CN1394235A - 检测病原微生物的方法 - Google Patents

检测病原微生物的方法 Download PDF

Info

Publication number
CN1394235A
CN1394235A CN01803592A CN01803592A CN1394235A CN 1394235 A CN1394235 A CN 1394235A CN 01803592 A CN01803592 A CN 01803592A CN 01803592 A CN01803592 A CN 01803592A CN 1394235 A CN1394235 A CN 1394235A
Authority
CN
China
Prior art keywords
mycobacterium
rnase
rna
gene
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN01803592A
Other languages
English (en)
Inventor
比约恩·赫尔曼
莱夫·基塞波姆
佩勒·斯托尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=20278064&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1394235(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of CN1394235A publication Critical patent/CN1394235A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria

Abstract

本发明涉及检测病原微生物的方法,所述方法包括区分不同种的微生物。该方法特别适用于检测和诊断由病原微生物导致的感染,这种感染用传统方法进行检测和诊断非常困难和/或费时费力。该方法有赖于对RNase P RNA基因特异性可变区的分析。

Description

检测病原微生物的方法
发明领域
本发明涉及检测病原微生物的方法,所述方法包括区分不同种的微生物。该方法特别适用于检测和诊断由病原微生物导致的感染,这种感染用传统方法进行检测和诊断非常困难和/或费时费力。该方法有赖于对被称之为P3和/或P19区的RNase P RNA基因特异性可变区的分析。
发明背景
RNase P是存在于所有活性细胞中的酶。它催化tRNA前体分子中5’前导序列的切除。在细菌中,RNase P包括长度大约为400nt的RNA分子(11,28)和一个小蛋白(大约120aa)(33)。在区分细菌时,业已显示,RNA等分在体外可以作为有效催化剂发挥功能(12);因此至少在这些细菌中,RNase P是一种核酶(催化化学反应的RNA分子)。细菌的RNase P RNAs在结构上主要分为两类。A型是最常见的结构分类,而B型仅存在于低G+C的革兰阳性细菌中(50)。很多细菌系的RNase P RNA的二级结构特征业已明了,在螺旋上存在的差异提供了非常有用的动植物系统发育信息(51)。
RNase P RNA基因序列在细菌菌群间并非非常保守(5),但在一个属中,基因通常非常近似。在RNase P RNA数据库中有数百种RNaseP RNA序列存在(http://jwbrown.mbio.ncsu.edu/RNaseP/home.html)。
衣原体目是一组专性细胞内细菌,具有独特的发育周期和致病性。它们寄生于人类和多种动物。衣原体科最近又分为两个属,衣原体和Chlamydophila,包括9个种(43)。此外,有些新科也属于衣原体目,它们包括副衣原体科和simkaniaceae(43)。副衣原体科的典型种类是parachlamydia acanthamoebae,它是阿米巴Acanthamoeba castellani的共生体,是人类罹患这种阿米巴疾病的偶见病原(34)。Simkanianegevensis是simkaniaceae的典型种类,与其他衣原体一样,也可导致人类感染(56,57,61)。
以前业已显示,衣原体不同种属间的RNase P RNA基因存在显著差异,可以作为诊断工具加以应用(13);而且该基因在菌株分化中也特别有用。序列之间的差异也给我们提供了线索,可以发现分子的哪一部分是催化活性、互补突变和结构研究的重要部分。
另一族重要的病原体是分支杆菌,对于这类细菌,快速敏感的诊断方法是至关重要的。传统的诊断方法依赖于临床样本培养后显示出的抗酸杆菌特性。这虽然可靠,但非常费时,因为这些种类的细菌,如结核分支杆菌,生长非常缓慢,通常需要6-8周的时间才能形成足够大的菌落。在过去的几年中,发展了多种基于PCR的诊断方法,例如,基于hsp60基因(16)或16S与23S rRNA基因之间散布区(15,24,30)的PCR诊断方法,这一趋势还在继续。
已知结核分支杆菌(6)、牛分支杆菌和麻风分支杆菌的RNase PRNA基因序列。牛分支杆菌的序列与结核分支杆菌的序列相同,但与麻风分支杆菌的序列存在差异。RNase P RNA基因中通过其他方法显示的催化活性的重要区域,在分支杆菌间几乎完全保守。微生物种属间的密切关系,如分支杆菌,使同一种属不同种类的细菌区分变得异常艰难,甚至几乎不太可能。
发明简述
本发明解决了同一属如分支杆菌属和衣原体属中不同种的细菌区分问题。而且,本发明还解决了检测病原体的问题,这些病原体应用常规检测方法通常难以查到,或者费时费力。
本发明方法原则上可以用来诊断任何病原微生物导致的感染。病原体包括古细菌和真细菌。后者主要包括滑动细菌(gliding bacteria),螺旋菌,僵硬细菌(rigid bacteria)和支原体。僵硬细菌包括放线菌类和简单的单细胞细菌。后者包括专性细胞内寄生虫和自由生活的细菌。在自由生活的变异体中包括(1)革兰阳性细菌,包括(a)球菌,(b)不形成孢子的杆菌,(c)形成孢子的杆菌,还可进一步分为专性需氧菌和专性厌氧菌;以及(2)革兰阴性细菌,包括(a)球菌,(b)非肠道杆菌,可以是螺旋型杆菌,也可以是棒状杆菌,(c)肠道杆菌,包括兼性厌氧菌、专性需氧菌和专性厌氧菌。欲了解更为详尽的细菌分类,可以参考Medical Microbiology,(Brooks et al,eds.,19th ed.(1991),Prentice-Hall International,USA)。
病原体还包括真菌,包括致病性酵母菌和霉菌。实例如曲霉、假丝酵母、犁头霉、毛霉、根霉、隐球菌、hisoplasma、芽生菌、球孢子菌、类球孢子菌、孢子菌丝病、着色真菌病、足分支菌病、小孢霉属、毛癣菌属和表皮癣菌属。其他可以诊断的病原体存在于原生动物和藻类中。
当然,本发明的方法还可用于检测非致病性细菌。本发明对下述细菌特别感兴趣:细菌门II-绿色细菌;门III-Deinobacteria(嗜热菌/Deinococcus)门IV-螺旋菌;门VI-革兰阴性厌氧菌和滑动细菌(类杆菌/黄杆菌属);门VIII-衣原体;门IX-革兰阳性菌以及下述3系细菌:A系(“革兰阴性”),B系(富G+C细菌),C系(贫G+C细菌);门X-蓝细菌;门XI-proteobacteria的5系,α、β、γ、δ以及“E”。
本发明的发明人检测了RNase P RNA基因中存在的差异,这些差异足以进行种的鉴定。
本发明的第一方面涉及包括种间区分的检测病原微生物方法,包括应用RNase P RNA基因的P3和/或P19高度变异区作为诊断目标。
本发明方法的目的是,例如,诊断由病原微生物导致的感染,对耐药细菌传播的流行病学进行研究。
优选地,为进行种属鉴定,变异区可以通过如PCR方法(多聚酶链反应)进行扩增和序列分析,或如通过杂合双链分析、大小测定、RFLP(限制性片段长度多态性)、熔点测定等进行指纹分析。
本发明的第二方面涉及包括种间区分的检测细菌方法,包括扩增病原体RNase P RNA基因高度变异区的核酸;与相关核酸形成杂合双链;并对其进行分析。
根据本发明杂合双链分析方法的一个实施例包括一个扩增反应,一个杂交步骤和一个非变性凝胶电泳分析。整个过程可以在不超过24小时的时间内完成。
本发明的第三方面涉及将RNase P RNA基因的P3和/或P19可变区作为目标药物,用来制备治疗微生物感染的药物。
发明详述
本发明将以两个非限制性实施例的形式给予更详尽的阐述。实施例1:分支杆菌材料和方法
细菌菌株。本研究应用的分支杆菌列于下表1。临床菌株分别在它们的出处业已通过16S RNA基因序列分析进行了分类。在GenBank序列数据库中获得结核分支杆菌、牛分支杆菌和麻风分支杆菌的RNase PRNA序列。表1
菌株描述 出处
胃分支杆菌堪萨斯分支杆菌胞内分支杆菌蟾分支杆菌耻垢分支杆菌鸟分支杆菌海分支杆菌偶发分支杆菌M.malmoense副结核分支杆菌戈氏分支杆菌M.celatum  ATCC 15754ATCC 12748D673ATCC 19276mc2 155D702临床菌株临床菌株临床菌株6783临床菌株临床菌株 ATCCATCCTrudeau分支杆菌收藏中心ATCC参考文献26Trudeau分支杆菌收藏中心Borste-研究中心Borstel研究中心Borstel研究中心德国汉诺威兽医学院G-F GerlachBorstel研究中心Borstel研究中心
PCR扩增RNase P RNA基因。根据业已公开的结核分支杆菌和麻风分支杆菌基因序列(分别为GenBank编号Z70692和L78818),涉及引物对,该引物对可以在近基因末端与之杂交。正向引物tbf(5’CGGATGAGTTGGCTGGGCGG  3’)和反向引物tbr(5’GTTGGCCTGTAAGCCGGATT 3’)与麻风分支杆菌序列之间均存在一个误配。应用该引物对可以从所有备测分支杆菌中扩增RNase P RNA基因。绝大多数反应可以在未经处理的培养分支杆菌中进行,无需事先分离、纯化染色体DNA。PCR在50ul反应体系的Rapidcycler capillaryPCR仪(Idaho technology,Idaho Falls USA)上进行,参数为94℃10秒;50℃10秒,72℃15秒。
序列分析。在1%琼脂糖凝胶上纯化PCR产物,去除引物。用大约1/20的纯化DNA和扩增反应中应用的同一引物进行自动序列分析。在Applied Biosystems 310型capillary序列分析仪上进行序列分析。
杂合双链分析。为了对RNase P P3环状区进行杂合双链分析,需要应用寡核苷酸tbf和280r(5’CTTGCTTGCCCTCCCTTTGCC 3’)扩增DNA(50ul反应体系),扩增产物大约为250bp。产物进行凝胶纯化,每次分析应用大约1/10产物。DNA与相同数量的结核分支杆菌DNA混合,95℃加热1分钟,冷却到室温。在10%非变性聚丙烯酰胺凝胶上15mA电泳14小时,分离产物。银染显带。
DNA凝胶银染。应用10%乙醇固定凝胶5分钟,在1%硝酸中孵育5分钟。应用1mg/ml硝酸银溶液染色30分钟。在碳酸钠/甲醛溶液(15g无水碳酸钠和300ul 37%甲醛溶于500ml水中)中显带,直到DNA带清晰可见。应用10%乙酸终止反应。结果
实施例1的结果将与图1-5共同阐释。
图1,分支杆菌的RNase P RNA基因序列比对。短横线代表序列一致,星号代表序列缺失的碱基。
图2,结核分支杆菌RNase P RNA的二级结构。不同分支杆菌种间存在差异的区域涂暗表示。少见变异区未显示。
图3,胃分支杆菌(两个不同菌株中完全相同的序列)和6株堪萨斯分支杆菌RNase P RNA基因序列的比对。胃分支杆菌序列独有的碱基以黑体表示。
图4A,不同分支杆菌RNase P RNA基因前280bp区域的杂合双链分析。不同分支杆菌种属的DNA与结核分支杆菌DNA杂交,然后在10%聚丙烯酰胺凝胶上分离获得的双链。泳道1,结核分支杆菌对照DNA;泳道2,鸟分支杆菌;泳道3,胞内分支杆菌;泳道4,M.malmoense;泳道5,M.celatum;泳道6,堪萨斯分支杆菌;泳道7,牝牛分支杆菌;泳道8,蟾分支杆菌。
图4B,临床样本细菌DNA扩增后的杂合双链分析,据信所述细菌是胞内分支杆菌或鸟分支杆菌。泳道1,结核分支杆菌对照DNA;泳道2、3、6,疑为鸟分支杆菌DNA;泳道4、5、7,疑为胞内分支杆菌DNA;泳道8,鸟分支杆菌对照DNA;泳道9,胞内分支杆菌对照DNA。
图5,根据属内序列变异,分支杆菌RNase P的P18环示意结构。序列来自A)结核分支杆菌;B)耻垢分支杆菌;C)海分支杆菌。
应用寡核苷酸tbf和tbr,PCR扩增分支杆菌RNase P RNA基因,每个反应产生单一片段,根据分支杆菌的种属不同,片段长度从387bp(M.celatum)到428bp(结核分支杆菌)不等。
应用这些寡核苷酸可以从所有备测分支杆菌中扩增RNase P RNA基因,所述分支杆菌可以是直接源于培养基或培养平皿的未经处理的菌体。不必事先进行染色体DNA的纯化。
序列比对显示(图1),除了三个主要区域不具有相似性,而且不可能进行充分比对外,基因的绝大部分核苷酸序列保守良好。基因整体相似性大约为80-85%。但是这一数字显然未能显示完整的信息,因为在保守良好区,相似性接近100%,而在变异区则因为差异巨大而几乎无法进行比对。
如果变异区位于RNase P RNA分子的二维代表处(图2),值得注意的是,有多少差异位于主干环结构末端区域。主要的变异区是P3,P16和P19环。此外,在耻垢分支杆菌和偶发分支杆菌的P12环有一个缺失,包括该环有几个未配对核苷酸。种间差异主要位于P3和P19环。
所有分析的种属都有其特异性RNase P RNA基因序列。几种关系很近的种属可以根据RNase P RNA序列进行区分。MAI复合体成员鸟分支杆菌和胞内分支杆菌在几个位置存在差异,包括鸟分支杆菌P19环的一个缺失(图2)。根据RNase P RNA基因序列就无法分辨关系非常相近的副结核分支杆菌和鸟分支杆菌(亚种)。
随着我们分析的继续,我们发现,在同一种中,序列是完全相同的。我们将结核分支杆菌复合体(结核分支杆菌,牛分支杆菌,非洲分支杆菌,田鼠分支杆菌和M.tuberculosis ssp asiaticum)所有成员的临床样本进行了序列分析,没有发现与业已公开的结核分支杆菌序列存在任何差异(6)。因此,根据RNase P RNA基因差异性无法区分该组成员。
我们还研究了几种分支杆菌不同血清型之间序列差异的可能性。在研究鸟分支杆菌和胞内分支杆菌时,扩增了5株临床分离的鸟分支杆菌(动物)和5株胞内分支杆菌(人类)的RNase P RNA基因,并进行了序列分析。结果在不同血清型间没有探测到差异存在。
在不同血清型间观察到异源RNase P RNA基因序列差异的一个种是卡萨斯分支杆菌(图3)。差异主要是C-T转换。还对两株胃分支杆菌序列进行了分析,但该种两个分离株的基因序列完全一致。在4个位点,卡萨斯分支杆菌菌株的所有RNase P RNA基因序列都与胃分支杆菌不同。其中3个差异是C-T转换,而第4个差异则是C-A颠换。
据信P3和P19环存在的种间差异足以满足试图通过杂合双链分析进行简单诊断应用的需求。高度变异区P3被选来用于该分析,并用tbf和280r寡核苷酸进行扩增。每个PCR反应都会产生大约250bp的单一带。结核分支杆菌的P3区作为标准,并与等量其他种产物混合。片段在非变性聚丙烯酰胺凝胶上分离后,银染片段带。在所有备测种间,杂合双链分析图象均显示清晰差异(图4A)。
该分析方法还被进一步用于临床样本(来自瑞典感染性疾病控制研究所)的检测,这些样本以前进行过或从未进行过分型。在获得的凝胶上(图4B),泳道2、3、6的样本属于鸟分支杆菌(与泳道8相比),而样本4、5、7似乎属于胞内分支杆菌(与泳道9相比)。对每个样本进行RNase P RNA基因序列分析进一步证实了杂合双链分析的结果。讨论
与衣原体相比,分支杆菌的RNase P RNA基因在种间更保守,整体相似性为80-85%。但这一数字却有某些误导性,因为绝大多数差异集中于某些特定区域,在这些区域中,差异的程度使明确比对几乎不太可能。所有分支杆菌的RNase P RNA都显示了衣原体和蓝细菌的P15-P17区(13,31),这使几种微生物的密切关系显得毫不令人惊异。
所有研究的种都有其令人瞩目的序列特征。在同一种内,除了卡萨斯分支杆菌,都没有显示差异,而卡萨斯分支杆菌业已显示是异源的(1,14,32)。尽管卡萨斯分支杆菌和胃分支杆菌在几个变异位点存在共同性,但基因中卡萨斯分支杆菌特异性碱基却足以通过微量测序或杂合双链分析区别于关系密切的胃分支杆菌。卡萨斯分支杆菌是非结核分支杆菌所致肺部疾病的重要病原体。
RNase P RNA基因序列中非常保守区域和高度变异部位的结合使未知分支杆菌样本分型成为可能。寡核苷酸可以与保守区域完全匹配或近乎完全匹配,使保守区域之间的可变区能够可靠扩增。
鸟分支杆菌复合体(MAI)包括鸟分支杆菌和胞内分支杆菌,是爱滋病患者机会感染的主要病原体(21,22)。该复合体成员间的区分需要分子学方法,而我们对RNase P RNA基因PCR扩增产物的杂合双链分析则提供了相对目前所用方法的又一种快速、便宜的方法(7,8,10,18,19,23,27,29)。
种间RNase P RNA基因序列变异还为我们提供了RNA分子结构的线索。在分支杆菌这种情况下(图2),序列中几乎所有变异都位于非配对区,或者位于对体外催化活性似乎不重要的区域。
例如,在耻垢分支杆菌和偶发分支杆菌这两个种中,对应于P12环末端的160-164碱基(图2)在RNase P RNA基因序列中就不存在。P12环在来自其他生物的基因中缺失,如发酵支原体(4,25),这一点提示该环对于核酶活性似乎并非必需。
比对还支持其他实验得出的RNase P结构的结论。提示的重要区域如75-85bp功能区和配对nt 409-417(图2)在所有分析的分支杆菌种间保守。在所有可能的情况下,这两个区域的碱基都配对,因为匹配序列在生物间保持保守。分支杆菌种间变异最大的区域分别是P3和P19环。P19环结构对体外RNase P活性并非必需(25),而且不同生物间P3环的变异也很大,但它们的体内作用还不明了。
在种间序列差异的帮助下,提示的结核分支杆菌RNase P RNA结构仍可进一步改善。据信一个非常重要的结构是P18主干环(nt 330-351区),该环在大肠杆菌和衣原体RNase P RNA中有一个非常保守的主干。但在提示的分支杆菌结构中却没有这样一个令人信服的主干结构(见图2,该图根据预测的旧结构绘制)。但是,在耻垢分支杆菌和海分支杆菌中,存在来自共有序列的变异(图1)。主干环结构的轻微差异可以适应这种变化,保持共有二级结构的完整,同时使碱基配对图象更加令人信服(图5)。这也使该主干环对RNase P功能重要性的争论得到加强。实施例2:衣原体材料和方法
细菌菌株。分析生物的DNA可以通过下述方法获得,包括应用标准蛋白酶K处理培养生长的生物,然后苯酚抽提,或者以纯化DNA制品提供(表2)。表2菌株、原始宿主、参考文献、来源和编号
PCR扩增和DNA测序。应用引物对BH1-BH2通过PCR扩增衣原体科各种rnpB基因,所述引物对根据沙眼衣原体序列设计(13)(表3)。
                       表3扩增rnpB基因所用的引物
引物                     序列                         沙眼衣原体中rnpB的核苷酸位置(见图6)
BH1    5′-CGGACTTTATAAGAAAAGAT-3′(上游)                64-83BH2    5′-(A/G)TAAGCCGGGTTCTGT-3′(下游)               392-377BM1    5′-(A/G)(A/G)(C/A)G(A/G)(A/G)GAGGAAAGTCC-        48-643′(上游)JB1    5′-CGAACTAATCGGAAGAGTAAGGC-3′(上游)             -8-15JB2    5′-GAGCGAGTAAGCCGG(A/G)TTCTGT-3(下游)           398-377
反应混合物包括0.2uM每种引物,200uM dNTP,1.5mM MgCl2,10mM Tris-HCl(pH 8.3),50mM KCl,15%甘油和2U Taq多聚酶。扩增条件包括94℃45s、42℃45s、72℃1分钟循环7次,然后将退火温度提高到58℃,循环35次。如果没有特别陈述,文中所有提及的PCR产物都是应用引物对BH1-BH2得到的,该反应扩增基因全长的82%。为了在9种衣原体典型菌株中产生5’侧翼区域,我们应用了引物对JB1-JB2,该引物对是从完整的沙眼衣原体RNase P RNA基因序列中获得的(由Dr J.Brown友情提供)。扩增条件与上述BH1-BH2引物对条件类似,不同的是反应中不用甘油,退火温度也分别为53℃和58℃。在扩增S.negevensis和P.acanthamoebae时,引物由BM1替代BH1,该引物包括前述高度保守的核苷酸(13),但不能用于rnpB 5’末端的序列分析。然后通过末端标记循环测序化学法对获得的PCR产物进行测序,测序反应在310基因分析仪(Perkin-Elmer)上进行分析。将序列上交EMBL,表2所列的所有编号均来自本研究。
序列比对和系统发育分析。序列比对需要对每个RNase P RNA分子的二级结构进行模拟,该过程是通过应用对比序列分析人工进行的。该预测结构随后用于比对过程,帮助鉴定环和主干区域。比对可以用来研究分子系统发育。通过Jukes & Cantor(1969)(55)单一参数模型,校正单一位点多碱基变化的计算距离矩阵。然后应用该矩阵通过邻接程序计算系统发育树(77),该计算过程需要在NEIGHBOR的名义下,应用系统发育推理软件包PHYLIP 3.51c版本(44)进行实施。应用DNAPARS程序推论最大简约树。应用SEQBOOT程序,通过对数据重复取样1000次,根据邻接法和最大简约法来bootstrap树。通过DNAML程序,应用分子进化应用经验碱基频率、全局重排和jumbleoption的F84模型构建最大相似树。
制备RNase P RNA和底物。为了检测rnpB的催化活性,将沙眼衣原体全长rnpB应用PCR进行扩增,然后克隆到T7启动子后面,测定其tRNA前体裂解活性。我们设计了与5’端匹配的PCR引物(5’TTTGAATTCGAAATTAATACGACTCACTATAG CCAACTAATCGG AAGAGTA)。划线碱基与沙眼衣原体rnpB匹配,而引物的余下部分对应于T7启动子。我们还设计了与3’端互补的引物(5’TTTAAGCTTGGATGGTACCTTGG AAAAGCTCGGAAGAGCGAGT AA)。划线碱基与沙眼衣原体rnpB互补,整合的未标记碱基则为了能够应用FokI裂解获得的质粒。应用EcoRI和HindIII酶切PCR扩增的沙眼衣原体rnpB,然后将之插入到应用相同酶切处理的pUC19中。按照标准方法,应用重组质粒转化大肠杆菌菌株DH5a。
如文献所述(59及其所引参考文献),应用T7 DNA依赖性RNA多聚酶制备大肠杆菌RNase P RNA、沙眼衣原体RNase P RNA和前体tRNATyrSu3。
检测RNase P RNA。如前所述(59及其所引参考文献),在37℃,我们的标准反应缓冲液(50mM Tris-HCl(pH 7.5),5%(w/v)PEG 6000,100mM NH4Cl(或1M NH4Cl)以及100mM MgCl2)中监测RNase PRNA活性,结果沙眼衣原体RNase P RNA的最终浓度大约为2.4pmol/ml,前体tRNATyrSu3大约为0.052pmol/ml。
核苷酸序列编号。检测菌种的代表核苷酸序列业已上交EMBL。编号如表2所示。结果
实施例2的结果将与图6-8共同阐释。
图6,衣原体科中9个种、P.acanthamoebae和S.negevensis的rnpBDNA序列比较。原点表示与沙眼衣原体A/Har-13T序列一致,短横线表示比对间隙。还显示了高度可变区P3,P12,P17和P19。根据Brown进行编号(39)。
图7,鹦鹉热衣原体、P.acanthamoebae和S.negevensis的推理RNase P RNA二级结构。引物序列核苷酸以小写字母形式表示,m代表该位置腺嘌呤-胞嘧啶混合物,r代表腺嘌呤-鸟嘌呤混合物。N代表根据细菌RNase P RNA最小共有序列假定的引物侧翼区核苷酸。
图8,根据rnpB绘制的邻接树,显示了衣原体科各成员之间的关系。P.acanthamoebae的菌株Bn9T和S.negevensis的菌株ZT被选作组外对照。简约和ML分析产生了一致的分支顺序。但是,在ML树中有两个分支分类显示轻度差异,该节点应用星号做了标识。每个节点的bootstrap支持值应用邻接法和最大简约法通过数据重复取样1000次获得。刻度线表示每100个核苷酸存在5个取代。
rnpB序列比较
包括rnpB基因全长82%的PCR产物来自60个衣原体菌株。来自P.acanthamoebae菌株Bn9T和Berg17的产物长度为313个碱基,其序列完全相同。来自S.negevensis菌株ZT的产物序列为299 bp,与P.acanthamoebae的序列有68.9%相同。衣原体科PCR产物与P.acanthamoebae和S.negevensis获得片段的相似性为63.8%-69.3%。衣原体科中两个属衣原体和Chlamydophila的rnpB序列有75.9%-83.3%相同。属于衣原体属的18个菌株相似性>89.9%;属于Chlamydophila属的38个菌株相似性>84.8%。在14株沙眼衣原体中,LGV生物型与沙眼生物型相比,序列只有一个碱基取代的差异。2株Chlamydia suis只在两个核苷酸位点存在差异。6株兽类衣原体完全相同,或仅存在1或2个碱基差异。在10株鹦鹉热衣原体(除了菌株M56,见下)、10株肺炎衣原体TWAR生物型、9株Chlamydia abortus、3株Chlamydiafelis和2株Chlamydia muridarum中,种间序列完全相同。
在包括衣原体科所有9个种的14株菌株中,应用引物JB1和JB2,通过PCR产生了几乎全长的基因片段(rnpB基因的98%)。这些序列的比较使种间相似性下降了大约2.6%,因为它们包括了可变区P3。rnpB中存在的差异足以在衣原体科中清晰鉴定各种群。与ompA基因产物(差异高达50%)和核糖体RNA基因(差异<10%)不同,该差异允许设计属和群特异性PCR探针。
业已显示,C.muridarum种中MoPnT(鼠)和SFPD(大颊鼠)菌株在MOMP基因序列中存在差异(85)。相反,两种C.muridarum菌株的rnpB基因却完全相同,在核糖体16S/23S基因间间隔和23S功能区I片段中也有类似发现(42)。表面暴露蛋白的进化压力显然明显高于涉及翻译过程的基因。
以前分类属于鹦鹉热衣原体的22种菌株最近又分类,分别属于鹦鹉热衣原体、流产衣原体、猫衣原体和C.caviae。通过rnpB基因序列差异高达6.7%,我们的研究将这些菌株划分为4个种群(未提供数据)。这些菌种业已从非常广泛的宿主中得到分离,它们导致的疾病谱非常广泛(表2)。只有鹦鹉热衣原体M56菌株与其分类(鹦鹉热衣原体)相矛盾,该菌株PCR产生的rnpB序列与本研究分析的猫科动物序列相匹配。M56的历史可能为该菌株为什么会划分为鹦鹉热衣原体提供一些新视点。1961年,M56从加拿大麝鼠首先分离(79),然后从美国爱荷华州Ames的USDA国立动物疾病中心上交ATCC,并在那里保存。在细胞培养过程中,ATCC制备的M56在一种细胞系中成长为M56血清型,但在另一种细胞系中则成长为猫科动物血清型(Andersen,未发表)。Fukushi & Hirai(1989)(46)报道了来自ATCC的猫科动物血清型M56。在NADC 8/1/90鸡胚卵黄囊中培养的M56经PCR扩增后,产生了鹦鹉热-禽样衣原体核糖体和全长主要外膜蛋白基因序列(42)。本研究应用的M56 DNA来自1997年的研究(表2)。考虑到这段历史,我们的rnpB分析显示,M56培养物在上世纪60年代业已遭到猫科动物衣原体的污染,无污染分离菌株可能再也无法得到。
RNase P RNA的二级结构
衣原体科9个种rnpB基因的序列比对提示,在二级结构中存在4个高度可变区,它们位于独立的主干环结构中,分别标示为P3,P12,P17和P19(图7)。
P15环(见图7)令人非常感兴趣,因为在绝大多数细菌RNase PRNA分子中,它拥有一个GGU功能区,该功能区可以通过与tRNA的3’末端RCCA功能区进行碱基配对而与tRNA前体发生相互作用(60)。该功能区序列在所有衣原体成员中的缺失是令人惊异的,而在衣原体科所有9个种中可以发现一个ATAA膨出部分(图7,鹦鹉热衣原体291-294位点),除了肺炎衣原体(GAAA)和C.felis(ACAA)。而且,衣原体科各种间P15区的结构差异又因以下发现得到支持,所述发现为业已鉴定的tRNA基因没有一个编码3’末端CCA序列(80)。
有趣的是,P.acanthamoebae的P15区拥有一个携带GGU功能区的富嘌呤膨出部分。这可能提示,这些RNase P RNA可能与大肠杆菌RNase P RNA一样,与3’末端RCCA序列相互作用,假设在该种中,tRNA基因编码CCA序列。相反,S.negevensis的RNase P RNA的P15环结构与绝大多数蓝细菌的相似(87),它在P15环携带GGAU功能区,与耐热菌的RNase P RNA一样(53)。业已显示,耐热菌RNase PRNA的该环携带一个与tRNA前体3’端具有高度亲和力的结合位点(52),因此,它可能在S.negevensis中也具有活性。
衣原体科各种的RNase P RNA拥有一个P18螺旋,而P.acanthamoebae和S.negevensis似乎缺乏这一元件。以前业已显示,P18螺旋可以缺失而不丧失催化活性,提示该结构不直接参与催化反应(49)。当P18螺旋存在时,该螺旋与系统发育保守的GNRA四环相关,该四环的引入提示了P8的受体(鹦鹉热衣原体中的G83C93碱基对;图2;(38,62))。而且,缺乏P18螺旋的细菌RNase P RNA往往拥有一个延长的P8螺旋,业已显示,该螺旋补偿了P18的缺失(38)。因为P.acanthamoebae和S.negevensis既没有延长的P8,也没有包括GNRA四环的P18,因此P18区域的核苷酸可能形成了与P8相互作用的另一种结构元件。
业已显示,在P14螺旋的GNRA四环与P8主干间存在大范围的相互作用(38,62)。下述研究资料也支持这一点,包括我们在衣原体科所有9个种的研究数据(鹦鹉热衣原体U82A94碱基对和G201;图7)以及P.acanthamoebae和S.negevensis中P14环存在的A和P8存在的GC碱基对。假设这一相互作用确实存在,在沙眼衣原体三个血清型L1-L3中,G205核苷酸(对应于图7鹦鹉热衣原体的G201)被A取代但在P8螺旋中却没有相应碱基对移位是非常令人惊异的。
在细菌最小共有RNase P RNA中,某些位点具有100%保守核苷酸碱基(39)。我们的资料显示,在Chlamydophila属所有备检种中,位点60的保守胞嘧啶被尿嘧啶置换,而在衣原体属中则未观察到这种改变。有赖于位点376(该数字编号参考鹦鹉热衣原体)上存在的碱基,就产生了UG不稳定碱基对或UA碱基对。这些菌种的RNase P RNA区域不能应用本研究所用引物进行检测。
沙眼衣原体RNase P RNA裂解tRNA前体
细菌RNase P RNA在缺乏RNase P蛋白等分时具有催化活性(33及其参考文献)。为了探讨单纯的衣原体RNase P RNA是否能够裂解其底物,我们制备了沙眼衣原体RNase P RNA,并应用大肠杆菌tRNATyrSu3(pSu3)前体作为底物分析了它的裂解特性。如方法所述,该RNase P RNA确实能够在预期位点裂解pSu3,但仅在应用高浓度NH4Cl时存在这种裂解活性。这与以前的一项针对沙眼衣原体RNase PRNA裂解活性的观察结果一致(51)。综合结构观察结果,该点提示,RNase P RNA不需要P15内环(或P15发夹环)来维持其催化活性。但是,我们注意到,沙眼衣原体RNase P RNA的裂解活性程度与大肠杆菌RNase P RNA相比,显著降低。
衣原体科的系统发育
为了鉴定衣原体科各成员,P15,P16,P17,P18和P19螺旋二级结构是最艰难的区域。因此,在最终用于系统发育计算的数据中,去除了P17和P19这两个区域。这是因为P17局部核苷酸变异程度很高,而且在P.acanthamoebae的rnpB基因中显然没有P19螺旋(图6&7)。而且,在系统发育分析前,还去除了比对不明确的94,150,151,153,286和298位点(数字编号参考图6沙眼衣原体rnpB基因)。通常情况下,在最后的比对中没有省略间隙位点,除了5’末端,因为S.negevensis和P.acanthamoebae的1-68位点尚未测定。因此,最后校正的比对包括271个位点。
为了揭示衣原体科中各个种之间的系统发育关系,我们应用不同的运算法则计算了进化树。应用距离矩阵法和基于性状的方法,得到了大致相同的树结构。图3显示了应用邻接法(NJ)(Saitou & Nei,1987)获得的系统发育树示意图。分支顺序的稳定性通过测定bootstrap百分值进行统计学评估。与NJ和最大简约法获得的数值一样,这些数值在节点部位给出。图3在每个分支点还给出了通过最大似然树(ML)支持的分支顺序。两类分支在通过ML构建的系统树中存在一定差异,显示这一不稳定性的真实节点就会加以星号标示。在只应用来自Chlamydophila和衣原体属的菌种rnpB数据时,可以得到与图3相同的树结构,但当数据进一步扩展包括5’末端的核苷酸信息时,就不是这样了。因此,该部分树的分支顺序还没有得到解决。
图8的树显示,通过比较rnpB基因序列,可以容易地区分Chlamydophila和衣原体属。这些结果与最近发表的基于全长16S和23S核糖体RNA基因及它们的基因间间隙区域的系统发育结果一致(42,43,73)。但是,这一结果与Pettersson等(1997)发现的16S rRNA基因结果相矛盾。可能的解释是,16S rRNA研究只是基于这些基因全长核苷酸信息的4/5,而且用于比较的一些序列关系不密切。因此,在最后的数据中丢失了一些系统发育信息。在随后的分析中,应用几乎完整的16S rRNA基因序列,并只将密切相关的序列作为组外对照,这时发现,与其他分支顺序的相关性非常有限。因此可以得出结论,16SrRNA基因在描述衣原体科成员进化相关关系中,决定性较低。
对rnpB基因的分析显示,衣原体进化不需完全依赖基因,因为分支支持非常弱。尽管16S rRNA分析显示在所属簇中有很多长分支,rnpB分析却显示序列差异平均分布,可以在科、属和种的水平区分衣原体。rnpB基因在衣原体菌种中存在的序列差异性,使应用该基因进行衣原体菌种区分成为可能。而且,该特异性显示了每一菌群的功能区隔,与文献所述的种特异性小生态一致(70)。保守性与以前鉴定的种群一致。在如此基础功能上(如tRNA加工过程)存在的特异性提示,衣原体科中的菌群业已独立进化很长一段时间。本系统发育分析支持如前所述的衣原体科的修订分类(43)。
总之,在代表衣原体科所有9个种的60个菌株以及与衣原体菌株具有相关性的P.acanthamoebae和S.negevensis中测定了RNase PRNA(rnpB)的基因序列。这些序列被用来推导衣原体科的进化关系。该分析将Chlamydophila和衣原体分为两个系列,而Chlamydophila则形成3个独立的簇:肺炎衣原体菌株,兽类衣原体菌株和包括鹦鹉热衣原体、Chlamydophila abortus、Chlamydophila caviae和Chlamydophilafelis的第三簇。衣原体包括两个簇:从沙眼衣原体菌株中分离的Chlamydia suis菌株,以及Chlamydia muridarum。该分析提示,rnpB序列和结构是衣原体科各种的独特性标志。我们还显示,来自沙眼衣原体的RNase P RNA在没有蛋白质的情况下能够裂解tRNA前体。我们的发现涉及衣原体RNase P RNA结构的探讨。
参考文献1.Abed,Y.,C.Bollet,and P.De Micco 1995.Demonstration ofMycobacterium kansasii species heterogeneity by the amplification of the16S-23S spacer region.J.M.Microbiol.43:156-1582.Alcaide F.,I.Richter,C.Bernasconi,B.Springer,C.Hagenau R.Schulze-Robbecke,E.Tortoli,R.Martin,E.C.Bttger,and A.Telenti.1997.Heterogeneity and clonality among isolates ofMycobacterium kansasii:Implications for epidemiological andpathogenicity studies.J.Clin.Microbiol.35:1959-19643.Bascunana C.R.and K.Belak K.1996.Detection and identificationof mycobacteria in formalin-fixed,paraffin-embedded tissues by nestedPCR and restriction enzyme analysis.J.Clin.Microbiol.10:2351-2355.4.Brnnvall,M.,J.G.Mattsson,S.G.Svrd S.G.,and L.A.Kirsebom.1998.RNase P RNA structure and cleavage reflect theprimary structure of tRNA genes.J.Mol.Biol.283:771-835.Brown J.W.and N.R.Pace.1992.Ribonuclease P RNA and proteinsubunits from bacteria.Nucleic Acids Res.20:1451-1456.6.Cole S.T.,R.Brosch,J.Parkhill,T.Garnie,C.Churcher,D.Harris,S.V.Gordon,K.Eiglmeier,S.Gas,C.E.3rd Barry,F.Tekaia,K.Badcock,D.Basham,D.Brown,T.Chillingworth,R.Connor,R.Davies,K.Devlin,T.Feltwell,S.Gentles,N.Hamlin,S.Holroyd,T.Hornsby,K.Jagels,B.G.Barrell,et al.,1998 Deciphering the biology ofMycobacterium tuberculosis from the complete genome sequence.Nature393:537-44.7.Crawford J.T.1994.Development of rapid techniques foridentification of M.avium infections.Res.Microbiol 145:177-181.8.Devallois A.,M.Picardeau,K.S.Goh,C.Sola,V.Vincent,and N.Rastogi.1996.Comparative evaluation of PCR and commercial DNAprobes for detection and identification to species level of Mycobacteriumavium and Mycobacterium intracellulare.J.Clin.Microbiol.34:27562759.9.Devallois A.,M.Picardeau,C.N.Paramasivan,V.Vincent,and N.Rastogi.1997 Molecular characterization of Mycobacterium aviumcomplex isolates giving discordant results in AccuProbe tests by PCR-restriction enzyme analysis,16S rRNA gene sequencing,and DT1-DT6PCR.J.Clin.Microbiol.35:2767-2772.10.Frothingham R.,and K.H.Wilson..1994.Molecular phylogeny ofthe Mycobacterium avium complex demonstrates clinically meaningfuldivisions.J.Infect.Dis.169:305-312.11.Gardiner K.and N.R Pace.1980.RNase P of Bacillus subtilis hasan RNA component.J.Biol.Chem.255:7507-750912.Guerrier-Takada,C.,K.Gardiner,T.L.Marsh,N.R.Pace,and S.Altman.1983.The RNA moiety of RNase P is the catalytic subunit of theenzyme.Cell 35:849-85713.Herrmann B.,O.Winqvist,J.G.Mattsson,and L.A.KirsebomLA.1996.Differentiation of Chlamydia spp.by sequence determinationand restriction endonuclease cleavage of RNase P RNA genes.J.ClinMicrobiol.34:1897-190214.Iinuma Y.,S.Ichiyama,Y.Hasegawa,K.Shimokata,S.Kawahara,and T.Matsushima.1997.Large-restriction-fragmentanalysis of Mycobacterium kansasii genomic DNA and its application inmolecular typing.J.Clin.Microbiol.35:596-59915.Ji-e Y.,K.E.Kempsell,M.J.Colston and R.A.Cox.1994Nucleotide sequences of the spacer-1,spacer-2 and trailer regions of therrn operons and secondary structures of precursor 23S rRNAs andprecursor 5S rRNAs of slow-growing mycobacteria Microbiology140:1763-1773.16.Kapur V.,L.-L.Li,M.R.Hamrick,B.B.Plikaytis,T.M.Shinnick,A.Telenti,Jr W.R.Jacobs,A.Banerjee,S.Cole,K.Y.Yuen,J.E.Clarridge III,B.N.Kreiswirth,and J.M.Musser.1995.Rapid Mycobacterium speciesassignment and unambiguous identification of mutations associatedwith antimicrobial resistance in Mycobacterium tuberculosis byautomated DNA sequencing.Arch.Pathol.Lab.Med.119:131-138.17.Kole R.M.F.Baer,B.C.Stark,and S.Altman.1980.E.coliRNAase P has a required RNA component in vivo.Cell 19:881-88718.Kulski J.K.,C.Khinsoe,T.Pryce,and K.Christiansen.1995.Useof a multiplex PCR to detect and identify Mycobacterium.avium and M.intracellulare in blood culture fluids of AIDS patients.J.Clin.Microbiol33:668-674.19.Nishimori K.,M.Eguchi,Y.Nakaoka,Y.Onodera,T.Ito,and K.Tanaka.1995.Distribution of IS901 in strains of Mycobacterium aviumcomplex from swine by using IS901-detecting primers that discriminatebetween M.aviun and Mycobacterium intracellulare.J.Clin.Microbiol.8:2102-2106.20.Picardeau M.,G.Prod′hom,L.Raskine,M.P.LePennec,and V.Vincent.1997.Genotypic characterization of five subspecies ofMycobacterium kansasii.J.Clin.Microbiol.35 25-32.21.Rastogi N.,W.W.Barrow,J.O.Falkinham III,C.O.Thoen,J.T.Crawford,B.T.Mangura,L.B.Reichman,L.B Heiets,B.Dautzenberg,L.S.Young,L.E.Bermudez,C.D.Inderlied,A.E.Suzuki,J.M.Inamine,P.R.J.Gangadharam,M.V.Reddy,M.Denis,H.Shiratsuchi,J.,L.Johnson,J.J.Ellner,J.T.Belisle,and P.J.Brennan.1994.11th Forum in Microbiology,″Laboratory and clinicalaspects of the Mycobacterium avium epidemic:contributing factorsassociated with variability of drug susceptibility and immuneresponsiveness,and the multifaceted nature of pathogenicity″.ResMicrobiol.145:167-26122.Rastogi N.,J.J.McFadden.,M.L.Gourgeon,L.Montagnier,F.M.Collins,C.R.Horsburgh,R.J.Coker,T.J.Hellyer,I.N.Brown,J.N.Weber,I.M.Orme,D.Chatterjee,J.D.A.Van Emabden,D.VanSoolingen,P.M.Small,P.W.M.Hermans,S.E.Hoffner.GKllenius,S.B.Svenson,R.S.Wallis,J.J.Ellner,H.Shiratsuchi,G.A.V.Rook,A.Vyakarnam,D.M.Yajko,L.S.Young,L.E.M.Bermudez,C.B.Inderlied,Z.M.Kumze,F.Portaels,and V.Labrousse.1992.8th Forum in Microbiology,″Mycobacteria and AIDS:epidemiological and genetic markers,virulence factors and interactionswith the immune system.″Res Microbiol.143:357-440.23.Richter E.,S.Niemann,S.Rusch-Gerdes,and S.Hoffner.1999Identification of Mycobacterium kansasii by using a DNA probe(AccuProbe)and molecular techniques.J.Clin.Microbiol.37:964-97024.Roth A.,M.Fischer,M.E.Hamid,S.Michalke,W.Ludwig,andH.Mauch.1998Differentiation of phylogenetically related slowly growing mycobacteriabased on 16S-23S rRNA gene internal transcribed spacer sequences.J.Clin.Microbiol.36:139-147.25.Siegel,R.W.,A.B.Banta,E.S.Haas,J.W.Brown,and N.R.Pace.1996.Mycoplasma fermentans simplifies our view of the catalyticcore of ribonuclease P RNA.RNA 2:452-62.26.Snapper,S.B.,R.E.Melton,S.Mustafa,T.Kieser,and JacobsWR Jr.1990.Isolation and characterization of efficient plasmidtransformation mutants of Mycobacterium smegmatis.Mol.Microbiol4:1911-191927.Sritharan V.,J.V.Iralu,and R.H.Barker Jr.1995.Specificity ofdiagnostic PCR amplification for M.avium using the probe pMAV22.MolCell.Probes 9:71-7428.Stark,B.C.,R.Kole,E.J.Bowman and S.Altman.1978.Ribonuclease P:an enzyme with an essential RNA component.Proc.Natl.Acad.Sci.USA3717-372129.Telenti,A.F.Marchesi,M.Balz,F.Bally E.C.Bttger,and T.Boamer.1993.Rapid identification of nycobacteria to the species levelby polymerase chain reaction and restriction enzyme analysis.J.Clin.Microbiol.31:175-178.30.Van der Giessen J.W.B.,R.M.Haring,and B.A.M.Van derZeijst.1994Comparison of the 23S ribosomal RNA genes and the spacer regionbetween the 16S and 23S rRNA genes of the closely relatedMycobacterium avium and Mycobacterium paratuberculosis and the fast-growing Mycobacterium phlei.Microbiology.140:1103-1108.31.Vioque A.1992.Analysis of the gene encoding the RNA subunit ofribonuclease P from cyanobacteria.Nucleic Acids Res.20:6331-3732.Woolford A.J.,R.G.Hewinson,M.Woodward,and J.W.Dale1997.Sequence heterogeneity of an mpb70 gene analogue inMycobacterium kansasii.FEMS Microbiol.Lett.148:43-48)33.Altman,S.&Kirsebom,L.A.(1999).Ribonuclesse P.In The RNAworld:Second edition(Gesteland,R.F.,Cech,T.& Atkins,J.F.,eds.),pp.351-380.Cold Spring Harbour Laboratory Press,New York.34.Amann,R.,Springer,N.,Schonhuber,W.,Ludwig,W.,Schmid,E.N.,Muller,K.D.,Michel R.(1997).Obligate intracellular bacterialparasites of acanthamoebae related to Chlamydia spp.Appl EnvironMicrobiol 63,115-121.35.Andersen,A.A.&Van Deusen,R.A.(1988).Production and partialcharacterization of monoclonal antibodies to four Chlamydia psittaciisolates.Infect Immun 56,2075-2079.36.Baker,J.A.(1942).A virus obtained from a pneumonia of cats andits possible relation to the cause of atypical pneumonia in man.Scieuce96,475-476.37.Black,C.M.,Tharpe,J.A.& Russell,H.(1992).DistinguishingChlamydia species by restriction analysis of the major outer membraneprotein gene.Mol Cell Probes 6,395-400.38.Brown,J.W.,Nolan,J.M.,Haas,E.S.,Rubio,M-A.T.,Major,F.,Pace,N(1996).Comparative analysis of ribonuclease P RNA using genesequences from natural microbial populations reveals tertiary structuralelements.Proc Natl Acad Sci 93,301-300639.Brown,J.W.(1998).The Ribonuclease P Database.Nucl Acids Res26,351-35240.Cello,R.M.(1967).Ocular infections with PLT(Bedsonia)groupagents.Am J Ophthalmol 63,1270-127341.Chirgwin,K.,Roblin,P.M.& Hammerschlag,M.R.(1989).Invitro susceptibilities of Chlamydia pneumoniae(Chlamydia sp.strainTWAR).Antimicrob Agents Chemother 33,1634-1635.42.Everett,K.D.& Andersen,A.A.(1997).The ribosomal intergenicspacer and domain I of the 23S rRNA gene are phylogenetic markers forChlamydia spp.Int J Syst Bacteriol,47,461-47343.Everett,K.D.E.,Bush R.M.&Andersen,A.A.(1999).Emendeddescription of the order Chlamydiales,proposal of Parachlamydiaceaefam.nov.and Simkaniaceae fam.nov.,each containing one monotypicgenus,revised taxonomy of the family Chlamydiaceae including a newgenus and five new species,and standards for the identification oforganisms.Int J Syst Bacteriol 49,415-440.44.Felsestein,J.(1993).PHYLIP(Phylogeny inference package)(version 3.51c).Distributed by the author.University of WashingtonSeattle,Department of Genetics45.Francis,T.,Jr.,& Magill,T.P.(1938).An unidentified virusproducing acute meningitis and pneumonia in experimental animals.JExp Med 68,147-160.46.Fukushi,H.& Hirai,K.(1989).Genetic diversity of avian andmammalian Chlamydia psittaci strains and relation to host origin.JBacteriol 171,2850-2855.47.Golub,O.J.&Wagner,J.C.(1947).Studies on the interferencephenomenon with certain members of the psittacosis-lymphogranulomagroup of viruses.J Immunol,59,59-7048.Grayston,J.T.,Kuo,C.-C.,Campbell,L.A.& Wang,S.P.(1989).Chlamydia pneumoniae sp nov for Chlamydia sp strain TWAR.Int J SystBacteriol,39,88-90.49.Haas,E.S.,Brown,J.W.,Pitulle,C.& Pace,N.R.(1994).Furtherperspective on the catalytic core and secondary structure of ribonucleaseP RNA.Proc Natl Acad Sci 91,2527-2531.50.Haas,E.S.,Banta,A.B.,Harris,J.K.,Pace,N.R.& Brown,J.W.(1996).Structure and evolution of ribonuclease P RNA in Gram-positivebacteria.Nucl Acids Res 24,4775-4782.51.Haas,E.S.& Brown,J.W.(1998).Evolutionary variation inbacterial RNase P RNAs.Nucl Acids Res 26,4093-4099.52.Hardt,W-D.,Schlegl,J.,Erdmann,V.A.& Hartmann,R.K.(1995).Kinetics and thermodynamics of the RNase P RNA cleavagereaction:Analysis of tRNA 3′-end variants.J Mol Biol 247,161-172.53.Hartmann,R.K.& Erdmann,V.A.(1991).Analysis of the geneencoding the RNA subunit of ribonuclease P from T.thermophilus HB8.Nucl Acids Res 19,5957-5964.54.Illner,V.F.(1960).Zur Frage der Uebertragung des Ornithosevirusdurch das Ei.Monatsh Veterinaermed 17,116-117.55.Jukes,T.& Cantor,C.R.(1969).Evolution of protein molecules.InMammalian protein metabolism,pp.21-132.Edited by H.N.Munro,NewYork:Academic Press.56.Kahane,S.,Metzer,E.& Friedman,M.G.(1995).Evidence thatthe novel microorganism ′Z′may belong to a new genus in the familyChlamydiaceae.FEMS Microbiol Lett 126,203-207.57.Kahane,S.,Greenberg,D.,Friedman,M.G.,Haikin,H.,& Dagan,R.(1998).High prevalence of“Simkania Z,”a novel chlamydia-likebacterium,in infants with acute bronchiolitis.J Infect Dis 177,1425-1429.58.Kaltenboeck,B.,Kousoulas,K.G.&Storz,J.(1993).Structures ofand allelic diversity and relationships among the major outer membraneprotein(ompA)genes of the four chlamydial species.J Bacteriol,175,487-502.59.Kirsebom & Svrd(1992).The kinetics and specificity of cleavage byRNase P is mainly dependent on the structure of the amino acid acceptorstem.Nucl Acids Res 20,425-432.60.Kirsebom,L.A.& Svrd,S.G.(1994).Base pairing betweenEscherichia coli RNase P RNA and its substrate.EMBO J 13,4870-4876.61.Lieberman,D.,Kahane,S.,Lieberman,D.,&Friedman M.G.(1997).Pneumonia with serological evidence of acute infection with thechlamydia-like microorganism″Z″.Am.J.Respir Crit.Care.Med.156,578-82.).62.Massire,C.,Jaeger,L.& Westhof,E.(1998).Derivation of thethree-dimensional architecture of bacterial ribouclease P RNAs fromcomparative sequence analysis.J Mol Biol 279,773-793.63.McNutt,S.H.& Waller,E.F.(1940).Sporadic bovineencephalomyelitis(Buss disease).Cornell Vet 30,437-448.64.Murray,E.S.(1964).Guinea pig inclusion conjunctivitis virus.I.Isolation and identification as a member of the psittacosislymphogranuloma-trachoma group.J Infect Dis 114,1-12.65.Nigg,C.(1942).Unidentified virus which produces pneumonia andsystemic infection in mice.Science 95,49-50.66.Page,L.A.(1959).Experimental ornithosis in turkeys.Avian Dis.,3,51-66.67.Page,L.A.(1967).Comparison of″pathotypes″among Chlamydial(psittacosis)strains recovered from diseased birds and mammals.BullWildl Dis Assoc,2,166-175.68.Page,L.A.& Bankowski,R.A.(1960).Factors affecting theproduction and detection of ornithosis antibodies in infected turkeys.Am.J Vet Res.,21,971-978.69.Page,L.A.& Cutlip,R.C.(1968).Chlamydial polyarthritis in lowalambs.Iowa Vet 39,10-18.70.Palys,T.,Nakamura,L.K.& Cohan,F.M.(1997).Discovery andclassification of ecological diversity in the bacterial world:the role ofDNA sequence data.Int J Syst Bacteriol 47,1145-1156.71.Perez-Martinez,J.A.& Storz,J.(1985).Antigenic diversity ofChlamydia psittaci of mammalian origin determined bymicroimmunofluorescence.Infect Immun 50,905-910.72.Pettersson,B.,Andersson,A.,Leitner,T.,Olsvik,O.,Uhlén,M.,Storey,C.,Black,C.M.(1997).Evolutionary relationships amongmembers of the genus Chlamydia based on 16S ribosomal DNA analysis.J Bacteriol 179,4195-4205.73.Pudjiatmoko,Furushi,H.,Ochiai,Y.,Yamaguchi,T.& Hirai,K.(1997).Phylogenetic analysis of the genus Chlamydia based on 16SrRNA gene sequences.Int J Syst Bacteriol 47,425-431.74.Richmond S.J.,Sterling,P.,Ashley,C.R.(1982).Virus infectingthe reticulate bodies of an avian strain of Chlamydia psittaci.FEMSMicrobiol.Letters,14,31-36.75.Rogers,D.G.,Andersen,A.A.,Hogg,A.,Nielse,D.L.&Huebert,M.A.(1993).Conjunctivitis and keratoconjunctivitis associated withchlamydiae in swine.J Am Vet Med Assoc 203,1321-1323.76.Rodolakis,A.,Bernard,F.&Lantier,F.(1989).Mouse models forevaluation of virulence of Chlamydia psittaci isolated from ruminants.Res Vet Sci 46,34-39.77.Saitou,N.& Nei,M.(1987).The neighbor-joining method:a newmethod for reconstructing phylogenetic trees.Mol Biol Evol 4,406-425.78.Schachter,J.&Meyer,K.F.(1969).Lymphogranuloma venereum.II.Characterization of some recently isolated strains.J Bacteriol 99,636-638.79.Spalatin,J.,Fraser,C.E.O.,Connell,R.P.&Berman,D.T.(1966).Agents of psittacosis-lymphogranulomavenereum group isolatedfrom muskrats and snowshoe hares in Saskatchewan.Can J Comp MedVet Sci 30,225-420.80.Stephens,R.S.,Kalman,S.,Fenner,C.,Davis,R.(1998)Chlamydia Genome Project.81.Stills,H.F.J.,Fox,J.G.,Paster,B.J.&Dewhirst,F.E.(1991).A″new″Chlamydia sp.strain SFPD isolated from transmissible proliferativeileitis in hamsters.Microbiol Ecol Health Dis 4,S99.82.Vioque,A.(1997).The RNase P RNA from cyanobacteria:shorttandemly repeated repetitive(STRR)sequences are present within theRNase P RNA gene in heterocyst-forming cyanobacteria.Nucl Acicls Res25,3471-3477.83.Wang,S.-P.&Grayston,J.T.(1962).Classification of trachomavirus strains by protection of mice from toxic death.J Immunol 90,849-856.84.Wills,J.M.,Gruffydd-Jones,T.J.,Jones T,Richmond,S.,Paul,I.D.(1984).Isolation of Chlamydia psittaci from cases of conjunctivitisin a colony of cats.Vet Rec 114,344-346.85.Zhang,Y.X.,Fox,J.G.,Ho,Y.,Zhang,L.,Stills,H.J.&Smith,T.F.(1993).Comparison of the major outer-membrane protein(MOMP)gene of mouse pneumonitis(MoPn)and hamster SFPD strains ofChlamydia trachomatis with other Chlamydia strains.Mol Biol Evol 10,1327-42.

Claims (9)

1.检测病原微生物包括种间区分的方法,包括分析RNase P RNA基因的高度可变区P3和/或P19。
2.权利要求1的方法,包括核酸扩增
3.权利要求1-2的方法,其中对核酸进行测序分析,以便进行菌种鉴定。
4.权利要求1-2的方法,其中对核酸进行指纹分析,以便进行菌种鉴定,如通过RFLP,杂合双链分析,大小测定,熔点测定等。
5.检测病原微生物包括种间区分的方法,包括扩增病原体RNase PRNA基因高度可变区的核酸;与相关核酸形成杂合双链;然后对其进行分析。
6.权利要求6的方法,其中高度可变区是P3和/或P19。
7.上述权利要求任一项的方法,其中病原体是分支杆菌或衣原体。
8.权利要求7的方法,其中病原体是衣原体,用于扩增的引物是JB1和JB2(表3)。
9.RNase P RNA基因的P3和/或P19可变区作为药物靶点在制备治疗微生物感染的药物中的用途。
CN01803592A 2000-01-10 2001-01-10 检测病原微生物的方法 Pending CN1394235A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0000061A SE0000061D0 (sv) 2000-01-10 2000-01-10 A method for detection of pathogenic organisms
SE00000612 2000-01-10

Publications (1)

Publication Number Publication Date
CN1394235A true CN1394235A (zh) 2003-01-29

Family

ID=20278064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN01803592A Pending CN1394235A (zh) 2000-01-10 2001-01-10 检测病原微生物的方法

Country Status (20)

Country Link
US (2) US8367321B2 (zh)
EP (1) EP1254258B2 (zh)
JP (1) JP5214083B2 (zh)
CN (1) CN1394235A (zh)
AT (1) ATE356884T1 (zh)
AU (1) AU2721701A (zh)
CA (1) CA2397176A1 (zh)
DE (1) DE60127238T3 (zh)
EE (1) EE200200378A (zh)
ES (1) ES2283391T3 (zh)
HU (1) HUP0301009A2 (zh)
IL (1) IL150670A0 (zh)
MX (1) MXPA02006588A (zh)
NO (1) NO20023311L (zh)
NZ (1) NZ519649A (zh)
PL (1) PL356306A1 (zh)
RU (1) RU2002121510A (zh)
SE (1) SE0000061D0 (zh)
SK (1) SK9582002A3 (zh)
WO (1) WO2001051662A1 (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030027135A1 (en) 2001-03-02 2003-02-06 Ecker David J. Method for rapid detection and identification of bioagents
US7226739B2 (en) 2001-03-02 2007-06-05 Isis Pharmaceuticals, Inc Methods for rapid detection and identification of bioagents in epidemiological and forensic investigations
US7666588B2 (en) 2001-03-02 2010-02-23 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA and characterization of mitochondrial DNA heteroplasmy
US20040121311A1 (en) 2002-12-06 2004-06-24 Ecker David J. Methods for rapid detection and identification of bioagents in livestock
US7217510B2 (en) 2001-06-26 2007-05-15 Isis Pharmaceuticals, Inc. Methods for providing bacterial bioagent characterizing information
US8073627B2 (en) 2001-06-26 2011-12-06 Ibis Biosciences, Inc. System for indentification of pathogens
JP2006516193A (ja) 2002-12-06 2006-06-29 アイシス・ファーマシューティカルス・インコーポレーテッド ヒトおよび動物における病原体の迅速な同定方法
US20040185438A1 (en) * 2003-03-10 2004-09-23 Ecker David J. Methods of detection and notification of bioagent contamination
US8057993B2 (en) 2003-04-26 2011-11-15 Ibis Biosciences, Inc. Methods for identification of coronaviruses
US8158354B2 (en) 2003-05-13 2012-04-17 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US7964343B2 (en) 2003-05-13 2011-06-21 Ibis Biosciences, Inc. Method for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US20120122101A1 (en) 2003-09-11 2012-05-17 Rangarajan Sampath Compositions for use in identification of bacteria
US8163895B2 (en) 2003-12-05 2012-04-24 Ibis Biosciences, Inc. Compositions for use in identification of orthopoxviruses
US7666592B2 (en) 2004-02-18 2010-02-23 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
JP4810533B2 (ja) 2004-05-24 2011-11-09 アイビス バイオサイエンシズ インコーポレイティッド ディジタルスレショルド化による選択的イオン濾過作用を用いた質量分光測定法
US20050266411A1 (en) 2004-05-25 2005-12-01 Hofstadler Steven A Methods for rapid forensic analysis of mitochondrial DNA
US7811753B2 (en) 2004-07-14 2010-10-12 Ibis Biosciences, Inc. Methods for repairing degraded DNA
US7309589B2 (en) * 2004-08-20 2007-12-18 Vironix Llc Sensitive detection of bacteria by improved nested polymerase chain reaction targeting the 16S ribosomal RNA gene and identification of bacterial species by amplicon sequencing
CA2600184A1 (en) 2005-03-03 2006-09-08 Isis Pharmaceuticals, Inc. Compositions for use in identification of adventitious viruses
US8084207B2 (en) 2005-03-03 2011-12-27 Ibis Bioscience, Inc. Compositions for use in identification of papillomavirus
US8026084B2 (en) 2005-07-21 2011-09-27 Ibis Biosciences, Inc. Methods for rapid identification and quantitation of nucleic acid variants
CA2663029C (en) 2006-09-14 2016-07-19 Ibis Biosciences, Inc. Targeted whole genome amplification method for identification of pathogens
JP5680304B2 (ja) 2007-02-23 2015-03-04 アイビス バイオサイエンシズ インコーポレイティッド 迅速な法医学的dna分析法
WO2008151023A2 (en) 2007-06-01 2008-12-11 Ibis Biosciences, Inc. Methods and compositions for multiple displacement amplification of nucleic acids
WO2010007605A1 (en) * 2008-07-16 2010-01-21 Agriculture And Food Development Authority (Teagasc) A method of assessing bacterial load of a sample
WO2010033625A1 (en) 2008-09-16 2010-03-25 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
US8550694B2 (en) 2008-09-16 2013-10-08 Ibis Biosciences, Inc. Mixing cartridges, mixing stations, and related kits, systems, and methods
WO2010033627A2 (en) 2008-09-16 2010-03-25 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US8158936B2 (en) 2009-02-12 2012-04-17 Ibis Biosciences, Inc. Ionization probe assemblies
US9194877B2 (en) 2009-07-17 2015-11-24 Ibis Biosciences, Inc. Systems for bioagent indentification
WO2011008971A1 (en) 2009-07-17 2011-01-20 Ibis Biosciences, Inc. Lift and mount apparatus
ES2628739T3 (es) 2009-10-15 2017-08-03 Ibis Biosciences, Inc. Amplificación por desplazamiento múltiple
PL3172797T3 (pl) * 2014-07-21 2021-01-11 Telefonaktiebolaget Lm Ericsson (Publ) Antena szczelinowa
US20170117630A1 (en) * 2015-10-21 2017-04-27 Microsoft Technology Licensing, Llc Single loop near field communications antenna
CA3010232A1 (en) * 2016-01-04 2017-07-13 Gen-Probe Incorporated Methods and compositions for detecting candida species

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE81145B1 (en) * 1989-04-20 2000-05-03 Thomas Gerard Barry Generation of specific probes for target nucleotide sequences
US6984487B1 (en) * 1989-08-22 2006-01-10 Hsc Research Development Corporation Cystic fibrosis gene
WO1999011653A1 (en) * 1997-09-04 1999-03-11 Smithkline Beecham Corporation Novel rnase p
US7041490B1 (en) * 1997-11-28 2006-05-09 Serono Genetics Institute, S.A. Chlamydia trachomatis polynucleotides and vectors, recombinant host cells, DNA chips or kits containing the same

Also Published As

Publication number Publication date
DE60127238T2 (de) 2007-12-20
NZ519649A (en) 2004-02-27
US20140018445A1 (en) 2014-01-16
RU2002121510A (ru) 2004-02-20
EP1254258A1 (en) 2002-11-06
US20030134295A1 (en) 2003-07-17
WO2001051662A1 (en) 2001-07-19
HUP0301009A2 (hu) 2003-07-28
EE200200378A (et) 2003-10-15
NO20023311L (no) 2002-09-09
DE60127238D1 (de) 2007-04-26
US8367321B2 (en) 2013-02-05
PL356306A1 (en) 2004-06-28
ATE356884T1 (de) 2007-04-15
EP1254258B2 (en) 2014-07-23
CA2397176A1 (en) 2001-07-19
EP1254258B1 (en) 2007-03-14
IL150670A0 (en) 2003-02-12
JP2003519494A (ja) 2003-06-24
SE0000061D0 (sv) 2000-01-10
AU2721701A (en) 2001-07-24
ES2283391T3 (es) 2007-11-01
DE60127238T3 (de) 2014-12-24
JP5214083B2 (ja) 2013-06-19
NO20023311D0 (no) 2002-07-09
MXPA02006588A (es) 2004-09-10
SK9582002A3 (en) 2003-01-09

Similar Documents

Publication Publication Date Title
CN1394235A (zh) 检测病原微生物的方法
O'Rourke et al. Description of ‘Candidatus Helicobacter heilmannii’based on DNA sequence analysis of 16S rRNA and urease genes
Thisted Lambertz et al. Identification and characterization of pathogenic Yersinia enterocolitica isolates by PCR and pulsed-field gel electrophoresis
De Smet et al. Arcobacter trophiarum sp. nov., isolated from fattening pigs
Keid et al. Diagnosis of canine brucellosis: comparison between serological and microbiological tests and a PCR based on primers to 16S-23S rDNA interspacer
US8632968B2 (en) Method for the detection and/or identification of a microorganism
Hurley et al. Development of a diagnostic test for Johne's disease using a DNA hybridization probe
Coelho et al. Mycobacterium avium complex in domestic and wild animals
Qasem et al. Characterization and evaluation of an arbitrary primed Polymerase Chain Reaction (PCR) product for the specific detection of Brucella species
Godfroid et al. Definitive differentiation between single and mixed mycobacterial infections in red deer (Cervus elaphus) by a combination of duplex amplification of p34 and f57 sequences and Hpy188I enzymatic restriction of duplex amplicons
US20120100545A1 (en) Method and/or primers for the detection of mycobacterium tuberculosis
Clark The occupational opportunist: an update on Erysipelothrix rhusiopathiae infection, disease pathogenesis, and microbiology
Cambau et al. Mycobacterium marinum
Taylor-Robinson et al. The biology of Mycoplasma genitalium
Sahu et al. Phenotypic and genotypic methods for identifications of Aeromonas hydrophila strains from carp Labeo rohita and their virulence study
Turenne et al. Mycobacterium avium complex.
Shigematsu et al. Genetic heterogeneity of the cytolethal distending toxin B (cdtB) gene locus among isolates of Campylobacter lari
Kumar et al. Molecular typing of bacteria Vibrio harveyi and V. alginolyticus from shrimp farming systems
Agada Epidemiology and public health implications of Mycobacterium tuberculosis complex and non-tuberculous mycobacteria in cattle and humans in Oyo State, Nigeria
Zhang Use of high resolution melting for genotyping Leptospira spp.
Rasool et al. Faecal Culture and IS900 PCR Assay for the Detection of Mycobacterium avium subsp. paratuberculosis in Bovine Faecal Samples
Sibley Molecular Tools for the Characterization of Mycobacterium Avium subspecies paratuberculosis
AU2006274507B2 (en) Method for the detection and/or identification of a microorganism
IQBAL Taxonomical and pathological studies on motile Aeromonas species isolated from fish with epizootic ulcerative syndrome in Southeast Asian countries
Robertson The molecular phylogeny and ecology of spiral bacteria from the mouse gastrointestinal tract

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication