信号,与该脉冲信号的时间密度对应使象素为导通状态或截止状态,实现有效值控制的色调显示。
再有,在上述本发明的第1方面中,上述象素也可以在上述色调信号为规定值的期间截止,而与上述色调数据的值无关。因此,具有下面的优点,例如,即使使用了因施加的有效值电压超过某一定值而使透射率降低的电光学材料,通过适当选择取上述规定值的期间的时间密度,也可以可靠地得到所要的透射率。
这里,在上述本发明的第1方面中,上述象素最好包括象素电极和与上述象素电极相向并以规定的周期施加了电平重复反相的基准电压的对置电极,当与上述脉冲信号对应使象素导通时,对上述象素电极施加电平变化与上述基准电压的电平变化相反的电压,另一方面,当使象素截止时,对上述象素电极施加电平变化与上述基准电压的电平变化对应的电压。由此,可以以规定的周期使施加在象素上的电压的极性反相。即,因可以防止对电光学材料施加直流成分,故具有能够防止电光学材料性能变差的优点。
此外,在上述本发明的第1方面中,上述象素也可以包括象素电极和面对上述象素电极并施加了一定的基准电压的对置电极,当与上述脉冲信号对应使象素导通时,对上述象素电极施加和上述基准电压相同的电压,当使象素截止时,对上述象素电极以规定的周期切换施加比上述基准电压高的第1电压或比上述基准电压低的第2电压。因即使在这种情况下也能够防止对电光学材料施加直流成分,故能够防止电光学材料性能变差。
进而,当进行交流驱动时,上述规定周期也可以与各场的周期不同。这样一来,可以将使施加在象素上的电压的极性反相的周期任意设定为最能抑制闪烁的发生的周期上。
进而,在上述本发明的第1方面中,在上述多个象素中,最好只对应该变更已存储在上述存储器中的色调数据的象素的存储器写入上述色调数据。这样一来,因不必对色调数据没有变更的象素进行色调数据的写入处理,故与采用每隔一定时间间隔对所有的象素施加色调数据的结构的先有的电光学装置相比,可以大幅度降低驱动时的功率。
此外,为解决上述课题,本发明的第2方面是一种电光学装置的驱动电路,具有由K(K=1、2、3、…的自然数)根列选择线形成的多个列选择线群、多个行选择线和与上述列选择线群及上述行选择线的交差点对应设置且具有存储K比特色调数据的K比特存储器的象素,根据写入所述存储器的色调数据和K比特的色调信号生成具有与上述色调数据对应的时间密度的脉冲信号,根据该脉冲信号,对上述象素施加使象素导通的电压或使象素截止的电压,其特征在于,包括:向与作为上述色调数据的写入对象的象素对应的行选择线供给选择信号的行选择线驱动电路;在向上述行选择线供给选择信号的期间,向构成与作为上述色调数据的写入对象的象素对应的列选择线群的各列选择线供给与上述色调数据的各比特对应的信号的列选择线驱动电路。
若按照上述结构,因通过将色调数据作为数字数据处理可以实现色调显示,故能够抑制因元件特性和布线阻抗等不均匀性而出现的不均匀显示,结果,可以使作为驱动对象的电光学装置进行高质量和高清晰度的色调显示。
再有,上述驱动电路也可以具有生成上述色调信号的色调信号生成电路。由此,可以实现外围电路的简单化并降低成本。
这里,在上述本发明的第2方面中,上述K比特色调信号其各比特的选择期间分别设定为可进行20、21、22、…2k-1的色调显示的时间密度。由此,通过具有包括20、21、22、…2k-1的时间密度的脉冲信号和与色调数据对应合成色调信号的选择期间,可以生成包括K比特的任意时间密度的脉冲信号,与该脉冲信号的时间密度对应设定象素的导通状态或截止状态,从而,实现有效值控制的色调显示。
此外,在上述本发明的第2方面中,上述K比特的色调信号也可以是K比特的计数器的输出信号,维持上述输出信号表示的各计数值的期间设定为可进行K比特的色调显示的时间密度。由此,通过与电光学材料的色调特性对应任意设定各K比特计数值的时间密度并将该计数值与色调数据进行比较,可以生成具有K比特的任意时间密度的脉冲信号,与该脉冲信号的时间密度对应使象素为导通状态或截止状态,实现有效值控制的色调显示。
再有,在上述本发明的第2方面中,上述象素也可以在上述色调信号为规定值的期间截止而与上述色调数据的值无关。因此,具有下面的优点,例如,即使使用了因施加的有效值电压超过某一定值而使透射率降低的电光学材料,通过适当选择取上述规定值的期间的时间密度,也可以可靠地得到所要的透射率。
进而,在上述本发明的第2方面中,上述行选择线驱动电路和上述列选择线驱动电路也可以在形成上述象素的规定的衬底上形成。由此,可以实现外围电路的简单化并降低成本。
这里,在上述本发明的第2方面中,最好设有在上述多个象素中只对应该变更已存储在上述存储器中的色调数据的象素的存储器写入上述色调数据的写入电路。这一来,因不必每隔一定时间间隔对所有的象素施加色调数据,故与每隔一定时间间隔对所有的象素施加色调数据的先有的电光学装置相比,可以大幅度降低驱动时的功率。
进而,在上述本发明的第2方面中,最好设有读出上述象素存储器存储的色调数据的读出电路。这一来,不必在作为色调数据等的供给源的控制器(上位装置)上设置用来存储加给各象素的色调数据的存储器。
此外,为解决上述课题,本发明的第3方面是一种电光学装置,具有多个象素,与K(K=1、2、3、…的自然数)比特的色调数据对应进行K比特的色调显示,其特征在于,包括:由K根列选择线构成的多个列选择线群;多个行选择线;与上述列选择线群和上述行选择线的各交叉点对应设置的多个象素,该象素包括象素电极、存储上述K比特色调数据的K比特存储器和象素驱动电路,象素驱动电路根据写入上述存储器的色调数据和K比特的色调信号生成具有与上述色调数据对应的时间密度的脉冲信号,与该脉冲信号对应,对上述象素施加使象素导通的电压或使象素截止的电压;向与作为上述色调数据的写入对象的象素对应的行选择线供给选择信号的行选择线驱动电路;在向上述行选择线供给选择信号的期间,向构成与作为上述色调数据的写入对象的象素对应的列选择线群的各列选择线供给上述色调数据的列选择线驱动电路。
若按照本发明的第3方面,以与色调数据对应的时间密度设定象素的导通状态或截止状态,结果,变成利用有效值控制来进行色调显示。即,只有通过使各象素为导通状态或截止状态才能实现色调显示,所以,能够抑制由于元件特性和布线阻抗等的不均匀而出现的不均匀显示。结果,能够实现高质量和高清晰度的显示。
进而,若按照本发明的第3方面,各象素具有存储器,以与存储在上述存储器中的色调数据对应的时间密度设定象素的导通状态或截止状态,所以,不必每隔一定时间间隔(例如每一场)对所有的象素加色调数据。即,通过只对色调数据的内容有变更的象素写入色调数据就可以实现色调显示。因此,与每隔一定时间间隔对所有的象素加色调数据的电光学装置相比,具有可以大大降低功耗的优点。
通过使上述存储器包括:因上述选择信号而变成导通状态的开关元件;2个反相器,1个反相器的输出是另一个反相器的输入,当上述开关元件处于导通状态时,写入由对应的列选择线供给的上述色调数据,当上述开关元件处于非导通状态时,保持写入的色调数据,可以使上述效果特别明显。
进而,也可以使上述电光学装置具有生成上述色调信号的色调信号生成电路。由此,可以实现外围电路的简单化并降低功耗。
这里,在本发明的第3方面中,上述K比特色调信号其各比特的选择期间也可以分别设定为可进行20、21、22、…2k-1的色调显示的时间密度。进而,上述象素驱动电路的构成也可以包括:根据上述色调数据选择与上述色调信号对应的比特的色调信号,通过合成已选择的各色调信号的选择期间来生成上述脉冲信号的脉冲宽度控制电路;根据由上述脉冲宽度控制电路生成的脉冲信号,对上述象素电极施加使象素导通的电压或使象素截止的电压的开关电路。由此,通过具有包括20、21、22、…2k-1的时间密度的脉冲信号和与色调数据对应合成色调信号的选择期间,可以生成包括K比特的任意时间密度的脉冲信号,与该脉冲信号的时间密度对应设定象素的导通状态或截止状态,从而,实现有效值控制的色调显示。
此外,在本发明的第3方面中,上述K比特的色调信号也可以是K比特的计数器的输出信号,维持上述输出信号表示的各计数值的期间设定为可进行K比特的色调显示的时间密度。进而,上述象素驱动电路的构成也可以包括:将上述K比特的色调数据与上述色调信号的K比特的计数值进行比较,并根据比较结果生成上述脉冲信号的脉冲宽度控制电路;根据由上述脉冲宽度控制电路生成的脉冲信号,对上述象素电极施加使象素导通的电压或使象素截止的电压的开关电路。由此,通过与电光学材料的色调特性对应任意设定各K比特计数值的时间密度并将该计数值与色调数据进行比较,可以生成具有K比特的任意时间密度的脉冲信号,与该脉冲信号的时间密度对应使象素为导通状态或截止状态,实现有效值控制的色调显示。
再有,在本发明的第3方面中,上述象素也可以在上述色调信号为规定值的期间截止而与上述色调数据的值无关。因此,具有下面的优点,例如,即使使用了因施加的有效值电压超过某一定值而使透射率降低的电光学材料,通过适当选择取上述规定值的期间的时间密度,也可以可靠地得到所要的透射率。
进而,在本发明的第3方面中,上述行选择线驱动电路和列选择线驱动电路也可以在形成上述象素的规定的衬底上形成。由此,可以实现外围电路的简单化并降低功耗。
这里,在本发明的第3方面中,最好设有在上述多个象素中只对应该变更已存储在上述存储器中的色调数据的象素的存储器写入上述色调数据的写入电路。这一来,因不必每隔一定时间间隔对所有的象素施加色调数据,故与每隔一定时间间隔对所有的象素施加色调数据的先有的电光学装置相比,可以大幅度降低驱动时的功率。
进而,在上述本发明的第3方面中,最好设有读出上述象素存储器存储的色调数据的读出电路。这一来,不必在作为色调数据等的供给源的控制器(上位装置)上设置用来存储加给各象素的色调数据的存储器。
这里,上述存储器和象素驱动电路也可以具有开关元件,上述存储器和象素驱动电路中的至少一方具有的上述开关元件由在绝缘衬底上形成的薄膜晶体管构成。若使用石英玻璃等作为绝缘衬底,则可以得到透射型电光学装置。
此外,上述存储器和象素驱动电路也可以具有开关元件,上述存储器和象素驱动电路中的至少一方具有的上述开关元件在半导体衬底上形成。因半导体衬底的电子移动度高,故对在半导体衬底上形成的存储器和象素驱动电路的开关元件来说,具有快速相应的特性,同时还可以谋求小尺寸化。
此外,若使上述象素电极具有反射性,进行所谓反射型显示,因电光学装置不必设置光源,故具有能够降低功耗的优点。进而,这时,最好将上述存储器和象素驱动电路中的至少一方设在与上述象素电极的观察侧相反的一侧。由此,因在各象素电极之间不必设置存储器或象素驱动电路,故在各象素电极之间,不会阻挡光。结果,具有能提高各象素的孔径比的优点。
此外,为解决上述课题,本发明的第4方面是一种电子仪器,除了可以将上述电光学装置本身作为单独的仪器进行制造和贩卖之外,还可以将上述电光学装置作为电子仪器的显示装置进行制造和贩卖。若按照这样的电子仪器,因和上述同样的理由,可以进行低功耗驱动,而且,可以进行高质量和高清晰度的色调显示。
附图说明:
图1是表示本发明的第1实施形态的电光学装置的整体结构的方框图。
图2是表示同电光学装置的象素的结构的电路图。
图3是表示同电光学装置的存储器单元的结构的电路图。
图4是表示液晶的一例电压/透射率特性的图。
图5是同电光学装置的象素的工作真值表。
图6(a)是表示同电光学装置的色调信号的波形的动态波形图,(b)是表示同电光学装置中的象素内的脉冲信号的PW波形的动态波形图。
图7是表示同电光学装置的施加在各象素的象素电极上的电压的动态波形图。
图8是表示本发明的第2实施形态的电光学装置的象素的结构的电路图。
图9是同电光学装置的象素的工作真值表。
图10(a)是表示同电光学装置的色调信号的波形的动态波形图,(b)是是表示同电光学装置中的象素内的脉冲信号的PW波形的动态波形图。
图11是表示同电光学装置的施加在各象素的象素电极上的电压的动态波形图。
图12是表示本发明的第3实施形态的电光学装置的象素的结构的电路图。
图13是同电光学装置的象素的工作真值表。
图14(a)是表示同电光学装置的色调信号的波形的动态波形图,(b)是是表示同电光学装置中的象素内的脉冲信号的PW波形的动态波形图。
图15是表示同电光学装置的施加在各象素的象素电极上的电压的动态波形图。
图16是表示液晶的另一例电压/透射率特性的图。
图17是表示本发明的变形例的电光学装置的施加在各象素的象素电极上的电压的动态波形图。
图18是本发明的电光学装置的结构的平面图。
图19是表示同电光学装置的结构的截面图。
图20是表示使用了同电光学装置的电子仪器的一例投影仪的结构的截面图。
图21是表示使用了同电光学装置的电子仪器的一例便携式计算机的结构的透视图。
图22是使用了同电光学装置的电子仪器的一例便携式电话机的结构的透视图。
发明的具体实施方式
下面,参照附图说明本发明的实施形态。该实施形态示出本发明的一种形态,但并不限于该发明,在本发明的范围内可以任意变更。
A:本发明的电光学装置的工作原理
首先,为了容易理解本实施形态的装置,说明本实施形态的电光学装置的驱动方法。
一般,作为电光学装置,在使用了液晶的液晶装置中,加在液晶上的有效电压值和相对透射率(反射型液晶装置时的反射率)的关系,若以不加电压状态时进行黑显示的常黑方式为例,有图4所示那样的关系。再有,相对透射(反射)率是把透射(或反射)光量的最小值和最大值分别用0%和100%归一化后的值。如图4所示,液晶的透射率当对液晶层施加的电压小于阈值VTH1时为0%,当施加电压大于阈值VTH1且小于饱和电压VTH2时,相对施加电压非线性增加,而且,当施加电压大于饱和电压VTH2时,液晶的透射率与施加电压无关,而维持一定值。
为了使液晶的透射率是在0%和100%之间的中间值,有必要对液晶层施加与图4所示的透射率中的处于电压VTH1和电压VTH2之间的上述透射率对应的有效电压。
在先有的技术中,用来得到这样的中间色调的电压利用D/A转换电路和运算放大器戗模拟电路生成,再加在象素电极上。但是,利用这样的驱动方法施加在象素电极上的电压容易受模拟电路特性和各种布线阻抗等的离散的影响,进而,因容易使象素之间不均匀,故很难得到高质量和高清晰度的显示。
因此,在本实施形态的电光学装置中,利用下面的方法进行象素驱动。
首先,将1场(1f)分割成多个子域,以子域为单位对液晶施加电压。而且,在各子域中,对液晶层只施加电压VH或VL(=0V)。这里,通过在1场中对液晶层施加上述电压VH,可以选定电压VH,使在上述1场中加给液晶层的有效电压值大于图4所示的电压V7。
进而,在1场内,与色调数据对应决定加电压VH的子域和加电压VL的子域,使加电压VH的时间和加电压VL(=0V)的时间的比率是与与色调数据对应的比率。由此,对液晶层施加与色调数据对应有效电压,可以实现透射率在0%和100%之间的中间色调的显示。再有,关于各子域的具体周期将在后面叙述。
此外,在下面所示的各实施形态中,以根据3比特的色调数据D0、D1、D2进行8色调显示的情况为例进行说明,但是,本发明的使用当然不限于这一情况。
B:第1实施形态
B-1:第1实施形态的构成
图1是表示本实施形态的电光学装置的电结构的方框图。该电光学装置是使用液晶作为电光学材料的液晶装置,元件衬底和对置衬底贴在一起,相互保持一定的间隙,作为电光学材料的液晶被夹持在该间隙中。此外,在该电光学装置中,使用半导体衬底作为元件衬底,利用在该元件衬底上形成的MOS型晶体管,形成控制各象素的显示的象素电路和控制象素电路的外围驱动电路等。图1示出在该元件衬底上形成的电路的结构。
如图1所示,在元件衬底的显示区域10a上,沿X(行)方向延伸形成多根行选择线,沿Y(列)方向延伸形成多根列选择线。而且,象素13与行选择线11和列选择线12的各交叉点对应设置,排列成矩阵状。在本实施形态中,为说明方便起见,设行选择线11的总根数为m,列选择线12的总根数为n(m、n分别是2以上的整数),以m行×n列的矩阵型显示装置为例进行说明,但本发明并不限于此。
再有,在图1中,为了防止图面的繁杂,使1列的m个象素13与1根列选择线12连接,实际上,图1的列选择线12由多根列选择线构成(详情后述)。
此外,该电光学装置具有动作控制电路20、Y地址缓冲器210、Y地址译码器211、X地址缓冲器220、X地址译码器221、采样保持电路222、色调信号生成电路23、输入电路240和输出电路241。
动作控制电路20根据从未图示的上位装置供给的片选信号/CE、允许写入信号/WE和允许输出信号/OE生成与工作方式对应的内部控制信号。
动作控制电路20的具体构成如图1所示。在该构成下,当片选信号/CE和允许写入信号/WE为L电平时,对Y地址缓冲器210和X地址缓冲器220及输入电路240供给H电平的使能信号。结果,转移到写入方式,向各象素13写入经数据输入输出端子I/O0~I/O2从上位装置供给的色调数据D0~D2。这里,转移到写入方式时的整个工作电路相当于专利权利要求范围内的‘写入电路’。
另一方面,当片选信号/CE和允许输出信号/OE为L电平,允许写入信号/WE为H电平时,对Y地址缓冲器210和X地址缓冲器220及输出电路241供给H电平的使能信号。结果,转移到读出方式,读出已写入各象素13的数据,读出的数据经输入输出端子I/O0~I/O2向外部输出。转移到读出方式时的整个工作电路相当于专利 范围内的‘读出电路’。
输入电路240和输出电路241与输入输出端子I/O0~I/O2连接。输入电路240因从动作控制电路20加给H电平的使能信号而处于工作状态,将经数据输入输出端子I/O0~I/O2输入的色调数据D0~D2输出给采样保持电路222。各色调数据D0~D2是H电平或L电平的数字数据。此外,输出电路241因从动作控制电路20加给H电平的使能信号而处于工作状态,将利用采样保持电路222从象素13读出的色调数据D0~D2输出给输入输出端子I/O0~I/O2。
从未图示的上位装置向Y地址缓冲器210供给Y地址信号Ay0~Ayi。该Y地址缓冲器210因从动作控制电路20加给H电平的使能信号而处于工作状态,将这一时刻供给的Y地址信号Ay0~Ayi输出给Y地址译码器211。
Y地址译码器211使输入端子与Y地址缓冲器210的各输出端子连接,输出端子与各行选择线11的一端(在图1中为左侧的一端)连接。该Y地址译码器211对从Y地址缓冲器210输出的Y地址信号Ay0~Ayi进行译码,对连接的多个行选择线11中的一根行选择线择一地输出H电平的Y选择信号。由此,择一地选择出与Y地址信号Ay0~Ayi对应的行选择线11。
另一方面,从未图示的上位装置向X地址缓冲器220供给X地址信号Ax0~Axj。该X地址缓冲器220因从动作控制电路20加给H电平的使能信号而处于工作状态,将这一时刻供给的X地址信号Ax0~Axj输出给X地址译码器221。X地址译码器221使输入端子与X地址缓冲器220的各输出端子连接,输出端子与采样保持电路222的各输入端子连接。该X地址译码器221对从X地址缓冲器220输出的X地址信号Ax0~Axj进行译码,再生成X选择信号。该X选择信号是用来从多个列选择线12中择一地选择出与X地址信号Ax0~Axj对应的列选择线12的信号。
采样保持电路222对由X地址译码器221输出的X选择信号特定的列选择线12输出从输入电路240供给的色调数据D0、D1和D2。
根据这样的结构,在写入方式下,对象素13加给从输入电路240输出的色调数据D0、D1和D2,该象素13与输出由上述Y地址译码器211生成的Y选择信号的行选择线11和利用由上述X地址译码器221生成的X选择信号特定的列选择线12的交点对应。
在本实施形态中,以与该色调数据D0、D1和D2和色调信号P0~P2对应的时间密度对上述象素13施加使象素12导通的电压或使象素13截止的电压(详情后述)。色调信号生成电路23是用来生成该色调信号P0~P2并输出的电路。各色调信号P0~P2在每一场中只在规定的周期内为H电平。详细情况的叙述如下。
在本实施形态中,将1场(1F)分割成3个子域Sf1~Sf3,通过以各子域为单位使象素13处于导通状态或截止状态来进行8色调的显示。这里,说明各子域的具体周期(参照图6(a))。
首先,子域Sf1通过在1场(1f)内的子域Sf1中对液晶层施加电压VH来设定周期,使在上述1场(1f)中加给液晶层的有效电压值变成与相当于22(=4)的色调的透射率57.1%对应的电压V4(参照图4)。具体地说,有效电压值可以对瞬时电压值的平方在1周期(1场(1f))内平均后再开方求得,所以,子域Sf1相对1场(1f)的周期可设定为(V4/VH)2
此外,子域Sf2通过在1场(1f)内的子域Sf2中对液晶层施加电压VH来设定周期,使在上述1场(1f)中加给液晶层的有效电压值变成与相当于20(=1)的色调的透射率14.3%对应的电压V1(参照图4)。同样,子域Sf3通过在1场(1f)内的子域Sf3中对液晶层施加电压VH来设定周期,使在上述1场(1f)中加给液晶层的有效电压值变成与相当于21(=2)的色调的透射率28.6%对应的电压V2(参照图4)。
以上是各子域的具体的周期。这样,在本实施形态中,各子域的具体周期设定成只将用来进行20、21、22的色调显示的有效电压加给象素的液晶层的周期。
这里,在本实施形态中,以按3比特的色调数据进行8个色调的显示的情况为例进行了说明,但使用本发明并不限于这样的的情况,例如,当然也可以在按K(K=1、2、3、…的自然数)比特的色调数据进行2k色调的显示时,设置K个子域,各子域的周期设定为只将用来进行20、21、22、…2k-1的色调显示的有效电压加给象素的液晶层的周期。
利用色调信号生成电路23生成的色调信号P0~P2在分割1场(1f)后得到的上述多个子域中的某一个子域中变成H电平。具体地说,如图6(a)所示,色调信号P0是只再子域Sf2中变成H电平的信号。色调信号P1是只再子域Sf3中变成H电平的信号。色调信号P2是只再子域Sf1中变成H电平的信号。
其次,图2是表示本实施形态的电光学装置的象素13的具体结构的电路图。如该图所示,象素13的象素电路由存储器单元130a、130b和130c、色调控制电路138、反相器133、传输门134a和134B、象素电极135、对置电极136及液晶137构成。再有,以下在存储器单元130a、130b和130c中,当没有必要特定某一个时,只记作130。此外,其它各部分的符号也一样。
这里,在图1中,为了防止图面繁杂,1列的m个象素13与1根列选择线12连接,更详细地说,如图2所示,各列选择线12由列选择线120、121、122构成。而且,对这些列选择线120、121和122分别供给各色调数据D0、D1和D2。
如图2所示,存储器单元130只设置与色调数据的比特数对应的个数(在本实施形态中为3个)。而且,存储器单元130a与列选择线120连接并供给色调数据D0,存储器单元130b与列选择线121连接并供给色调数据D1,存储器单元130c与列选择线122连接并供给色调数据D3。另一方面,各存储器单元130a、130b和130c还与供给Y选择信号的行选择线11连接。
图3是举例示出各存储器单元130的具体结构的图。如该图所示,该存储器单元130是由反相器1301、1302及晶体管1303和1304构成的静态存储器(SRAM)结构。
如图3所示,反相器1301、1302是一方的输出端与另一方的输入端连接的触发器结构,构成1比特的存储器。另一方面,晶体管1303和1304是在对该1比特的存储器进行写入或读出时处于状态的N沟道晶体管。各晶体管1303和1304的漏极与反相器1302和1301的各各输入端子连接,各栅极与供给Y选择信息的行选择线11连接。
在图2中,为了防止图面繁杂,1个存储器单元130与1根列选择线120、121或122连接,但实际上,如图3所示,各列选择线120、121或122由2根线12a、12b构成。即,1个存储器单元130与2根列选择线12a、12b连接。
而且,列选择线12a与晶体管1303的源极连接,列选择线12B与晶体管1304的源极连接。这里,向列选择线12a供给色调数据D0、D1和D2中的某一个(在图3中记作‘D’),向列选择线12b供给将供给列选择线12a的色调数据的电平反相后的数据(在图3中记作‘/D’)。
各存储器单元130是这样的结构,通过向行选择线11输出H电平的Y选择信号使晶体管1303和1304处于导通状态。在该状态下,若向列选择线12a和12b供给了各色调数据和将其电平反相后的数据,上述色调数据便存储在由反相器1301和1302构成的存储器中。已存储的数据即使当Y选择信号变成L电平,晶体管1303和1304处于截止状态也能保持。再有,在以下的说明中,设反相器1301的输出为Q输出,反相器1302的输出为/Q输出。
在图2中,各象素的各存储器单元130的Q输出和从色调信号生成电路23输出的色调信号P0、P1、P2输入色调控制电路138中。色调控制电路138通过对这些输入信号进行运算处理,在1场(1f)内,生成并输出具有与写入各存储器单元的色调数据D0~D2对应的时间密度的脉冲信号PW。具体地说,色调控制电路138具有与各存储器单元130对应个数的与门131a、131b和131c。上述存储器单元130的Q输出输入各与门的2个输入端中的一个输入端。此外,各与门的另一个输入端与供给由色调信号生成电路23生成的色调信号P0、P1、P2的线路连接,算出两个输入信号的逻辑积。各与门131a~131c的输出信号输入到或门132,算出输入信号的逻辑和。详细情况后述,利用上述结构,从色调控制电路138输出具有与色调数据D0~D2对应的时间密度的脉冲信号PW。再有,在本说明书中,所谓时间密度是指使象素处于导通状态(或截止状态)的周期相对1场的周期的比例(密度)。
另一方面,传输门134a和134b的输出端与象素电极135连接。而且,在该象素电极135和对置电极136之间充填液晶137形成液晶层。这里,对置电极136是在对置衬底的一个面上形成的透明电极,与在元件衬底上形成的象素电极135相向。向该对置电极136供给由未图示的电压生成电路产生的交流驱动信号FR。该交流驱动信号FR是在从VH到VL、VL到VH的情况下对每一场反复使电平反相的信号(参照图7)。再有,为说明方便起见,对该交流驱动信号FR的电平,有时将VH只称作H电平,将VL只称作L电平。
从上述色调控制电路138输出的脉冲信号PW供给传输门134a的P沟道晶体管和传输门134b的N沟道晶体管的栅极,进而,脉冲信号PW利用反相器133电平反相后,供给传输门134a的N沟道晶体管和传输门134b的P沟道晶体管的栅极。各传输门134a和134b是通过对P沟道晶体管加L电平的栅极信号、对N沟道晶体管加H电平的栅极信号而变成导通状态的门电路。因此,传输门134a和134b与脉冲信号PW的电平对应,一方为导通状态,另一方为截止状态。此外,传输门134a的输入端与供给上述交流驱动信号FR的线路连接,另一方面,传输门134b的输入端与供给上述交流驱动信号FR的线路连接。这里,信号/FR是将交流驱动信号FR的电平反相后的信号。即,当交流驱动信号FR为H电平(=VH)时,信号/FR变成L电平(=VL),当交流驱动信号FR为L电平(=VL)时,信号/FR变成H电平(=VH)。
在这样的结构中,当从色调控制电路138供给H电平的脉冲信号PW时,传输门134a截止,传输门134b导通。因此,经传输门134b对象素电极135加信号/FR。结果,对象素电极135施加的电压和对对置电极136施加的电压的电压差VH加给上述象素13的液晶层,所以该象素13导通。与此相反,当从色调控制电路138供给L电平的脉冲信号PW时,传输门134a导通,传输门134b截止。因此,对象素电极135加交流驱动信号FR,结果,对上述象素13的液晶层施加的电压变成VL(=0V)。其结果,上述象素13截止。
再有,在图2中,举例示出由3个与门和1个或门构成色调控制电路138的情况,当然,该色调控制电路138的构成并不限于此。只要是能够根据色调数据D0~D2和周期地重复电平变化的多个色调信号生成具有与上述色调数据对应的时间密度的脉冲信号PW的电路即可。
B-2:第1实施形态的动作
其次,说明本实施形态的电光学装置的动作。
首先,说明在写入方式下向象素13内的存储器写入色调数据并进行色调显示时的动作。再有,这里,为说明方便起见,说明对1个象素加色调数据D0~D2时的动作。
首先,当从未图示的上位装置加L电平的片选信号/CE和允许写入信号/WE时,就变成写入方式,电光学装置内的各部分进行用来对象素13写入色调数据的动作。
Y地址译码器211对经Y地址缓冲器210接受的Y地址信号Ay0~Ayi进行译码,对由上述Y地址信号Ay0~Ayi特定的行选择线输出H电平的Y选择信号。
另一方面,X地址译码器221对经X地址缓冲器220接受的X地址信号Ax0~AXi进行译码,生成并输出X选择信号。
输入电路240因从动作控制电路20加给H电平的使能信号而处于动作状态,将从上位装置经输入输出端子I/O0~I/O2供给的色调数据D0~D2输出给采样保持电路222。采样保持电路222对由X地址译码器221来的X选择信号指定的列选择线12输出从输入电路240供给的色调数据D0、D1和D2。
这里,设在作为数据写入对象的象素13内的存储器单元130内的晶体管1303和1304(参照图3)因H电平的Y选择信号而处于导通状态,从采样保持电路222输出的各色调数据D0、D1和D2写入上述象素13内的各存储器单元130a、130b和130c中。
这样,当各存储器单元130写入了色调数据D0、D1和D2时,色调控制电路138与上述色调数据D0、D1和D2和色调信号P0~P2对应生成并输出H电平或L电平的脉冲信号PW。而且,在该脉冲信号为H电平的期间,使象素导通的电压加在上述象素的液晶层上,另一方面,在该脉冲信号为L电平的期间,使象素截止的电压加在上述象素的液晶层上。
详细叙述如下。
图5是表示色调数据D0、D1和D2和从象素13内的色调控制电路138输出的脉冲信号PW的关系的真值表,图6(b)是表示与色调数据D0、D1和D2对应,从象素13内的色调控制电路138输出的脉冲信号PW的波形的动态波形图。
首先,当色调数据D0、D1和D2全是L电平时,如图5和图6(b)所示,脉冲信号PW在所有子域中都为L电平。
其次,当色调数据为(LLH)时(即,指色调数据D2和D1为L电平,色调数据D0为H电平的情况,以下用同样的形式来表示),如图5的真值表所示,只当色调信号P0为H电平时脉冲信号PW才为H电平,除此之外的情况PW都是L电平。这里,因色调信号P0在子域Sf2中为H电平(参照图6(a)),故如图6(b)所示,脉冲信号PW只在子域Sf2中为H电平。
其次,当色调数据为(LHL)时,如图5的真值表所示,只当色调信号P1为H电平时脉冲信号PW才为H电平,除此之外的情况PW都是L电平。这里,因色调信号P1在子域Sf3中为H电平(参照图6(a)),故如图6(b)所示,脉冲信号PW只在子域Sf3中为H电平。进而,当色调数据为(LHH)时,如图5的真值表所示,当色调信号P0和P1中的任何一个为H电平时脉冲信号PW为H电平。这里,因色调信号P0如图6(a)那样,在子域Sf2中为H电平,色调信号P1在子域Sf3中为H电平。即,当色调数据为(LHH)时,如图6(b)所示,脉冲信号PW在子域Sf2和Sf3中为H电平。
加给其它的色调数据的情况也一样。即,与写入到象素13内的各存储器单元130的色调数据对应决定脉冲信号PW变成H电平(或L电平)的子域。这样,色调控制电路138通过进行存储在各存储器单元130中的色调数据D0~D2和色调信号P0~P1的运算处理,担负生成具有在1场中与上述色调数据D0~D2对应的时间密度的脉冲信号PW的作用。
其次,在已施加色调数据D0~D2的情况下,讨论加在象素13的象素电极135上的电压。图7是表示已写入象素13内的各存储器单元130中的色调数据D0~D2和与上述色调数据D0~D2对应对该象素13的象素电极135施加的电压的关系的动态波形图。再有,图7在与各色调数据对应对象素电极135施加的电压V的上侧,与图6(b)所示的脉冲信号PW的波形合在一起,进行图示。
首先,当色调数据为(LLL)时,脉冲信号PW在所有子域中都为L电平。这时,因在所有子域中图2所示的传输门134a处于导通状态,故对上述象素13的象素电极135施加交流驱动信号FR。另一方面,因对夹着液晶137与上述象素电极135对置的对置电极136施加交流驱动信号FR,故施加在上述象素的液晶层上的电压在所有子域都变成VL(=0V)。结果,上述象素13在所有子域都处于截止状态,所以,这时,液晶的透射率与色调数据(LLL)对应而变成0%。
其次,当色调数据为(LLH)时,脉冲信号PW在子域Sf2中为H电平,在其它子域中为L电平。这时,因在子域Sf2中传输门134b导通,故对象素电极135施加将交流驱动信号FR电平反相后的信号/FR。另一方面,在子域Sf1和Sf3中,因传输门134a导通,故对象素电极135施加交流驱动信号FR。因此,在子域Sf2中对象素13的液晶层施加电压VH,象素13处于导通状态,在子域Sf2和Sf3中对上述液晶层施加电压VL(=0V)而使象素13处于截止状态。结果,在1场内施加给象素13的液晶层的有效电压值变成图4所示的V1,所以,上述象素13的透射率与色调数据(LLH)对应而变成14.3%。
其次,当色调数据为(LHH)时,脉冲信号PW在子域Sf2和Sf3中为H电平,另一方面,在子域Sf1中为L电平。因此,在子域Sf2和Sf3中对上述象素13的液晶层施加电压VH使其导通。另一方面,在子域Sf1中,因对上述象素13的液晶层施加电压VL(=0V)故使上述象素13处于截止状态。结果,在1场内施加给象素13的液晶层的有效电压值变成图4所示的V3,所以,上述象素13的透射率与色调数据(LHH)对应而变成42.9%。
加给其它色调数据的情况也一样。即,在脉冲信号PW为H电平的子域中,将与交流驱动信号FR的电平反相的信号/FR加给象素电极135的结果,象素13导通。
与此相反,在脉冲信号PW为L电平的子域中,将交流驱动信号FR加给象素电极135的结果,象素13截止。结果,在1场内对上述象素13的液晶层施加与色调数据对应的有效电压,从而得到与上述色调数据对应的透射率。即,以与存储在上述存储器中的色调数据对应的时间密度,对上述象素的液晶层施加使象素导通的电压或使象素截止的电压。这样,在本实施形态中,图2所示的色调控制电路38与专利权利要求范围中的‘脉冲宽度控制电路’相当,利用作为该输出信号的脉冲信号进行通断控制的传输门134a和134b与专利权利要求范围中的‘开关电路’相当,此外,将它们合并后的电路与专利权利要求范围中的‘象素驱动电路’相当。但是,象素驱动电路只要是不仅在生成具有与色调数据对应的时间密度的脉冲信号的同时能够与该脉冲信号对应对各象素施加使象素导通的电压或使象素截止的电压的电路即可,当然不限于本实施形态所示的结构。
如上所述,交流驱动电压FR是在每一场使电平反复反相的信号。因此,如图7所示,在某一场对象素13的液晶层施加的电压和在上述场的前后场对象素13的液晶层施加的电压的极性相反。即,对液晶层施加的电压的极性周期性地反相,所以,能够避免对液晶施加直流成分。结果,具有能抑制液晶性能变差的优点。
若按照本实施形态,把1场分割成多个子域,以各子域为单位对各象素13的液晶层施加使象素导通的电压VH或使象素截止的电压VL(=0V),控制1场中的有效电压值。即,因可以利用处理数字值的电路构成驱动电路,故在驱动电路等外围电路中,不需要象高精度的D/A转换器或运算放大器等那样的用来处理模拟信号的电路。因此,因大大地简化了电路结构,故具有能降低整个装置的成本的优点。进而,因施加在液晶层上的电压是2值电压,故从原理上不会发生因元件特性和布线阻抗等的不均匀而引起的不均匀显示。因此,若按照本实施形态的电光学装置装置,可以进行高质量和高清晰度的色调显示。
进而,若按照本实施形态,因以与存储在各存储器单元中的色调数据D0~D2对应的时间密度使象素13处于导通状态或截止状态,故对色调数据不变的象素13不必改写色调数据。即,可以通过色调数据的改写,只对色调数据有变更的象素13进行色调显示。因此,例如,与采用对每一场的所有象素进行色调数据的写入的方法的情况相比,具有能明显降低功耗的优点。特别,当显示静止图像或变化少的活动图像时,因对象素进行色调数据的写入的次数明显减少,故上述效果很明显。
再有,在上述实施形态中,说明了写入方式时的动作,但若按照图1所示的结构,在读出方式下,也可以读出已写入象素13内的存储器中的色调数据。即,若从未图示的上位装置加给L电平的片选信号/CE和允许输出信号/OE及H电平的允许写入信号/WE,则对Y地址缓冲器210和X地址缓冲器220及输出电路241供给H电平的使能信号。而且,从由Y地址信号Ay0~Ayi和X地址信号Ax0~Axj特定的象素存储器中读出色调数据,经输入输出端子I/O0~I/O2向上位装置输出。若采用上述结构,可以得到在上位装置侧不必具备用来存储各象素的色调数据的存储器的效果。
C:第2实施形态
其次,说明本发明的第2实施形态的电光学装置。再有,本实施形态的电光学装置除色调信号的形态和象素的结构之外,与图1所示的第1实施形态的电光学装置的结构相同。因此,以下,只说明与上述实施形态1不同的部分。
在本实施形态中,把1场分割成7个子域,通过以各子域为单位使象素导通或截止,实现与3比特的色调数据D0~D2对应的8色调显示。具体对象素施加电压的形式和子域Sf1~Sf7的周期如下。
例如,当对某象素加色调数据(LLH)时,即,进行上述象素的透射率为14.3%的色调显示时,在1场(1f)中,在子域Sf1中,对上述象素的液晶层施加电压VH,另一方面,在其它子域Sf2~Sf7中,对上述液晶层施加电压VL(=0V)。这里,有效电压值可以对瞬时电压值的平方在1周期(1场(1f))内平均后再开方求得,所以,若将子域Sf1设定为相对1场(1f)为(V1/VH)2的期间,则通过上述施加电压,在1场(1f)中对液晶层施加的有效电压值变成V1。
此外,例如,当对某象素加色调数据(LHL)时,即,进行上述象素的透射率为28.6%的色调显示时,在1场(1f)中,在子域Sf1~Sf2中,对上述象素的液晶层施加电压VH,另一方面,在其它子域Sf3~Sf7中,对上述液晶层施加电压VL。这里,若将子域Sf1~Sf2设定为相对1场(1f)为(V2/VH)2的期间,则通过上述施加电压,在1场(1f)中对液晶层施加的有效电压值变成V2。如上所述,因子域Sf1设定为(V1/VH)2的期间,故对子域Sf2,可以设定为(V2/VH)2-(V1/VH)2的期间。
同样,例如,当对某象素加色调数据(LHH)时,即,进行上述象素的透射率为42.9%的色调显示时,在1场(1f)中,在子域Sf1~Sf3中,对上述象素的液晶层施加电压VH,另一方面,在其它子域Sf4~Sf7中,对上述液晶层施加电压VL。因此,若将子域Sf1~Sf3设定为相对1场(1f)为(V3/VH)2的期间,则通过上述施加电压对上述液晶层施加的有效电压值变成V3。这里,如上所述,因子域Sf1~Sf2设定为(V1/VH)2的期间,故对子域Sf3,可以设定为(V3/VH)2-(V2/VH)2的期间。
以下同样,可以分别决定其它子域Sf4~Sf6的期间。此外,最后,可以将子域Sf7的期间设定为从1场减去子域Sf1~Sf6的期间。只是,如上所述,作为各子域Sf1~Sf7的合计期间,有必要确保相对1场大于(V7/VH)2的周期。但是,即使子域Sf1~Sf7的合计周期比相对1场为(V7/VH)2的周期还要长,即,即使对液晶层施加的有效电压值超过图4中的V7,因已达到饱和故透射率为100%。
这样,在本实施形态中,因在1场中对液晶层施加的电压的形式不同于上述实施形态1,故由色调信号生成电路23输出的色调信号P0、P1和P2也与上述实施形态1的色调信号不同。
图10(a)是表示本实施形态的色调信号P0~P2的波形的动态波形图。如该图所示,各色调信号以1场的各子域为单位,设定成H电平或L电平。在本实施形态中,如图10(a)所示,作为色调信号P0~P2,使用进行‘1’~‘7’的计数的3比特计数器的输出信号。即,色调信号P0、P1和P2在子域Sf1中,分别变成H电平、L电平、L电平,表示计数值为‘1’,在子域Sf2中,分别变成L电平、H电平、L电平,表示计数值为‘2’,在子域Sf3中,分别变成H电平、H电平、L电平,表示计数值为‘3’。
其次,图8是表示本实施形态的电光学装置的象素13a的具体结构的图。这里,图8所示的存储器单元130与图3所示的上述实施形态1的存储器一样。只是,在该存储器单元130内的反相器1302的输出(/Q输出)供给后级的色调控制电路138这一点上与上述实施形态1不同。
如图8所示,色调控制电路138a是由输入存储器130b的/Q输出和色调信号P1的或门、输入存储器130c的/Q输出和色调信号P2的或门、3个与门和最后输出的或门构成的比较电路。进而,具有将色调控制电路138a的输出信号作为输入信号的反相器133。以下,将图8所示的反相器133的输出信号称作脉冲信号PW。
根据该结构,将从色调信号生成电路23供给的色调信号P0~P2与写入各存储器单元130的色调数据D0~D2进行比较,当色调信号P0~P2的计数值小于色调数据D0~D2时,输出H电平的脉冲信号PW,当色调信号P0~P2的计数值大于色调数据D0~D2时,输出L电平的脉冲信号PW。结果,得到具有与色调数据D0~D2对应的时间密度的脉冲信号PW。再有,色调控制电路138a和反相器133只要能输出具有与色调数据D0~D2对应的时间密度的脉冲信号PW即可,当然不限于图8所示的结构。
其次,参照图9所示的真值表和图10(b)所示的动态波形图,说明色调数据D0~D2和色调信号P0~P2与脉冲信号PW的关系。
如图9和图10(b)所示,当向象素13a内的各存储器130写入色调数据(LLL)时,在所有子域中,脉冲信号PW都是L电平。即,这时,与上述色调数据对应的值是‘0’。另一方面,如图10(a)所示,作为比较对象的色调信号的计数值在‘0’以下的情况没有。结果,如图9和图10(b)所示,脉冲信号PW在所有子域中都为L电平。
其次,当向象素13a内的各存储器130写入色调数据(LLH)时,当色调信号的计数值在‘1’以下时,脉冲信号PW为H电平,另一方面,当计数值比‘1’大时,脉冲信号PW为L电平。这里,如图10(a)所示,只有在子域Sf1中色调信号的计数值才在‘1’以下。因此,脉冲信号PW如图9和图10(b)所示,只在子域Sf1中为H电平,在其它子域Sf2~Sf7(即色调信号的计数值比‘1’大的子域)中,为L电平。
其次,假定当向存储器单元130写入与值‘2’对应的色调数据(LHL)的情况。如图10(a)所示,只有在子域Sf1和Sf2中色调信号的计数值才在‘2’以下。因此,这时,如图9和图10(b)所示,在子域Sf1和Sf2中脉冲信号PW为H电平,另一方面,在其它子域Sf3~Sf7(即色调信号的计数值比‘2’大的子域)中,为L电平。与加其它色调数据的情况一样。这样,在本实施形态中,将所加色调数据的值与色调信号的计数值进行比较,脉冲信号PW的电平是与该比较结果对应的值。换言之,根据上述比较结果决定脉冲信号PW为H电平的子域和为L电平的子域。
其次,参照图11说明通过输出具有上述那样的波形的脉冲信号PW对各象素13a的象素电极135施加的电压V。再有,在图11中,和图7一样,在与各色调数据对应对象素电极135施加的电压V的上侧,与和上述色调数据对应的脉冲信号PW(图10(b)所示的脉冲)合在一起。
首先,当色调数据为(LLL)时,脉冲信号PW在所有子域中都为L电平。因此,在所有子域中,对上述象素13a的象素电极135施加交流驱动信号FR。
结果,上述象素13a在所有子域中都处于截止状态,透射率与色调数据(LLL)对应变成0%。
其次,当色调数据为(LLH)时,脉冲信号PW在子域Sf1中为H电平,在其它子域Sf2~Sf7中为L电平。因此,在子域Sf1中,对上述象素13a的象素电极135施加将交流驱动信号FR的电平反相后的信号/FR,使上述象素13a处于导通状态,另一方面,在子域Sf2~Sf7中,对上述象素13a的象素电极135施加交流驱动信号FR,使其处于截止状态。这里,子域Sf1设定成相对1场(1f)为(V1/VH)2的周期,所以,在上述1场中对象素13a的液晶层施加的有效电压值变成图4所示的V1。因此,上述象素13a的透射率与色调数(LLH)对应变成14.3%。
进而,当色调数据为(LHL)时,脉冲信号PW在子域Sf1和Sf2中为H电平,在其它子域Sf3~Sf7中为L电平。因此,在子域Sf1~Sf2中,对上述象素13a的液晶层施加电压VH,使其处于导通状态,另一方面,在子域Sf3~Sf7中,对上述象素13a的液晶层施加电压VL(=0V),使其处于截止状态。这里,子域Sf1~Sf2设定成相对1场(1f)为(V2/VH)2的周期,所以,在上述1场(1f)中对象素13a的液晶层施加的有效电压值变成图4所示的V2。因此,上述象素13a的透射率与色调数(LHL)对应变成28.6%。
加给其它的色调数据也一样。即,在脉冲信号PW为H电平的子域中,对象素电极135施加信号/FR,使上述象素13a导通,另一方面,在脉冲信号PW为L电平的子域中,对象素电极135施加交流驱动信号FR,使上述象素13a截止。结果,将与色调数据对应的有效电压加给上述象素13a的液晶层,得到与色调数据对应的透射率。
若按照本实施形态,除了和实施形态1同样的效果之外,还可以得到以下效果。
在上述实施形态1中,虽然具有结构简单的优点,但因对各子域的周期进行了规定的加权,该加权方法决定了能够施加给液晶层的有效电压(或这时的幅度)。这里,因存在具有各式各样的电压/透射率特性的液晶,故由于所使用的液晶的原因,有时对液晶层不能施加与所要的透射率对应的有效电压。即,当使用上述实施形态1的方法时,存在难以灵活地适应具有各式各样的电压/透射率特性的液晶的问题。
与此相对,若按照本实施形态,可以与所使用的液晶的电压/透射率特性对应,任意设定各子域的周期。即,可以与所使用的液晶的电压/透射率特性对应任意设定各子域的周期,从而对液晶层得以施加与所要的透射率对应的有效电压。这样,若按照本实施形态,与上述实施形态1的方法比较,具有能灵活地适应具有各式各样的电压/透射率特性的液晶的优点。
这里,在本实施形态中,通过改变色调生成电路23生成的各色调信号的电平反相的周期,可以改变各子域的周期。结果,具有很容易调整各子域的周期使其与所使用的液晶的电压/透射率特性和所要的透射率对应的优点。
D:实施形态3
其次,说明本发明的实施形态3的电光学装置。
本实施形态的电光学装置除色调信号的形态和象素的结构之外,与上述各实施形态的电光学装置的结构相同。因此,对和上述各实施形态的电光学装置共同的部分省略其说明。
在本实施形态中,把1场分割成8个子域Sf0~Sf7,通过以各子域为单位使象素13b导通或截止来实现8个色调的显示。只是,在把1场分割成的8个子域Sf0~Sf7中,在最初的子域Sf0中,使象素13b截止而与色调数据无关。
再有,有必要将子域Sf0设定成相对1场(1f)为1-(V7/VH)2的周期,因此,子域Sf7便设定成相对1场(1f)为(V7/VH)2-(V6/VH)2的周期(详情后述)。
在其它子域Sf1~Sf6中,以和上述实施形态2同样的方式使象素13b导通或截止。
此外,本实施形态所使用的色调信号P0~P2在子域Sf1~Sf7中,和上述实施形态2中的色调信号P0~P2的形态相同。但在子域Sf0中,则如图14(a)所示,所有的色调信号P0、P1和P2都为L电平。
其次,图12是表示本实施形态的电光学装置的象素13b的具体结构的电路图。如该图所示,本实施形态中的象素13b除部分外,与图8所示的上述实施形态2中的象素13a有相同的象素电路结构。具体地说,本实施形态中的象素13b除上述实施形态2中的象素13a内的各部分外,还具有将色调信号P0、P1和P2作为输入信号的或非门139a和将该或非门139a的输出信号及色调控制电路38a的输出信号作为输入信号的或非门139b。再有,下面,将图12所示的或非门139b的输出信号称作脉冲信号PW。
图13是表示色调数据D0~D2及色调信号P0~P2与从象素13b内的或非门139b输出的脉冲信号PW的关系的真值表,图14(b)是表示与各色调数据D0~D2对应的脉冲信号PW的波形的动态波形图。如上所述,色调信号P0~P2在子域Sf0中为L电平。这时,从图12所示的象素13b内的或非门139a输出H电平的信号,该信号输入到或非门139b中。结果,如图13和图14(b)所示,脉冲信号PW变成L:电平而与色调数据无关。再有,如图13和图14(b)所示,在子域Sf0以外的子域Sf1~Sf7中,脉冲信号PW的电平与前面图10(b)所示的脉冲信号PW的电平一样。
其次,参照图15说明通过从或非门139b输出具有上述那样的的波形的脉冲信号PW对各象素13b的象素电极135施加的电压。
例如,当色调数据为(LLH)时,脉冲信号PW在子域Sf1中为H电平,在其它子域Sf2~Sf7中为L电平。因此,这时,只在子域Sf1中象素13b才处于导通状态,所以,上述象素13b的透射率与色调数据(LLH)对应变成14.3%。
其次,当色调数据为(HHH)时,脉冲信号PW在子域Sf0中为L电平,在其它子域Sf1~Sf7中为H电平。因此,在子域Sf0中象素13b处于截止状态,在其它子域Sf1~Sf7中象素13b处于导通状态。结果,可以得到与色调数据(HHH)对应的透射率。
若按照本实施形态,除可以得到和上述各实施形态同样的效果之外,通过设置使象素13b与色调数据无关而处于截止状态的子域,还可以得到以下效果。
图4示出一例电压—透射率特性,但并不是所有的液晶都具有这样的特性。即,因液晶的不同,例如,可以具有图16所示那样的电压—透射率特性。即,当该液晶加上阈值VTH2以上的电压时,与施加电压对应透射率减小。
在上述实施形态2的电光学装置中,若给出色调数据(HHH),对上述象素13a施加使象素13a在所有的子域中都导通的电压,则要考虑在1场中加给液晶层的有效电压值在上述电压VTH2以上。这里,当使用具有上述图4所示的电压—透射率特性的液晶时,即使加给VTH2以上的有效电压也可以得到与色调数据(HHH)对应的100%的透射率,所以,不会有问题。但是,当使用具有图16所示那样的电压—透射率特性的液晶时,若加给VTH2以上的有效电压,尽管透射率应该与色调数据(HHH)对应为100%,但实际上透射率比它低。结果,存在显示图像对比度低的问题。
与此相对,在本实施形态中,设置使象素13b与色调数据无关而处于截止状态的子域Sf0。因此,若选定子域f0的周期,当在除子域Sf0以外的子域Sf1~Sf7中使象素13b导通时,对上述象素13b的液晶层施加有效电压VTH2,则不会出现上述问题,可以得到与色调数据(HHH)对应的100%的透射率。结果,具有能够提高显示图像的对比度的优点。这里,通过调整色调信号生成电路23生成的各色调信号的周期,可以容易变更各子Sf0~Sf7的周期。
再有,在本实施形态中,在各场的最初的子域Sf0中使象素13b处于截止状态,但所述的子域Sf0不一定必须在各场的最初期间。此外,所述的子域不限于在1场内只有1个期间,例如,也可以在1场内的多个区间(即,各子域Sf1~Sf7之间的区间)使象素与色调数据无关而处于截止状态。
E:变形例
以上说明了本发明的实施形态,上述实施形态充其量只不过是一些例子,只要不脱离本发明的宗旨,可以对上述实施形态进行各种各样的变形。作为变形例,例如考虑有以下一些。
<变形例1>
在上述实施形态中,交流驱动信号FR的电平反相时间与场的切换时间同步,但不一定必须如此。即,交流驱动信号FR的切换时间可以与场的切换时间毫无关系。因此,可以将交流驱动信号FR的电平反相的周期设定成使闪烁发生最少的周期。例如,可以对每一个子域使交流驱动信号FR的电平反相,或在1场内每隔几个子域使交流驱动信号FR的电平反相,或者,以与场和子域完全不同的周期使交流驱动信号FR的电平反相。这样,通过使FR的电平反相,可以缩短对液晶层施加的电压的极性反相周期,所以能抑制闪烁的发生。再有,即使以比1场短的周期使FR的电平反相,也只是使对液晶137施加的电压极性反相,在1场内加给液晶的有效电压与前面的各实施形态实际上是一样的。
<变形例2>
在上述实施形态中,对对置电极136施加每一场的电平重复反相的交流驱动信号FR,同时,为使象素13导通对象素电极135施加交流驱动信号FR的反相电平的信号,为使象素13截止对象素电极135施加交流驱动信号FR,因此,对液晶层施加电压VH或VL。但是,用来对液晶层施加电压VH或VL的方法不限于此,例如也可以采用以下的方法。
在本变形例中,对对置电极136施加一定的电压Vc,另一方面,对象素电极135施加V1、Vc或V2中的任何一种电压,使象素13导通或截止。这里,电压V1是只比电压Vc高出电压VH的电压,电压V2是只比电压Vc低出电压VH的电压。
在本变形例中,对图2(或图8、图12)所示的传输门134a的输入端供给电压Vc,另一方面,与交流驱动信号FR的电平对应,对传输门134b的输入端供给电压V1或V2。具体地说,当交流驱动信号FR为H电平时,对传输门134b的输入端供给电压V1,L电平时,供给电压V2。
以下,参照图17说明本变形例对象素电极施加的电压。再有,图17示出当将本变形例用于上述实施形态1的电光学装置时对象素电极135施加的电压的例子。
(1)象素13截止的情况
在应使象素13截止的子域、即上述脉冲信号PW为L电平的子域中,传输门134a导通的结果,对象素电极135施加电压Vc。
这里,因对对置电极136施加电压Vc,故加给上述象素13的液晶层的电压为VL(=0V),象素13截止。
(2)象素13导通的情况
在应使象素13导通的子域、即上述脉冲信号PW为H电平的子域中,传输门134b导通的结果,与交流驱动信号FR的电平对应,对象素电极135施加电压V1或V2。再有,在图17中,假定交流驱动信号FR在每一场电平重复反相的情况。
具体地说,当象素13导通时,若交流驱动信号FR为H电平,对象素电极135施加上述电压V1,结果,因对上述象素13的液晶层施加作为电压V1和电压Vc的电压差的电压VH,故象素13导通。另一方面,当象素13导通时,若交流驱动信号FR为L电平,对象素电极135施加上述电压V2,结果,因对上述象素13的液晶层施加作为电压V2和电压Vc的电压差的电压VH,故象素13导通。这里,在交流驱动信号FR为H电平的场中对液晶层施加的电压和在交流驱动信号FR为L电平的场中对液晶层施加的电压绝对值相等而极性相反。
这样,当采用本变形例的方法时,和上述各实施形态一样,可以避免对液晶施加直流成分,结果,可以防止液晶的质量变差。再有,本变形例和上述变形例1一样,当然交流驱动信号FR的电平反相时间可以不和场或子域的切换时间同步。
F:液晶装置的整体结构
其次,参照图18和图19说明上述实施形态或应用形态的电光学装置的结构。这里,图18是表示电光学装置100的结构的平面图,图19是图18的A-A’线剖面图。
如这些图所示,电光学装置100的结构是,使形成象素13等的元件衬底10和形成对置电极136等的对置衬底14相互保持一定的间隙,并用密封材料15将它们贴合在一起,同时,在该间隙中夹着有作为电光学材料的液晶137。再有,实际上,密封部件15有缺口,在通过该缺口封入液晶137后,利用密封材料进行密封,图中将这些都省略了。
这里,如上所述,使元件衬底10为半导体衬底时,衬底不透明。因此,象素13内的象素电极135由铝等反射性金属形成,电光学装置100作为反射型电光学装置使用。与此相对,对置电极14因由玻璃等构成,所以透明。当然,元件衬底10也可以由玻璃等透明的绝缘衬底构成。当使用这样的绝缘衬底时,若由反射性金属形成象素电极135,则可以进行反射型显示,若用其它的材料形成,则进行透射型显示。此外,当由反射性金属形成象素电极135时,最好将构成上述象素13的各电路、即存储器单元130、色调控制电路138及传输门134a、134b等设在与上述象素电极135的观测侧相反的一侧。若这样,因在各象素电极间不需要设置用来形成这些电路的区域,故具有能提高各象素的孔径比的效果。
在元件衬底10上,在密封材料15的内侧且在显示区域的外侧区域设置遮光膜16。在形成该遮光膜16的区域内,例如,在区域20a形成Y地址缓冲器210和Y地址译码器211等,此外,在区域21a形成X地址缓冲器220、X地址泽码器221和采样保持电路222等。
即,遮光膜16防止光入射到在该区域形成的驱动电路上。该遮光膜16和对置电极136同时施加交流驱动信号FR。因此,在形成遮光膜16的区域,因施加给液晶层的电压近似为0,故和对象素电极135不加电压的情况处于相同的显示状态。
此外,在元件衬低10中,在位于区域21a的外侧隔着密封材料15的区域22中,形成多个连接端子,输入外来的控制信号(例如,供给上述动作控制电路20的各信号)或色调数据和电源等。
另一方面,对置衬底14的对置电极136利用设在衬底贴合部分的4个角中的一个角上的导电材料(省略图示),使元件衬底10中的遮光膜16和连接端子导电。即,经设在元件衬底10上的连接端子对遮光膜16,进而经导电材料对对置电极136分别施加交流驱动信号FR。
此外,在对置电极14上,根据电光学装置100的用途,例如,若是直视型装置,第1,设置呈条状、玛赛克状、三角形状等排列的滤色器,第2,例如,设置由金属材料或树脂等形成的遮光膜(黑色矩阵)。再有,当用于色光调制时,例如,当作为后述的投影仪的光阀使用时,不形成滤色器。此外,若是直视型,则必要时设置前灯,使光从对置电极照射到电光学装置100上。进而,在元件衬底10和对置电极14的电极形成面上,设置分别在规定方向进行了磨擦处理的定向膜(未图示)等,在不加电压的状态下规定液晶分子的排列方向,另一方面,在对置电极14一侧,设置与定向方向对应的偏振片(未图示)。只是,作为液晶137,若使用作为微粒子分散在高分子中的高分子分散型液晶,则不需要上述定向膜和偏振片等,结果,因光的利用率高,故在高辉度和低功耗等方面是有利的。
此外,在实施形态中,因使用半导体衬底作为构成电光学装置的元件衬底10,所以,在这里,最好用MOS型EFT形成各象素13内的存储器单元或各门电路等外围电路的构成元件,但本发明不限于此。例如,也可以使用玻璃或石英等非晶质衬底作为元件衬底10,并在此堆积半导体薄膜后形成薄膜晶体管(TFT)。若使用TFT,则可以使用透明衬底作为元件衬底10。
再有,作为,液晶,除TN型之外,还可以使用具有180度以上的扭角定向的STN(超扭转向列)型、BTN(双稳扭转向列)型·强感应型等具有存储性能的双稳型、高分子分散型的液晶,进而可以使用将在分子的长轴方向和短轴方向具有可见光吸收各向异性的染料(客)溶解在具有一定的分子排列的液晶(主)中使染料分子和液晶分子平行排列的主客型液晶等。
此外,也可以是在不加电压时液晶分子相对两衬底在垂直方向排列,而加电压时液晶分子相对两衬底在水平方向排列,即所谓垂直定向(homeotropic)的结构,也可以是在不加电压时液晶分子相对两衬底在水平方向排列,而加电压时液晶分子相对两衬底在垂直方向排列,即所谓平行(水平)定向(均匀定向)的结构。进而,还可以是不在对置衬底14上配置对置电极136而在元件衬底10上相互隔开呈梳齿状配置象素电极135和对置电极136的结构。在该结构中,液晶分子水平定向,液晶分子的定向方向随电极间的横向电场而变化。这样,若采用本发明的驱动方法,作为液晶的定向方式,可以使用各种各样的定向方式。
进而,除了液晶装置之外,电光学装置还适用于使用电发光(EL)、数字微型镜器件(DMD)、等离子体发光和因发射电子而产生的荧光等并利用该电光学效应进行显示等各种电光学装置。这时,作为电光学装置材料,可以是EL、镜器件、气体和荧光体等。再有,当使用EL作为电光学材料时,因在元件衬底10上,EL插在象素电极135和透明导电膜的对置电极136之间,故不需要图18和图19所示的对置电极14。这样,本发明可适用于具有和上述结构类似的结构的电光学装置,特别是,能够适用于使用进行导通或截止2值显示的象素,进行色调显示的所有的电光学装置。
G:电子仪器
其次,说明将上述液晶装置用于具体的电子仪器的几个例子。
(1)投影仪
首先,说明将实施形态的电光学装置作为光阀使用的投影仪。图20是表示该投影仪的结构的平面图。如该图所示,在投影仪1100的内部,沿系统光轴PL配置偏振光照明装置1110。在该偏振光照明装置1110中,从灯1112发出的光经反射镜1114反射后变成大致平行的光束,入射到第1集成透镜1120。由此,从灯1112射出的光被分割成多个中间光束。该分割的中间光束利用在光入射侧具有第2集成透镜的偏振光变换元件,变换成偏振光方向大致一致的单一的偏振光束(S偏振光束),从偏振光照明装置1110射出。
从偏振光照明装置1110射出的S偏振光束由偏振光束分裂器1140的S偏振光束反射面1141反射。在该反射光束中,蓝色光束(B)由二色镜1151的蓝色反射层反射,并由反射型电光学装置100B调制。此外,在透过二色镜1151的蓝色反射层的光束中,红色光束(R)由二色镜1152的红色反射层反射,并由反射型电光学装置100R调制。另一方面,在透过二色镜1151的蓝色反射层的光束中,绿色光束(G)透过二色镜1152的红色反射层反射层,并由反射型电光学装置100G调制。
这样一来,分别由电光学装置100R、100G、100B进行了色光调制了红、绿、蓝色光利用偏振光束分裂器1140依次合成后,再利用投影光学系统1160投影到屏幕1170上。再有,在电光学装置100R、100G和100B中,因由二色镜1151、1152入射与R、G、B各原色对应的光束,故不需要滤色器。
再有,在本实施形态中,使用了反射型电光学装置,但也可以使用透过型显示的电光学装置来作为投影仪。
(2)便携式计算机
其次,说明上述电光学装置应用于便携式个人计算机的例子。图21是表示该个人计算机的构成的透视图。图中,计算机1200由包括键盘1202的主机1204和显示器1206构成。该显示器1206通过在刚才所述的电光学装置100的前面附加前灯而构成。
再有,在该构成中,因将电光学装置100作为反射直视型电光学装置使用,故最好在象素电板135上形成凹凸,使反射光向各个方向散射。
(3)便携式电话机
进而,说明上述电光学装置应用于便携式电话机的例子。图22是表示该便携式电话机的构成的透视图。图中,便携式电话机1400除了多个操作键1402之外、还包括受话器耳承1404、送话口1406和电光学装置100。必要时,在该电光学装置100的前面还设有前灯。此外,在该构成中,因将电光学装置100作为反射直视型电光学装置使用,故最好在象素电极135上形成凹凸。
再有,作为电子仪器,除参照图20~图22已说明的之外,还可以举出液晶电视,寻象器型或监视器直视型的录象机、车辆导航装置、寻呼机、电子笔记本、电子计算器、文字处理机、工作站、电视电话、POS终端、和包括触摸面板的仪器等。当然,对各种电子仪器,上述实施形态及其变形例的电光学装置都可以适用。
如上所述,若按照本发明,通过使象素导通或截止,可以实现高质量的色调显示。此外,若按照本发明,各象素具有存储器,对存储在上述存储器中的色调数据和由色调信号生成电路生成的色调信号进行运算处理,并与其结果对应使各象素导通或截止,所以,只对色调数据的内容有变更的象素进行色调数据的写入即可。因此,可以降低功耗。

Claims (36)

1.一种电光学装置的驱动方法,该电光学装置包括分别具有K(K=1、2、3、…的自然数)比特的存储器的多个象素,与K比特的色调数据对应进行K比特的色调显示,其特征在于:
向上述象素存储器写入所述色调数据,
根据已写入上述存储器的色调数据和K比特的色调信号,生成具有与上述色调数据对应的时间密度的脉冲信号,
与上述脉冲信号对应,对上述象素施加使象素导通的电压或使象素截止的电压。
2.权利要求1记载的电光学装置的驱动方法,其特征在于:上述K比特的色调信号,其各比特的选择期间分别设定为可进行20、21、22、…2k-1的色调显示的时间密度。
3.权利要求1至2任何一项记载的电光学装置的驱动方法,其特征在于:根据上述色调数据选择与上述色调信号对应的比特的色调信号,通过合成已选择的各色调信号的选择期间来生成上述脉冲信号,
根据上述脉冲信号,对上述象素电极施加使象素导通的电压或使象素截止的电压。
4.权利要求1记载的电光学装置的驱动方法,其特征在于:上述K比特的色调信号是K比特的计数器的输出信号,维持上述输出信号表示的各计数值的期间设定为可进行K比特的色调显示的时间密度。
5.权利要求1或4记载的电光学装置的驱动方法,其特征在于:将上述K比特的色调数据与上述色调信号的K比特的计数值进行比较,并根据比较结果生成上述脉冲信号。
根据上述脉冲信号,对上述象素电极施加使象素导通的电压或使象素截止的电压。
6.权利要求1至5任何一项记载的电光学装置的驱动方法,其特征在于:在上述色调信号为规定值的期间,上述象素截止,而与上述色调数据的值无关。
7.权利要求1至6任何一项记载的电光学装置的驱动方法,其特征在于:上述象素包括象素电极和与上述象素电极相向并以规定的周期施加了电平重复反相的基准电压的对置电极,
当与上述脉冲信号对应使象素导通时,对上述象素电极施加电平变化与上述基准电压的电平变化相反的电压,另一方面,当使象素截止时,对上述象素电极施加电平变化与上述基准电压的电平变化对应的电压。
8.权利要求1至6任何一项记载的电光学装置的驱动方法,其特征在于:上述象素包括象素电极和面对上述象素电极并施加了一定的基准电压的对置电极,
当与上述脉冲信号对应使象素导通时,对上述象素电极施加和上述基准电压相同的电压,当使象素截止时,对上述象素电极以规定的周期切换施加比上述基准电压高的第1电压或比上述基准电压低的第2电压。
9.权利要求7至8任何一项记载的电光学装置的驱动方法,其特征在于:上述规定周期与各场的周期不同。
10.权利要求1至9任何一项记载的电光学装置的驱动方法,其特征在于:在上述多个象素中,只对应该变更已存储在上述存储器中的色调数据的象素的存储器写入上述色调数据。
11.一种电光学装置的驱动电路,具有由K(K=1、2、3、…的自然数)根列选择线形成的多个列选择线群、多个行选择线和与上述列选择线群及上述行选择线的各交差点对应设置且具有存储K比特色调数据的K比特存储器的象素,根据写入所述存储器的色调数据和K比特的色调信号生成具有与上述色调数据对应的时间密度的脉冲信号,根据该脉冲信号,对上述象素施加使象素导通的电压或使象素截止的电压,其特征在于,包括:
向与作为上述色调数据的写入对象的象素对应的行选择线供给选择信号的行选择线驱动电路,
在向上述行选择线供给选择信号的期间,向构成与作为上述色调数据的写入对象的象素对应的列选择线群的各列选择线供给与上述色调数据的各比特对应的信号的列选择线驱动电路。
12.权利要求11记载的电光学装置的驱动电路,其特征在于:具有生成上述色调信号的色调信号生成电路。
13.权利要求11或12记载的电光学装置的驱动电路,其特征在于:上述K比特色调信号其各比特的选择期间分别设定为可进行20、21、22、…2k-1的色调显示的时间密度。
14.权利要求11至12任何一项记载的电光学装置的驱动电路,其特征在于:上述K比特的色调信号是K比特的计数器的输出信号,维持上述输出信号表示的各计数值的期间设定为可进行K比特的色调显示的时间密度。
15.权利要求11至14任何一项记载的电光学装置的驱动电路,其特征在于:在上述色调信号为规定值的期间,上述象素截止,而与上述色调数据的值无关。
16.权利要求11至15任何一项记载的电光学装置的驱动电路,其特征在于:上述行选择线驱动电路在形成上述象素的规定的衬底上形成。
17.权利要求11至16任何一项记载的电光学装置的驱动电路,其特征在于:上述列选择线驱动电路在形成上述象素的规定的衬底上形成。
18.权利要求11至17任何一项记载的电光学装置的驱动电路,其特征在于:具有在上述多个象素中只对应该变更已存储在上述存储器中的色调数据的象素的存储器写入上述色调数据的写入电路。
19.权利要求11至18任何一项记载的电光学装置的驱动电路,其特征在于:具有读出上述象素存储器存储的色调数据的读出电路。
20.一种电光学装置,具有多个象素,与K(K=1、2、3、…的自然数)比特的色调数据对应进行K比特的色调显示,其特征在于,包括:
由K根列选择线构成的多个列选择线群;
多个行选择线;
与上述列选择线群和上述行选择线的各交叉点对应设置的多个象素,该象素包括象素电极、存储上述K比特色调数据的K比特存储器和象素驱动电路,所述象素驱动电路根据写入上述存储器的色调数据和K比特的色调信号生成具有与上述色调数据对应的时间密度的脉冲信号,与该脉冲信号对应,对上述象素施加使象素导通的电压或使象素截止的电压;
向与作为上述色调数据的写入对象的象素对应的行选择线供给选择信号的行选择线驱动电路;
在向上述行选择线供给选择信号的期间,向构成与作为上述色调数据的写入对象的象素对应的列选择线群的各列选择线供给上述色调数据的列选择线驱动电路。
21.权利要求20记载的电光学装置,其特征在于:上述存储器包括:
因上述选择信号而变成导通状态的开关元件;
2个反相器,1个反相器的输出是另一个反相器的输入,当上述开关元件处于导通状态时,写入由对应的列选择线供给的上述色调数据,当上述开关元件处于非导通状态时,保持写入的色调数据。
22.权利要求20至21任何一项记载的电光学装置,其特征在于:具有生成上述色调信号的色调信号生成电路。
23.权利要求20至22任何一项记载的电光学装置,其特征在于:上述K比特色调信号其各比特的选择期间分别设定为可进行20、21、22、…2k-1的色调显示的时间密度。
24.权利要求20至23任何一项记载的电光学装置,其特征在于,所述象素驱动电路具有:根据上述色调数据选择与上述色调信号对应的比特的色调信号,通过合成已选择的各色调信号的选择期间来生成上述脉冲信号的脉冲宽度控制电路;
根据由上述脉冲宽度控制电路生成的脉冲信号,对上述象素电极施加使象素导通的电压或使象素截止的电压中的任一者的开关电路。
25.权利要求20至22任何一项记载的电光学装置,其特征在于,上述K比特的色调信号是K比特的计数器的输出信号,维持上述输出信号表示的各计数值的期间设定为可进行K比特的色调显示的时间密度。
26.权利要求20、21、22或25记载的电光学装置,其特征在于,所述象素驱动电路具有:将上述K比特的色调数据与上述色调信号的K比特的计数值进行比较,并根据比较结果生成上述脉冲信号的脉冲宽度控制电路;
根据由上述脉冲宽度控制电路生成的脉冲信号,对上述象素电极施加使象素导通的电压或使象素截止的电压中的任一者的开关电路。
27.权利要求20至26任何一项记载的电光学装置,其特征在于:在上述色调信号为规定值的期间,上述象素截止,而与上述色调数据的值无关。
28.权利要求20至27任何一项记载的电光学装置,其特征在于:上述行选择线驱动电路在形成上述象素的规定的衬底上形成。
29.权利要求20至28任何一项记载的电光学装置,其特征在于:上述列选择线驱动电路在形成上述象素的规定的衬底上形成。
30.权利要求20至29任何一项记载的电光学装置,其特征在于:具有在上述多个象素中只对应该变更已存储在上述存储器中的色调数据的象素的存储器写入上述色调数据的写入电路。
31.权利要求20至30任何一项记载的电光学装置,其特征在于:具有读出上述象素存储器存储的色调数据的读出电路。
32.权利要求20至31任何一项记载的电光学装置,其特征在于:上述存储器和象素驱动电路具有开关元件,
上述存储器和象素驱动电路中的至少一方具有的上述开关元件由在绝缘衬底上形成的薄膜晶体管构成。
33.权利要求20至31任何一项记载的电光学装置,其特征在于:上述存储器和象素驱动电路具有开关元件,
上述存储器和象素驱动电路中的至少一方具有的上述开关元件在半导体衬底上形成。
34.权利要求20至33任何一项记载的电光学装置,其特征在于:上述象素电极具有反射性。
35.权利要求20至34任何一项记载的电光学装置,其特征在于:将上述存储器和象素驱动电路中的至少一方设在与上述象素电极的观察侧相反的一侧。
36.一种电子仪器,其特征在于:具有权利要求20至35任何一项记载的电光学装置。
CNB011326417A 2000-09-06 2001-09-05 电光学装置的驱动方法、驱动电路和电光学装置及其电子仪器 Expired - Fee Related CN1231884C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000270424A JP3664059B2 (ja) 2000-09-06 2000-09-06 電気光学装置の駆動方法、駆動回路及び電気光学装置並びに電子機器
JP270424/00 2000-09-06

Publications (2)

Publication Number Publication Date
CN1342966A true CN1342966A (zh) 2002-04-03
CN1231884C CN1231884C (zh) 2005-12-14

Family

ID=18756864

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011326417A Expired - Fee Related CN1231884C (zh) 2000-09-06 2001-09-05 电光学装置的驱动方法、驱动电路和电光学装置及其电子仪器

Country Status (6)

Country Link
US (1) US7088325B2 (zh)
EP (1) EP1187090A3 (zh)
JP (1) JP3664059B2 (zh)
KR (1) KR100482485B1 (zh)
CN (1) CN1231884C (zh)
TW (1) TW514862B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101447176B (zh) * 2007-11-28 2013-01-23 精工爱普生株式会社 电光装置
CN101123839B (zh) * 2006-08-08 2013-05-08 精工爱普生株式会社 电光学装置、驱动电路及电子设备
CN109074783A (zh) * 2016-03-31 2018-12-21 卡西欧计算机株式会社 点矩阵型显示装置以及时刻显示装置

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW518552B (en) * 2000-08-18 2003-01-21 Semiconductor Energy Lab Liquid crystal display device, method of driving the same, and method of driving a portable information device having the liquid crystal display device
TW514854B (en) * 2000-08-23 2002-12-21 Semiconductor Energy Lab Portable information apparatus and method of driving the same
US7184014B2 (en) * 2000-10-05 2007-02-27 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP3918536B2 (ja) * 2000-11-30 2007-05-23 セイコーエプソン株式会社 電気光学装置の駆動方法、駆動回路及び電気光学装置並びに電子機器
US8339339B2 (en) 2000-12-26 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, method of driving the same, and electronic device
US6747623B2 (en) * 2001-02-09 2004-06-08 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method of driving the same
JP4066662B2 (ja) * 2001-03-09 2008-03-26 セイコーエプソン株式会社 電気光学素子の駆動方法、駆動装置及び電子機器
US6940482B2 (en) 2001-07-13 2005-09-06 Seiko Epson Corporation Electrooptic device and electronic apparatus
JP3912207B2 (ja) * 2001-11-12 2007-05-09 セイコーエプソン株式会社 画像表示方法、画像表示装置及び電子機器
TWI273539B (en) * 2001-11-29 2007-02-11 Semiconductor Energy Lab Display device and display system using the same
JP3913534B2 (ja) * 2001-11-30 2007-05-09 株式会社半導体エネルギー研究所 表示装置及びこれを用いた表示システム
US7362316B2 (en) * 2002-02-22 2008-04-22 Intel Corporation Light modulator having pixel memory decoupled from pixel display
US7956857B2 (en) 2002-02-27 2011-06-07 Intel Corporation Light modulator having pixel memory decoupled from pixel display
JP4067878B2 (ja) * 2002-06-06 2008-03-26 株式会社半導体エネルギー研究所 発光装置及びそれを用いた電気器具
JP4206805B2 (ja) * 2002-06-28 2009-01-14 セイコーエプソン株式会社 電気光学装置の駆動方法
JP4232520B2 (ja) * 2002-06-28 2009-03-04 セイコーエプソン株式会社 電気光学装置の駆動方法
KR100885019B1 (ko) * 2002-10-29 2009-02-20 삼성전자주식회사 액정 표시 장치
US7129925B2 (en) * 2003-04-24 2006-10-31 Hewlett-Packard Development Company, L.P. Dynamic self-refresh display memory
US7167148B2 (en) * 2003-08-25 2007-01-23 Texas Instruments Incorporated Data processing methods and apparatus in digital display systems
US20080018983A1 (en) * 2006-07-12 2008-01-24 Fusao Ishii Color display system for reducing a false color between each color pixel
JP2005274821A (ja) * 2004-03-24 2005-10-06 Tohoku Pioneer Corp 自発光表示モジュールおよび同モジュールを搭載した電子機器、ならびに同モジュールにおける欠陥状態の検証方法
JP4075880B2 (ja) * 2004-09-29 2008-04-16 セイコーエプソン株式会社 電気光学装置、データ線駆動回路、信号処理回路および電子機器
US7321416B2 (en) * 2005-06-15 2008-01-22 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, device manufactured thereby, and controllable patterning device utilizing a spatial light modulator with distributed digital to analog conversion
JP5121136B2 (ja) * 2005-11-28 2013-01-16 株式会社ジャパンディスプレイウェスト 画像表示装置、電子機器、携帯機器及び画像表示方法
US8064118B2 (en) * 2006-07-27 2011-11-22 Silicon Quest Kabushiki-Kaisha Control system for micromirror device
JP5056203B2 (ja) * 2007-06-28 2012-10-24 セイコーエプソン株式会社 電気光学装置、その駆動方法および電子機器
WO2009050772A1 (ja) * 2007-10-15 2009-04-23 Fujitsu Limited ドットマトリクス型の表示素子を有する表示装置およびその駆動方法
US8284179B2 (en) * 2008-02-21 2012-10-09 Himax Technologies Limited Timing controller for reducing power consumption and display device having the same
JP5446243B2 (ja) * 2008-05-12 2014-03-19 セイコーエプソン株式会社 電気光学装置、駆動方法および電子機器
JP5879902B2 (ja) * 2011-10-13 2016-03-08 セイコーエプソン株式会社 電気光学装置および電子機器
US9158136B2 (en) * 2013-01-11 2015-10-13 Canon Kabushiki Kaisha Driving circuit for light modulator
JP2015057637A (ja) * 2013-08-09 2015-03-26 セイコーエプソン株式会社 集積回路、表示装置、電子機器および表示制御方法
US9918053B2 (en) * 2014-05-14 2018-03-13 Jasper Display Corp. System and method for pulse-width modulating a phase-only spatial light modulator
US10935420B2 (en) 2015-08-13 2021-03-02 Texas Instruments Incorporated Optical interface for data transmission
JP6741628B2 (ja) * 2017-08-03 2020-08-19 セイコーエプソン株式会社 表示装置、電子機器、および表示装置の駆動方法
KR102006672B1 (ko) * 2017-09-05 2019-08-02 주식회사 라온텍 디스플레이 장치 및 디스플레이 장치에 사용되는 인에이블 신호 생성방법
US11030942B2 (en) 2017-10-13 2021-06-08 Jasper Display Corporation Backplane adaptable to drive emissive pixel arrays of differing pitches
US10951875B2 (en) 2018-07-03 2021-03-16 Raxium, Inc. Display processing circuitry
US11710445B2 (en) 2019-01-24 2023-07-25 Google Llc Backplane configurations and operations
US11637219B2 (en) 2019-04-12 2023-04-25 Google Llc Monolithic integration of different light emitting structures on a same substrate
US11238782B2 (en) 2019-06-28 2022-02-01 Jasper Display Corp. Backplane for an array of emissive elements
US11626062B2 (en) 2020-02-18 2023-04-11 Google Llc System and method for modulating an array of emissive elements
US11538431B2 (en) 2020-06-29 2022-12-27 Google Llc Larger backplane suitable for high speed applications
CN117769738A (zh) 2021-07-14 2024-03-26 谷歌有限责任公司 用于脉冲宽度调制的背板和方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208588A (ja) 1983-05-12 1984-11-26 東芝ライテック株式会社 表示装置
JP3259253B2 (ja) * 1990-11-28 2002-02-25 富士通株式会社 フラット型表示装置の階調駆動方法及び階調駆動装置
JP3563743B2 (ja) * 1992-05-01 2004-09-08 オリンパス株式会社 撮像装置
JP3255992B2 (ja) * 1992-09-18 2002-02-12 株式会社半導体エネルギー研究所 アクティブマトリクス型の表示装置の表示方法
US5798746A (en) * 1993-12-27 1998-08-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
TW270993B (en) * 1994-02-21 1996-02-21 Hitachi Seisakusyo Kk Matrix liquid crystal display and driving circuit therefor
JP2576951B2 (ja) 1995-02-06 1997-01-29 セイコーエプソン株式会社 画像表示装置
JP3485229B2 (ja) 1995-11-30 2004-01-13 株式会社東芝 表示装置
JP3305946B2 (ja) * 1996-03-07 2002-07-24 株式会社東芝 液晶表示装置
EP0797182A1 (en) * 1996-03-19 1997-09-24 Hitachi, Ltd. Active matrix LCD with data holding circuit in each pixel
JPH09319342A (ja) * 1996-03-26 1997-12-12 Sharp Corp 液晶表示装置及び液晶表示装置の駆動方法
KR100453186B1 (ko) * 1997-07-02 2005-05-11 삼성에스디아이 주식회사 강유전성액정표시장치및그구동방법
JPH11174491A (ja) * 1997-12-08 1999-07-02 Nec Corp アクティブマトリクス型液晶表示装置
TW559679B (en) * 1997-11-17 2003-11-01 Semiconductor Energy Lab Picture display device and method of driving the same
JP3279238B2 (ja) * 1997-12-01 2002-04-30 株式会社日立製作所 液晶表示装置
US6496170B1 (en) * 1998-04-30 2002-12-17 Canon Kabushiki Kaisha Liquid crystal apparatus
US6005558A (en) 1998-05-08 1999-12-21 Aurora Systems, Inc. Display with multiplexed pixels for achieving modulation between saturation and threshold voltages
DE69934201T2 (de) 1998-08-04 2007-09-20 Seiko Epson Corp. Elektrooptische einheit und elektronische einheit
US6670938B1 (en) * 1999-02-16 2003-12-30 Canon Kabushiki Kaisha Electronic circuit and liquid crystal display apparatus including same
TW518650B (en) * 1999-04-15 2003-01-21 Semiconductor Energy Lab Electro-optical device and electronic equipment
JP3365357B2 (ja) * 1999-07-21 2003-01-08 日本電気株式会社 アクティブマトリクス型液晶表示装置
KR20010050623A (ko) * 1999-10-04 2001-06-15 모리시타 요이찌 고계조도 표시기술

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123839B (zh) * 2006-08-08 2013-05-08 精工爱普生株式会社 电光学装置、驱动电路及电子设备
CN101447176B (zh) * 2007-11-28 2013-01-23 精工爱普生株式会社 电光装置
CN109074783A (zh) * 2016-03-31 2018-12-21 卡西欧计算机株式会社 点矩阵型显示装置以及时刻显示装置
CN109074783B (zh) * 2016-03-31 2021-05-28 卡西欧计算机株式会社 点矩阵型显示装置以及时刻显示装置

Also Published As

Publication number Publication date
JP2002082653A (ja) 2002-03-22
KR20020020210A (ko) 2002-03-14
JP3664059B2 (ja) 2005-06-22
TW514862B (en) 2002-12-21
EP1187090A2 (en) 2002-03-13
US7088325B2 (en) 2006-08-08
EP1187090A3 (en) 2003-03-26
KR100482485B1 (ko) 2005-04-14
CN1231884C (zh) 2005-12-14
US20020036611A1 (en) 2002-03-28

Similar Documents

Publication Publication Date Title
CN1231884C (zh) 电光学装置的驱动方法、驱动电路和电光学装置及其电子仪器
CN1156728C (zh) 电光装置的驱动方法、驱动电路和电光装置以及电子装置
CN1161741C (zh) 电光装置的驱动方法、驱动电路以及电光装置和电子装置
CN1173324C (zh) 液晶显示装置、驱动方法及电子设备
CN1192342C (zh) 电光装置的驱动方法、驱动电路和电光装置及电子机器
CN1193337C (zh) 液晶显示装置、驱动电路、驱动方法
KR101350398B1 (ko) 표시 장치 및 구동 방법
KR101303538B1 (ko) 액정표시장치와 그 구동방법
CN1277709A (zh) 电光装置用基板、电光装置、电子装置和投射型显示装置
CN1655222A (zh) 电光装置用驱动电路和驱动方法
CN1391205A (zh) 液晶显示装置
JP2009009090A (ja) 液晶表示装置及びその駆動方法
CN101038422A (zh) 图像显示装置以及投影机
CN1201279C (zh) 电光元件的驱动方法、驱动装置和电子装置
CN1334556A (zh) 电光装置的驱动方法、电光装置的驱动电路、电光装置及电子设备
KR20130062649A (ko) 액정표시장치와 그 구동방법
CN1893617A (zh) 动态补偿显示
US6788282B2 (en) Driving method for electro-optical device, driving circuit therefor, electro-optical device, and electronic apparatus
CN1698090A (zh) 在源矩阵的更新方法与像素电路
CN1667691A (zh) 液晶显示装置及其驱动方法
CN1782836A (zh) 液晶显示装置和投影机
CN1495698A (zh) 电光装置用基板、该基板的驱动方法及其用途
CN1606770A (zh) 显示驱动方法和显示设备
JP2005326851A (ja) 液晶表示装置のダイナミック画面信号グレイスケール処理装置、及びその方法
CN1728226A (zh) 电光装置的驱动电路及驱动方法、电光装置及电子设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20051214

Termination date: 20190905