CN1364313A - 制造超晶格材料的快速递变退火方法 - Google Patents

制造超晶格材料的快速递变退火方法 Download PDF

Info

Publication number
CN1364313A
CN1364313A CN01800486A CN01800486A CN1364313A CN 1364313 A CN1364313 A CN 1364313A CN 01800486 A CN01800486 A CN 01800486A CN 01800486 A CN01800486 A CN 01800486A CN 1364313 A CN1364313 A CN 1364313A
Authority
CN
China
Prior art keywords
minutes
temperature
parent
rra
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN01800486A
Other languages
English (en)
Inventor
内山洁
有田浩二
纳拉杨·索拉亚鹏
卡罗斯·A·帕兹德阿罗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Symetrix Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Symetrix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd, Symetrix Corp filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1364313A publication Critical patent/CN1364313A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/005Epitaxial layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40111Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors

Abstract

一种用于形成层状超晶格材料的液态母体被涂覆(324)在集成电路衬底(122,224,508)。利用递变率为每秒50℃的快速递变退火(“RRA”)技术(328),在650℃之维持温度下对该母体涂层在氧气中进行时间为30分钟之维持时间的退火。

Description

制造超晶格材料的快速递变退火方法
                   本发明的背景技术
1、本发明的技术领域
概括地来说,本发明涉及层状超晶格材料的制作,更具体地来说,是涉及一种构成铁电集成电路器件的制造方法,通过利用低温快速递变退火技术,铁电集成电路器件包括具有高极化率、低疲劳和低漏电流特性的层状超晶格材料的薄膜。
2、问题的提出
铁电化合物具有良好的特性而用于非易失性集成电路存储器。参见米勒的美国专利5046043。当铁电器件(例如电容器)具有所需的电特性时,例如高剩余极化、良好的矫顽场、高疲劳电阻和低漏电流,它可用作非易失性存储器。层状超晶格材料氧化物已被研究而用于集成电路。在Watanabe等人的美国专利5434102(1995年7月18日公布)和Yoshimori等人的美国专利5468684(1995年11月21日公布)中,描述了将这些材料集成于实际的集成电路中的过程。层状超晶格材料表现出铁电存储器中的特性,其数量级优于PZT(锆钛酸铅)及PLZT(锆钛酸铅镧)化合物。
集成电路中一种典型的铁电存储器包含半导体衬底和金属-氧化物-半导体场效应晶体管(MOSFET),它电连接一个铁电器件,一般是铁电电容器。目前应用和开发的层状超晶格材料包括金属氧化物。在传统的制作方法中,产生所需电子特性的金属氧化物的晶化需要在含氧气体中以高温进行热处理。在氧气中的加热步骤一般是在800℃到900℃范围之温度下进行30分钟到2小时。由于存在高温的活性氧,在半导体硅衬底的单晶结构中产生很多缺陷,例如悬挂键,导致MOSFET的电子特性的退化。在现有技术中利用约700℃之加热温度的处理来晶化层状超晶格材料,可获得良好的铁电特性。参见lto等人的美国专利5508226(1996年4月16日公布)。然而,在现有技术中公开的低温方法中的退火和其它加热时间为3至6小时之范围内,这在经济上不实用。更重要的是,在长达几个小时的时间中处于氧气之中,即使温度范围有所降低,会导致对半导体衬底和CMOS电路的其它元件的氧破坏。
集成电路制成后,氧化物的存在仍会引发问题,因为来自金属氧化物层状超晶格材料的薄膜的氧原子往往通过包含于集成电路中的各种材料扩散,并与衬底中及半导体层中的原子结合,形成不需要的氧化物。所形成的氧化物干扰集成电路的功能;例如,它们在半导体特性区域起着绝缘体的作用,因此构成虚电容器。原子从底层衬底和其它电路层扩散到铁电金属氧化物,这也是一个问题;例如,来自硅衬底和来自多晶硅接触层的硅被认为扩散到层状超晶格材料并使其铁电特性退化。对于较低密度的应用,铁电存储电容器被设置在底层CMOS电路之侧面,这可能会稍微减小电路元件之间不希望出现的原子扩散之问题。然而,随着对制造高密度电路的市场要求和技术能力的增大,电路元件之间的距离减小,元件之间的分子及原子扩散之问题变得更加尖锐。为了通过减小电路面积而获得高电路密度,存储单元的铁电电容器几乎被设置在开关元件(一般是场效应晶体管,以下记为“FET”)的顶部,该开关和电容器的底部电极通过导电插件实现电连接。为了抑制不需要的扩散,在铁电氧化物下、电容器的底部电极和底层之间设置一个隔离层。该隔离层不仅必须阻止氧和其它可能引发问题的化学成分的扩散,它还必须是导电的,使得电容器与开关之间实现电连接。对于当前的隔离技术,可允许的最大处理温度约为700℃。在700℃以上的温度下,最高温度的隔离材料降低并失去其扩散-隔离特性。另一方面,在现有技术中所用层状超晶格材料的最小可用制造处理温度约为800℃,在该温度下,所涂覆的超晶格材料(例如钽酸锶铋)被退火而获得良好的晶化。
在该技术中常见的是,在炉内退火(furnace annealing)前应用快速热处理(“RTP”),以改进所涂覆的(特别是层状超晶格材料的)金属氧化物薄膜的铁电或介电特性。在帕兹德阿罗等人的美国专利5648114(1997年7月15日公布)和Watanabe等人的美国专利5825057(1998年10月20日公布)中描述了在氧退火前利用RTP的方法,在现有技术中公开的RTP一般是在700℃至850℃温度下进行约30秒的维持时间,然后再在800℃进行氧炉内退火达30至60分钟。这些处理温度都超出了以上所述的小于700℃之所需范围。
因此,基于以上原因,采用低温方法制造铁电集成电路中的层状超晶格材料将是有益的,它使得在高温下暴露于氧的时间被减至最小,并减小所用的最大温度。
                       解决方案
本发明的实施例减小了制造处理温度,并减小了集成电路在高温下暴露于氧气的时间。
根据本发明之方法的一个重要特征是快速递变退火(RapidRamping Anneal)(“RRA”)技术。在RRA中,金属组成部分的涂覆薄膜的温度以快速递变率持续增长到“维持温度”,并在该维持温度下维持一段大于5分钟的时间(“维持时间”)。通常,液态母体被涂覆在衬底上,经干燥后形成固态薄膜,然后进行RRA。根据本发明的RRA技术也可以与CVD(化学气相淀积)淀积法结合在一起应用。
也可以在与常规快速热处理(“RTP”)装置相似或相同的RRA装置中实施该RRA方法。根据本发明的RRA技术与RTP技术之间的重大区别在于,RRA的维持时间大大长于通常的RTP的维持时间。根据本发明,在维持温度下的维持时间大于5分钟,一般不超过120分钟,优选的是,维持时间约为30分钟。根据本发明,RRA技术是在含氧气氛中进行的,以增强在多晶层状超晶格材料和其它铁电或介电化合物中金属氧化物键的形成。然而,可以预期的是,在相当一部分维持时间可以利用无氧非活性气氛。
根据本发明的方法包括快速递变RRA装置之烘箱中的温度而达到该维持温度。然而可以预期的是,可以利用多个维持温度。作为RRA的结果,层状超晶格材料、或其它介电或铁电金属氧化物的退火基本上是发生在该维持温度,而不是低温范围。即,利用RRA,晶化处理直接进行到高温结晶阶段,因此降低或完全消除低温晶相(在现有技术中被称为“萤石相(fluorite phases)”)的发生。实际递变率一般是在每秒10℃至100℃的范围内,优选的是约每秒50℃。维持温度通常是在RRA期间所达到的最大温度。在RRA维持温度下的退火后,利用常规的冷却技术可以冷却衬底。
根据本发明,层状超晶格材料或其它铁电材料或介电材料的晶化取决于许多因素。这些因素包括:递变率(ramping rate)、维持时间、维持温度和RRA气氛的含氧量,以及液态母体和所需金属氧化物材料的成分。
铁电层状超晶格材料,如金属氧化物SrBi2Ta2O9(SBT)和SrBi2(Ta1-xNbx)2O9(SBTN)(其中0≤x≤1),它们在非易失性存储器应用中是特别有用的,例如在FeRAM(铁电随机存取存储器)和非破坏读出铁电FET(场效应管)。根据本发明可以制造这些层状超晶格材料及其它层状超晶格材料的多晶薄膜。
根据本发明,适用于形成层状超晶格材料的RRA维持温度是在500℃至750℃的范围内,优选的是在600℃与700℃之间。对于铁电层状超晶格材料,例如钽酸锶铋SrBi2Ta2O9和钽酸锶铋SrBi2(Ta1-xNbx)2O9(其中0≤x≤1),以100℃/秒的标称递变率和30分钟的维持时间、在650℃的维持温度下进行RRA会导致高剩余极化值。
本发明的一个特征是,在RRA后不必进行氧炉内退火。因此,在根据本发明的某些实施例中,RRA只是在含氧气氛中进行的加热技术,以促进淀积薄膜中的反应和晶化,形成所需的多晶层状超晶格材料。由于采用RRA加热铁电或介电金属氧化物薄膜与其它加热技术(例如炉内退火)相比是非常有效的,在全部制造过程中所用最大温度和在高温下暴露于氧气的总时间被减至最小。
进行RRA后,可以有选择地对含层状超晶格材料薄膜的衬底进行氧炉内退火。在RRA之后进行的氧炉内退火往往会增大层状超晶格材料的剩余极化。
在本发明的实施例中,所沉积的液态母体作为衬底上的液态涂层,在RRA之前一般还有一个步骤,即在不超过400℃的温度下烘烤该衬底上的该涂层,典型地是在含氧环境中进行,典型地是在氧气中进行。
在本发明的一个方面中,该衬底包括一个第一电极,该方法包括进行RRA之后在层状超晶格材料薄膜上形成一个第二电极之步骤,以形成存储电容器,以及随后进行的一个后退火步骤。利用RRA技术可以进行后退火,称之为“后RRA”。在一个优选实施例中,该第一电极和该第二电极包括铂和钛。进行后RRA的温度范围是500℃至750℃,优选的是,在相似于已进行的RRA之维持温度及维持时间进行,对该薄膜退火。在本发明的一个实施例中,后退火是在含氧环境中进行的,典型地是在氧气中进行的。优选的是,在涂覆母体涂层之前在该衬底上形成导电隔离层。
该层状超晶格材料薄膜的厚度范围一般是40纳米到500纳米,优选的是40纳米到200纳米。
通过以下结合附图的说明,将清楚地表述本发明的许多其它特征、目的和优点。
附图简述
图1是可由本发明的方法制造的集成电路的部分剖面示意图,显示一个非易失性铁电存储器单元,其中电容器位于开关之上;
图2显示可利用本发明的方法制造的铁电FET(场效应管)存储器的部分剖面图;
图3是根据本发明沉积层状超晶格材料薄膜的优选方法的流程图;
图4是一个示范性晶片的俯视图,在该晶片上根据本发明制造的薄膜电容器被放大示出;
图5是从图4中经线5-5所截取的部分剖面图,显示根据本发明所制造的示范薄膜电容器;
图6是用于形成根据本发明的铁电薄膜的LSMCD装置之示意图;及
图7是在650℃利用RRA所形成的电容器中的剩余极化2Pr(单位是μC/cm2,在5V下测得)作为维持时间之函数的曲线图。
                  优选实施例的详细说明1、概述
应当理解的是,描绘集成电路器件的图1和图2并非就是实际集成电路器件的任何特定部分的实际平面或剖面图。在实际器件中的层就不象这样规则,其厚度可能不是均衡的。实际器件中的各层经常是曲线形的并具有重叠的边缘。这些图中的显示代之以理想化的情况,用于解释本发明的方法要比其它可能的方式更清楚及更充分。另外,这些图只是表示利用本发明的方法所能制造的铁电及介电器件之无数变化中的一种。例如,图1描绘一种铁电存储器100的一部分,它包括场效应晶体管114之形式的开关,该开关与铁电电容器128电连接。尽管图1所示的铁电元件124基本上是在开关元件114之上,例如,本发明可被用于制造在被移置到该开关之侧面的元件中的层状超晶格材料薄膜。另外,根据本发明的方法也可被用于制造一种铁电FET存储器,其中含有层状超晶格材料的铁电元件被并入该开关元件。在McMillan的美国专利5523964(1996年6月4日公布)和1999年8月2日递交的美国专利申请09/365628中描述了如图2所示的铁电FET。
图1显示根据本发明所制造的一种典型的非易失性铁电存储器100的剖面图。在Mihara的美国专利5466629和Yoshimori的美国专利5468684中描述了制造含有MOSFET和铁电电容器元件的集成电路的一般制造步骤。在其它参考文献中也描述了一般的制造方法。因此,在这里对图1的电路元件只是做简单的介绍。
图1显示一种铁电随机访问存储器100的存储单元50。存储单元50包括在半导体晶片101上形成的晶体管开关114和电容器128。在所示的实施例中,晶体管114是MOSFET并包括源区106、漏区108、沟道区107、栅极绝缘层110和栅极112。电容器128包括底部电极122、铁电层124和顶部电极126。场氧化区104形成于硅衬底102表面。源区106和漏区108彼此分离而形成于硅衬底102内。在源区106和漏区108之间的硅衬底102上形成栅极绝缘层110。此外,在该栅极绝缘层110上形成栅极112。
在衬底102和场氧化区104上形成由BPSG(硼掺杂磷硅酸盐玻璃)制成的第一层间介电层(ILD)116。ILD 116的构图分别形成通往源区106和漏区108的通路117、118。通路117、118被填充而分别形成插件119、120。插件119、120是导电的且一般包括多晶硅。扩散隔离层121是在ILD 116上形成并构图,以与插件120电连接。例如,该扩散隔离层121是由氮化钛制成,一般所具有的厚度为10纳米至20纳米。扩散隔离层(例如氮化钛)阻止存储器100之上层和下层之间的化学成分的扩散。
如图1所示,在扩散隔离层121上淀积有由铂制成的底部电极层122,其厚度为100纳米。然后,根据本发明,在底部电极层122上形成层状超晶格材料的铁电薄膜124。在铁电薄膜124上形成由铂制成的顶部电极层126,其厚度为100纳米。
晶片衬底102可包括硅、砷化镓或其它半导体、或绝缘体,例如二氧化硅、玻璃或氧化镁。铁电电容器的底部及顶部电极一般是包括铂。优选的是,该底部电极包括未氧化贵金属,例如铂、钯、银和金。除了贵金属之外,可以用于铁电存储器之电极的还有一些金属,例如铝、铝合金、铝硅、铝镍、镊合金、铜合金和铝铜。粘附层(例如钛,未示出)加强电极对邻接该电路之下层或上层的附着力。
淀积由NSG(非掺杂硅酸盐玻璃)制成的第二层间介电层(ILD)136,以覆盖ILD 116、扩散隔离层121和铁电电容器128。PSG(磷硅酸盐玻璃)薄膜或BPSG(硼磷硅酸盐玻璃)薄膜也可被用于层136中。
ILD 136的构图形成通往插件119的通路137。金属化布线膜被淀积以覆盖ILD 136及填充通路137,而后被构图以形成插件137、源电极布线138和顶部电极布线139。布线138和139最好是包括有厚度约为200纳米至300纳米的Al-Si-Cu标准互连金属。
图2显示可利用根据本发明之实施例的方法制造的铁电FET存储器210的部分剖面图。存储器210包括形成于晶片211上的铁电FET 250,其中包括标准半导体材料212,最好是p-100硅材料。半导体衬底214包括高掺杂源区216和高掺杂漏区218,它们形成于掺杂沟道区220周围。掺杂源区216、漏区218和沟道区220最好是n型掺杂区,但是也可以是形成于n型半导体中的p型区。半导体衬底214一般也包括栅氧化层222,它通常位于沟道区220上方,但可以延伸而超出沟道区220,以覆盖部分源区216、漏区218和半导体材料212的其它部分。典型的是,栅氧化层222是由半导体材料212在高温处理步骤期间形成的。当半导体材料212为硅时,于是栅氧化层222一般包括二氧化硅。接口绝缘层224可被形成于沟道220之上的半导体衬底214的上方,通常是在栅氧化层222上。根据本发明形成的铁电薄膜226位于接口绝缘层224和沟道区218上方,通常是在接口绝缘层224上。栅极230被形成于铁电薄膜226之上方,通常是在铁电薄膜226上。半导体衬底214和接口绝缘层224、铁电薄膜226和栅极230构成铁电FET存储器210,其中的半导体衬底214包括源区216、漏区218、沟道区220和栅氧化层222。通常,存储器210是由层间介电层(“ILD”)覆盖,它包括氧化玻璃(glasseous oxide),最好是硼掺杂磷硅酸盐玻璃(“BPSG”)。为了简单和清楚起见,没有示出该ILD和一些其它结构元件及绝缘层,因为它们是公知技术。
卡罗斯·A·帕兹德阿罗等人的美国专利5519234(1996年5月21日公布)提出,层状超晶格化合物(例如钽酸锶铋)与最好的现有材料相比在铁电应用方面具有极好的特性,并具有高介电常数和低漏电流。在Watanabe等人的美国专利5434102(1995年7月18日发布)和Yoshimori等人的美国专利5468684(1995年11月21日发布)中,描述了将这些材料集成在实际的集成电路中的过程。
层状超晶格材料通常可借助下式进行概括: ( 1 ) Al w 1 + al A 2 w 2 + a 2 · · · Aj wj + aj S 1 x 1 + s 1 S 2 x 2 + x 2 · · · Sk xk + sk B 1 y 1 + b 1 B 2 y 2 + b 2 · · · B yl + bl Q z - q , 其中,A1、A2…Aj表示象钙钛矿结构中的A位元素,它们可以是如锶、钙、钡、铋、铅和其它的元素;S1、S2…Sk代表超晶格生成元素,通常是铋,但也可以是如钇、钪、镧、锑、铬、铊和其它具有+3价的元素之材料;B1、B2…Bl表示象钙钛矿结构中的B位元素,它们可以是如钛、钽、铪、钨、铌、锆和其它元素;Q代表阴离子,通常是氧,但也可以是其它元素,例如氟、氯和这些元素的混合物,例如氟氧化物、氯氧化物等。式(1)中的上标表示相应元素的价;例如,如果Q是氧,则q=2。下标是以化合物的摩尔表示的材料的摩尔数,或以晶胞为单位、在晶胞中的元素的原子数(按平均数计算)。下标可以是整数或分数。也就是说,式(1)包含了晶胞可在整个材料中均匀变化的情况;例如,SrBi2(Ta0.75Nb0.25)2O9中,75%的B位被锶原子占据,25%的B位被钡原子占据。如果在化合物中只有一个A位元素,那么它用“A1”元素代表,w2…wj都等于零。如果在化合物中只有一个B位元素,那么它用“B1”元素代表,y2…yl都等于零,对于超晶格生成元素也是一样。通常的情况是,有一个A位元素、一个超晶格生成元素及一个或两个B位元素,由于本发明是要包含这些位的任一种和超晶格生成元素可以具有多个元素的情况,尽管式(1)是以更常见的形式列出的。z值从方程式得出:
(2)(a1w1+a2w2…+ajwj)+(s1×1+s2×2…+sk×k)+(b1y1+b2y2…+blyl)=qz
式(1)包含了在上述美国专利5519234(1996年5月21日公布)中所述的所有三个Smolenskii型化合物。层状超晶格材料不包含能够满足式(1)的每一种材料,而只包含那些能自然地组成具有明晰交错层的晶体结构的材料。
在Azuma等人的美国专利5803961(1998年9月8日公布)中提出,混合层状超晶格材料(例如铌酸锶铋钽)在铁电应用中可具有甚至更好的特性。混合层状超晶格材料的特征在于A位和B位元素的非化学计量的量。例如,根据本发明所用的一种优选母体包括金属有机母体化合物,它具有相对摩尔比中的金属,对应于化学计量不平衡式Sr0.8Bi2(Ta0.7Nb0.3)2O8.8
当前,象金属氧化物SrBi2Ta2O9(SBT)、SrBi2(Ta1-xNbx)2O9(SBTN),其中0≤x≤1,特别是SraBib(Ta1-xNbx)cO[9+(a-1)+(b-2)(1.5)+(c-2)(2.5)],其中0.8≤a≤1,2≤b≤2.2,0≤x≤0.3,1.9≤c≤2.1(SBTN),这些铁电层状超晶格材料正被得以应用,并通过进一步改进而在非易失性存储器应用中用作电容器介质,例如在FeRAM(铁电随机存取存储器)和非破坏读出铁电FET(场效应管)中。根据本发明。可以制造并应用这些层状超晶格材料以及其它由式(1)表示的层状超晶格材料的多晶薄膜。
术语“衬底”可以是指集成电路形成于其上的底层半导体材料102、212,也可以是指在其上淀积薄膜层的任何物体。在本说明书中,“衬底”一般将是指把所关心的层加在其上的物体。例如,当我们论及图1的铁电薄膜124时,它形成于衬底上,该衬底可包括各种元件,特别是底部电极122。术语“半导体衬底”与衬底相比更为具体。例如,如图2中所用的“半导体衬底214”是指那些具有起始晶片之最初半导体材料中之起源的电路的元件,例如是由图2的p-100晶体硅材料。因此,在图2的结构之示例中,“半导体衬底214”包括元件212、216、218、220。
半导体衬底214和半导体材料的长度尺寸定义的平面在此被认为是“水平”面,垂直于这个平面的方向被认为是“垂直方向”。术语“横向的”或“横向地”是指半导体衬底的平面之方向,即平行于该水平方向。
这里的方位术语,例如“上方”、“顶部”、“上部”、“下方”、“底部”和“下部”是指相对于衬底102、214。也就是说,如果第二元件是在第一元件之“上方”,这是指远离半导体衬底102、214;如果它是在另一个元件之“下方”,则它比其它元件更接近半导体衬底102、214。如“上方”和“下方”之术语本身并不意味着直接的接触。然而,如“在…之上”或“到…之上”之术语则意味着一层与底层的直接接触。
这里所用的术语“薄膜”正如它被用于集成电路技术中一样的含义。通常它是指厚度小于1微米的膜。在此所述的薄膜一般厚度小于500纳米。由根据本发明的方法制造的层状超晶格材料之薄膜,一般所具有的最后厚度之范围是40纳米至500纳米,优选的是在40纳米至300纳米之范围。这些集成电路技术的薄膜不应该混同于肉眼可见电容器技术之层状电容器,它们是采用完全不同的处理形成的,这种处理与集成电路技术是不兼容的。
这里的术语“化学计量”可适用于材料(例如层状超晶格材料)的固态薄膜或构成材料的母体。当它适用于固态薄膜时,它是指显示最终固态薄膜中每个元素的实际相对量的化学式。当适用于母体时,它指示在该母体中的金属之摩尔比。“平衡的”化学计量式是其中每一元素正好足以形成材料的完整晶体结构且该晶格中的所有位都被占据,尽管在实际情况中,在室温下的晶体中总会存在一些缺陷。例如,SrBi2(TaNb)O9和SrBi2(Ta1.5Nb0.5)O9都是平衡的化学计量式。相反,对于铌酸锶铋钽的母体,其中的锶、铋、钽、铌的摩尔比分别是0.9、2.18、1.5、0.5,在此用不平衡“化学计量”式Sr0.9Bi2.18(Ta1.5Nb0.5)O9表示该母体,因为相对B位元素钽和铌而言,它含有过量的铋和不足量的锶。在这种技术中通常是列出金属氧化物的不平衡化学计量式,其中,氧符号的下标并不被修正以完全平衡金属的下标值。
这里所用的术语“母体”可以是指含有一种金属有机溶解物的溶液,它与其它母体混合以形成中间母体或最终母体,或者,它可以是指最终液态母体溶液,即在制造过程中被涂覆于特定表面的溶液。如被涂覆于该衬底的母体通常被称为“最终母体”、“母体混合物”或简称为“母体”。在任何情况下,其含义借助上下文是清楚的。
在本说明书中的“母体化合物”是指含有至少一种金属的金属有机化合物,该金属被包含于根据本发明形成的所需层状超晶格材料薄膜中。这里所公开的金属有机母体化合物是有用的,因为它们能够容易地被溶解于有机液态母体溶液中,这种溶液可被储存至使用之时。在根据本发明的一种优选的液-源雾化化学淀积(“LSMCD”)方法中,一种或多种液态母体溶液被雾化以形成含有适用于形成所需薄膜的母体化合物的雾。母体溶液的成分可用两种方式描述。实际所溶解的金属有机母体化合物(溶解物)和溶剂及浓度可被具体指定;或者,为了清楚起见,表示将形成的具有该母体的最终氧化物化合物之成分的化学计量式可被具体指定。同样,利用母体化合物的名称或化学计量式可以描述它,或者通过它所含的金属原子可以简单地对它进行识别。
金属有机母体化合物和根据本发明所用的液态母体溶液能够被可靠地制成。如果有必要,可以容易地控制和改变它们的成分。它们可被安全地储存达6个月之久。与现有技术的很多母体相比,它们是相对无毒的及不挥发的。根据本发明所形成的薄膜层具有平滑、连续及均匀的表面,它们能够被可靠地制作以具有40纳米至500纳米的厚度范围,保持重要的结构特性及电特性。
应当理解的是,这里所述的具体过程和电子器件是示范性的;即,本发明预期,图1和图2中的各层可以由很多其它的材料制成,而不限于以上所述及以下所述的材料。本发明的方法可以有很多其它的变化,而不限于在本申请文件中所包含的内容;除了集成电路器件100和210,该方法和材料可被用于很多其它电子器件。
术语“实际递变率”(actual ramping rate)用于指在集成电路衬底中实际经历的温度增长速率。术语“标称递变率”(nominal rampingrate)被用于标示RRA或RTP装置的控制设置。例如,对于每秒100℃的标称递变率,实际递变率一般约为每秒60℃。
如“加热”、“干燥”、“烘烤”、“快速递变退火”(“RRA”)、“快速热处理”(“RTP”)、“炉内退火”,这些术语及其它术语都与热的应用直接有关。为了清楚起见,利用这种技术的各种术语以与某些技术及方法步骤相互区别。不过,应当清楚的是,可以利用类似的技术实现命名不同的处理步骤;例如,利用相同的装置一般可实现干燥、烘烤及炉内退火,唯一的区别是它们的功能和在制造顺序中位置,或所用的特殊温度。结果,有可能把退火步骤称为加热步骤、或把干燥步骤称为烘烤步骤。因此,为避免混淆,也可以用常见术语“加热”描述制造步骤。根据本发明的快速递变退火(RRA)技术也如RTP技术,它与其它加热技术的不同之处在于其特征是温度的极快上升,实际递变率一般是每秒10℃至100℃。还应该理解的是,本领域技术人员利用如这里所述的加热可实现所需的处理结果,而涉及的处理所具有的术语不同于这里所用术语。2、优选方法的说明
一般来说,在高温下的氧气中对已淀积的含金属膜的加热或退火的一些形式对于所期望的金属氧化物层状超晶格材料的所需构成和晶化是必要的。本发明之实施例的一个重要特征在于,与现有技术相比,在高温下的最大温度和总加热时间被减至最小。在本说明书所详细描述的实施例中,RRA和退火处理是在含氧气体中进行的。然而,本发明也包括这样的实施例,即其中在含氧气体中的退火只占总时间的一部分,随后是在非活性气体中的退火。如这里所用的术语“高温”通常是指超过300℃之温度。术语“气体”适用于它更宽的含义,或是一种纯气体,或是几种气体的混合。术语“含氧”是指存在的氧之相对量不少于1摩尔百分比。
用于制造层状超晶格材料薄膜的母体溶液之单个母体化合物可以从这样一组中选择,该组包括金属β-二酮盐(metal beta-diketonates)、金属聚烷氧化物、金属二叔戊酰甲烷盐(metaldipivaloylmethanates)、金属环戊二烯、金属烷氧基羧酸盐(metalalkoxycarboxylates)、金属羧酸盐、金属醇盐、金属乙基己酸盐、辛酸盐及新癸酸盐。优选的是,金属母体化合物包括金属2-乙基己酸盐,它相当适合于液源雾化化学淀积(“LSMCD”)技术。例如,通过使所需化合物的每一金属(例如锶、铋、钽或铌)、或该金属的醇盐与羧酸、或与羧酸和乙醇相互作用,并用溶剂溶解反应产物,形成单个的金属有机分解(“MOD”)母体化合物。可被采用的羧酸包括2-乙基己酸、辛酸和新癸酸,优选的是2-乙基己酸。可被采用的乙醇包括2-甲氧基乙醇、1-丁醇、1-戊醇和2-戊醇。可被采用的溶剂包括二甲苯、辛烷、乙酸正丁酯、N-二甲基甲酰胺、乙酸2-甲氧基乙酯、甲基异丁基酮、甲基异戊基酮以及很多其它溶剂。金属、金属醇盐、酸及乙醇进行反应以形成金属烷氧基羧酸盐、金属羧酸盐和(或)金属醇盐之混合物,必要时加热并搅拌混合物,以形成金属-氧-金属键,并用煮沸方法除去该反应所产生的任何低沸点有机物。原始的MOD通常是在其使用前被批量制造或带来;最终母体混合物通常是在用于该衬底前立即制备的。最终制备步骤一般包括混合、溶剂交换和稀释。当利用液体淀积技术时,例如LSMCD,金属2-乙基己酸盐是一种优选的母体化合物,因为该乙基己酸盐在溶液中是稳定的,储存寿命长,形成均匀的液体薄膜,在衬底上平整地分解。当乙基己酸盐和其它金属有机母体化合物被溶解在二甲苯或正辛烷中时,它们可被储存几个月。
图3是根据本发明制造如图1所示的铁电存储器的方法310之制造步骤的流程图。尽管图3的方法310在此是参照图1进行论述的,显然,图3的方法以及该方法根据本发明的许多变化可被用于制造集成电路技术之各种铁电结构中其它成分的多晶层状超晶格材料薄膜。
在步骤312,提供半导体衬底,在步骤314,在该衬底上形成一个开关,该开关一般是MOSFET。在步骤316,由常规技术形成一个绝缘层,以便将该开关元件与将要形成的铁电元件分隔。利用常规工艺,该绝缘层被构图以形成通路,其中填充有导电插件(plug),将该开关电连接至存储电容器和集成电路的其余部分。在步骤318,扩散隔离层被淀积在该绝缘层上并被构图。优选的是,该扩散隔离层包括氮化钛并具有约10纳米至20纳米的厚度。优选的是,利用常规的溅射方法淀积该扩散隔离层,利用氮化钛靶子,尽管也可以利用具有含氮喷溅气体的钛靶子。在步骤320,形成底部电极。优选的是,该电极是由铂制成,并被溅射-淀积,以形成约200纳米厚的一层。在步骤322,制备将形成所需铁电薄膜的层状超晶格材料的化学母体。通常,母体溶液是由可在市场上购得并含有化学母体化合物的溶液制备的。如果有必要,在步骤322调节所购溶液中各种母体之浓度,以适应特殊的制造或操作条件。本发明的方法之优选实施例利用一种最终液态母体溶液,它含有大致对应于SrBi2Ta2O9(SBT)、SrBi2(Ta1-xNbx)2O9(SBTN)(其中0≤x≤1)、特别是SraBib(Ta1-xNbx)cO[9+(a-1)+(b-2)(1.5)+(c-2)(2.5)](其中0.8≤a≤1,2≤b≤2.2,0≤x≤0.3,1.9≤c≤2.1)的元素锶、铋、钽、铌之相对摩尔比。在步骤324,母体溶液的液态涂层被涂覆于该衬底。用于形成层状超晶格材料之铁电薄膜的母体在步骤324被涂覆而作为底部电极上的涂层。根据本发明,利用常规液体淀积技术,例如美国专利5456945所述的雾化淀积方法、或旋涂方法可以涂覆母体。在以下的示例中,利用液源雾化化学淀积(“LSMCD”)工艺涂覆衬底。在干燥步骤326,带有液态母体之涂层的衬底在不超过300℃的温度被烘烤及干燥。优选的是,该干燥步骤是在热板上、在基本纯的氧气(O2)中、或至少在含氧气体中进行的,时间不超过15分钟。
在步骤328,涂覆在衬底上的已干燥的母体涂层受到快速递变退火(“RRA”)。进行RRA的温度在500℃至750℃的范围,时间是在5分钟至120分钟的范围。优选的是,在600℃至700℃的温度进行30分钟的RRA,其实际递变率是在每秒10℃至100℃的范围,优选的是约每秒50℃。从卤素灯、红外灯或紫外灯发出的辐射为RRA步骤提供了热源。在以下的示例中,采用了利用在周围大气压下的卤素源的AG相关模型(Associates model)410热脉冲装置。RRA是在含氧气体中进行的,最好是在基本纯的氧气中,时间至少为总维持时间之一部分。在RRA处理中,任何剩余有机物被烧尽并被蒸发。同时,RRA的快速升温促进了晶核形成;即,由步骤324和326导致固态膜中的层状超晶格材料的许多结晶颗粒的产生。这些颗粒起着晶核的作用,使得进一步的晶化可以发生。在RRA处理中存在的氧增进了这些颗粒的形成。
退火步骤330一般包含层状超晶格材料薄膜的炉内退火。短划线331绕过步骤330,表示步骤330是可选的。在步骤330的炉内退火最好是在0℃至50℃的温度范围内并小于步骤328的维持温度下进行。在步骤330中的炉内退火一般是在含氧气体中进行,但也可以在非活性气体中进行。优选的是,步骤330在氧气中的退火时间不超过60分钟;典型的是,在含氧气体中的炉内退火是在650℃下进行30分钟。相反,步骤330在非活性气体中的退火时间可以是较长;例如,100小时。步骤328的RRA和步骤330的氧退火可以在空气、含氧量大于空气的富氧气体、或“缺氧气体”中进行,缺氧气体中氧气的相对量少于空气中的氧气之相对量。优选的是在氧气(O2)中进行这些步骤。尽管步骤330之炉内退火是可选的,它能改进薄膜的铁电极化率和其它电特性。
在步骤334形成顶部电极。优选的是,通过铂单层的RF(射频)溅射形成该电极,但也可以通过DC(直流)溅射、离子束溅射、真空淀积或其它适当的常规淀积工艺来形成该电极。如果在金属淀积前需做电子器件设计,利用常规的光刻蚀法和蚀刻法可以构图铁电层状超晶格材料,然后在淀积后的第二处理中构图顶部电极。在以下的例子中,利用常规的光刻蚀技术和离子束蚀刻对顶部电极和层状超晶格材料一起进行构图。
如淀积后,顶部电极对层状超晶格材料之薄膜的粘附通常是不牢固的。通过在步骤334中的后退火加强粘附。该后退火可以在500℃至750℃之温度下的电熔炉中进行。低于500℃的后退火不会改进该电极的粘附,所得到的电容器器件往往会是非常松的,最坏的情况是发生短路。优选的是,在步骤334的后退火是在500℃至700℃的温度范围内之温度下进行,该温度不超过步骤328及330中的RRA和退火的温度。优选的是,后退火步骤334的进行类似于步骤328,即,如采用步骤328中相同递变率、维持温度和维持时间的后RRA。
在步骤334的后RRA也可以由一种常规炉内后退火来替换,它释放顶部电极中和该电极与该铁电薄膜之间的界面中的内部应力。同时,由于对顶部电极的溅射,后退火步骤334重建层状超晶格材料中的微观结构,结果改进了该材料的特性。不管后退火的进行是在有关于以下步骤336所提到的构图步骤之前或之后,效果是一样的。关于多数电特性,可以采用非活性气体(例如氦、氩和氮),与采用氧具有近似相同的结果,因此,减少集成电路在高温下对氧的暴露。
该电路一般是在步骤336完成,该步骤可包括多个子步骤;例如ILD的淀积、构图和蚀刻、以及布线层的淀积。
图4是一种示范性晶片400的俯视图,在该图上,根据本发明制作在衬底410上的薄膜电容器496、498及500被放大示出。图5是经图4中的线5-5所截取的剖面图之部分,说明根据本发明所制作的薄膜电容器500。该剖面显示形成于硅晶衬底502上的二氧化硅层504。钛层被溅射在层504上,以后钛被氧化以形成氧化钛层506。由铂制成的底部电极508被溅射-淀积在层506上。层510表示根据本发明制作的铁电薄膜,层512表示由铂制成的顶部电极。
                        示例1
如图4和图5所示的铁电薄膜电容器是根据本发明制作的,其中含有钽酸锶铋层状超晶格材料之薄膜。对这些电容器的剩余极化进行测量和比较,以研究关于铁电极化率的处理条件之效果。
将一组P型100硅晶片衬底502之每一个氧化,以形成一层二氧化硅504。该衬底在真空炉中以180℃被脱水30分钟。利用氩气氛、8毫乇(m Torr)气压和0.53安培(amps)电流,粘附层506被溅射-淀积在该衬底上,它基本上是由钛组成且厚度为100纳米。然后,在相似的溅射条件下,淀积厚度为200纳米的底部铂电极508层。在每一晶片上,利用10分钟推挽,在以6l/m流动的氧气中,以650℃对底部电极层做30分钟的预退火。在真空炉内以180℃进行脱水烘烤30分钟。
利用从Kojundo化学公司购得的钽酸锶铋(SBT)液态母体溶液制造SBT薄膜。该溶液含有对应于化学计量式Sr0.9Bi2.2Ta2O9的金属化合物之量。0.2mol/l的母体溶液含有:正辛烷中的2-乙基己酸铋、2-乙基己酸锶和2-乙基己酸钽。在即将使用之前,用乙酸正丁酯将0.2摩尔溶液稀释为0.12摩尔的最终母体溶液。
在每一晶片上,利用LSMCD装置600,将该母体的液态涂层淀积在底部电极层508上,如图6所示。LSMCD装置600包括承载气源610和气管612,通过该气管,承载气体按箭头614之方向流至接头616,它将气管614连至雾化器618。母体溶液620在雾化器618中被雾化为承载气体,形成雾,它流入雾管622并通过过滤器624。过滤器624除去直径大于约1μm的液态雾粒。过滤后的雾行进并通过入口管626和喷头部件628,进入淀积腔628。淀积腔630包括衬底固定器630。淀积腔630的压力和容量是由泵系统632控制的,它通过出口管634连至淀积腔630之内部。
每一片制备好的晶片400被放置在衬底固定器630上。氩承载气体被用于由最终SBT母体溶液620在雾化器618中产生雾。从喷头部件628排出的雾粒在每一晶片的底部电极508上形成液体涂层638。通过由电压源640施加的8至9千伏的偏压于喷头部件628与衬底固定器630之间,增强雾粒的淀积。在每一晶片上,厚100纳米的液态涂层以约10纳米/分钟的淀积速率被淀积。该液态涂层的干燥是通过在氧气中的热板上以160℃烘烤1分钟,再以260℃烘烤4分钟。
通过RRA和炉内退火,所选择的晶片承受热处理的各种环境,以促进母体化合物在每一晶片衬底上的反应,并使多晶金属氧化物层状超晶格材料结晶。3块晶片中的每一晶片仅被给予RRA处理,其标称递变率为每秒100℃,维持温度是650℃,维持时间分别是4分钟、10分钟和30分钟。3块其它晶片被给予相似的RRA处理,但是该RRA之后是在氧气中以650℃进行30分钟的炉内退火(“FA”)。
这些步骤形成厚约100纳米的铁电薄膜510。铂被溅射淀积在每一晶片上,构成厚约200纳米的顶部电极层512。顶部电极512和钽酸锶铋510层被蚀刻以形成电容器,再进行砂磨,然后在氧气中以650℃进行30分钟的炉内后退火。这些电容器的表面面积为6940μm2
由这些电容器的磁滞曲线计算出这些晶片的示范性电容器的剩余极化。在图7中,剩余极化2Pr(单位是μC/cm2,在施加5伏电压下)被绘制为RRA维持时间的函数。图中的空心圆表示来自电容器的数据,在电容器中,层状超晶格材料薄膜仅受到RRA,而不受FA处理。实心圆表示电容器的数据,在电容器中,铁电薄膜受到RRA和FA处理。图7中的数据表示,当进行维持时间为5分钟或更少的RRA时,所得到的铁电极化率(计算如2Pr)对于大多数集成电路应用是太低。在约10分钟的维持时间,该2Pr值是在5μC/cm2左右之范围中,它适用于某些铁电器件,特别是某些铁电FET应用。在10分钟,在有FA处理的电容器中的2Pr值要大大高于只有RRA而无FA的电容器中的2Pr值。在仅进行30分钟的RRA的电容器中,2Pr值约为18μC/cm2,这特别适用于所有非易失性FeRAM器件。在进行30分钟的RRA后的FA处理并未显著地提高该2Pr值。
出乎意料的是,有30分钟的RRA而无FA的电容器具有良好的极化率。30分钟RRA的电容器与有4分钟RRA及30分钟FA的电容器具有几乎相同的热量预算,显示出18μC/cm2之较高2Pr值。以前人们相信,层状超晶格材料所需热处理要在至少700℃(最好是更高)的高温下、其热处理时间要持续约几个小时。采用RRA可得到良好的电子特性,其维持温度小于700℃,其时间更短,这样的特性使得通过将集成电路在高温下暴露于氧的时间减至最小,可以减小制造成本并提高集成电路的质量。
以上描述了利用RRA制造含层状超晶格材料的电子器件的方法。应当理解的是,在附图所示及本说明书所述的具体实施例是作为示例,而不应解释为是对权利要求书所述之本发明的限制。另外,明显的是,本领域技术人员根据本发明的原理,现在可以对所述的具体实施例做出很多应用和修改。明显的是,所述的步骤在一些实例中可以按不同的顺序执行,或可用等效结构和处理替换所述的各种结构和处理,或者可以采用多种不同的母体。

Claims (26)

1、一种制造层状超晶格材料之薄膜的方法,包括以下步骤:提供(312)衬底;提供(322)包含有效量内金属组成部分的母体,用于在加热所述母体时形成层状超晶格材料;将所述母体涂覆(324)在所述衬底上以形成涂层;所述方法的特征在于:在500℃至750℃的范围内的维持温度下,对所述涂层进行快速递变退火(“RRA”)(328),进行时间为在所述维持温度下的5分钟至120分钟范围内之维持时间,在所述衬底上形成所述层状超晶格材料之薄膜(124,226,510)。
2、一种制造层状超晶格材料之薄膜的方法,包括以下步骤::提供(312)衬底;提供(322)包含有效量内金属组成部分的母体,用于在加热所述母体时形成所述层状超晶格材料之所述薄膜;将所述母体涂覆(324)在所述衬底上以形成涂层;所述方法的特征在于:在所述的涂覆所述母体之后,基本上只通过进行快速递变退火(“RRA”)(328)加热所述涂层达到500℃至750℃之范围内的温度。
3、根据权利要求2所述的方法,其特征在于,用5分钟至120分钟之范围内的维持时间进行所述的快速递变退火。
4、根据权利要求1或2所述的方法,其特征在于,所述的快速递变退火是在含氧气氛中进行的。
5、根据权利要求1或2所述的方法,其特征在于,所述的快速递变退火基本上是在纯氧气(O2)中进行的。
6、根据权利要求1或2所述的方法,其特征在于,所述的温度不超过700℃。
7、根据权利要求1或2所述的方法,其特征在于,所述的温度为650℃。
8、根据权利要求1或3所述的方法,其特征在于,所述的维持时间不少于15分钟。
9、根据权利要求1或3所述的方法,其特征在于,所述的维持时间不少于30分钟。
10、根据权利要求1或3所述的方法,其特征在于,所述的温度为650℃,所述的维持时间不少于30分钟。
11、根据权利要求1或2所述的方法,其特征在于,进行所述的快速递变退火所采用的实际递变率是在每秒10℃至100℃之范围内。
12、根据权利要求11所述的方法,其特征在于,进行所述的快速递变退火所采用的实际递变率为每秒50℃。
13、根据权利要求1或2所述的方法,其特征在于,在进行所述快速递变退火之前,以不超过400℃的温度烘烤(326)在所述衬底上的所述涂层。
14、根据权利要求13所述的方法,其特征在于,进行所述烘烤的时间不超过15分钟。
15、根据权利要求1或2所述的方法,其特征在于,在所述快速递变退火之后,对所述涂层进行炉内退火(330,334)。
16、根据权利要求15所述的方法,其特征在于,所述的炉内退火是在含氧气氛中进行的。
17、根据权利要求15所述的方法,其特征在于,所述的炉内退火是在600℃至700℃的范围内之温度下进行的。
18、根据权利要求15所述的方法,其特征在于,进行所述炉内退火的时间是在5分钟至120分钟之范围内。
19、根据权利要求1或2所述的方法,其特征在于,所述衬底包括第一电极(122,508),该方法还包括以下步骤:在所述快速递变退火后,在所述薄膜上形成第二电极(126,512),以形成电容器(128,500),随后进行一个后退火(334)之步骤。
20、根据权利要求19所述的方法,其特征在于,所述的后退火是在600℃至700℃范围内之温度下进行5分钟至60分钟范围内之时间。
21、根据权利要求19所述的方法,其特征在于,所述的后退火是在含氧气氛中进行的。
22、根据权利要求1或2所述的方法,其特征在于,在所述涂覆所述母体之前,在所述衬底上形成导电的隔离层(121)。
23、根据权利要求1或2所述的方法,其特征在于,所述层状超晶格材料包括钽酸锶铋。
24、根据权利要求1或2所述的方法,其特征在于,所述层状超晶格材料包括铌酸锶铋钽。
25、根据权利要求24所述的方法,其特征在于,所述母体包含对应于以下化学计量式的摩尔比内的金属原子:
SraBib(Ta1-xNbx)cO[9+(a-1)+(b-2)(1.5)+(c-2)(2.5)]
其中0.8≤a≤1,2≤b≤2.2,0≤x≤0.3,1.9≤c≤2.1。
26、根据权利要求1或2所述的方法,其特征在于,在所述薄膜上形成顶部电极,再进行后RRA。
CN01800486A 2000-03-09 2001-02-07 制造超晶格材料的快速递变退火方法 Pending CN1364313A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/523,919 2000-03-09
US09/523,919 US6326315B1 (en) 2000-03-09 2000-03-09 Low temperature rapid ramping anneal method for fabricating layered superlattice materials and making electronic devices including same

Publications (1)

Publication Number Publication Date
CN1364313A true CN1364313A (zh) 2002-08-14

Family

ID=24086966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN01800486A Pending CN1364313A (zh) 2000-03-09 2001-02-07 制造超晶格材料的快速递变退火方法

Country Status (6)

Country Link
US (1) US6326315B1 (zh)
EP (1) EP1224699A1 (zh)
JP (1) JP3803583B2 (zh)
KR (1) KR20020026865A (zh)
CN (1) CN1364313A (zh)
WO (1) WO2001067516A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4236778B2 (ja) * 1999-11-01 2009-03-11 株式会社ルネサステクノロジ 半導体装置
US6846711B2 (en) * 2000-03-02 2005-01-25 Tokyo Electron Limited Method of making a metal oxide capacitor, including a barrier film
KR100612561B1 (ko) * 2000-06-19 2006-08-11 주식회사 하이닉스반도체 반도체 소자의 캐패시터 제조 방법
JP2004519864A (ja) * 2000-08-24 2004-07-02 コバ・テクノロジーズ・インコーポレイテッド シングルトランジスタ希土類亜マンガン酸塩強誘電体不揮発性メモリセル
KR100395765B1 (ko) * 2001-02-02 2003-08-25 삼성전자주식회사 강유전체 기억 소자 및 그 형성 방법
US20020164850A1 (en) 2001-03-02 2002-11-07 Gnadinger Alfred P. Single transistor rare earth manganite ferroelectric nonvolatile memory cell
US7075134B2 (en) * 2001-11-29 2006-07-11 Symetrix Corporation Ferroelectric and high dielectric constant integrated circuit capacitors with three-dimensional orientation for high-density memories, and method of making the same
US6743643B2 (en) 2001-11-29 2004-06-01 Symetrix Corporation Stacked memory cell having diffusion barriers
US6815223B2 (en) 2002-11-22 2004-11-09 Symetrix Corporation Low thermal budget fabrication of ferroelectric memory using RTP
US7067920B2 (en) * 2002-01-22 2006-06-27 Elpida Memory, Inc. Semiconductor device and method of fabricating the same
US6825517B2 (en) 2002-08-28 2004-11-30 Cova Technologies, Inc. Ferroelectric transistor with enhanced data retention
US6714435B1 (en) 2002-09-19 2004-03-30 Cova Technologies, Inc. Ferroelectric transistor for storing two data bits
US6888736B2 (en) 2002-09-19 2005-05-03 Cova Technologies, Inc. Ferroelectric transistor for storing two data bits
KR100552497B1 (ko) * 2003-12-06 2006-02-14 한국화학연구원 페노티아진계 전달물질을 이용한 페놀계 고분자의제조방법
JP4308691B2 (ja) * 2004-03-19 2009-08-05 富士通マイクロエレクトロニクス株式会社 半導体基板および半導体基板の製造方法
EP1587137A1 (en) * 2004-04-16 2005-10-19 International Business Machines Corporation Deposition process for non-volatile resistance switching memory
US20060169592A1 (en) * 2005-01-31 2006-08-03 Hewlett-Packard Development Company, L.P. Periodic layered structures and methods therefor
WO2008121793A1 (en) * 2007-03-30 2008-10-09 The Penn State Research Foundation Mist fabrication of quantum dot devices
WO2015143056A1 (en) * 2014-03-18 2015-09-24 Specmat, Inc. Process and fabrication technology for oxide layers
WO2021067756A1 (en) * 2019-10-04 2021-04-08 North Carolina State University Monolithically integrated and densely packed array sensor platform for ultra-low power gas sensing applications

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046043A (en) 1987-10-08 1991-09-03 National Semiconductor Corporation Ferroelectric capacitor and memory cell including barrier and isolation layers
US5519234A (en) 1991-02-25 1996-05-21 Symetrix Corporation Ferroelectric dielectric memory cell can switch at least giga cycles and has low fatigue - has high dielectric constant and low leakage current
US5456945A (en) 1988-12-27 1995-10-10 Symetrix Corporation Method and apparatus for material deposition
US5648114A (en) 1991-12-13 1997-07-15 Symetrix Corporation Chemical vapor deposition process for fabricating layered superlattice materials
US5434102A (en) 1991-02-25 1995-07-18 Symetrix Corporation Process for fabricating layered superlattice materials and making electronic devices including same
US5514822A (en) * 1991-12-13 1996-05-07 Symetrix Corporation Precursors and processes for making metal oxides
US5468684A (en) 1991-12-13 1995-11-21 Symetrix Corporation Integrated circuit with layered superlattice material and method of fabricating same
US5508226A (en) 1991-12-13 1996-04-16 Symetrix Corporation Low temperature process for fabricating layered superlattice materialsand making electronic devices including same
JP3407204B2 (ja) 1992-07-23 2003-05-19 オリンパス光学工業株式会社 強誘電体集積回路及びその製造方法
WO1994010704A1 (en) * 1992-10-23 1994-05-11 Symetrix Corporation Integrated circuit with layered superlattice material and method of fabricating same
US5523964A (en) 1994-04-07 1996-06-04 Symetrix Corporation Ferroelectric non-volatile memory unit
US5955754A (en) 1992-10-23 1999-09-21 Symetrix Corporation Integrated circuits having mixed layered superlattice materials and precursor solutions for use in a process of making the same
US5962069A (en) * 1997-07-25 1999-10-05 Symetrix Corporation Process for fabricating layered superlattice materials and AB03 type metal oxides without exposure to oxygen at high temperatures
US6165802A (en) * 1998-04-17 2000-12-26 Symetrix Corporation Method of fabricating ferroelectric integrated circuit using oxygen to inhibit and repair hydrogen degradation
US6133092A (en) * 1998-07-24 2000-10-17 Symetrix Corporation Low temperature process for fabricating layered superlattice materials and making electronic devices including same
US6140672A (en) * 1999-03-05 2000-10-31 Symetrix Corporation Ferroelectric field effect transistor having a gate electrode being electrically connected to the bottom electrode of a ferroelectric capacitor

Also Published As

Publication number Publication date
US6326315B1 (en) 2001-12-04
KR20020026865A (ko) 2002-04-12
WO2001067516A1 (en) 2001-09-13
EP1224699A1 (en) 2002-07-24
JP2003526592A (ja) 2003-09-09
JP3803583B2 (ja) 2006-08-02

Similar Documents

Publication Publication Date Title
CN1364313A (zh) 制造超晶格材料的快速递变退火方法
US7001778B2 (en) Method of making layered superlattice material with improved microstructure
JP2001511600A (ja) 層状超格子材料を製造し、かつ酸素に曝さずに層状超格子材料を含む電子装置を作製するための工程
KR100433819B1 (ko) 초격자재료층및이를포함하는전자소자제조방법
US6815223B2 (en) Low thermal budget fabrication of ferroelectric memory using RTP
CA2215052A1 (en) Low temperature process for fabricating layered superlattice materials and making electronic devices including same
WO2003049172A1 (en) Lanthanide series layered superlattice materials for integrated circuit applications
CN1337068A (zh) 具有铁电薄膜的铁电存储器及其制造方法
CN1236986A (zh) 利用氧来抑制和修复氢退化的制造铁电集成电路的方法
US20060108623A1 (en) Oxidative top electrode deposition process, and microelectronic device structure
JP2003510839A (ja) バリア層を有する集積回路およびその製造方法
KR100334354B1 (ko) 강유전체집적회로의 제조방법
US6372518B1 (en) Method using unreactive gas anneal and low temperature pretreatment for fabricating layered superlattice materials and making electronic devices including same
US6607980B2 (en) Rapid-temperature pulsing anneal method at low temperature for fabricating layered superlattice materials and making electronic devices including same
US6362503B1 (en) Low temperature process for fabricating layered superlattice materials and making electronic devices including same
US6890768B2 (en) Method of making layered superlattice material with ultra-thin top layer
US6582972B1 (en) Low temperature oxidizing method of making a layered superlattice material
WO2001071816A1 (en) Ferroelectric fet with polycrystalline crystallographically oriented ferroelectric material
WO2002073680A2 (en) Method of making layered superlattice material with ultra-thin top layer
CN100355042C (zh) 铁电存储元件及制造具有超薄顶层的层状超晶格材料的方法
CN100388420C (zh) 具有改进微型结构的层状超晶格材料的制造方法
Watts et al. The effects of baking cycles on the properties of ferroelectric thin films

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication