CN1412859A - 半导体膜,半导体器件,和制造方法 - Google Patents

半导体膜,半导体器件,和制造方法 Download PDF

Info

Publication number
CN1412859A
CN1412859A CN02154721A CN02154721A CN1412859A CN 1412859 A CN1412859 A CN 1412859A CN 02154721 A CN02154721 A CN 02154721A CN 02154721 A CN02154721 A CN 02154721A CN 1412859 A CN1412859 A CN 1412859A
Authority
CN
China
Prior art keywords
thin film
semiconductive thin
film
crystal structure
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN02154721A
Other languages
English (en)
Other versions
CN100524817C (zh
Inventor
宫入秀和
志贺爱之
野村克己
牧田直树
松尾拓哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Sharp Corp
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd, Sharp Corp filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN1412859A publication Critical patent/CN1412859A/zh
Application granted granted Critical
Publication of CN100524817C publication Critical patent/CN100524817C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02672Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using crystallisation enhancing elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1277Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using a crystallisation promoting species, e.g. local introduction of Ni catalyst
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam

Abstract

通过在JP8-78329A中公开的技术上添加新颖的改进,提供了在其中改善了具有晶体结构的半导体薄膜的薄膜特性的制造方法。另外,还提供了将半导体薄膜用作活性层并且具有像场效应迁移率这样的较高TFT特性的TFT和制造TFT的方法。将促进硅结晶的金属元素添加到具有非晶体结构并且在薄膜中具有小于5×1018/cm3的氧浓度的半导体薄膜中。然后加热处理具有非晶体结构的半导体薄膜,形成具有晶体结构的半导体薄膜。随后,除去在表面上的氧化膜。将氧导入具有晶体结构的半导体薄膜中,进行处理以便于在薄膜中的氧浓度是从5×1018/cm3到1×1021/cm3。在从半导体薄膜的表面上除去氧化膜以后,通过在惰性气体环境下或者真空中照射激光来平整半导体薄膜表面。

Description

半导体膜,半导体器件,和制造方法
技术领域
本发明涉及一种具有由薄膜晶体管(下文中被称为TFT)组成的电路的半导体器件和制造半导体器件的方法。例如,本发明涉及以液晶显示屏面为代表的电光器件和安装在电光器件上作为元件的电子设备。
注意到本说明书中的术语半导体器件指示通常能够起到半导体特性作用的器件,电光器件、半导体电路和电子设备全都包括在半导体器件的范畴。
背景技术
近几年,通过利用在具有绝缘表面的衬底上形成的半导体薄膜(具有大约几个到几百nm的厚度)来构成薄膜晶体管(TFT)的技术已经引起重视。薄膜晶体管广泛应用于像IC或者电光器件这样的电子设备,更具体地必须迅速地发展作为图象显示设备的开关元件。
有源矩阵液晶模块被认为是薄膜晶体管的典型实例。尤其是,和具有非晶体结构的硅薄膜(典型地,非晶硅薄膜)的TFT相比,具有晶体结构的硅薄膜(典型地,多晶硅薄膜)作为活性层的TFT(下文中被称为多晶硅TFT)具有较高的场效应迁移率,因此这样的TFT最近被多用途使用。
尽管有多种获得具有晶体结构的硅薄膜的技术,特别是在日本未经审查的专利出版物NO.Hei.8-78329正式报告中举出的技术,其中在非晶硅薄膜中选择性的加入促进结晶化的金属元素(典型地是镍),由此执行热处理来形成以附加区域作为起始点扩展的晶体硅薄膜。因为和其它技术相比,由此获得的晶体晶粒度非常大,并且场效应迁移率比较高,因此能够形成配备了各种功能的各种电路。例如,在将上述正式报告的技术应用到在液晶显示设备中携带的液晶模块的情况下,能够在一个衬底上形成用于控制例如执行用于每个功能块的图象显示的像素部分这样的像素部分的驱动电路、基于CMOS电路的移位寄存电路、电平移位电路、缓冲电路和采样电路等。
而且,和不利用金属元素的方法相比较,上述正式报告的技术通过金属元素的作用能够将非晶硅薄膜的结晶温度降低大约50-100℃,因此能够使用玻璃衬底而不会在工艺中出现任何问题。而且,和不使用金属元素的方法相比较,在上述正式报告技术的结晶所需的时间减少了1/5到1/10,因此上述正式报告技术在生产率方面也是很出色的。
发明内容
给上述正式报告的技术增加了新的进一步的改进,提供了改进具有晶体结构的半导体薄膜的薄膜特性的制造方法和在其中将这样的半导体薄膜作为在例如场效应迁移率这样的TFT特性中很出色的活性层的TFT。
为了解决上述各种问题,从广泛的各种角度来考虑所执行的许多试验的结果,才产生了本发明。当为了结晶而执行热处理的时候,最好将具有在其中添加了用于促进结晶的金属元素的非晶体结构的半导体薄膜中的阻碍结晶的氧浓度尽可能地减小,特别地要小于5×1018/cm3。已经发现通过在执行热处理以后将氧引入薄膜来解决上述问题,尤其是能够增加场效应的活动性。
作为将氧导入具有晶体结构的半导体薄膜中的处理技术,通过利用臭氧水将具有晶体结构的半导体的表面氧化以后,通过在惰性气体环境或者真空中照射激光,可以将薄膜中的氧浓度设定为5×1018/cm3到1×1021/cm3
或者,作为将氧导入具有晶体结构的半导体薄膜中的另一个处理技术,通过在包含氧或者水分子的环境下照射激光,可以将薄膜的氧浓度设定为5×1018/cm3到1×1021/cm3
另外,利用电炉等在包含氧或者水分子的环境下执行氧化以后,通过在惰性气体环境或者真空中照射激光,可以将薄膜中的氧浓度设定为5×1018/cm3到1×1021/cm3
此外,通过离子搀杂或者离子注入增加氧以后,通过在惰性气体环境或者真空中照射激光可以将薄膜中的氧浓度设定为5×1018/cm3到1×1021/cm3,以便于在半导体薄膜中的氧浓度变成5×1018/cm3到1×1021/cm3。而且,在激光照射到半导体薄膜的情况下半导体薄膜立即从表面熔化,在那之后,由于对衬底的热传导而将熔化的半导体薄膜从衬底侧冷却和凝固。在凝固过程中发生重结晶,半导体薄膜变成具有较大晶粒度的晶体结构的薄膜,但是由于暂时的熔化引起了体积膨胀,并且在半导体表面中形成了被称为脊的不平坦。尤其是,在其上形成脊的表面变成了与顶栅TFT的栅极绝缘薄膜的分界面,因此元素特性有很大变化。
除了上述处理方法,依据本发明在激光照射以后除去在半导体薄膜表面上的氧化膜,此外,然后在惰性气体环境或者真空中照射激光来使得具有晶体结构的半导体薄膜的表面变平。
注意到与通过第一激光来执行具有非晶体结构的薄膜的结晶和通过利用第二激光(JP 2001-60551 A)来平整的技术不同,本发明涉及到将第一激光照射到具有晶体结构的半导体薄膜上。而且,本发明是这样的技术:在其中添加了用于促进结晶的金属元素,形成了具有晶体结构的半导体薄膜,并且通过金属元素的添加又增加了水平度。
由本说明书公开的本发明的第一方面涉及制造半导体器件的方法,包括:
在绝缘表面上形成具有非晶体结构的半导体薄膜的第一步;
将金属元素添加到具有非晶体结构的半导体薄膜中的第二步;
对具有非晶体结构的半导体薄膜进行热处理以便于形成具有晶体结构的半导体薄膜,然后从晶体半导体薄膜表面上除去氧化膜的第三步;
将氧导入具有晶体结构的半导体薄膜中以便于使得薄膜中的氧浓度从5×1018/cm3到1×1021/cm3的第四步;
从具有晶体结构的半导体薄膜的表面上除去氧化膜的第五步;和
在惰性气体环境下或者真空中照射激光以便于使得具有晶体结构的半导体薄膜的表面变平第六步。
而且,尽管当对具有非晶体结构的半导体薄膜进行热处理的时候在表面上形成氧化膜,但是也可以进行导入氧的处理而不用除去氧化膜。本发明的第二方面涉及到制造半导体器件的另一个方法,包括:
在绝缘表面上形成具有非晶体结构的半导体薄膜的第一步;
将金属元素添加到具有非晶体结构的半导体薄膜中的第二步;
对具有非晶体结构的半导体薄膜进行热处理以便于形成具有晶体结构的半导体薄膜的第三步;
将氧导入具有晶体结构的半导体薄膜中以便于使得薄膜中的氧浓度从5×1018/cm3到1×1021/cm3的第四步;
从具有晶体结构的半导体薄膜的表面上除去氧化膜的第五步;和
在惰性气体环境下或者真空中照射激光以便于使得具有晶体结构的半导体薄膜的表面变平的第六步。
而且,在本发明中,尽管将用于促进结晶的金属元素(典型的是Ni)添加到具有非晶体结构的半导体薄膜上以便于引起结晶,但是最好在结晶以后通过吸收技术等除去用于促进结晶的金属元素。本发明的第三方面涉及到制造半导体器件的另一种方法,包括:
在绝缘表面上形成具有非晶体结构的半导体薄膜的第一步;
将金属元素添加到具有非晶体结构的半导体薄膜中的第二步;
对具有非晶体结构的半导体薄膜进行热处理以便于形成具有晶体结构的半导体薄膜,然后从晶体半导体薄膜表面上除去氧化膜的第三步;
将氧导入具有晶体结构的半导体薄膜中以便于使得薄膜中的氧浓度从5×1018/cm3到1×1021/cm3的第四步;
从具有晶体结构的半导体薄膜的表面上除去氧化膜的第五步;和
在惰性气体环境下或者真空中照射激光以便于使得具有晶体结构的半导体薄膜的表面变平第六步;和
吸收金属元素来除去具有晶体结构的半导体薄膜中的金属元素或者降低其中的金属元素的浓度的第七步。
而且,在本发明的每个前述方面中,用于执行第六步的激光的能量密度设定为430到560mJ/cm2,并且在第四步执行的激光照射使用具有比在第六步使用的激光的能量密度低30到60mJ/cm2的能量密度(在400到500mJ/cm2之间)的激光。
而且,在本发明中包括通过上述制造方法获得的具有晶体结构的半导体薄膜。本发明的包含具有晶体结构的半导体薄膜的半导体器件的一方面包括具有下列部分的TFT:
具有沟道形成区、漏极区和源极区的半导体层;
栅极绝缘薄膜;
栅电极,
其中:
在1×1016/cm3到5×1018/cm3浓度的半导体层中包含金属元素;和
半导体层的表面的平均表面粗糙度(Ra值)等于或者小于通过AFM(原子力显微镜)获得的2nm。
注意到在上述方面中的金属元素是用于促进硅的结晶的金属元素,尤其是从包括有Fe、Ni、Co、Ru、Rh、Pd、Os、Ir、Pt、Cu和Au的组中选择的一种或几种元素。
而且,还能够为具有本发明的晶体结构的半导体薄膜获得在薄膜表面状态下的非常独特的数据,同时通过AFM(电子力显微镜)在较高的水平度上获得数据。在没有使用促进结晶的金属元素的情况下,形成由脊(在其中微凸部分不断扩展的部分)围绕着的龟甲图案。然而,能够观察到在其中存在着被如图3中所示的在许多方向中扩展的脊所分成的一些区域的不规则的网格图案,作为具有利用促进结晶的金属元素来进行结晶的本发明的晶体结构的半导体薄膜的表面状态。被脊夹着的区域(平整的部分和凹面的部分)很好的符合了具有相同晶向的晶粒的聚合(也被称为晶畴(domain))。
本发明的半导体薄膜在半导体薄膜表面中具有不规则网格图案,如图3中所示。具有在脊状中伸出的凸起部分的脊在许多方向中发散,并且至少有一个通道不是由在包含有被脊所不规则夹住的平整部分和凹面部分的区域中的两个任意点之间的脊所阻碍。注意到通过多次进行激光照射能够形成脊。
而且,在基本上符合单个畴界的位置上形成具有形成了不规则网格图案的以脊状伸出的凸起部分的脊。单个畴界和脊基本上相符合的事实能够通过被称为单颗粒映射(在其中电子束从在每点形成的晶向扫描样本,对在其中在各自的测量点处两个相邻点之间晶向具有小于15度的角度偏移的区域进行分类)的方法来证实。这里,在相同区域的分析中使用SEM观察照片和电子背反射衍射图形(EBSP)。也就是,除了至少有一个通道不是由在包含有被脊所不规则夹住的平整部分和凹面部分的区域中的两个任意点之间的脊所阻碍的事实以外,还有一个通道在由在相邻点之间晶向偏移小于15度的畴界所夹的区域中的两个任意点之间。能够预料到这是在获得具有较高电子特性尤其是较高场效应迁移率的半导体薄膜中的一个因素。
此外,上述表面状态和晶向特性是本发明的特性并且不能通过另外的方法获得。在添加了用于促进结晶的金属元素(典型的Ni)、通过执行热处理来结晶、而且在执行第一激光照射以后从半导体薄膜表面上除去氧化膜、和在惰性气体环境下或者真空中平整具有通过照射激光而产生的晶体结构的半导体薄膜表面以后,首先能够看到这种特性。
同样的,在上述半导体薄膜中,包含1×1016/cm3到5×1018/cm3浓度的金属元素。而且,具有等于或者小于2nm的平均表面粗糙度(Ra值)的半导体薄膜是平整的。
此外,能够通过将半导体薄膜用作半导体器件的一部分例如TFT的活性层来获得具有较高电子特性的半导体器件。
本发明的半导体器件的一个方面包括具有下列部分的TFT:
具有沟道形成区、漏极区和源极区的半导体层;
栅极绝缘薄膜;
栅电极,
其中:
半导体层的表面具有不规则网格图案;
在脊状中伸出的具有凸起部分的脊在许多方向中发散;和
在包含由脊不规则夹着的平整部分和凹面部分的区域中的两个任意点之间提供了至少一个不被脊阻碍的通道。在上述半导体层中包含1×1016/cm3到5×1018/cm3浓度的金属元素。而且,具有等于或者小于2nm的平均表面粗糙度(Ra值)的半导体薄膜是平整的。
在通过传统的固相增长方法进行结晶的情况下,晶体结构变成双晶结构,并且半导体薄膜在大量的晶粒中包含双晶缺陷。相反,在通过本发明获得的半导体薄膜中形成大量的杆状晶粒集合体(晶畴),并且某个晶粒集合体(晶畴)的全部晶粒可以认为具有相同的晶向。晶粒集合体(晶畴)的大小等于或者大于大约1μm,也有具有几十微米大小的大的集合体。
此外,和通过传统的固相增长方法等获得的晶界相比,包含在一个晶畴(硅的非粘合部分)中的晶界的缺陷数目是很小的,并且电子屏蔽也很小。也就是,一个晶畴的内部几乎接近于单个晶体,并且认为薄膜特性将变得更好,晶畴尺寸将变得更大。
术语相邻晶体集合体(晶畴)指的是在集合体之间的边界(微凸部分不断扩展的部分)上具有不同方向的集合体。类似地,通过使用SEM观察还能够观察表面状态。
注意到图3是显示通过热处理进行结晶、作为将氧导入薄膜的过程在包含氧的环境下照射激光、除去表面上的氧化膜、然后通过在氮环境下照射激光进行平整以后的AFM观测的图表。另一方面,图2是显示通过热处理进行结晶、作为将氧导入薄膜的过程在包含氧的环境下照射激光以后的AFM观测的图表,但是很难看见畴界。如上所述,能够通过除去在表面上的氧化膜用AFM和SEM来确定单个畴界,然后在惰性气体环境或者真空中照射激光。注意到,除了使薄膜表面平整并且清楚地显现单个晶畴以外,在惰性气体环境下或者真空中的激光照射几乎没给半导体薄膜或者结晶状态带来任何改变。也就是,通过在惰性气体环境下或者真空中照射激光之前执行的过程(例如用于形成具有非晶体结构的半导体薄膜、用于结晶的热处理过程和用于导入氧的过程)来确定通过本发明获得的晶畴的大小。
附图简述
图1A到1F是本发明的制造工艺的视图;
图2是由AFM获得的观测图;
图3是由AFM获得的观测图;
图4A到4D是有源矩阵衬底的制造过程的视图;
图5A到5C是有源矩阵衬底的制造过程的视图;
图6是有源矩阵衬底的视图;
图7是AM-LCD的外观的视图(实施例2);
图8是液晶显示设备的横截面的实例的视图(实施例3);
图9A到9F显示电子设备的实例;
图10A到10D显示电子设备的实例;
图11A到11C显示电子设备的实例。
具体实施方式
在图1A到1F中显示本发明的一个制造具有晶体结构的半导体薄膜的实例。
在衬底10上首先形成具有非晶体结构的半导体薄膜11(见图1A)。玻璃衬底、石英衬底和硅衬底可以用作衬底10,也可以是具有在衬底上形成的绝缘薄膜的金属衬底和不锈钢衬底。此外,也可以使用具有能够承受处理温度的热阻的塑料衬底。
注意到如果有必要可以形成基绝缘薄膜来防止来自衬底10的杂质扩散,并且可以在基绝缘薄膜上形成具有非晶体结构的半导体薄膜来准备基绝缘薄膜。可以从例如氧化硅薄膜、氮化硅薄膜或者氮氧化硅薄膜这样的绝缘薄膜形成基薄膜。应该注意最好在使用玻璃衬底的情况下形成基绝缘薄膜。
此外,具有非晶体结构的半导体薄膜11使用具有硅的半导体材料作为它的主要成分。可以典型地应用非晶体硅薄膜、非晶体硅锗薄膜等,并且通过利用等离子体CVD形成10到100nm的厚度。应该注意到重要的是在薄膜形成以后包含在具有非晶体结构的半导体薄膜11中的氧含量应该从1×1018/cm3到4×1018/cm3,大约是3×1018/cm3(通过SIMS测量)。
接下来通过利用在JP8-78329A中公开的技术作为结晶具有非晶体结构的半导体薄膜的方法来进行结晶。在JP8-78329A中记录的技术是将促进结晶的金属元素选择性地添加到非晶体硅薄膜中,形成具有晶体结构的半导体薄膜,以添加了当作结晶源的金属元素的区域扩展晶体结构。首先,通过旋涂器加入包含具有用于促进结晶的催化作用的按重量计算为1到100ppm的金属元素(这里使用的是Ni)的乙酸镍溶液,形成含镍层12。通过溅射、蒸发或者等离子体处理来形成极薄的薄膜的方法也可以被用作替代通过申请的方法来形成含镍层12的其它方法。此外,尽管在这里所示的实例中溶液作用在整个表面,但是可以通过利用掩模有选择地形成含镍层12。
接着执行热处理,从而进行结晶(见图1C)。在本实例中,在接触促进半导体结晶的金属元素的一部分半导体薄膜中形成硅化物,并且结晶随着作为核的硅化物而继续进行。由此形成具有晶体结构的半导体薄膜13。注意到通过热处理,包含在半导体薄膜13中的氧浓度在用热处理结晶前后基本上没有变化,最好这个浓度小于5×1018/cm3。在执行脱氢作用的热处理(在450℃持续1小时)以后,进行热处理(在550℃到650℃持续4到24小时)用于结晶。此外,在通过强曝光来进行结晶的情况下,有可能使用红外光、可见光、紫外光或者它们的组合。典型地,使用从卤素灯、金属卤化物灯、氙弧灯、炭弧灯、高压钠灯或者高压水银灯发射出来的光。可以通过打开灯光源1到60秒最好是30到60秒来进行热处理,重复这个过程1到10次,以便于半导体薄膜被瞬间加热到大约600℃到1000℃的温度。注意到当必要的话,可也以在强曝光以前进行用于逐出包含在具有非晶体结构的半导体薄膜中的氢的热处理。此外,还可以通过同时使用热处理和强曝光来进行结晶。当考虑到生产率的时候,最好通过执行强曝光在短时间内进行结晶。
金属元素(这里是镍)残留在由此获得的具有晶体结构的半导体薄膜13中。即使金属元素在薄膜中不均匀分布,但它残留着超过1×1019/cm3的平均浓度。在这样的情况下当然有可能形成所有类型的半导体元件,例如TFT,但是还可以利用已知的吸收方法来除去金属元素。
注意到,尽管没有在图中显示,但是由于上述热处理在半导体薄膜13上形成了薄的氧化膜(包括自然氧化薄膜)。
在利用氢氟酸等除去半导体薄膜表面上的氧化膜以后,接着进行将氧导入薄膜的过程。(见图1D)。
作为将氧导入薄膜的方法,可以在表面上形成氧化膜(没有在图中显示),在此之后可以在惰性气体环境下或者真空中照射激光,从而将具有晶体结构的半导体薄膜14a的氧浓度设定为从5×1018/cm3到1×1021/cm3,最好大于2×1019/cm3。典型地可以用臭氧水在表面上形成氧化膜。而且,作为形成氧化膜的另一个方法,可以通过在氧环境下照射紫外光来生成臭氧,从而氧化半导体薄膜的表面。另外,作为形成氧化膜的另一个方法,也可以通过利用等离子体CVD、溅射、蒸发等来沉淀出1到10nm的氧化膜。
或者,作为将氧导入半导体薄膜的另一种处理,可以在包含氧或者水分子的环境下照射激光来将薄膜中的氧浓度设定为5×1018/cm3到1×1021/cm3
或者,作为用于将氧导入半导体薄膜的另一个处理,也可以通过离子搀杂和离子注入来添加氧以便于在半导体薄膜中的氧浓度从5×1018/cm3到1×1021/cm3,在此之后在惰性气体环境下或者真空中进行激光照射,从而将薄膜中的氧浓度设定为5×1018/cm3到1×1021/cm3。只要使用离子搀杂或者离子注入就能够自由的设定在薄膜中的氧浓度,并且后来可以通过激光来修复在导入过程中对薄膜造成的损坏。
当结晶具有非晶体结构的半导体薄膜的时候在薄膜中包含尽可能少的氧是必要的,但是当在激光照射过程中存在有大量氧的时候容易形成好的晶体,并且当使用结晶薄膜作为TFT的活性层的时候,能够看见TFT电子特性的高位值,例如电场效应迁移率。
在图2中所示的是在包含氧的环境下照射激光(452.5mJ/cm2)以后通过AFM进行的观测的图。关于AFM,所示的是在其中Ra是10.49nm、Rms是12.97nm和P-V值是91.32nm的4um乘4um的区域。考虑到在激光照射以前半导体薄膜的薄膜厚度大约是50nm,可以通过激光照射来形成非常大的粗糙度。
此外,在导入氧的过程以前除去表面上的氧化膜,但是也可以不用除去氧化膜来进行激光照射或者氧导入过程。
当在导入氧的过程中照射激光的时候,由于在氮气环境或者真空中有少量氧从而形成了很薄的氧化膜(没有在这里的图中显示)。而且,如果接触到空气,即使在其中不照射激光,也形成自然氧化的薄膜(没有在这里的图中显示)。
接着通过稀释的氢氟酸等除去半导体薄膜表面上的氧化膜(包括自然氧化的薄膜),获得具有晶体结构的半导体薄膜14b。(见图1E)。
然后在氮气环境下或者真空中将激光(430到560mJ/cm2)照射到具有晶体结构的半导体薄膜14b。在导入氧的前述过程中照射激光的情况下,如果在导入氧的过程中使用的能量密度被设定为比在图1F中所用的激光能量密度小30到60mJ/cm2(在400到500mJ/cm2之间),则减少了脊,也就是平整了脊。由此可以使得在平整的半导体薄膜表面中的Ra的值等于或者小于2nm,Rms的值等于或者小于2nm,不平整的P-V值等于或者小于50nm。
在图3中所示的是在包含氮气的环境下照射激光(501mJ/cm2)以后通过AFM进行的观测的图。关于如图3中所示的AFM,显示了在其中Ra是2.137nm、Rms是2.613nm和P-V值是20.23nm的4um乘4um区域上的数据。
比外,在表1中分别显示了用于在第一激光照射和第二激光照射以后通过AFM测量的半导体薄膜的表面粗糙度(P-V值、Ra和Rms)的实验结果。
表1
P-V值(nm) Ra值(nm) Rms值(nm)
AFM测量区域(m) 4×4  50×50  4×4  50×50  4×4  50×50
在第一次激光照射以后 91.32  102.38  10.49  8.32  12.97  10.21
在第二次激光照射以后 20.23  36.45  2.14  1.29  2.61  1.73
注意到,在表1中,显示的是在其中Ra是1.29nm、Rms是1.73nm和P-V值是36.45nm的50um乘50um区域上的数据。
在由此获得的具有晶体结构的半导体薄膜15中形成大量的杆状晶粒集合体(晶畴)。在某个晶粒集合体(晶畴)中的全部晶粒被认为具有相同的晶向,并且晶粒集合体(晶畴)的尺寸等于或者大于1um,也存在具有几十微米大小的大的集合体。当将具有这样晶体结构的半导体薄膜15用作活性层的时候,可以获得具有像场效应迁移率这样的较高TFT特性的TFT。
注意到在本说明书中所用的术语“活性层”指示在具有最小沟道形成区、源极区和漏极区的TFT中的半导体层。
此外,为了比较,在表2中分别显示了在通过进行热处理而不添加金属元素来结晶以后,在第一次激光照射和第二次激光照射以后通过AFM近似测量的半导体薄膜的表面粗糙度(P-V值、Ra和Rms)的实验结果。
表2
P-V值(nm) Ra值(nm) Rms值(nm)
AFM测量区域(m) 4×4  50×50  4×4  50×50  4×4  50×50
在第一次激光照射以后 79.59  81.12  11.09  8.64  13.36  10.38
在第二次激光照射以后 30.78  110.65  2.92  1.74  3.57  2.28
从表1和表2中,可以看到当在添加金属元素以后进行结晶的时候,在激光照射以后能够获得较高的水平度。尤其是,在第二次激光照射以后可以获得具有20.23nm的P-V值、1.29nm的Ra和1.73nm的Rms的非常好的水平度。注意到利用4um乘4um和50um乘50um的测量区域来进行测量。然而,在表2中在50um乘50um区域中第二次激光照射以后的P-V值是异常的,不能被看作可靠值。
此外,尽管在JP 2001-60551 A中声明在利用第一次激光照射进行结晶以后通过照射第二次激光可以平整半导体薄膜,但没有提到上述通过添加金属元素来增加水平度。本发明是一个完全的创新发明。
下面利用实施例给出具有上述结构的本发明的更详细的解释。
实施例
实施例1
参考图4A到4D、图5A到5C和图6来描述本发明的实施例。这里,详细描述在相同衬底上同步制造像素部分和设在像素部分的外围中的驱动电路的TFT(n沟道TFT和p沟道TFT)的方法。
首先,在衬底100上形成基绝缘薄膜101,依据前述的实施例模式获得具有晶体结构的第一半导体薄膜。然后蚀刻半导体薄膜使得具有预期形状以便于形成岛状的彼此分离的半导体层102到106。
将玻璃衬底(#1737)用作衬底100。对于基绝缘薄膜101,通过利用等离子体CVD在400℃的薄膜淀积温度下,形成50nm(最好是10到200nm)厚度的从作为原料气体的SiH4、NH3和N2O(成分比例:Si=32%,O=27%,N=24%,H=17%)所形成的氮氧化硅薄膜101a。然后,在用臭氧水清洗表面以后,借助稀释的氢氟酸(1/100的稀释)除去表面上的氧化膜。接着,通过利用等离子体CVD在400℃的薄膜淀积温度下,形成100nm(最好是50到200nm)厚度的从作为原料气体的SiH4和N2O(成分比例:Si=32%,O=59%,N=7%,H=2%)所形成的氢化硅氮氧化物薄膜101b,由此形成叠层结构。此外,不暴露在空气中,形成具有非晶体结构的半导体薄膜(在这个实例中,非晶体硅薄膜)使其通过利用等离子体CVD在300℃的薄膜淀积温度下,用SiH4作为薄膜淀积气体形成54nm的厚度(最好是25到80nm)。
注意到最好使得具有非晶体结构的半导体薄膜的氧浓度在1×1018到4×1018/cm3
在这个实施例中,显示的是两层结构形式的基薄膜101,但是可以采用单层绝缘薄膜或者在其中叠置两层或者两层以上的结构。而且,对于半导体薄膜的材料没有限制。然而,最好通过使用已知方法(溅射、LPCVD、等离子体CVD等)形成硅或者硅锗合金(SixGe1-x(x=0.0001到0.02))的半导体薄膜。此外,等离子体CVD设备可以是单晶片式或者分批式。另外,可以在相同的薄膜形成容器中连续形成基绝缘薄膜和半导体薄膜而不用暴露在大气中。
随后,清洗具有非晶体结构的半导体薄膜表面后,在表面上用臭氧水形成具有大约2nm厚度的极薄的氧化膜。
为了控制TFT的阈值,应该进行微量杂质元素(硼或者磷)的掺杂(也被称为沟道掺杂)。例如,在进行掺杂的情况下,使用在其中乙硼烷(B2H5)被等离子体激发而无质量分离的离子掺杂方法,并且在15kV加速电压、用30sccm氢稀释到1%的乙硼烷气体流速和2×1012/cm2用量的搀杂条件下将硼添加到非晶体硅薄膜中。
然后,利用旋涂器加入包含10ppm重量镍的乙酸镍盐溶液。代替本发明,也可以使用通过溅射将镍元素喷射到整个表面的方法。然后实施热处理来进行结晶,由此形成具有晶体结构的半导体薄膜。对于这个热处理,可以实施利用电炉或者强光照射的加热过程。在利用电炉加热过程中,可以在500到650℃下实施4到24小时。这里,在实施用于脱氢作用的加热过程(500℃下持续1小时)以后,实施用于结晶的加热过程(550℃下持续4小时),从而获得具有晶体结构的硅薄膜。注意到,尽管通过使用了利用电炉的加热过程来进行结晶,但是可以借助灯退火设备来进行结晶。接下来,在通过稀释的氢氟酸等除去具有晶体结构的半导体薄膜的表面上的氧化膜以后,进行将氧导入薄膜的过程。在实施例1中,在用臭氧水形成薄氧化膜(1-10nm的厚度)以后,在氮气环境中照射激光(具有30Hz的重复频率的受激准分子激光,有452.5mJ/cm2的能量密度)。依据导入氧的过程,在具有晶体结构的半导体薄膜中的氧浓度被指定在5×1018/cm3到1×1021/cm3的范围中,更希望高于2×1019/cm3
顺便的,可以为激光使用具有400nm或者更小波长的受激准分子激光或者YAG激光的二次谐波或三次谐波。在任何情况下,使用具有大约10到1000Hz的重复频率的脉冲激光,利用光学系统将脉冲激光会聚到100到500mJ/cm2,用90-95%的覆盖率来进行照射,由此可以扫描半导体薄膜表面。受激准分子激光不仅局限在脉冲振荡,也可以使用连续振荡。
接下来,通过稀释的氢氟酸除去由上述激光形成的氧化膜,在氮气环境下或者真空中再次进行激光照射,从而平整半导体薄膜表面,在实施例1中,在氮气环境下照射激光(具有30Hz的重复频率和501mJ/cm2能量密度的受激准分子激光)。通过利用AFM测量平整的半导体薄膜表面,Ra变成2nm或者更小,Rms变成2nm或者更小,不平整度P-V值变成50nm或者更小。
接着,用臭氧水处理表面120秒,由此形成由具有总共1到5nm的厚度的氧化膜构成的屏障层。
然后,通过溅射在屏障层上形成包含氩元素的变成吸收位置的非晶体硅薄膜使得具有150nm的厚度。在这个实施例中利用溅射的薄膜淀积条件是:0.3Pa的薄膜淀积压力;50sccm的气体(Ar)流率;3kW的薄膜淀积功率;和150℃的衬底温度。注意到在上述条件下,包含在非晶体硅薄膜中的氩元素的原子浓度是3×1020/cm3到6×1020/cm3,氧的原子浓度是1×1019/cm3到3×1019/cm3。此后,利用灯退火设备实施650℃下持续3分钟的热处理以便于进行吸收。
随后,利用作为蚀刻阻挡物的屏障层选择性的除去作为吸收位置的包含氩元素的非晶体硅薄膜,然后,用稀释的氢氟酸选择性的除去屏障层。注意到有一种趋势,即在吸收中镍很可能移动到具有高氧浓度的区域,因此,希望在吸收以后除去由氧化膜组成的屏障层。
此外,尽管显示了在其中包含氩的半导体薄膜作为吸收位置并且由此进行吸收的实例,但是也可以使用包含磷或者硼的半导体薄膜来代替包含氩的半导体薄膜。此外,可以使用其它的吸收方法,通过掺杂磷或者硼中的一种来形成吸收位置,由此通过实施加热处理来进行吸收,并且可以通过在卤素气体环境中实施加热处理来进行吸收。
然后,在所获得的具有晶体结构的硅(也被称作多晶硅薄膜)的表面上用臭氧水形成薄氧化膜以后,形成由光刻胶构成的掩模,并且在此处实施蚀刻过程来获得想要的形状,由此形成彼此分开的岛状半导体层102到106。在半导体层形成以后,除去由光刻胶构成的掩模。
然后,用包含氢氟酸的蚀刻剂来消除氧化膜,同时,清洗硅薄膜的表面。此后,形成了变成栅绝缘薄膜107的包含硅作为其主要成分的绝缘薄膜。在这个实施例中,通过等离子体CVD形成具有115nm厚度的氮氧化硅薄膜(成分比率:Si=32%,O=59%,N=7%,H=2%)。
接下来,如图4A中所示,在栅绝缘薄膜107上,在叠层结构中形成厚20到100nm的第一传导薄膜108a和具有100到400nm厚度的第二传导薄膜108b。在这个实施例中,在栅绝缘薄膜107上连续叠置50nm厚度的氮化钽薄膜和370nm厚度的钨薄膜。
作为用于形成第一传导薄膜和第二传导薄膜的导电材料,采用了从包括Ta、W、Ti、Mo、Al和Cu的组中选出的元素或者包含上述元素作为其主要成分的合金材料或者复合材料。此外,以添加了像磷这样的杂质元素或者AgPdCu合金的多晶体硅为代表的半导体薄膜可以被用作第一导电薄膜和第二导电薄膜。而且,本发明不局限于两层结构。例如,可以采用三层结构,其中顺序的叠置50nm厚的钨薄膜、具有50nm厚度的铝硅(Al-Si)合金薄膜和30nm厚的氮化钛薄膜。但是,在三层结构的实例中,氮化钨可以用来替代第一导电薄膜的钨,铝钛(Al-Ti)合金薄膜可以用来替代第二导电薄膜的铝硅(Al-Si)合金薄膜,钛薄膜可以用来替代第三导电薄膜的氮化钛薄膜。另外,也可以采用单层结构。
接着,如图4B中所示,通过曝光步骤形成掩模110到115,并且进行用于形成栅电极和布线的第一次蚀刻过程。用第一次和第二次蚀刻条件来进行第一次蚀刻过程,最好可以将ICP(电感耦合等离子体)蚀刻方法用作蚀刻方法。使用ICP蚀刻方法,适当调整蚀刻条件(施加在线圈形电极上的电能,施加在衬底侧的电极上的电能,衬底侧的电极的温度等),由此能够蚀刻薄膜使之得到想要的锥形。注意到能够适当的将以Cl2、BCl3、SiCl4和CCl4为代表的氯化气体和以CF4、SF6、NF3为代表的氟化气体和O2用作蚀刻气体。
在这个实施例中,还将150W的RF(13.56MHz)功率施加到衬底(采样阶段)上以便于充分的施加负的自偏压电压。在第一蚀刻条件下,蚀刻W薄膜以便于将第一导电层的末端形成锥形。在第一蚀刻条件下,W的腐蚀速度是200.39nm/min,TaN的腐蚀速度是80.32nm/min,W与TaN的选择比大约是2.5。此外,在第一蚀刻条件下,W的锥度大约是26度。因此,可以将第一蚀刻条件改变到第二蚀刻条件而不用除去由光刻胶组成的掩模110到115。CF4和Cl2被用作蚀刻气体,气体的流速设定为30/30sccm,并且将500W的RF(13.56MHz)功率施加到具有1Pa压力的线圈形电极上来生成等离子体,由此形成大约30秒的蚀刻。将20W的RF(13.56MHz)功率施加到衬底侧(采样阶段)上以便于主要施加负的自偏压电压。在CF4和Cl2相混合的第二蚀刻条件下,以相同水平蚀刻W薄膜和TaN薄膜。在第二蚀刻条件下,W的腐蚀速度是58.97nm/min,TaN的腐蚀速度是66.43nm/min。注意到可以将蚀刻时间增加10%到20%以便于实施蚀刻而不用在栅绝缘薄膜上留下残留物。
在上述的第一蚀刻过程中,适当的形成由光刻胶制成的掩模的形状,由此,由于施加在衬底侧的自偏压电压的影响使得第一导电层的末端和第二导电层的末端都具有锥形。锥形部分的角度充分设定为15度到45度。
因此,通过第一蚀刻过程形成由第一导电层和第二导电层(第一导电层117a到122a和第二导电层117b到122b)组成的第一形状导电层117到121。将变成栅绝缘薄膜的绝缘薄膜107蚀刻大约10到20nm,并且变成在其中将没被第一形状导电层117到121覆盖的区域变薄的栅绝缘薄膜116。
接下来,实施第二蚀刻过程而不用除去光刻胶制成的掩模。这里,SF6、Cl2和O2被用作蚀刻气体,气体的流速设定为24/12/24sccm,将700W的RF(13.56MHz)功率施加到具有1.3Pa压力的线圈形电极上以便于生成等离子体,从而进行25秒的蚀刻。还将10W的RF(13.56MHz)功率施加到衬底侧(采样阶段)以便于主要施加负的自偏压电压。在第二蚀刻过程中,W的腐蚀速度是227·3nm/min,TaN的腐蚀速度是32.1nm/min,W与TaN的选择比是7.1,作为绝缘薄膜116的SiON的腐蚀速度是33.7nm/min,W与SiON的选择比是6.83。在将SF6用作蚀刻气体的情况中,关于绝缘薄膜116的选择比如上所述是较高的。因此,能够抑止薄膜厚度的减少。在这个实施例中,绝缘薄膜116的薄膜厚度只被减少大约8nm。
经过第二蚀刻过程,W的锥度变成70度。经过第二时刻过程,形成第二导电层124b到129b。另一方面,几乎不蚀刻第一导电层来变成第一导电层124a到129a。注意到第一导电层124a到129a具有与第一导电层117a到121a相同的尺寸。实际上,第一导电层的宽度可以减少大约0.3um,也就是,与第二次蚀刻过程以前相比总线宽大约0.6um。然而,在第一导电层的尺寸中几乎没有变化。
此外,在采用三层结构来代替两层结构的实例中,在第一蚀刻过程的第一蚀刻条件下,继续地叠置50nm厚度的钨薄膜、500nm厚的铝硅合金薄膜(Al-Si)和30nm厚度的氮化钛薄膜,在第一蚀刻过程中,将BCl3、Cl2和O2用作材料气体;气体的流速设定为65/10/5(sccm);将300W的RF(13.56MHz)功率加载在衬底侧(采样阶段);和450W的RF(13.56MHz)功率加载在具有1.2Pa压力的线圈形电极上来生成等离子体,进行117秒的蚀刻。至于第一蚀刻过程的第二蚀刻条件,使用CF4、Cl2和O2,气体的流速设定为25/25/10(sccm),将20W的RF(13.56MHz)功率加载在衬底侧(采样阶段),和500W的RF(13.56MHz)功率加载在具有1Pa压力的线圈形电极上来生成等离子体。用上述条件,足够进行30秒的蚀刻。在第二蚀刻过程中,使用BCl3、Cl2,气体的流速设定为20/60sccm,将100W的RF(13.56MHz)功率加载在衬底侧(采样阶段),和600W的RF(13.56MHz)功率加载在具有1.2Pa压力的线圈形电极上来生成等离子体,由此进行蚀刻。
接下来,除去由光刻胶制成的掩模,然后,实施第一掺杂过程以便于获得图4D的状态。可以通过离子掺杂或者离子注入来实施掺杂过程。以1.5×1014原子/cm2的剂量和60到100keV的加速电压的条件来实施离子掺杂。作为具有n类型导电类型的杂质元素,典型地使用磷(P)或者砷(As)。在这样的实例中,第一导电层和第二导电层124到128变成阻碍具有n类型导电类型的杂质元素的掩模,以自对准方式来形成第一杂质区域130到134。在1×1016到1×1017/cm3的浓度范围中将具有n类型导电类型的杂质元素添加到第一杂质区域130到134。这里,也将作为第一杂质区域的具有相同浓度范围的区域称为n--区域。
注意到尽管在这个实施例中在由光刻胶制成的掩模被除去以后进行第一掺杂过程,但是也可以进行第一掺杂过程而不用除去由光刻胶制成的掩模。
继续的,如图5A中所示,形成由光刻胶制成的掩模135到137,并且实施第二掺杂过程。掩模135是用于保护形成驱动电路的p-沟道TFT的半导体层的沟道形成区域和其周围的掩模,掩模136是用于保护形成驱动电路的n-沟道TFT的半导体层的沟道形成区域及其周围的掩模,掩模137是用于保护形成像素部分的TFT的半导体层的沟道形成区域、其周围和存储电容器的掩模。
以在第二掺杂过程中的离子掺杂条件:1.5×1015原子/cm2的剂量,和60到100keV的加速电压,来掺杂磷(P)。这里,用作为掩模的第二导电层124b以自对准方式在各个半导体层中形成杂质区域。当然,不用将磷添加到被掩模135到137覆盖的区域。因此,形成第二杂质区域138到140和第三杂质区域142。在1×1020到1×1021/cm3的浓度范围中将具有n类型导电类型的杂质元素添加到第二杂质区域138到140。这里,也将作为第二杂质区域的具有相同浓度范围的区域称为n+区域。
此外,通过第一导电层以比在第二杂质区域中更低的浓度来形成第三杂质区域,以1×1018到1×1019/cm3的浓度范围添加具有n类型导电类型的杂质元素。注意到因为通过具有锥形的第一导电层的一部分来实施掺杂,所以第三杂质区域具有杂质浓度朝着锥形部分的端部增加的浓度梯度。这里,将作为第三杂质区域的具有相同浓度范围的区域称为n-区域。而且,在第二掺杂过程中不用将杂质元素添加到被掩模136和137覆盖的区域,并且形成了第一杂质区域144和145。
接下来,在除去由光刻胶制成的掩模135到137以后,新近形成由光刻胶制成的掩模146到148,并且如图5B中所示,实施第三掺杂过程。
在驱动电路中,通过如上所述的第三掺杂过程,形成了在其中将具有p类型导电率的杂质元素添加到形成p沟道TFT的半导体层和形成存储电容器的半导体层的第四杂质区域149、150和第五杂质区域151、152。
此外,以1×1020到1×1021/cm3的浓度范围将具有p类型导电类型的杂质元素添加到第四杂质区域149和150。注意到,在第四杂质区域149和150中,在先前步骤(n--区域)中已经添加了磷(P),但是要添加具有p类型导电率的杂质元素使得浓度是磷浓度的1.5到3倍。因此,第四杂质区域149、150具有p类型导电率。这里,也将作为第四杂质区域的具有相同浓度范围的区域称为P+区域。
此外,在与第二导电层125a的锥形部分重叠的区域中形成第五杂质区域151和152,并且以1×1018到1×1020/cm3的浓度范围添加具有p类型导电类型的杂质元素。这里,也将作为第五杂质区域的具有相同浓度范围的区域称为P-区域。
通过上述步骤,在各个半导体层形成了具有n类型或者p类型导电率的杂质区域。导电层124到127变成TFT的栅电极。此外,导电层128变成了形成在像素部分中的存储电容器的电极中的一个。而且,导电层129形成在像素部分中的源布线。
接下来,形成基本覆盖整个表面的绝缘层(没有显示)。在这个实施例中,通过等离子体CVD形成50nm厚的氧化硅薄膜。当然,绝缘薄膜不仅仅局限于氧化硅薄膜,可以在单层或者叠层结构中使用包含硅的其它绝缘薄膜。
然后,实施激活添加到各半导体层的杂质元素的步骤。在这个激活步骤中,应用利用灯光源的快速热退火(RTA)方法、照射从来自背表面的YAG激光器或者准分子激光器发射的光进行使用电炉的热处理的方法、或者它们的组合。
此外,尽管在这个实施例中显示了在激活之前形成绝缘薄膜的实例,但是可以在实施激活以后实施形成绝缘薄膜的步骤。
接下来,形成氮化硅薄膜的第一夹层绝缘薄膜153,并且进行热处理(300到550度持续1到12小时),由此实施使半导体层氢化的步骤(图5C)。这个步骤是利用包含在第一夹层绝缘薄膜153中的氢端接半导体层的不饱和键的步骤。可以使半导体层和氢化合而不考虑由氧化硅薄膜形成的绝缘薄膜(没有显示)的存在。顺便的,在这个实施例中,包含铝作为其主要成分的材料被用于第二导电层,因此,采用第二导电层在氢化步骤中能够经受得住的加热过程条件是很重要的。作为用于氢化的另一种方法,可以进行等离子体氢化(使用由等离子体激发的氢)。
接下来,在第一夹层绝缘薄膜153上用有机绝缘材料形成第二夹层绝缘薄膜154。在这样的实施例中,形成具有1.6um厚度的丙烯酸树脂薄膜。然后,形成到达源布线129的接触孔,分别到达导电层127和128的接触孔,以及到达各杂质区域的接触孔。在这个实施例中,继续进行多个蚀刻过程。在这个实施例中,以第一夹层绝缘薄膜作为蚀刻阻挡层来蚀刻第二夹层绝缘薄膜,以绝缘薄膜(未显示)作为蚀刻阻挡层来蚀刻第一夹层绝缘薄膜,然后蚀刻绝缘薄膜(未显示)。
此后,通过利用Al、Ti、Mo、W等形成布线和像素电极。作为电极和像素电极的材料,最好是具有极好的反射属性的材料,例如包含Al或者Ag作为其主要成分的薄膜或者上述薄膜的叠层薄膜。由此,形成源电极或者漏电极155到160、栅极布线162、连接布线161和像素电极163。
如上所述,在相同衬底上能够形成具有n沟道TFT201、p沟道TFT202和n沟道TFT203的驱动电路206以及具有由n沟道TFT和存储电容器205组成的像素TFT204的像素部分207(图6)。在本说明书中,为了方便,上述衬底被称为有源矩阵衬底。在像素部分207中,像素TFT204(n沟道TFT)具有形成区域167的沟道、在形成栅电极的导电层127外边形成的第一杂质区域(n--区域)145、和起到源极区域功能的第二杂质区域(n+区域)140。此外,在起到存储电容器205的一个电极作用的半导体层中,形成第四杂质区域150和第五杂质区域152。注意到平整起到存储电容器205的一个电极作用的半导体层表面,具体的,能够减少漏电流并且能够通过设定Ra为2nm或者更小、设定Rms为2nm或者更小和设定不平整的P-V值为50nm或者更小来改善可靠性。存储电容器205由第二电极128和具有作为电介质的绝缘薄膜(与栅极绝缘薄膜相同)116的半导体层150、152和168构成。
此外,在驱动电路206中,n沟道TFT201(第一n沟道TFT)有沟道形成区域164,具有与通过绝缘薄膜形成栅电极的一部分导电层124相重叠的第三杂质区域(n-区域)142、和起到源极区域或者漏极区域作用的第二杂质区域(n+区域)138。
此外,在驱动电路206中,p沟道TFT202有沟道形成区域165、与通过绝缘薄膜形成栅电极的一部分导电层125相重叠的第五杂质区域(p-区域)151,和起到源极区域或者漏极区域作用的第四杂质区域(p+区域)149。
而且,在驱动电路206中,n沟道TFT203(第二n沟道TFT)有沟道形成区域166、在形成栅电极的导电层126以外的第一杂质区域(n--区域)144、和起到源极区域或者漏极区域功能的第二杂质区域(n+区域)139。
适当地组合上述TFT201到203来形成移位寄存器电路、缓冲电路、电平转移电路、自锁电路等,由此形成驱动电路206。例如,在形成CMOS电路的实例中,n沟道TFT201和p沟道TFT202可以互补地彼此相互连接。
尤其是,n沟道TFT203的结构适合于具有较高驱动电压的为了防止由于热载流体效应而引起的退化的缓冲电路。
而且,作为GOLD结构的n沟道TET201的结构适合于在其中可靠性采取最高优先级的电路。此外,在这个实施例中显示了制造用于形成反射式显示设备的有源矩阵衬底的实例。然而,如果像素电极由透明的导电薄膜形成,尽管光掩模的数量增加了1,但是能形成透射式显示设备。
注意到,在本说明书中,电极是“布线”的一部分并且指示与其它布线进行电连接的点或者布线与半导体层相交叉的点。因此,为了描述的方便,分开使用“布线”和“电极”。然而,“布线”也经常包括在术语“电极”中。
实施例2
本实施例描述了从实施例1中制造的有源矩阵衬底来制造有源矩阵液晶显示设备的过程。结合图7进行描述。
在依据实施例1获得如图6所图解说明的有源矩阵衬底以后,在图6的有源矩阵衬底上形成对准层并且经受摩擦处理。在这个实施例中,在形成对准层以前,像丙烯酸树脂薄膜这样的有机树脂薄膜被构图以便于为了保持衬底分开而在预期位置上形成柱形隔板。可以用在衬底的整个表面上喷射的球形隔板来替代柱形隔板。
接下来准备相对衬底。相对衬底具有在其中相对于像素而布置了有色层和光屏蔽层的滤色镜。光屏蔽层也可以被放置在驱动电路部分中。形成平面化薄膜来覆盖滤色镜和光屏蔽层。在平面化薄膜上,从像素部分中的透明导电薄膜形成相反电极。在相对衬底的整个表面上形成对准层并且经受磨擦处理。
然后,利用密封件来结合相对衬底和在其上形成像素部分和驱动电路的有源矩阵衬底。密封件具有在其中混合的填料,并且当结合它们的时候,填料和柱形隔板一起保持两个衬底之间的距离。此后在衬底之间注入液晶材料并且使用胶囊密封材料(没有显示)来完全密封衬底。能够使用已知的液晶材料。由此完成有源矩阵液晶显示设备。如果必须,可将有源矩阵衬底或者相对衬底切成所需形状的许多小片。可以利用已知技术在显示设备上适当地装备偏振片。然后利用已知技术将FPC附加在衬底上。
结合图7中的俯视图来描述由此获得的液晶模块的结构。
在有源矩阵衬底301的中心布置像素部分304。用于驱动源极信号线的源极信号线驱动电路302位于像素部分304的上面。用于驱动栅极信号线的栅极信号线驱动电路303被布置在像素部分304的左侧和右侧。尽管在这个实施例中栅极信号线驱动电路303关于像素部分是对称的,但是液晶模块可以只具有在像素部分的一侧的一个栅极信号线驱动电路。关于上述两个选择,考虑到液晶模块的衬底大小等,设计者可以选择更加合适的布置。然而,根据电路操作可靠性、驱动效率等,优选如图7中所示的栅极信号线驱动电路的对称布置。
将信号从软性印刷电路(FPC)305输入到驱动电路。在打开夹层绝缘薄膜和树脂薄膜中的接触孔和形成接触电极309之后,通过各向异性的导电薄膜等对FPC305进行压合以便于接触到在衬底301的给定位置中布置的布线。在这个实施例中从ITO形成连接电极。
沿着围绕驱动电路和像素部分的外围将封闭剂307应用到衬底。通过封闭剂307来结合相对衬底306和衬底301而在有源矩阵衬底上预先形成的隔板310使得两个衬底之间的距离(衬底301和相对衬底306之间的距离)保持恒定。通过没有被封闭剂307覆盖的衬底区域注入液晶元素。然后用胶囊密封材料308密封衬底。通过上述步骤完成液晶模块。
虽然本实施例中在衬底上形成所有驱动电路,但是,可以将几个IC用于一些驱动电路。
实施例3
实施例1显示了在其中从反射性的金属材料形成像素电极的反射显示设备的实例。在这个实施例中所示的是在其中从光传导导电薄膜形成像素电极的传输显示设备。
直到形成夹层绝缘薄膜的步骤的制造过程与实施例1的过程相同,因此在这里省略了描述。在依据实施例1形成夹层绝缘薄膜以后,从光传导导电薄膜形成像素电极601。光传导导电薄膜的实例包括ITO(铟锡氧化物合金)薄膜,氧化铟-氧化锌合金(In2O3-ZnO)薄膜、氧化锌(ZnO)薄膜等。
此后,在夹层绝缘薄膜600中形成接触孔。接着形成与像素电极重叠的连接电极602。该连接电极602通过接触孔连接到漏极区域。在形成连接电极的同时,形成其它TFT的源电极或者漏电极。
尽管在这里所示的实例中在衬底上形成了全部的驱动电路,但是一些IC可以被用于有些驱动电路。
如上述完成有源矩阵衬底。从依据实施例2的这个有源矩阵衬底制造液晶模块。液晶模块装备了背光604和光传导板605,并且用盖层606覆盖以便于完成如图8中所示的局部剖面图的有源矩阵液晶显示设备。利用粘合剂或者有机树脂结合盖层和液晶模块。当把衬底结合到相对衬底的时候,可以装配衬底以便于使用于结合的有机树脂充满在框架和衬底之间的间隔。因为显示设备是传输式的,所以有源矩阵衬底和相对衬底每个都需要偏振片603来结合。
实施例4
通过实现本发明所形成的驱动电路和像素部分可以完成各种模型(有源矩阵类型液晶模块和有源矩阵类型EC模型)。也就是,能够完成集成在模型中的全部电子设备。
作为这样的电子设备,这里指出了摄影机、数字摄像机、头支架显示器(护目镜类型显示器)、汽车导航系统、放映机、车载立体声、个人计算机、便携式信息终端(移动式计算机、便携式电话或者电子图书)等。在图9到11中显示了这些实例。
图9A显示了包括主体2001、图象输入部分2002、显示部分2003和键盘2004的个人计算机。
图9B显示了包括主体2101、显示部分2102、语音输入部分2103、操作开关2104、电池2105和图像接收部分2106的数字摄像机。
图9C显示了包括主体2201、照相机部分2202、图象接收部分2203、操作开关2204和显示部分2205的移动式计算机。
图9D显示了包括主体2301、显示部分2302和支臂部分2303的护目镜类型的显示。
图9E显示了利用记录程序的记录媒体(下文中称为记录媒体)的播放器,包括主体2401,显示部分2402,扬声器部分2403,记录媒体2404和操作开关2405。播放器利用DVD(数字化多用途光盘)或者CD作为记录媒体并且能够欣赏音乐、看电影和玩游戏或者上网。
图9F显示了包括主体2501、显示部分2502、眼接触部分2503、操作开关2504、图象接收部分(没有显示)的数字摄像机。
图10A显示包括投影设备2601和屏幕2602的前投式放映机。实施例3可以被应用到形成一部分投影设备2601的液晶显示模块2808,然后能够完成普通的设备。
图10B显示包括主体2701、投影设备2702、反射镜2703和屏幕2704的背投式放映机。实施例3可以被应用到形成一部分投影设备2702的液晶显示模型2808,然后能够完成普通的设备。
此外,图10C是显示在图10A和图10B中的投影设备2601和2702的结构的实例的视图。投影设备2601或者2702由光源光学系统2801、反射镜2802和2804到2806、分色镜2803、棱镜2807、液晶显示设备2808、相差板2809和投影光学系统2810构成。投影光学系统2810由包括投影透镜的光学系统构成。尽管这个实施例显示了三板类型的实例,但是这个实施例没有局限于此而是可以使用例如单板类型。此外,执行这个实施例的人员可以适当地提供例如光学透镜、具有偏振功能的薄膜、用于调节相位差的薄膜或者由图10C中箭头标记所示的光学通道中的IR薄膜这样的光学系统。
此外,图10D是显示在图10C中光源光学系统2801的结构的实例的视图。依据这个实施例,光源光学系统2801由反射器2811、光源2812、透镜阵列2813和2814、极性变换元件2815和聚焦透镜2816构成。此外,如图10D中所示的光源光学系统只是一个实例并且这个实施例没有被局限于此。例如,执行这个实施例的人员可以在光源光学系统中适当地提供例如光学透镜、具有偏振功能的薄膜、用于调节相位的薄膜或者IR薄膜这样的光学系统。然而,依据图10中所示的放映机,显示了利用传输式电光设备的情况并且没有图解说明应用反射式电光设备的实例。
图11A显示了包括主体2901、声音输出部分2902、声音输入部分2903、显示部分2904、操作开关2905、天线2906和图象输入部分(CCD、图象传感器等)2907的便携式电话。
图11B显示了包括主体3001、显示部分3002和3003、记录媒体3004、操作开关3005和天线3006的便携式图书(电子图书)。
图11C显示了包括主体3101、柱基3102和显示部分3103的显示器。
另外,如图11C中所示的显示器是例如5到20英寸大小的显示器的中小型或者大型屏幕。而且,最好是利用1×1m大小的衬底通过执行多次构图来大批量生产以便于形成这样尺寸的显示器部件。
如已经所描述的,应用本发明的范围是非常广泛的并且适用于全部领域的电子设备。能够通过自由组合在实施例1到3中的结构来实现本发明的电子设备。
依据本发明,在具有晶体结构的半导体薄膜15中形成许多杆状晶粒集合体(晶畴)。在某一个晶粒集合体(晶畴)中的全部晶粒被认为具有相同的晶向,并且晶粒集合体(晶畴)的大小等于或者大于大约1um,也有几十微米大小的大的集合体。当将具有这样晶体结构的半导体薄膜15用作活性层的时候,能够获得具有例如场效应活动这样的高级TFT特性的TFT。

Claims (26)

1.一种半导体薄膜,具有不规则网格图案的上述半导体薄膜的表面,其中:
具有在脊状分岔中伸出的凸起部分的脊;和
在包括由脊不规则地夹在中间的平整部分和凹面部分的区域中两个任意点之间提供了至少一条不被脊阻碍的通路。
2.依据权利要求1的半导体薄膜,其中在半导体薄膜中包含了1×1016/cm3到5×1018/cm3浓度的金属元素。
3.依据权利要求2的半导体薄膜,其中金属元素是用于促进硅结晶的金属元素,可以是从包括Fe、Ni、Co、Ru、Rh、Pd、Os、Ir、Pt、Cu和Au的组中选出的一个元素或者多个元素。
4.依据权利要求1中任意一个的半导体薄膜,其中半导体薄膜表面的平均表面粗糙度(Ra值)等于或者小于2nm。
5.包括TFT的半导体器件,TFT具有:
具有沟道形成区域、漏极区域和源极区域的半导体层;
栅极绝缘薄膜;和
栅电极,
其中:
半导体层的表面具有不规则的网格图案;
具有在脊状分岔中伸出的凸起部分的脊;和
在包括由脊不规则地夹在中间的平整部分和凹面部分的区域中两个任意点之间提供了至少一条不被脊阻碍的通路。
6.依据权利要求5的半导体器件,其中在半导体层中包含了1×1016/cm3到5×1018/cm3浓度的金属元素。
7.依据权利要求6的半导体器件,其中金属元素是用于促进硅结晶的金属元素,可以是从包括Fe、Ni、Co、Ru、Rh、Pd、Os、Ir、Pt、Cu和Au的组中选出的一个元素或者多个元素。
8.依据权利要求5中任意一个的半导体器件,其中半导体层表面的平均表面粗糙度(Ra值)等于或者小于2nm。
9.一种制造半导体器件的方法,包括:
在绝缘表面上形成具有非晶体结构的半导体薄膜的第一步;
将金属元素添加到具有非晶体结构的半导体薄膜的第二步;
加热处理具有非晶体结构的半导体薄膜以便于形成具有晶体结构的半导体薄膜,然后从结晶半导体薄膜表面上除去氧化膜的第三步;
将氧导入具有晶体结构的半导体薄膜中以便于使得在薄膜中氧浓度从5×1018/cm3到1×1021/cm3的第四步;
除去具有晶体结构的半导体薄膜表面上的氧化膜的第五步;和
在惰性气体环境下或者真空中照射激光以便于平整具有晶体结构的半导体薄膜的表面的第六步。
10.一种制造半导体器件的方法,包括:
在绝缘表面上形成具有非晶体结构的半导体薄膜的第一步;
将金属元素添加到具有非晶体结构的半导体薄膜的第二步;
加热处理具有非晶体结构的半导体薄膜以便于形成具有晶体结构的半导体薄膜的第三步;
将氧导入具有晶体结构的半导体薄膜中以便于使得在薄膜中氧浓度从5×1018/cm3到1×1021/cm3的第四步;
除去具有晶体结构的半导体薄膜表面上的氧化膜的第五步;和
在惰性气体环境下或者真空中照射激光以便于平整具有晶体结构的半导体薄膜的表面的第六步。
11.一种制造半导体器件的方法,包括:
在绝缘表面上形成具有非晶体结构的半导体薄膜的第一步;
将金属元素添加到具有非晶体结构的半导体薄膜的第二步;
加热处理具有非晶体结构的半导体薄膜以便于形成具有晶体结构的半导体薄膜,然后从结晶半导体薄膜表面上除去氧化膜的第三步;
将氧导入具有晶体结构的半导体薄膜中以便于使得在薄膜中氧浓度从5×1018/cm3到1×1021/cm3的第四步;
除去具有晶体结构的半导体薄膜表面上的氧化膜的第五步;
在惰性气体环境下或者真空中照射激光以便于平整具有晶体结构的半导体薄膜的表面的第六步;和
吸收金属元素以便于从具有晶体结构的半导体薄膜中除去金属元素或者降低其中的金属元素的浓度的第七步。
12.依据权利要求9中的任意一个来制造半导体器件的方法,其中由第一步形成的在具有非晶体结构的半导体薄膜中的氧浓度小于5×1018/cm3
13.依据权利要求10中的任意一个来制造半导体器件的方法,其中由第一步形成的在具有非晶体结构的半导体薄膜中的氧浓度小于5×1018/cm3
14.依据权利要求11中的任意一个来制造半导体器件的方法,其中由第一步形成的在具有非晶体结构的半导体薄膜中的氧浓度小于5×1018/cm3
15.依据权利要求9中的任意一个来制造半导体器件的方法,其中第四步是在利用臭氧水氧化具有晶体结构的半导体表面以后在惰性气体环境下或者真空中照射激光的步骤,激光具有比在第六步中使用的激光的能量密度低30到60mJ/cm2的能量密度。
16.依据权利要求10中的任意一个来制造半导体器件的方法,其中第四步是在利用臭氧水氧化具有晶体结构的半导体表面以后在惰性气体环境下或者真空中照射激光的步骤,激光具有比在第六步中使用的激光的能量密度低30到60mJ/cm2的能量密度。
17.依据权利要求11中的任意一个来制造半导体器件的方法,其中第四步是在利用臭氧水氧化具有晶体结构的半导体表面以后在惰性气体环境下或者真空中照射激光的步骤,激光具有比在第六步中使用的激光的能量密度低30到60mJ/cm2的能量密度。
18.依据权利要求9中的任意一个来制造半导体器件的方法,其中第四步是在包含氧或者水分子的环境下照射激光的步骤,激光具有比在第六步中使用的激光的能量密度低30到60mJ/cm2的能量密度。
19.依据权利要求10中的任意一个来制造半导体器件的方法,其中第四步是在包含氧或者水分子的环境下照射激光的步骤,激光具有比在第六步中使用的激光的能量密度低30到60mJ/cm2的能量密度。
20.依据权利要求11中的任意一个来制造半导体器件的方法,其中第四步是在包含氧或者水分子的环境下照射激光的步骤,激光具有比在第六步中使用的激光的能量密度低30到60mJ/cm2的能量密度。
21.依据权利要求9中的任意一个来制造半导体器件的方法,其中第四步是在通过离子搀杂或者离子注入来添加氧以便于在具有晶体结构的半导体薄膜中的氧浓度是从5×1018/cm3到1×1021/cm3以后,在惰性气体环境下或者真空中照射激光的步骤,激光具有比在第六步中使用的激光的能量密度低30到60mJ/cm2的能量密度。
22.依据权利要求10中的任意一个来制造半导体器件的方法,其中第四步是在通过离子搀杂或者离子注入来添加氧以便于在具有晶体结构的半导体薄膜中的氧浓度是从5×1018/cm3到1×1021/cm3以后,在惰性气体环境下或者真空中照射激光的步骤,激光具有比在第六步中使用的激光的能量密度低30到60mJ/cm2的能量密度。
23.依据权利要求11中的任意一个来制造半导体器件的方法,其中第四步是在通过离子搀杂或者离子注入来添加氧以便于在具有晶体结构的半导体薄膜中的氧浓度是从5×1018/cm3到1×1021/cm3以后,在惰性气体环境下或者真空中照射激光的步骤,激光具有比在第六步中使用的激光的能量密度低30到60mJ/cm2的能量密度。
24.依据权利要求9中的任意一个来制造半导体器件的方法,其中在上述结构中的金属元素是用于促进硅结晶的金属元素,可以是从包括Fe、Ni、Co、Ru、Rh、Pd、Os、Ir、Pt、Cu和Au的组中选出的一个元素或者多个元素。
25.依据权利要求10中的任意一个来制造半导体器件的方法,其中在上述结构中的金属元素是用于促进硅结晶的金属元素,可以是从包括Fe、Ni、Co、Ru、Rh、Pd、Os、Ir、Pt、Cu和Au的组中选出的一个元素或者多个元素。
26.依据权利要求11中的任意一个来制造半导体器件的方法,其中在上述结构中的金属元素是用于促进硅结晶的金属元素,可以是从包括Fe、Ni、Co、Ru、Rh、Pd、Os、Ir、Pt、Cu和Au的组中选出的一个元素或者多个元素。
CNB021547211A 2001-10-09 2002-10-09 半导体膜,半导体器件,和制造方法 Expired - Fee Related CN100524817C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP311756/2001 2001-10-09
JP311756/01 2001-10-09
JP2001311756A JP4024508B2 (ja) 2001-10-09 2001-10-09 半導体装置の作製方法

Publications (2)

Publication Number Publication Date
CN1412859A true CN1412859A (zh) 2003-04-23
CN100524817C CN100524817C (zh) 2009-08-05

Family

ID=19130526

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021547211A Expired - Fee Related CN100524817C (zh) 2001-10-09 2002-10-09 半导体膜,半导体器件,和制造方法

Country Status (5)

Country Link
US (2) US6777713B2 (zh)
JP (1) JP4024508B2 (zh)
KR (1) KR100939931B1 (zh)
CN (1) CN100524817C (zh)
TW (1) TW563226B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101164121B (zh) * 2005-03-09 2011-01-26 兰姆研究有限公司 等离子体氧化及氧化材料的去除
CN101013665B (zh) * 2005-11-09 2011-03-23 株式会社半导体能源研究所 半导体器件的制造方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0869967A (ja) * 1994-08-26 1996-03-12 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
US7503975B2 (en) * 2000-06-27 2009-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method therefor
US6770518B2 (en) * 2001-01-29 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
SG114529A1 (en) * 2001-02-23 2005-09-28 Semiconductor Energy Lab Method of manufacturing a semiconductor device
SG114530A1 (en) * 2001-02-28 2005-09-28 Semiconductor Energy Lab Method of manufacturing a semiconductor device
JP2003045874A (ja) * 2001-07-27 2003-02-14 Semiconductor Energy Lab Co Ltd 金属配線およびその作製方法、並びに金属配線基板およびその作製方法
US6709910B1 (en) * 2002-10-18 2004-03-23 Sharp Laboratories Of America, Inc. Method for reducing surface protrusions in the fabrication of lilac films
JP4741204B2 (ja) * 2003-06-30 2011-08-03 株式会社半導体エネルギー研究所 半導体装置の作製方法
US7348222B2 (en) * 2003-06-30 2008-03-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film transistor and method for manufacturing a semiconductor device
US7358165B2 (en) * 2003-07-31 2008-04-15 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and method for manufacturing semiconductor device
TWI226712B (en) * 2003-12-05 2005-01-11 Au Optronics Corp Pixel structure and fabricating method thereof
CN1691277B (zh) * 2004-03-26 2010-05-26 株式会社半导体能源研究所 用于制造半导体器件的方法
US20050237895A1 (en) * 2004-04-23 2005-10-27 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and method for manufacturing semiconductor device
JP2006066908A (ja) * 2004-07-30 2006-03-09 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
KR101048998B1 (ko) * 2004-08-26 2011-07-12 엘지디스플레이 주식회사 액정표시소자 및 그 제조방법
TWI268122B (en) * 2005-01-25 2006-12-01 Au Optronics Corp Semiconductor structure having multilayer of polysilicon and display panel applied with the same
US20070269604A1 (en) * 2006-01-13 2007-11-22 Daniel Francis Method for manufacturing smooth diamond heat sinks
US20080012074A1 (en) * 2006-07-14 2008-01-17 Air Products And Chemicals, Inc. Low Temperature Sol-Gel Silicates As Dielectrics or Planarization Layers For Thin Film Transistors
CN102646698B (zh) * 2007-09-14 2015-09-16 株式会社半导体能源研究所 半导体装置及电子设备
JP5654206B2 (ja) * 2008-03-26 2015-01-14 株式会社半導体エネルギー研究所 Soi基板の作製方法及び該soi基板を用いた半導体装置
JP2009260315A (ja) * 2008-03-26 2009-11-05 Semiconductor Energy Lab Co Ltd Soi基板の作製方法及び半導体装置の作製方法
JP5515281B2 (ja) * 2008-12-03 2014-06-11 ソニー株式会社 薄膜トランジスタ、表示装置、電子機器および薄膜トランジスタの製造方法
JP4752927B2 (ja) * 2009-02-09 2011-08-17 ソニー株式会社 薄膜トランジスタおよび表示装置
US8709922B2 (en) * 2011-05-06 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101736554B1 (ko) * 2014-12-22 2017-05-17 주식회사 포스코 구성부재 및 그 제조방법
CN105261592A (zh) * 2015-10-30 2016-01-20 深圳市华星光电技术有限公司 一种降低表面粗糙度的低温多晶硅的制备方法及一种低温多晶硅
JP6416140B2 (ja) * 2016-02-12 2018-10-31 信越化学工業株式会社 多結晶シリコン棒および多結晶シリコン棒の選別方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578520A (en) 1991-05-28 1996-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for annealing a semiconductor
JPH05182923A (ja) 1991-05-28 1993-07-23 Semiconductor Energy Lab Co Ltd レーザーアニール方法
JP2990969B2 (ja) * 1992-08-25 1999-12-13 富士ゼロックス株式会社 半導体素子の製造方法
JP3443909B2 (ja) * 1993-09-08 2003-09-08 セイコーエプソン株式会社 半導体膜形成方法、半導体装置の製造方法及び半導体装置
JP3431041B2 (ja) 1993-11-12 2003-07-28 株式会社半導体エネルギー研究所 半導体装置の作製方法
TW264575B (zh) 1993-10-29 1995-12-01 Handotai Energy Kenkyusho Kk
KR100321541B1 (ko) 1994-03-09 2002-06-20 야마자끼 순페이 능동 매트릭스 디스플레이 장치의 작동 방법
US6300176B1 (en) 1994-07-22 2001-10-09 Semiconductor Energy Laboratory Co., Ltd. Laser processing method
JP3464287B2 (ja) 1994-09-05 2003-11-05 株式会社半導体エネルギー研究所 半導体装置の作製方法
US5712191A (en) * 1994-09-16 1998-01-27 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US5789284A (en) 1994-09-29 1998-08-04 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating semiconductor thin film
JP3535241B2 (ja) * 1994-11-18 2004-06-07 株式会社半導体エネルギー研究所 半導体デバイス及びその作製方法
JP3270278B2 (ja) * 1994-12-15 2002-04-02 東芝電子エンジニアリング株式会社 半導体装置及びその製造方法
JP3469337B2 (ja) 1994-12-16 2003-11-25 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6027960A (en) 1995-10-25 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method and laser annealing device
JP3389022B2 (ja) * 1996-09-27 2003-03-24 シャープ株式会社 半導体装置
JP4101409B2 (ja) * 1999-08-19 2008-06-18 シャープ株式会社 半導体装置の製造方法
TW449928B (en) * 2000-01-25 2001-08-11 Samsung Electronics Co Ltd A low temperature polycrystalline silicon type thin film transistor and a method of the thin film transistor fabrication
JP3480839B2 (ja) * 2001-01-11 2003-12-22 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4230160B2 (ja) * 2001-03-29 2009-02-25 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2003142402A (ja) * 2001-08-10 2003-05-16 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101164121B (zh) * 2005-03-09 2011-01-26 兰姆研究有限公司 等离子体氧化及氧化材料的去除
CN101013665B (zh) * 2005-11-09 2011-03-23 株式会社半导体能源研究所 半导体器件的制造方法

Also Published As

Publication number Publication date
TW563226B (en) 2003-11-21
US20030089909A1 (en) 2003-05-15
JP2003124114A (ja) 2003-04-25
CN100524817C (zh) 2009-08-05
US20040157413A1 (en) 2004-08-12
US6777713B2 (en) 2004-08-17
US7015079B2 (en) 2006-03-21
KR20030030900A (ko) 2003-04-18
JP4024508B2 (ja) 2007-12-19
KR100939931B1 (ko) 2010-02-04

Similar Documents

Publication Publication Date Title
CN1412859A (zh) 半导体膜,半导体器件,和制造方法
CN1213464C (zh) 半导体器件的制造方法
CN1286156C (zh) 制造半导体器件的方法
CN1293607C (zh) 半导体膜、半导体器件和它们的生产方法
CN1264199C (zh) 半导体器件的制造方法
CN1949511A (zh) 显示器件及其制造方法
CN1286493A (zh) 半导体器件及其制造方法
CN100350617C (zh) 半导体元件和使用半导体元件的半导体装置
CN1877799A (zh) 半导体器件以及其制作方法
CN1355551A (zh) 半导体器件及其制造方法
CN1311534A (zh) 半导体器件及其制造方法
CN1758304A (zh) 显示装置及驱动方法
CN1275300C (zh) 激光辐照方法和激光辐照装置以及制造半导体器件的方法
CN1700414A (zh) 半导体装置和电子装置
CN1282989C (zh) 半导体设备和其制造方法
JP4683696B2 (ja) 半導体装置の作製方法
CN101075622A (zh) 半导体器件及其制造方法
CN100342484C (zh) 半导体器件及其制造方法
JP4761616B2 (ja) 半導体装置の作製方法
JP4256087B2 (ja) 半導体装置の作製方法
JP2011129711A (ja) 半導体膜の製造方法および薄膜トランジスタの製造方法
CN1881585A (zh) 半导体器件及其制造方法
CN1737996A (zh) 半导体器件的制造方法
CN1956150A (zh) 半导体膜、半导体器件和它们的生产方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090805

Termination date: 20151009

EXPY Termination of patent right or utility model