CN1550048A - 非易失性可调电阻器件和可编程存储单元的制造 - Google Patents

非易失性可调电阻器件和可编程存储单元的制造 Download PDF

Info

Publication number
CN1550048A
CN1550048A CNA028170202A CN02817020A CN1550048A CN 1550048 A CN1550048 A CN 1550048A CN A028170202 A CNA028170202 A CN A028170202A CN 02817020 A CN02817020 A CN 02817020A CN 1550048 A CN1550048 A CN 1550048A
Authority
CN
China
Prior art keywords
chalcogenide material
conductive electrode
families
chalcogenide
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028170202A
Other languages
English (en)
Other versions
CN1550048B (zh
Inventor
Ka
K·A·坎贝尔
J·T·穆尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of CN1550048A publication Critical patent/CN1550048A/zh
Application granted granted Critical
Publication of CN1550048B publication Critical patent/CN1550048B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • H10N70/023Formation of the switching material, e.g. layer deposition by chemical vapor deposition, e.g. MOCVD, ALD
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of the switching material, e.g. post-treatment, doping
    • H10N70/046Modification of the switching material, e.g. post-treatment, doping by diffusion, e.g. photo-dissolution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/066Patterning of the switching material by filling of openings, e.g. damascene method
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8825Selenides, e.g. GeSe

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Read Only Memory (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

在衬底(12)上形成第一导电电极材料(16)。在其上形成含硫族化物材料(22)。该硫族化物材料包括AxSey,A优选的是Ge和Si。在该硫族化物材料上形成含银层(24)。照射银以有效断开在含银层和硫族化物材料的界面处的硫族化物材料的硫族化物键,并且将至少一些银扩散进入该硫族化物材料。在该照射之后,将该硫族化物材料外表面暴露于含碘的流体以有效降低在该暴露之前的硫族化物材料外表面的粗糙度。在该暴露之后,在该硫族化物材料上淀积第二导电电极材料(26),其连续并且至少完全覆盖在硫族化物材料上,将该第二导电电极材料形成为该器件的电极。

Description

非易失性可调电阻器件和可编程存储单元的制造
技术领域
本发明涉及形成非易失性可调电阻器件的方法和形成存储电路的可编程存储单元的方法。
背景技术
半导体制造向着将单个电子元件制作越来越小的方向努力,导致更为密集的集成电路。一种集成电路包括以二进制数据形式存储信息的存储电路。制造这种电路使得数据是易失性或非易失性的。易失性存储器件导致断开电源时数据丢失。当电源断开时非易失性存储电路断开仍能保留存入的数据。
本发明主要致力于对在Kozicki等的美国专利号为5,761,115;5,896,312;5,914,893和6,084,796公开的存储电路的设计和操作的改进,这些专利源于1996年5月30日提交的序列号为08/652,706的美国专利申请,公开了有关可编程的金属化单元。这种单元包括其间容纳有绝缘电介质材料的反向电极。电介质材料中的容纳物是快离子导体材料。这种材料的电阻可以在高绝缘和高导电状态之间变化。在其常规高电阻状态下,为了执行写操作,电压电位施加于其中某一电极,同时另一电极保持在零电压或接地。施加了电压的电极起到阳极的作用,同时保持零电压或接地的电极起到阴极的作用。快速离子导电材料的特性是在一定的施加电压下进行结构的变化。随着这一电压的施加,导电枝状结晶或丝极在电极之间延伸,顶电极和底电极的有效互连使得它们电短路。
这种情况一旦发生,枝状结晶的生长停止,并且当移除电压电势时保留枝状结晶。这就可以有效导致电极之间的大部分快离子导体材料的电阻降低1000倍。通过反向阳极和阴极之间的电压电位可以将这种材料恢复到高电阻状态,借此丝极消失。再次,当去除反向电压时,保持了高电阻状态。因此,这种器件可以起到例如存储电路的可编程存储单元的作用。
电极之间容纳的优选可调电阻材料一般优选包含具有金属离子扩散其中的硫族化物材料。具体的例子是其间具有银离子扩散的硒化锗。本方法在硒化锗材料中提供银离子是初始的化学汽相淀积其间没有任何银离子容纳的硒化锗玻璃。此后例如通过溅射、物理汽相淀积或其它技术将银薄层淀积在玻璃上。示例性的厚度是200或更少。优选的是用波长小于500nm的电磁能照射银层。淀积的银层的薄特性能够使得这种能量穿过银层到达银层/玻璃界面,以有效断开硫族化物材料的硫族化物键。这能形成Ag2Se,这可以有效地用银掺杂玻璃。施加的能量和覆盖的银最终导致银迁移至玻璃层种,以便得到银在整个层中典型的均匀分布。
取决于硒化锗的化学计量比,银在硒化锗中的饱和度明显是在最大值为34原子百分比或更小。然而,用于单元制作的优选的现有技术制作的浓度小于该最大值;在原子百分比为34的最大值的情况下,实例性的浓度为大约27原子百分比。
当银在硫族化物材料中达到理想浓度后,接着淀积顶部电极材料(一般是银)。但是,当掺杂/扩散至硫族化物材料中的银接近最大或饱和时,发现在表面形成有一些Ag2Se并且保留在表面,这与扩散进入玻璃不同。进而,表面的Ag2Se一般以半圆结节或突起的形态在任意位置出现,大小为50至20微米。遗憾的是,当随后淀积一般的银电极材料时,趋向于在早先的突起上堆积。这将对穿过顶部电极材料的掺杂的锗玻璃造成空隙,借此银掺杂的硒化锗玻璃被部分暴露。遗憾的是,一般用于构图顶部电极的某些光显影溶液(也就是四甲基氢氧化铵)将腐蚀暴露的玻璃。
希望克服或至少减少这些问题。尽管本发明主要致力于克服上述问题,但不限于此。本领域技术人员可以在与上述问题无关的其它方面理解本发明的适用范围,本发明仅由所附权利要求书的文字表述和根据等效的相应解释来限定。
发明内容
本发明包括形成存储电路的可编程存储单元和非易失性可调电阻器件的方法。在一种实施步骤中,形成非易失性可调电阻器件的方法包括在衬底上形成第一导电电极材料。含硫族化物材料形成在第一导电电极材料上。硫族化物材料包含AxSey,其中“A”包含选自周期表的13族、14族、15族或17族的至少一种元素。在硫族化物材料上形成含银层。有效地照射银以断开在含银层和硫族化物材料的界面处的硫族化物材料的硫族化物键,并且将至少一些银扩散进入硫族化物材料,形成硫族化物材料的外部表面。照射之后,硫族化物材料的外部表面暴露于含碘的流体,以便有效降低暴露之前硫族化物材料外部表面的粗糙度。在该暴露后,在硫族化物材料上淀积第二导电电极材料,该第二导电电极材料连续并且至少完全覆盖在该硫族化物材料上,将第二导电电极材料形成为器件的电极。
考虑和公开了其它实施步骤和方式。
附图说明
下面参考附图描述本发明的优选实施例。
图1是根据本发明的一方面,在工艺中的半导体晶片片段的示意性剖面图。
图2是图1所示晶片片段在图1之后的工艺步骤的视图。
图3是图1所示晶片片段在图2之后的工艺步骤的视图。
图4是图1所示晶片片段在图3之后的工艺步骤的视图。
图5是图1所示晶片片段在图4之后的工艺步骤的视图。
图6是图1所示晶片片段在图5之后的工艺步骤的视图。
具体实施方式
参照图1,示出了形成非易失性可调电阻器件的一个优选实施例的半导体晶片片段10。仅作为实例,这种实例性的器件包括可编程金属化单元和上面提到的专利的可编程光学元件,进一步仅作为实例,这些器件包括可编程电容元件、可编程电阻元件、集成电路的可编程反熔丝和存储电路的可编程存储单元。在此引入上述专利作为参考。本发明考虑任何现有的非易失性可调电阻器件的制造工艺和结构以及正在开发的这种器件。在本文的上下文中,术语“半导体衬底”或“半导电衬底”定义为任何包含半导体材料的结构,包括但不限于体半导体材料诸如半导体晶片(单独的或其上包含其它材料的组合)以及半导体材料层(单独的或包含其它材料的组合)。术语“衬底”指任何支持结构,包括但不限于上述描述的半导体衬底。同时本文的上下文中,如果没有额外指明,术语“层”包含单层和多层。此外,技术人员可以理解“可调电阻器件”包括除电阻特性变化之外其他特性也变化的器件。例如,仅作为实例,除了电阻之外,器件的电容和/或电感也可以改变。
半导体晶片片段10包含体单晶半导体材料12,例如硅,具有形成于其上的绝缘电介质层14,例如二氧化硅。第一导电电极材料16形成在电介质层14上。仅作为实例,结合制作的优选器件类型,优选材料包括在上述Kozicki等人的专利中描述的任何材料。电介质层18形成在第一电极材料16上。优选的实例是氮化硅。
穿过层18到达导电电极层16而形成开口20。开口中填充含硫族化物材料22至第一厚度,本实例中厚度由层18的厚度基本限定。仅作为实例,实例性的第一厚度的范围在100至1000。含硫族化物材料包含AxSey,其中“A”包含选自周期表的13族(B、Al、Ga、In,Tl)、14族(C、Si、Ge、Sn,Pb)、15族(N、P、As、Sb,Bi)或17族(F、Cl、Br、I,At)的至少一种元素。仅作为实例,“A”的优选元素是Ge和Si。在衬底10上形成材料22的优选方法的实例是通过化学汽相淀积完全来填充开口20,然后进行平坦化工艺,例如化学机械抛光。材料22优选形成为非晶形的,并且在完成后的器件中保持非晶形。
在硫族化物材料22上形成含银层24至第二厚度。含银层24优选主要(大多数)为银元素,可以由或基本上由银元素组成。在一优选实施例中,第二厚度至少是第一厚度的30%。
参照图2,有效地照射含银层24以便断开在含银层24和硫族化物材料22的界面处的硫族化物材料22的硫族化物键,并且将至少一些银扩散进入硫族化物材料22。图2中,材料22被标明为标记23,并且在图中加上小点以表示其中容纳的金属离子。优选的照射包括具有波长约为164-904nm的光化辐射照射,更具体的例子是辐射曝光范围在404-408nm之间。更具体的例子是泛光灯UV暴露工具,在室温和室压下的含氧环境中,在4.5毫瓦/cm2能量下操作15分钟。直接容纳于含硫族化物材料22上的所有材料24可能扩散或仅部分扩散入硫族化物材料中。还选择适当薄的层24的厚度,可以使得碰撞电磁辐射基本上透过材料24至该材料与硫族化物材料22的界面。示例的优选厚度为小于或等于200。此外,作为硫族化物材料22的线性厚度百分比的层24的表观线性厚度有效导致硫族化物材料内的近似相同的原子百分比的金属掺入。无论如何,这导致了硫族化物材料23具有外部表面25。
在仅一个实施例中,外部表面25的特征在于,至少在部分外部表面形成Ag2Se,在一个实施例中有效地照射以在含硫族化物材料22/23上形成不连续的Ag2Se的层27。更为优选的是,有效地照射以使Ag2Se下的硫族化物材料保持基本非晶的状态。甚至更为优选的是,有效地照射以将含硫族化物材料掺杂到在多个可调电阻状态的最小状态下平均至少为30原子百分比的银。此外,通过任何其它现有的或正在开发的方法,本发明考虑在含硫族化物材料上形成Ag2Se例如不连续的Ag2Se层的其它方法。
参照图3,照射之后,硫族化物材料外部表面25暴露于含碘的流体以有效降低在暴露以前硫族化物材料外部表面25的粗糙度。在一个优选实施例中,这种暴露对于Ag2Se有效腐蚀掉至少部分Ag2Se,更优选的是有效腐蚀掉至少大部分Ag2Se,最优选的是有效腐蚀掉基本上所有的Ag2Se,如图3所示。在一实例性实施例中,认为粗糙度的降低不依赖于Ag2Se的形成和去除。而且在一实例性实施例中,腐蚀掉至少部分Ag2Se被认为对表面粗糙度没有影响。
一种优选的含碘的流体是液体,例如碘化物溶液如碘化钾溶液。优选实例的碘化钾溶液是每1升20%至50%体积比的碘化钾溶液中包含5-30克的I2。在蒸汽中暴露,当然也考虑例如在环境温度和压力条件,或者增大或减小环境温度和/或压力条件下的液体溶液。一个具体的实例是在每1升30%碘化钾溶液包含20克I2的碘化钾溶液中浸渍衬底。
参照图4,在暴露之后,在硫族化物材料23上淀积第二导电电极材料26。在优选实施例中,这种第二导电电极材料连续并且至少完全覆盖在硫族化物23上。第二电极材料26的实例性的优选厚度范围是140至200。第一和第二导电电极材料可以是同种材料或不同材料。仅作为实例,优选的顶部和底部电极材料包括银、钨、铂、镍、碳、铬、钼、铝、锰、铜、钴、钯、钒、钛、它们的合金以及包含其中一种或多种元素的化合物。按照优选可编程金属化的单元的实施例,其中“A”是Ge,材料16和26的至少一种构成银。在层26的形成过程中将有部分银扩散至层23中。
参照图5,层26被图形化为电极30。典型的和优选的是使用光刻技术构图以产生电极30。这只是提供一个形成在操作上接近硫族化物材料的第二电极材料的优选实例。在一优选实施例中,这导致了非易失性可调电阻器件的形成,该非易失性可调电阻器件制作成存储电路的可编程存储单元。
参照图6,最后在器件上形成一层或多层电介质层32。当然,也可以配置插入导电层和半导体层,形成所描述器件外部的其它线路和器件。

Claims (33)

1.一种形成非易失性可调电阻器件的方法,包含:
在衬底上形成第一导电电极材料;
在该第一导电电极材料上形成含硫族化物材料,该硫族化物材料包括AxSey,其中“A”包括选自周期表的13族、14族、15族或17族的至少一种元素;
在硫族化物材料上形成含银层;
照射银以有效断开在含银层和硫族化物材料的界面处的硫族化物材料的硫族化物键,并且将至少一些银扩散进入该硫族化物材料,并且形成硫族化物材料的外部表面;
在该照射之后,将硫族化物材料的外部表面暴露于含碘的流体以有效降低暴露之前的硫族化物材料外部表面的粗糙度;以及
在该暴露之后,在硫族化物材料上淀积第二导电电极材料,其连续并且至少完全覆盖在硫族化物材料上,将第二导电电极材料形成为该器件的电极。
2.如权利要求1所述的方法,其中含碘的流体是液体。
3.如权利要求1所述的方法,其中含碘的流体是碘化物溶液。
4.如权利要求1所述的方法,其中含碘的流体是碘化钾溶液。
5.如权利要求4所述的方法,其中该碘化钾溶液在每1升20%至50%碘化钾溶液中含有5至30克I2
6.如权利要求1所述的方法,其中含银层主要是元素银。
7.如权利要求1所述的方法,其中该照射是有效的以形成Ag2Se作为至少部分外表面,该腐蚀是有效的以腐蚀掉至少一些Ag2Se并且由此对所述粗糙度的降低起至少部分作用。
8.如权利要求1所述的方法,其中“A”包含Ge。
9.如权利要求1所述的方法,其包括将非易失性可调电阻器件形成为存储电路的可编程存储单元。
10.如权利要求1所述的方法,其中第一和第二导电电极材料是不同的。
11.一种形成非易失性可调电阻器件的方法,包含:
在衬底上形成第一导电电极材料;
在第一导电电极材料上形成含硫族化物材料,该硫族化物材料包括AxSey,其中“A”包括选自周期表的13族、14族、15族或17族的至少一种元素;
在形成含硫族化物材料之后,在含硫族化物材料上形成Ag2Se;
在照射之后,将Ag2Se暴露于含碘流体,以有效腐蚀掉至少一些Ag2Se;以及
在该暴露之后,在硫族化物材料上淀积第二导电电极材料,将该第二导电电极材料形成为该器件的电极。
12.如权利要求11所述的方法,其中“A”包含Ge。
13.如权利要求11所述的方法,包括将非易失性可调电阻器件形成为存储电路的可编程存储单元。
14.如权利要求11所述的方法,其中含碘的流体是液体。
15.如权利要求11所述的方法,其中含碘的流体是碘化物溶液。
16.如权利要求11所述的方法,其中含碘的流体是碘化钾溶液。
17.如权利要求16所述的方法,其中该碘化钾溶液在每1升20%至50%碘化钾溶液中含有5至30克I2
18.如权利要求11所述的方法,包括淀积第二导电电极材料为连续的并且至少完全覆盖在硫族化物材料上。
19.如权利要求11所述的方法,其中该暴露是有效的以腐蚀掉基本上全部的Ag2Se。
20.一种形成非易失性可调电阻器件的方法,包含:
在衬底上形成第一导电电极材料;
在第一导电电极材料上形成含硫族化物材料,该硫族化物材料包括AxSey,其中“A”包括选自周期表的13族、14族、15族或17族的至少一种元素;
在形成含硫族化物材料之后,在含硫族化物材料上形成不连续的Ag2Se层;
在照射之后,将Ag2Se暴露于含碘流体,以有效腐蚀掉至少一些Ag2Se;以及
在该暴露之后,在硫族化物材料上淀积第二导电电极材料,该第二导电电极材料连续并且至少完全覆盖在该硫族化物材料上,将该第二导电电极材料形成为该器件的电极。
21.如权利要求20所述的方法,其中含碘的流体是液体。
22.如权利要求20所述的方法,其中含碘的流体是碘化物溶液。
23.如权利要求20所述的方法,其中含碘的流体是碘化钾溶液。
24.如权利要求23所述的方法,其中该碘化钾溶液在每1升20%至50%碘化钾溶液中含有5至30克I2
25.如权利要求20所述的方法,其中该暴露是有效的以腐蚀掉基本上全部的Ag2Se。
26.一种形成存储电路的可编程存储单元的方法,包含:
在衬底上形成第一导电电极材料;
在第一导电电极材料上形成基本上非晶的含硫族化物材料,该硫族化物材料包括AxSey,其中“A”包括选自周期表的13族、14族、15族或17族的至少一种元素;
在含硫族化物材料上形成含银层;
照射银以有效断开在含银层和硫族化物材料的界面处的硫族化物材料的硫族化物键,并且将至少一些银扩散进入该硫族化物材料,该照射是有效的以在含硫族化物材料上形成不连续的Ag2Se层,该照射是有效的以将Ag2Se之下的硫族化物材料保持为非晶态,
在该照射之后,将Ag2Se暴露于含碘流体,以有效腐蚀掉至少大部分Ag2Se;以及
在该暴露之后,在硫族化物材料上淀积第二导电电极材料,该第二导电电极材料连续并且至少完全覆盖在该硫族化物材料上,将第二导电电极材料形成为该器件的电极。
27.如权利要求26所述的方法,其中含碘的流体是液体。
28.如权利要求26所述的方法,其中含碘的流体是碘化物溶液。
29.如权利要求26所述的方法,其中含碘的流体是碘化钾溶液。
30.如权利要求29所述的方法,其中该碘化钾溶液在每1升20%至50%碘化钾溶液中含有5至30克I2
31.如权利要求26所述的方法,其中含银层中主要是元素银。
32.如权利要求26所述的方法,其中“A”包含Ge。
33.如权利要求26所述的方法,其中该暴露是有效的以腐蚀掉基本上全部的Ag2Se。
CN028170202A 2001-08-29 2002-08-28 非易失性可调电阻器件和可编程存储单元的制造 Expired - Lifetime CN1550048B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/943,187 US6784018B2 (en) 2001-08-29 2001-08-29 Method of forming chalcogenide comprising devices and method of forming a programmable memory cell of memory circuitry
US09/943,187 2001-08-29
PCT/US2002/027929 WO2003019691A2 (en) 2001-08-29 2002-08-28 Manufacturing of non-volatile resistance variable devices and programmable memory cells

Publications (2)

Publication Number Publication Date
CN1550048A true CN1550048A (zh) 2004-11-24
CN1550048B CN1550048B (zh) 2011-01-12

Family

ID=25479222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN028170202A Expired - Lifetime CN1550048B (zh) 2001-08-29 2002-08-28 非易失性可调电阻器件和可编程存储单元的制造

Country Status (9)

Country Link
US (3) US6784018B2 (zh)
EP (1) EP1430548B1 (zh)
JP (1) JP4067490B2 (zh)
KR (1) KR100800254B1 (zh)
CN (1) CN1550048B (zh)
AT (1) ATE349076T1 (zh)
AU (1) AU2002335692A1 (zh)
DE (1) DE60216942T2 (zh)
WO (1) WO2003019691A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226951B (zh) * 2007-01-18 2010-06-02 旺宏电子股份有限公司 电阻式随机存取存储器

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638820B2 (en) * 2001-02-08 2003-10-28 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of precluding diffusion of a metal into adjacent chalcogenide material, and chalcogenide comprising devices
JP4742429B2 (ja) * 2001-02-19 2011-08-10 住友電気工業株式会社 ガラス微粒子堆積体の製造方法
US6734455B2 (en) * 2001-03-15 2004-05-11 Micron Technology, Inc. Agglomeration elimination for metal sputter deposition of chalcogenides
US7102150B2 (en) * 2001-05-11 2006-09-05 Harshfield Steven T PCRAM memory cell and method of making same
US6951805B2 (en) * 2001-08-01 2005-10-04 Micron Technology, Inc. Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry
US6881623B2 (en) * 2001-08-29 2005-04-19 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of forming a programmable memory cell of memory circuitry, and a chalcogenide comprising device
US6784018B2 (en) * 2001-08-29 2004-08-31 Micron Technology, Inc. Method of forming chalcogenide comprising devices and method of forming a programmable memory cell of memory circuitry
US6955940B2 (en) * 2001-08-29 2005-10-18 Micron Technology, Inc. Method of forming chalcogenide comprising devices
US6709958B2 (en) * 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6646902B2 (en) 2001-08-30 2003-11-11 Micron Technology, Inc. Method of retaining memory state in a programmable conductor RAM
US7109056B2 (en) * 2001-09-20 2006-09-19 Micron Technology, Inc. Electro-and electroless plating of metal in the manufacture of PCRAM devices
US6815818B2 (en) * 2001-11-19 2004-11-09 Micron Technology, Inc. Electrode structure for use in an integrated circuit
US6791859B2 (en) * 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6909656B2 (en) * 2002-01-04 2005-06-21 Micron Technology, Inc. PCRAM rewrite prevention
US6867064B2 (en) * 2002-02-15 2005-03-15 Micron Technology, Inc. Method to alter chalcogenide glass for improved switching characteristics
US6791885B2 (en) * 2002-02-19 2004-09-14 Micron Technology, Inc. Programmable conductor random access memory and method for sensing same
US6809362B2 (en) * 2002-02-20 2004-10-26 Micron Technology, Inc. Multiple data state memory cell
US7087919B2 (en) * 2002-02-20 2006-08-08 Micron Technology, Inc. Layered resistance variable memory device and method of fabrication
US7151273B2 (en) * 2002-02-20 2006-12-19 Micron Technology, Inc. Silver-selenide/chalcogenide glass stack for resistance variable memory
US6847535B2 (en) 2002-02-20 2005-01-25 Micron Technology, Inc. Removable programmable conductor memory card and associated read/write device and method of operation
US6937528B2 (en) * 2002-03-05 2005-08-30 Micron Technology, Inc. Variable resistance memory and method for sensing same
US6849868B2 (en) 2002-03-14 2005-02-01 Micron Technology, Inc. Methods and apparatus for resistance variable material cells
US6858482B2 (en) * 2002-04-10 2005-02-22 Micron Technology, Inc. Method of manufacture of programmable switching circuits and memory cells employing a glass layer
US6855975B2 (en) * 2002-04-10 2005-02-15 Micron Technology, Inc. Thin film diode integrated with chalcogenide memory cell
US6864500B2 (en) * 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6731528B2 (en) * 2002-05-03 2004-05-04 Micron Technology, Inc. Dual write cycle programmable conductor memory system and method of operation
US6890790B2 (en) * 2002-06-06 2005-05-10 Micron Technology, Inc. Co-sputter deposition of metal-doped chalcogenides
US6825135B2 (en) 2002-06-06 2004-11-30 Micron Technology, Inc. Elimination of dendrite formation during metal/chalcogenide glass deposition
US7129531B2 (en) * 2002-08-08 2006-10-31 Ovonyx, Inc. Programmable resistance memory element with titanium rich adhesion layer
US7209378B2 (en) * 2002-08-08 2007-04-24 Micron Technology, Inc. Columnar 1T-N memory cell structure
US7018863B2 (en) * 2002-08-22 2006-03-28 Micron Technology, Inc. Method of manufacture of a resistance variable memory cell
US7010644B2 (en) * 2002-08-29 2006-03-07 Micron Technology, Inc. Software refreshed memory device and method
US6831019B1 (en) * 2002-08-29 2004-12-14 Micron Technology, Inc. Plasma etching methods and methods of forming memory devices comprising a chalcogenide comprising layer received operably proximate conductive electrodes
US6867996B2 (en) * 2002-08-29 2005-03-15 Micron Technology, Inc. Single-polarity programmable resistance-variable memory element
US7364644B2 (en) 2002-08-29 2008-04-29 Micron Technology, Inc. Silver selenide film stoichiometry and morphology control in sputter deposition
US6864521B2 (en) 2002-08-29 2005-03-08 Micron Technology, Inc. Method to control silver concentration in a resistance variable memory element
US6813178B2 (en) * 2003-03-12 2004-11-02 Micron Technology, Inc. Chalcogenide glass constant current device, and its method of fabrication and operation
US7022579B2 (en) 2003-03-14 2006-04-04 Micron Technology, Inc. Method for filling via with metal
US7061004B2 (en) * 2003-07-21 2006-06-13 Micron Technology, Inc. Resistance variable memory elements and methods of formation
US6903361B2 (en) * 2003-09-17 2005-06-07 Micron Technology, Inc. Non-volatile memory structure
DE10356285A1 (de) * 2003-11-28 2005-06-30 Infineon Technologies Ag Integrierter Halbleiterspeicher und Verfahren zum Herstellen eines integrierten Halbleiterspeichers
JP4792714B2 (ja) * 2003-11-28 2011-10-12 ソニー株式会社 記憶素子及び記憶装置
US20050156271A1 (en) * 2004-01-16 2005-07-21 Si-Ty Lam Data storage device
JP4834956B2 (ja) * 2004-02-16 2011-12-14 ソニー株式会社 記憶装置
US7583551B2 (en) 2004-03-10 2009-09-01 Micron Technology, Inc. Power management control and controlling memory refresh operations
US7098068B2 (en) * 2004-03-10 2006-08-29 Micron Technology, Inc. Method of forming a chalcogenide material containing device
DE102004014965B4 (de) * 2004-03-26 2007-12-27 Qimonda Ag Verfahren zum Herstellen einer nichtflüchtigen Speicherzelle
US7326950B2 (en) * 2004-07-19 2008-02-05 Micron Technology, Inc. Memory device with switching glass layer
US7190048B2 (en) * 2004-07-19 2007-03-13 Micron Technology, Inc. Resistance variable memory device and method of fabrication
US7354793B2 (en) * 2004-08-12 2008-04-08 Micron Technology, Inc. Method of forming a PCRAM device incorporating a resistance-variable chalocogenide element
US7365411B2 (en) 2004-08-12 2008-04-29 Micron Technology, Inc. Resistance variable memory with temperature tolerant materials
US20060045974A1 (en) * 2004-08-25 2006-03-02 Campbell Kristy A Wet chemical method to form silver-rich silver-selenide
US7151688B2 (en) * 2004-09-01 2006-12-19 Micron Technology, Inc. Sensing of resistance variable memory devices
US7224598B2 (en) * 2004-09-02 2007-05-29 Hewlett-Packard Development Company, L.P. Programming of programmable resistive memory devices
US7023008B1 (en) * 2004-09-30 2006-04-04 Infineon Technologies Ag Resistive memory element
US7138290B2 (en) * 2004-12-03 2006-11-21 Micron Technology, Inc. Methods of depositing silver onto a metal selenide-comprising surface and methods of depositing silver onto a selenium-comprising surface
US20060131555A1 (en) * 2004-12-22 2006-06-22 Micron Technology, Inc. Resistance variable devices with controllable channels
US7374174B2 (en) * 2004-12-22 2008-05-20 Micron Technology, Inc. Small electrode for resistance variable devices
FR2880177B1 (fr) 2004-12-23 2007-05-18 Commissariat Energie Atomique Memoire pmc ayant un temps de retention et une vitesse d'ecriture ameliores
US7317200B2 (en) * 2005-02-23 2008-01-08 Micron Technology, Inc. SnSe-based limited reprogrammable cell
US7709289B2 (en) * 2005-04-22 2010-05-04 Micron Technology, Inc. Memory elements having patterned electrodes and method of forming the same
US7427770B2 (en) * 2005-04-22 2008-09-23 Micron Technology, Inc. Memory array for increased bit density
US7269079B2 (en) * 2005-05-16 2007-09-11 Micron Technology, Inc. Power circuits for reducing a number of power supply voltage taps required for sensing a resistive memory
US7233520B2 (en) * 2005-07-08 2007-06-19 Micron Technology, Inc. Process for erasing chalcogenide variable resistance memory bits
US7274034B2 (en) * 2005-08-01 2007-09-25 Micron Technology, Inc. Resistance variable memory device with sputtered metal-chalcogenide region and method of fabrication
US7332735B2 (en) * 2005-08-02 2008-02-19 Micron Technology, Inc. Phase change memory cell and method of formation
US7317567B2 (en) * 2005-08-02 2008-01-08 Micron Technology, Inc. Method and apparatus for providing color changing thin film material
US7579615B2 (en) 2005-08-09 2009-08-25 Micron Technology, Inc. Access transistor for memory device
US20070037316A1 (en) * 2005-08-09 2007-02-15 Micron Technology, Inc. Memory cell contact using spacers
US7304368B2 (en) * 2005-08-11 2007-12-04 Micron Technology, Inc. Chalcogenide-based electrokinetic memory element and method of forming the same
US7251154B2 (en) * 2005-08-15 2007-07-31 Micron Technology, Inc. Method and apparatus providing a cross-point memory array using a variable resistance memory cell and capacitance
US7277313B2 (en) * 2005-08-31 2007-10-02 Micron Technology, Inc. Resistance variable memory element with threshold device and method of forming the same
KR100687750B1 (ko) * 2005-09-07 2007-02-27 한국전자통신연구원 안티몬과 셀레늄 금속합금을 이용한 상변화형 메모리소자및 그 제조방법
US7601567B2 (en) * 2005-12-13 2009-10-13 Samsung Mobile Display Co., Ltd. Method of preparing organic thin film transistor, organic thin film transistor, and organic light-emitting display device including the organic thin film transistor
DE102006009254B3 (de) * 2006-02-28 2007-07-12 Infineon Technologies Ag Verfahren zur Herstellung eines integrierten elektronischen Schaltkreises mit programmierbaren resistiven Zellen, entsprechende Zellen und Datenspeicher mit solchen
US8492810B2 (en) * 2006-02-28 2013-07-23 Qimonda Ag Method of fabricating an integrated electronic circuit with programmable resistance cells
US7560723B2 (en) 2006-08-29 2009-07-14 Micron Technology, Inc. Enhanced memory density resistance variable memory cells, arrays, devices and systems including the same, and methods of fabrication
US7924608B2 (en) * 2006-10-19 2011-04-12 Boise State University Forced ion migration for chalcogenide phase change memory device
US20080314738A1 (en) * 2007-06-19 2008-12-25 International Business Machines Corporation Electrolytic Device Based on a Solution-Processed Electrolyte
FR2922368A1 (fr) 2007-10-16 2009-04-17 Commissariat Energie Atomique Procede de fabrication d'une memoire cbram ayant une fiabilite amelioree
US7718990B2 (en) * 2007-12-04 2010-05-18 Ovonyx, Inc. Active material devices with containment layer
US7491573B1 (en) 2008-03-13 2009-02-17 International Business Machines Corporation Phase change materials for applications that require fast switching and high endurance
US8467236B2 (en) 2008-08-01 2013-06-18 Boise State University Continuously variable resistor
US8238146B2 (en) * 2008-08-01 2012-08-07 Boise State University Variable integrated analog resistor
US7825479B2 (en) 2008-08-06 2010-11-02 International Business Machines Corporation Electrical antifuse having a multi-thickness dielectric layer
US8134138B2 (en) * 2009-01-30 2012-03-13 Seagate Technology Llc Programmable metallization memory cell with planarized silver electrode
US20110079709A1 (en) * 2009-10-07 2011-04-07 Campbell Kristy A Wide band sensor
US8284590B2 (en) 2010-05-06 2012-10-09 Boise State University Integratable programmable capacitive device
FR2972568B1 (fr) * 2011-03-09 2018-01-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif electronique de type memoire
US9478419B2 (en) 2013-12-18 2016-10-25 Asm Ip Holding B.V. Sulfur-containing thin films
US9245742B2 (en) 2013-12-18 2016-01-26 Asm Ip Holding B.V. Sulfur-containing thin films
US9461134B1 (en) 2015-05-20 2016-10-04 Asm Ip Holding B.V. Method for forming source/drain contact structure with chalcogen passivation
US9711350B2 (en) 2015-06-03 2017-07-18 Asm Ip Holding B.V. Methods for semiconductor passivation by nitridation
US10490475B2 (en) 2015-06-03 2019-11-26 Asm Ip Holding B.V. Methods for semiconductor passivation by nitridation after oxide removal
US9711396B2 (en) 2015-06-16 2017-07-18 Asm Ip Holding B.V. Method for forming metal chalcogenide thin films on a semiconductor device
US9741815B2 (en) 2015-06-16 2017-08-22 Asm Ip Holding B.V. Metal selenide and metal telluride thin films for semiconductor device applications
KR20210129346A (ko) 2020-04-20 2021-10-28 삼성전자주식회사 반도체 장치

Family Cites Families (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271591A (en) 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3622319A (en) 1966-10-20 1971-11-23 Western Electric Co Nonreflecting photomasks and methods of making same
US3868651A (en) 1970-08-13 1975-02-25 Energy Conversion Devices Inc Method and apparatus for storing and reading data in a memory having catalytic material to initiate amorphous to crystalline change in memory structure
US3743847A (en) 1971-06-01 1973-07-03 Motorola Inc Amorphous silicon film as a uv filter
US4267261A (en) * 1971-07-15 1981-05-12 Energy Conversion Devices, Inc. Method for full format imaging
US3961314A (en) * 1974-03-05 1976-06-01 Energy Conversion Devices, Inc. Structure and method for producing an image
US3966317A (en) * 1974-04-08 1976-06-29 Energy Conversion Devices, Inc. Dry process production of archival microform records from hard copy
US4177474A (en) 1977-05-18 1979-12-04 Energy Conversion Devices, Inc. High temperature amorphous semiconductor member and method of making the same
JPS5565365A (en) * 1978-11-07 1980-05-16 Nippon Telegr & Teleph Corp <Ntt> Pattern forming method
DE2901303C2 (de) 1979-01-15 1984-04-19 Max Planck Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Festes Ionenleitermaterial, seine Verwendung und Verfahren zu dessen Herstellung
US4312938A (en) 1979-07-06 1982-01-26 Drexler Technology Corporation Method for making a broadband reflective laser recording and data storage medium with absorptive underlayer
US4269935A (en) 1979-07-13 1981-05-26 Ionomet Company, Inc. Process of doping silver image in chalcogenide layer
US4434217A (en) * 1979-10-17 1984-02-28 Gca Corporation Chalcogenide product
US4316946A (en) 1979-12-03 1982-02-23 Ionomet Company, Inc. Surface sensitized chalcogenide product and process for making and using the same
JPS6024580B2 (ja) 1980-03-10 1985-06-13 日本電信電話株式会社 半導体装置の製法
US4499557A (en) 1980-10-28 1985-02-12 Energy Conversion Devices, Inc. Programmable cell for use in programmable electronic arrays
US4405710A (en) 1981-06-22 1983-09-20 Cornell Research Foundation, Inc. Ion beam exposure of (g-Gex -Se1-x) inorganic resists
US4368099A (en) * 1982-02-05 1983-01-11 Rca Corporation Development of germanium selenide photoresist
US4737379A (en) * 1982-09-24 1988-04-12 Energy Conversion Devices, Inc. Plasma deposited coatings, and low temperature plasma method of making same
US4545111A (en) 1983-01-18 1985-10-08 Energy Conversion Devices, Inc. Method for making, parallel preprogramming or field programming of electronic matrix arrays
US4608296A (en) 1983-12-06 1986-08-26 Energy Conversion Devices, Inc. Superconducting films and devices exhibiting AC to DC conversion
US4795657A (en) 1984-04-13 1989-01-03 Energy Conversion Devices, Inc. Method of fabricating a programmable array
US4843443A (en) * 1984-05-14 1989-06-27 Energy Conversion Devices, Inc. Thin film field effect transistor and method of making same
US4769338A (en) 1984-05-14 1988-09-06 Energy Conversion Devices, Inc. Thin film field effect transistor and method of making same
US4670763A (en) * 1984-05-14 1987-06-02 Energy Conversion Devices, Inc. Thin film field effect transistor
US4673957A (en) * 1984-05-14 1987-06-16 Energy Conversion Devices, Inc. Integrated circuit compatible thin film field effect transistor and method of making same
US4668968A (en) * 1984-05-14 1987-05-26 Energy Conversion Devices, Inc. Integrated circuit compatible thin film field effect transistor and method of making same
US4678679A (en) 1984-06-25 1987-07-07 Energy Conversion Devices, Inc. Continuous deposition of activated process gases
US4646266A (en) * 1984-09-28 1987-02-24 Energy Conversion Devices, Inc. Programmable semiconductor structures and methods for using the same
US4664939A (en) * 1985-04-01 1987-05-12 Energy Conversion Devices, Inc. Vertical semiconductor processor
US4637895A (en) * 1985-04-01 1987-01-20 Energy Conversion Devices, Inc. Gas mixtures for the vapor deposition of semiconductor material
US4710899A (en) 1985-06-10 1987-12-01 Energy Conversion Devices, Inc. Data storage medium incorporating a transition metal for increased switching speed
US4671618A (en) 1986-05-22 1987-06-09 Wu Bao Gang Liquid crystalline-plastic material having submillisecond switch times and extended memory
US4766471A (en) 1986-01-23 1988-08-23 Energy Conversion Devices, Inc. Thin film electro-optical devices
US4818717A (en) * 1986-06-27 1989-04-04 Energy Conversion Devices, Inc. Method for making electronic matrix arrays
US4728406A (en) * 1986-08-18 1988-03-01 Energy Conversion Devices, Inc. Method for plasma - coating a semiconductor body
US4809044A (en) * 1986-08-22 1989-02-28 Energy Conversion Devices, Inc. Thin film overvoltage protection devices
US4845533A (en) 1986-08-22 1989-07-04 Energy Conversion Devices, Inc. Thin film electrical devices with amorphous carbon electrodes and method of making same
US4853785A (en) 1986-10-15 1989-08-01 Energy Conversion Devices, Inc. Electronic camera including electronic signal storage cartridge
US4788594A (en) 1986-10-15 1988-11-29 Energy Conversion Devices, Inc. Solid state electronic camera including thin film matrix of photosensors
US4847674A (en) 1987-03-10 1989-07-11 Advanced Micro Devices, Inc. High speed interconnect system with refractory non-dogbone contacts and an active electromigration suppression mechanism
US4800526A (en) 1987-05-08 1989-01-24 Gaf Corporation Memory element for information storage and retrieval system and associated process
US4891330A (en) * 1987-07-27 1990-01-02 Energy Conversion Devices, Inc. Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements
US4775425A (en) 1987-07-27 1988-10-04 Energy Conversion Devices, Inc. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same
US5272359A (en) 1988-04-07 1993-12-21 California Institute Of Technology Reversible non-volatile switch based on a TCNQ charge transfer complex
GB8910854D0 (en) 1989-05-11 1989-06-28 British Petroleum Co Plc Semiconductor device
US5159661A (en) 1990-10-05 1992-10-27 Energy Conversion Devices, Inc. Vertically interconnected parallel distributed processor
US5314772A (en) 1990-10-09 1994-05-24 Arizona Board Of Regents High resolution, multi-layer resist for microlithography and method therefor
JPH0770731B2 (ja) 1990-11-22 1995-07-31 松下電器産業株式会社 電気可塑性素子
US5406509A (en) * 1991-01-18 1995-04-11 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5335219A (en) 1991-01-18 1994-08-02 Ovshinsky Stanford R Homogeneous composition of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5296716A (en) * 1991-01-18 1994-03-22 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5534712A (en) 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5534711A (en) 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5536947A (en) 1991-01-18 1996-07-16 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory element and arrays fabricated therefrom
US5414271A (en) * 1991-01-18 1995-05-09 Energy Conversion Devices, Inc. Electrically erasable memory elements having improved set resistance stability
US5596522A (en) * 1991-01-18 1997-01-21 Energy Conversion Devices, Inc. Homogeneous compositions of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5341328A (en) 1991-01-18 1994-08-23 Energy Conversion Devices, Inc. Electrically erasable memory elements having reduced switching current requirements and increased write/erase cycle life
US5128099A (en) 1991-02-15 1992-07-07 Energy Conversion Devices, Inc. Congruent state changeable optical memory material and device
US5219788A (en) 1991-02-25 1993-06-15 Ibm Corporation Bilayer metallization cap for photolithography
US5177567A (en) 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
US5359205A (en) 1991-11-07 1994-10-25 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5238862A (en) 1992-03-18 1993-08-24 Micron Technology, Inc. Method of forming a stacked capacitor with striated electrode
US5512328A (en) 1992-08-07 1996-04-30 Hitachi, Ltd. Method for forming a pattern and forming a thin film used in pattern formation
US5350484A (en) 1992-09-08 1994-09-27 Intel Corporation Method for the anisotropic etching of metal films in the fabrication of interconnects
US5818749A (en) 1993-08-20 1998-10-06 Micron Technology, Inc. Integrated circuit memory device
BE1007902A3 (nl) 1993-12-23 1995-11-14 Philips Electronics Nv Schakelelement met geheugen voorzien van schottky tunnelbarriere.
US5500532A (en) 1994-08-18 1996-03-19 Arizona Board Of Regents Personal electronic dosimeter
JP2643870B2 (ja) 1994-11-29 1997-08-20 日本電気株式会社 半導体記憶装置の製造方法
US5543737A (en) 1995-02-10 1996-08-06 Energy Conversion Devices, Inc. Logical operation circuit employing two-terminal chalcogenide switches
US5751012A (en) 1995-06-07 1998-05-12 Micron Technology, Inc. Polysilicon pillar diode for use in a non-volatile memory cell
US6420725B1 (en) 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5879955A (en) 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US5869843A (en) * 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
JP3363154B2 (ja) 1995-06-07 2003-01-08 ミクロン テクノロジー、インコーポレイテッド 不揮発性メモリセル内のマルチステート材料と共に使用するスタック/トレンチダイオード
US5789758A (en) 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US5714768A (en) * 1995-10-24 1998-02-03 Energy Conversion Devices, Inc. Second-layer phase change memory array on top of a logic device
US5694054A (en) 1995-11-28 1997-12-02 Energy Conversion Devices, Inc. Integrated drivers for flat panel displays employing chalcogenide logic elements
US5591501A (en) * 1995-12-20 1997-01-07 Energy Conversion Devices, Inc. Optical recording medium having a plurality of discrete phase change data recording points
US6653733B1 (en) 1996-02-23 2003-11-25 Micron Technology, Inc. Conductors in semiconductor devices
US5687112A (en) 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US5852870A (en) 1996-04-24 1998-12-29 Amkor Technology, Inc. Method of making grid array assembly
US5851882A (en) 1996-05-06 1998-12-22 Micron Technology, Inc. ZPROM manufacture and design and methods for forming thin structures using spacers as an etching mask
US5761115A (en) 1996-05-30 1998-06-02 Axon Technologies Corporation Programmable metallization cell structure and method of making same
US5789277A (en) 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5814527A (en) 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5998244A (en) 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US5972792A (en) * 1996-10-18 1999-10-26 Micron Technology, Inc. Method for chemical-mechanical planarization of a substrate on a fixed-abrasive polishing pad
US5812441A (en) * 1996-10-21 1998-09-22 Micron Technology, Inc. MOS diode for use in a non-volatile memory cell
US6087674A (en) 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US5825046A (en) 1996-10-28 1998-10-20 Energy Conversion Devices, Inc. Composite memory material comprising a mixture of phase-change memory material and dielectric material
US5846889A (en) 1997-03-14 1998-12-08 The United States Of America As Represented By The Secretary Of The Navy Infrared transparent selenide glasses
US5998066A (en) * 1997-05-16 1999-12-07 Aerial Imaging Corporation Gray scale mask and depth pattern transfer technique using inorganic chalcogenide glass
US6031287A (en) * 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US5933365A (en) 1997-06-19 1999-08-03 Energy Conversion Devices, Inc. Memory element with energy control mechanism
US6051511A (en) 1997-07-31 2000-04-18 Micron Technology, Inc. Method and apparatus for reducing isolation stress in integrated circuits
KR100371102B1 (ko) 1997-12-04 2003-02-06 엑손 테크놀로지스 코포레이션 프로그램형 표면하 군집 금속화 구조체 및 그 제조 방법
US6011757A (en) * 1998-01-27 2000-01-04 Ovshinsky; Stanford R. Optical recording media having increased erasability
US6141241A (en) 1998-06-23 2000-10-31 Energy Conversion Devices, Inc. Universal memory element with systems employing same and apparatus and method for reading, writing and programming same
US5912839A (en) * 1998-06-23 1999-06-15 Energy Conversion Devices, Inc. Universal memory element and method of programming same
US6297170B1 (en) 1998-06-23 2001-10-02 Vlsi Technology, Inc. Sacrificial multilayer anti-reflective coating for mos gate formation
US6469364B1 (en) 1998-08-31 2002-10-22 Arizona Board Of Regents Programmable interconnection system for electrical circuits
US6388324B2 (en) 1998-08-31 2002-05-14 Arizona Board Of Regents Self-repairing interconnections for electrical circuits
US6487106B1 (en) 1999-01-12 2002-11-26 Arizona Board Of Regents Programmable microelectronic devices and method of forming and programming same
US6825489B2 (en) 2001-04-06 2004-11-30 Axon Technologies Corporation Microelectronic device, structure, and system, including a memory structure having a variable programmable property and method of forming the same
US6635914B2 (en) 2000-09-08 2003-10-21 Axon Technologies Corp. Microelectronic programmable device and methods of forming and programming the same
JP4100799B2 (ja) 1999-01-25 2008-06-11 キヤノン株式会社 マスクパターン転写方法、マスクパターン転写装置、デバイス製造方法及び転写マスク
US6177338B1 (en) 1999-02-08 2001-01-23 Taiwan Semiconductor Manufacturing Company Two step barrier process
JP2002536840A (ja) * 1999-02-11 2002-10-29 アリゾナ ボード オブ リージェンツ プログラマブルマイクロエレクトロニックデバイスおよびその形成およびプログラミング方法
US6072716A (en) 1999-04-14 2000-06-06 Massachusetts Institute Of Technology Memory structures and methods of making same
US6143604A (en) 1999-06-04 2000-11-07 Taiwan Semiconductor Manufacturing Company Method for fabricating small-size two-step contacts for word-line strapping on dynamic random access memory (DRAM)
US6350679B1 (en) 1999-08-03 2002-02-26 Micron Technology, Inc. Methods of providing an interlevel dielectric layer intermediate different elevation conductive metal layers in the fabrication of integrated circuitry
US6423628B1 (en) 1999-10-22 2002-07-23 Lsi Logic Corporation Method of forming integrated circuit structure having low dielectric constant material and having silicon oxynitride caps over closely spaced apart metal lines
US6914802B2 (en) * 2000-02-11 2005-07-05 Axon Technologies Corporation Microelectronic photonic structure and device and method of forming the same
US6567293B1 (en) * 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
US6555860B2 (en) * 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6339544B1 (en) * 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6563164B2 (en) * 2000-09-29 2003-05-13 Ovonyx, Inc. Compositionally modified resistive electrode
US6653193B2 (en) * 2000-12-08 2003-11-25 Micron Technology, Inc. Resistance variable device
US6696355B2 (en) * 2000-12-14 2004-02-24 Ovonyx, Inc. Method to selectively increase the top resistance of the lower programming electrode in a phase-change memory
US6569705B2 (en) * 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6534781B2 (en) * 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
US6531373B2 (en) * 2000-12-27 2003-03-11 Ovonyx, Inc. Method of forming a phase-change memory cell using silicon on insulator low electrode in charcogenide elements
US6687427B2 (en) * 2000-12-29 2004-02-03 Intel Corporation Optic switch
US6727192B2 (en) 2001-03-01 2004-04-27 Micron Technology, Inc. Methods of metal doping a chalcogenide material
US6348365B1 (en) * 2001-03-02 2002-02-19 Micron Technology, Inc. PCRAM cell manufacturing
US6818481B2 (en) 2001-03-07 2004-11-16 Micron Technology, Inc. Method to manufacture a buried electrode PCRAM cell
US6734455B2 (en) * 2001-03-15 2004-05-11 Micron Technology, Inc. Agglomeration elimination for metal sputter deposition of chalcogenides
US6473332B1 (en) 2001-04-04 2002-10-29 The University Of Houston System Electrically variable multi-state resistance computing
US6570784B2 (en) * 2001-06-29 2003-05-27 Ovonyx, Inc. Programming a phase-change material memory
US6511862B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Modified contact for programmable devices
US6511867B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6673700B2 (en) * 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6514805B2 (en) * 2001-06-30 2003-02-04 Intel Corporation Trench sidewall profile for device isolation
US6951805B2 (en) 2001-08-01 2005-10-04 Micron Technology, Inc. Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry
US6590807B2 (en) * 2001-08-02 2003-07-08 Intel Corporation Method for reading a structural phase-change memory
US6737312B2 (en) * 2001-08-27 2004-05-18 Micron Technology, Inc. Method of fabricating dual PCRAM cells sharing a common electrode
US6881623B2 (en) * 2001-08-29 2005-04-19 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of forming a programmable memory cell of memory circuitry, and a chalcogenide comprising device
US6955940B2 (en) * 2001-08-29 2005-10-18 Micron Technology, Inc. Method of forming chalcogenide comprising devices
US6784018B2 (en) * 2001-08-29 2004-08-31 Micron Technology, Inc. Method of forming chalcogenide comprising devices and method of forming a programmable memory cell of memory circuitry
US6646902B2 (en) * 2001-08-30 2003-11-11 Micron Technology, Inc. Method of retaining memory state in a programmable conductor RAM
US6709958B2 (en) * 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US20030047765A1 (en) * 2001-08-30 2003-03-13 Campbell Kristy A. Stoichiometry for chalcogenide glasses useful for memory devices and method of formation
US6507061B1 (en) * 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
WO2003021589A1 (en) * 2001-09-01 2003-03-13 Energy Conversion Devices, Inc. Increased data storage in optical data storage and retrieval systems using blue lasers and/or plasmon lenses
US6545287B2 (en) * 2001-09-07 2003-04-08 Intel Corporation Using selective deposition to form phase-change memory cells
US6690026B2 (en) * 2001-09-28 2004-02-10 Intel Corporation Method of fabricating a three-dimensional array of active media
US6566700B2 (en) * 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6545907B1 (en) * 2001-10-30 2003-04-08 Ovonyx, Inc. Technique and apparatus for performing write operations to a phase change material memory device
US6576921B2 (en) * 2001-11-08 2003-06-10 Intel Corporation Isolating phase change material memory cells
US6815818B2 (en) * 2001-11-19 2004-11-09 Micron Technology, Inc. Electrode structure for use in an integrated circuit
US6791859B2 (en) * 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6512241B1 (en) * 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6671710B2 (en) * 2002-05-10 2003-12-30 Energy Conversion Devices, Inc. Methods of computing with digital multistate phase change materials
US6918382B2 (en) * 2002-08-26 2005-07-19 Energy Conversion Devices, Inc. Hydrogen powered scooter
WO2009021542A1 (de) 2007-08-10 2009-02-19 Siemens Aktiengesellschaft Anordnung und verfahren zum erkennen einer fehlerursache

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226951B (zh) * 2007-01-18 2010-06-02 旺宏电子股份有限公司 电阻式随机存取存储器

Also Published As

Publication number Publication date
US6784018B2 (en) 2004-08-31
US20040191961A1 (en) 2004-09-30
WO2003019691A3 (en) 2004-01-08
US7067348B2 (en) 2006-06-27
DE60216942T2 (de) 2007-10-04
JP4067490B2 (ja) 2008-03-26
CN1550048B (zh) 2011-01-12
AU2002335692A1 (en) 2003-03-10
WO2003019691A2 (en) 2003-03-06
ATE349076T1 (de) 2007-01-15
US7396699B2 (en) 2008-07-08
KR100800254B1 (ko) 2008-02-01
JP2005501426A (ja) 2005-01-13
EP1430548B1 (en) 2006-12-20
KR20040035747A (ko) 2004-04-29
EP1430548A2 (en) 2004-06-23
US20030049912A1 (en) 2003-03-13
DE60216942D1 (de) 2007-02-01
US20060270099A1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
CN1550048B (zh) 非易失性可调电阻器件和可编程存储单元的制造
US7863597B2 (en) Resistance variable memory devices with passivating material
US6998697B2 (en) Non-volatile resistance variable devices
US7022555B2 (en) Methods of forming a semiconductor memory device
US7518212B2 (en) Graded GexSe100-x concentration in PCRAM
KR100917095B1 (ko) 가변 저항 메모리 장치 및 제조 방법
US7030410B2 (en) Resistance variable device
US7087454B2 (en) Fabrication of single polarity programmable resistance structure
US20030194865A1 (en) Method of manufacture of programmable conductor memory
CN1647278A (zh) 形成非易失可变电阻器件的方法以及形成包含硒化银的结构的方法
CN1965418A (zh) 分层电阻可变存储装置和制造方法
US8501621B2 (en) Method of fabrication of the memristive device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20110112