CN1610949B - 一种切换磁电阻存储器件的方法和磁电阻阵列 - Google Patents

一种切换磁电阻存储器件的方法和磁电阻阵列 Download PDF

Info

Publication number
CN1610949B
CN1610949B CN028227050A CN02822705A CN1610949B CN 1610949 B CN1610949 B CN 1610949B CN 028227050 A CN028227050 A CN 028227050A CN 02822705 A CN02822705 A CN 02822705A CN 1610949 B CN1610949 B CN 1610949B
Authority
CN
China
Prior art keywords
magnetic
conductor
moment
magneto
magnetic region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN028227050A
Other languages
English (en)
Other versions
CN1610949A (zh
Inventor
利奥尼德·萨维特申科
布拉德利·N.·恩格尔
尼古拉斯·D.·里佐
马克·F.·德埃尔
贾森·阿伦·贾尼斯克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Everspin Technologies Inc
Original Assignee
Everspin Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Everspin Technologies Inc filed Critical Everspin Technologies Inc
Publication of CN1610949A publication Critical patent/CN1610949A/zh
Application granted granted Critical
Publication of CN1610949B publication Critical patent/CN1610949B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store

Abstract

一种切换可伸缩磁电阻存储器单元(10)的方法,包括提供夹在字线(20)与数字线(30)之间的磁电阻存储器件(3),以使在各个时刻能够将电流波形提供给字线和数字线,使磁场通量将该器件的有效磁距矢量旋转大约180°。该磁电阻存储器件包括N个反铁磁耦合的铁磁层。可以调整N来改变该器件的磁切换体积。

Description

一种切换磁电阻存储器件的方法和磁电阻阵列
技术领域
本发明涉及半导体存储器件。
具体而言,本发明涉及利用磁场的半导体随机存取存储器件。
背景技术
非易失性存储器件是电子系统中极为重要的部件。如今,快擦写存储器(FLASH)在应用中成为主要的非易失性存储器件。典型的非易失性存储器件使用在浮动氧化物层(floating oxide layer)中俘获的电荷来存储信息。快擦写存储器的缺点包括电压要求高以及编程和擦除时间长。另外,在存储器失效之前,快擦写存储器具有104~106个周期的较差写入持续时间。此外,为保持合理的数据记忆力,栅极氧化物的定标(scaling)受到电子所遇见的隧道势垒的限制。因此,限制了快擦写存储器可定标到的尺寸。
为克服这些缺陷,人们对磁存储器件进行研究。一种这样的器件是磁电阻RAM(以后称之为“MRAM”)。然而,为实现商用,MRAM必须具有同当前存储技术可比的存储密度,可伸缩以适应未来的升级,工作电压低,功耗低,且读/写速度具有竞争力。
对于MRAM器件,非易失性存储状态的稳定性,读/写周期的可重复性,和存储器元件至元件切换场的一致性成为其设计特性的三个最重要的方面。在MRAM中的存储状态并不是由电能来保持,而是由磁矩矢量的方向来保持。通过施加磁场并且使MRAM器件中的磁性材料磁化成两种可能的存储状态之中的一种,来实现存储数据。通过检测在MRAM器件中两种状态之间的电阻差来恢复数据。通过使电流流经磁结构之外的带状线(trip lines)或磁结构本身来产生用于写入的磁场。
随着MRAM器件横向尺寸的减小,出现了三种问题。首先,对于给定形状和膜厚度,切换场增大,需要更大的磁场来切换。其次,减小了总切换体积(total switching volume),使得用于反转的能量势垒减小。能量势垒表示用于将磁矩矢量从一个状态切换到另一个状态所需的能量的量值。能量势垒决定MRAM器件的数据保持力和差错率,如果势垒过小,会因热涨落(超顺磁性)而出现不期望的反转。较小能量势垒的主要问题在于,极难有选择地切换阵列中的一个MRAM器件。可选择性允许进行切换,而不会无意地对其他MRAM器件进行切换。最后,由于切换场是由形状产生,当MRAM器件尺寸减小时,切换场变得对形状变化更为敏感。随着在更小尺度进行光刻定标变得更为困难,MRAM器件将难于保持紧凑的切换分布。
因此,克服上述缺陷以及其它现有技术所固有的缺陷,将很有意义。
从而,本发明的一个目的在于,提供一种写入磁电阻随机存取存储器件的新型、改进的方法。
本发明的另一目的在于,提供一种写入高度可选择的磁电阻随机存取存储器件的新型、改进的方法。
本发明的又一目的在于,提供一种写入差错率得到改善的磁电阻随机存取存储器件的新型、改进的方法。
本发明的再一目的在于,提供一种写入磁电阻随机存取存储器件的优选新型、改进的方法,所述器件的切换场对形状的依赖更小。
发明内容
为实现上述提出的以及其他目的和优点,批露了一种写入可伸缩磁电阻存储阵列的方法。存储阵列包括多个可伸缩磁电阻存储器件。为简单起见,本发明将考察如何将写入方法应用于单个MRAM器件,不过应该理解,该写入方法可应用于任何数量的MRAM器件。
用于说明该写入方法的MRAM器件包括与磁电阻存储元件位置邻近的字线和数字线。磁电阻存储元件包括与数字线位置邻近的栓固磁区(pinned magnetic region)。隧道势垒置于栓固磁区上。然后,在隧道势垒上安置自由磁区,并与字线邻近。在优选实施例中,栓固磁区的合成磁矩矢量被固定在最佳方向。此外,在优选实施例中,自由磁区包括合成反铁磁(以后称之为“SAF”)层材料。合成反铁磁层材料包括N个反铁磁耦合的铁磁材料层,其中,总数N大于或等于2。N层决定着磁切换体积,通过改变N可对其进行调整。在优选实施例中,通过在各邻近铁磁层之间夹持反铁磁耦合间隔层,将N个铁磁层反铁磁耦合。另外,各N层具有被调整成提供最佳写入模式的磁矩。
在优选实施例中,N等于2,使得合成反铁磁层材料为铁磁层/反铁磁耦合间隔层/铁磁层的三层结构。三层结构中的两个铁磁层分别具有磁矩矢量M1和M2,且通常通过反铁磁耦合间隔层的耦合使磁矩矢量反平行取向。在MRAM结构中各层的静磁场也产生反铁磁耦合。因此,除了消除两个磁层之间的铁磁耦合外,间隔层不必提供任何附加的反铁磁耦合。可以在题为“Magnetoresistance Random AccessMemory for Improved Scalability”的与本申请同一天提交的共同未决美国专利申请中得到用于说明该写入方法的MRAM器件的更多信息,该申请在此引作参考。
MRAM器件中两个铁磁层的磁距矢量可具有不同厚度或材料,以提供由ΔM=(M2-M1)给出的结果磁矩矢量和子层磁矩分数平衡比(sub-layer moment fractional balance ratio)三层结构的合成磁距矢量随所施加的磁场自由旋转。在零场中,合成磁距矢量的方向将稳定,这是由磁性的各向异性而决定,即与栓固参考层(pinned reference layer)的合成磁矩矢量平行,或反平行。应该理解,术语“合成磁矩矢量”仅用于本说明目的,并且考虑完全平衡磁矩的情形,在没有磁场时,合成磁矩矢量可以为零。如下面所述,只有与隧道势垒邻近的子层磁矩矢量决定存储器的状态。
流过MRAM器件的电流取决于隧道磁电阻,隧道磁电阻由直接与隧道势垒邻近的自由和栓固层的磁矩矢量的相对取向而决定。如果磁距矢量平行,则MRAM器件电阻较低,偏压将导致更大的电流流过器件。将此状态定义为“1”。如果磁距矢量反平行,则MRAM器件电阻较高,所施加的偏压将导致更小的电流流过器件。将此状态定义为“0”。应该理解,这些定义是随意的,反之也可,不过在此示例中所用定义出于说明目的。因此,在磁电阻存储器中,通过施加磁场,使MRAM器件中磁距矢量按相对于栓固参考层中磁距矢量平行和反平行方向之中任一种方向取向,来实现数据存储。
对可伸缩MRAM器件进行写入的方法依赖近平衡(nearlybalanced)的SAF三层结构的“自旋-翻转(spin-flop)”现象。这里,将术语“近平衡”定义为,子层磁矩分数平衡比的量值处在范围0≤|Mbr|≤0.1内。自旋-翻转现象通过旋转铁磁层的磁距矢量,使得它们与所施加场的方向标称(nominally)正交,但主要仍是相互反平行,从而降低所施加场的总磁能。在所施加场的方向上各铁磁磁距矢量的带有较小偏转的旋转或翻转造成总磁能的减少。
通常,利用翻转现象和定时脉冲序列,能够使用两个截然不同的模式对MRAM器件进行写入;即直接写入模式或触发写入(togglewrite)模式。这些模式使用相同的定时脉冲序列来实现,对此下面将会有所描述,不过在磁性子层磁矩与所施加磁场的大小及极性的选择上有所不同。
每种写入方法都具有各自的优点。例如,当使用直接写入模式时,若进行写入的状态不同于存储的状态,由于仅切换状态,从而无需确定MRAM器件的最初状态。尽管在启动写入序列之前直接写入方法无需知晓MRAM器件的状态,然而它需要依据所期望的状态改变字和数字线的极性。
当使用触发写入方法时,由于每当从字和数字线产生相同极性脉冲序列时将会切换状态,从而在写入前需要确定MRAM器件的最初状态。因此,通过读取所存储的存储器状态并将该状态与所要写入的新状态进行比较,使触发写入模式起作用。比较之后,仅当所存储的状态与新状态不同时,才对MRAM器件进行写入。
MRAM器件被构造成使得磁各向异性轴理想地与字和数字线成45°角。因此,在时刻t0处,磁距矢量M1和M2沿最佳方向取向,与字线和数字线的方向成45°角。作为写入方法的示例,为使用直接或触发写入切换MRAM器件的状态,使用以下电流脉冲序列。在时刻t1,增大字电流,M1和M2开始依据字电流的方向按顺时针方向或按逆时针方向旋转,由于自旋-翻转效应,从而使它们调整成与场方向标称正交。在时刻t2,接通数字电流。数字电流的流动方向使得M1和M2在与数字线磁场所导致旋转相同的方向上进一步旋转。此时,接通字线电流和数字线电流,且M1和M2与净磁场方向标称正交,其相对电流线成45°。
重要的是应当理解,当仅接通一个电流时,磁场将使M1和M2标称对准与字线或数字线平行的方向。然而,如果接通两个电流,则M1和M2标称正交地对准成与字线和数字线成45°角。
在时刻t3,切断字线电流,使得仅通过数字线磁场旋转M1和M2。此时,通常M1和M2已旋转过其不易磁化轴(hard-axis)不稳定点。在时刻t4,切断数字电流,M1和M2沿最佳各向异性轴对准。此时,M1和M2已旋转180°,并且MRAM器件已切换。从而,通过顺序接通和切断字和数字电流,能够使MRAM器件的M1和M2旋转180°,以便切换器件的状态。
附图说明
对本领域技术人员而言,结合以下附图,通过后面对本文优选实施例的详细描述,将易于理解上述及其他更为具体的本发明目的和优点:
图1是表示磁电阻随机存取存储器件的简化截面图;
图2是表示具有字和数字线的磁电阻随机存取存储器件的简化平面图;
图3的图表模拟了在磁电阻随机存取存储器件中产生直接或触发写入模式的磁场幅值组合;
图4表示当接通字电流和数字电流时二者的时序图;
图5表示对于触发写入模式,当将’1’写成’0’时,磁电阻随机存取存储器件的磁矩矢量的旋转;
图6表示对于触发写入模式,当将’0’写成’1’时,磁电阻随机存取存储器件的磁矩矢量的旋转;
图7表示对于直接写入模式,当将’1’写成’0’时,磁电阻随机存取存储器件的磁矩矢量的旋转;
图8表示对于直接写入模式,当将’0’写成已经为’0’的状态时,磁电阻随机存取存储器件的磁矩矢量的旋转;
图9表示当仅接通数字电流时字电流和数字电流的时序图;
图10表示当仅接通数字电流时,磁电阻随机存取存储器件的磁矩矢量的旋转。
具体实施方式
现参看图1,图1表示根据本发明的MRAM阵列3的简化截面图。在该图中,仅显示单个磁电阻存储器件10,但应该理解,MRAM阵列3包括多个MRAM器件10,在此仅显示一个这样的器件是为了简化写入方法的描述。
MRAM器件10夹在字线20和数字线30之间。字线20和数字线30包括能通过电流的导电材料。在该图中,字线20处在MRAM器件10的顶部,数字线30处在MRAM器件10的底部,且其方向与字线20成90°角(参看图2)。
MRAM器件10包括第一磁区15,隧道势垒16,和第二磁区17,其中隧道势垒16夹在第一磁区15和第二磁区17之间。在优选实施例中,磁区15包括三层结构18,其具有夹在两个铁磁层45和55之间的反铁磁耦合间隔层65。反铁磁耦合间隔层65具有厚度86,铁磁层45和55分别具有厚度41和51。此外,磁区17具有三层结构19,其具有夹在两个铁磁层46和56之间的反铁磁耦合间隔层66。反铁磁耦合间隔层66具有厚度87,铁磁层46和56分别具有厚度42和52。
通常,反铁磁耦合间隔层65和66包括元素Ru,Os,Re,Cr,Rh,Cu或其组合物中的至少一种。另外,铁磁层45,55,46和56包括元素Ni,Fe,Mn,Co或其组合物中的至少一种。并且应该理解,除三层结构外,磁区15和17可包括其它合成反铁磁层材料结构,在本实施例中使用三层结构仅出于说明的目的。例如,一种这样的合成反铁磁层材料结构可包括铁磁层/反铁磁耦合间隔层/铁磁层/反铁磁耦合间隔层/铁磁层结构的五层堆叠。
铁磁层45和55各自具有磁矩矢量57和53,通常通过反铁磁耦合间隔层65的耦合使磁矩矢量57和53保持反平行。另外,磁区15具有合成磁矩矢量40,磁区17具有合成磁矩矢量50。合成磁矩矢量40和50都沿各向异性易磁化轴(easy-axis)取向,方向与字线20和数字线30成一角度,最好为45°(参看图2)。此外,磁区15为自由铁磁区,意指在施加磁场的情况下合成磁矩矢量40自由转动。磁区17为栓固铁磁区,意指在适当施加磁场的情况下合成磁矩矢量50不会自由转动,并用作参考层。
虽然在每个三层结构18中反铁磁耦合层被示出在两个铁磁层之间,然而应该理解,可通过其他手段,例如静磁场或其他特性,将铁磁层反铁磁耦合。例如,当将单元的纵横比减小至5或更小时,由静磁通量闭包(magnetostatic flux closure)使铁磁层反平行耦合。
在优选实施例中,对于非圆形平面,MRAM器件10具有长/宽比在1至5范围内的三层结构18。不过,本说明的平面为圆形(参看图2)。在优选实施例中,MRAM器件10为圆形,以使由形状各向异性对切换场的影响最小,另外还由于更易于使用光刻处理使器件横向定标至更小尺寸。不过应该理解,MRAM器件10可具有其他形状,如正方形,椭圆形,矩形,或菱形,但所示为圆形是出于简单起见以及改善性能。
此外,在制造MRAM阵列3期间,顺序沉积或按其他方式顺序形成各个相继层(即,30,55,65等),可通过在半导体制造业已知的任何技术有选择地沉积,光刻处理,刻蚀等来限定每个MRAM器件10。在至少对铁磁层45和55的沉积过程中,提供磁场来对此双层设置最佳易磁化轴(感应各向异性)。所提供的磁场对磁距矢量53和57产生最佳各向异性轴。选择最佳轴在字线20和数字线30之间的45°角上,下面将会对此进行描述。
现参看图2,图2表示根据本发明的MRAM阵列3的简化平面图。为简化MRAM器件10的描述,所有方向将参考所示x-和y-坐标系100以及顺时针旋转方向94和逆时针旋转方向96。为进一步简化描述,再假设N等于2,使得MRAM器件10在具有磁矩矢量53和57以及合成磁矩矢量40的区15中包括一个三层结构。另外,由于将对区15的磁矩矢量进行切换,从而仅示出区15的磁矩矢量。
为说明写入方法如何工作,假定磁矩矢量53和57的最佳各向异性轴的方向相对负x-和负y-方向成45°角,以及相对正x-和正y-方向成45°角。作为示例,图2所示磁距矢量53的方向相对负x-和负y-方向成45°角。由于磁距矢量57通常与磁距矢量53反平行取向,从而其方向相对正x-和正y-方向成45°角。该最初取向将用于说明写入方法的示例,下面将会对此进行描述。
在优选实施例中,将字电流60定义为如果沿正x-方向流动则为正,将数字电流70定义为如果沿正y-方向流动则为正。字线20和数字线30的目的在于在MRAM器件10内产生磁场。正字电流60将导致环形字磁场HW 80,正数字电流70将导致环形数字磁场HD 90。由于字线20在MRAM器件10上方,在元件平面内,对于正字电流60,将沿正y-方向将HW 80施加给MRAM器件10。同样,由于数字线30在MRAM器件10下方,在元件的平面内,对于正数字电流70,将沿正x-方向将HD 90施加给MRAM器件10。应该理解,对于正和负电流的定义是随意的,此处定义出于说明目的。将电流流向反转的效果是使在MRAM器件10中所导致的磁场的方向改变。电流导致的磁场的行为为本领域技术人员所熟知,在此不再做详细描述。
现在参看图3,图3模拟了SAF三层结构的切换行为。该模拟包括两个单畴磁层,其具有带固有各向异性的近似相同的磁矩(近平衡SAF),反铁磁耦合,并且其磁化动态特性用Landau-Lifshitz(郎道-利夫施特兹)方程来描述。x-轴是以奥斯特(Oersted)为单位的字线磁场幅度,y-轴是以奥斯特为单位的数字线磁场幅度。以如图4所示脉冲序列100施加磁场,其中,脉冲序列100包括作为时间的函数的字电流60和数字电流70。
如图3所示,具有三个操作区域。在区域92中没有切换。对于在区域95中的MRAM操作,直接写入方法有效。当使用直接写入方法时,无需确定MRAM器件的初始状态,这是由于若进行写入的状态不同于存储的状态,则仅仅切换状态。写入状态的选择是由字线20和数字线30两者中的电流方向来确定。例如,如果要写入’1’,则在两个线中的电流方向将为正。如果在元件中已存储’1’且进行’1’的写入,则MRAM器件的最终状态将继续为’1’。此外,如果存储了’0’且以正电流进行’1’的写入;则MRAM器件的最终状态将为’1’。当通过使用在字和数字线两者之中的负电流写入’0’时会获得相似效果。因此,无论其初始状态如何,以适当的电流脉冲极性,任何一种状态都可以编程为所需的’1’或’0’。在本说明中,将区域95中的操作定义为“直接写入模式”。
对于区域97中的MRAM操作而言,触发写入方法有效。当使用触发写入方法时,在写入之前需要确定MRAM器件的初始状态,这是由于每次对MRAM器件写入时都对状态进行切换,而无论电流方向如何,只要对于字线20和数字线30两者选择相同极性的电流脉冲即可。例如,如果最初存储’1’,则在一个正电流脉冲序列流经字和数字线之后,器件的状态将被切换到’0’。在所存储的’0’状态上重复正电流脉冲序列,会将其写回至’1’。因此,为了能将存储元件写成所需状态,必须首先读出MRAM器件10的初始状态,并且将其与所要写入的状态进行比较。读出和比较可能需要附加的逻辑电路,包括用于存储信息的缓冲器和用于比较存储状态的比较器。从而,仅当所存储的状态与所要写入状态不同时才对MRAM器件10写入。这种方法的一个优点在于功耗降低,这是由于仅切换不同的位。使用触发写入方法的另一优点在于,仅需要单极性电压,从而可使用较小的N沟道晶体管来驱动MRAM器件。在本说明中,将区域97中的操作定义为“触发写入模式”。
两种写入方法都涉及在字线20与数字线30中提供电流,使得磁矩矢量53和57能够沿如前面所述两个最佳方向之一取向。为了充分说明这两种切换模式,现给出描述磁距矢量53,57和40随时间变化的具体示例。
现参考图5,图5说明了使用脉冲序列100将’1’写成’0’的触发写入模式。在该图中的时刻t0,磁距矢量53和57沿图2所示最佳方向取向。将该取向将定义为’1’。
在时刻t1,接通正字电流60,它致使Hw 80指向正y-方向。正Hw 80的作用将使近平衡反向对准的MRAM三层进行“翻转(FLOP)”,并变为与所施加磁场方向成近似90°的取向。铁磁层45与55之间的有限反铁磁交换相互作用将允许磁矩矢量53和57即刻朝磁场方向偏转一小角度,并且合成磁距矢量40将对分磁距矢量53与57之间夹角,并将与Hw 80对准。因此,磁距矢量53沿顺时针方向94旋转。由于合成磁矩矢量40是磁距矢量53与57的矢量和,磁距矢量57也沿顺时针方向94旋转。
在时刻t2,接通正数字电流70,它导致正HD 90。从而,合成磁矩矢量40同时由Hw 80指向正y-方向,由HD 90指向正x-方向,其作用是使有效磁距矢量40进一步沿顺时针方向94旋转,直至其通常指向正x-和正y-方向之间成45°角的取向。因此,磁距矢量53和57也沿顺时针方向94进一步旋转。
在时刻t3,切断字电流60,使得此时仅有HD 90指引合成磁矩矢量40,此时合成磁矩矢量40将沿正x-方向取向。两个磁距矢量53和57现在通常都将以通过其各向异性不易磁化轴不稳定点的角度取向。
在时刻t4,切断数字电流70,因此磁场力对合成磁矩矢量40不起作用。从而,磁距矢量53和57将沿其最接近的最佳方向取向,以使各向异性能量最小。在此情形中,磁距矢量53的最佳方向为相对正y-方向和正x-方向成45°角。该最佳方向也与时刻t0时磁距矢量53的初始方向成180°角,并将其定义为’0’。从而,MRAM器件10已被切换至’0’。应该理解,也可通过在字线20与数字线30中均使用负电流,使磁距矢量53,57和40沿逆时针方向96旋转而对MRAM器件10进行切换,不过所示仅出于说明目的。
现看图6,图6说明使用脉冲序列100将’0’写成’1’的触发写入模式。所示为在各个时刻t0,t1,t2,t3和t4时磁距矢量53和57以及合成磁矩矢量40,如前面所述,表示使用相同电流和磁场方向将MRAM器件10从’0’切换到’1’的状态的能力。从而,通过触发写入模式写入MRAM器件10的状态,其对应于图3中的区域97。
对于直接写入模式,假设磁距矢量53的幅值大于磁距矢量57,则磁距矢量40与磁距矢量53指向相同的方向,不过在零场中具有更小幅值。这种不平衡磁矩使偶极子能量破坏近平衡SAF的对称性,偶极子能量倾向于使总磁矩对准所施加的场。因此,对于给定电流极性,可以仅在一个方向发生切换。
现参看图7,图7表示使用脉冲序列100利用直接写入模式将’1’写成’0’的示例。此处同样地,存储状态最初为’1’,磁距矢量53的指向相对负x-和负y-方向成45°,磁距矢量57的指向相对正x-和正y-方向成45°。按照前面通过正字电流60和正数字电流70所述的脉冲序列,通过与前面所述触发写入模式相似的方式进行写入。注意,在时刻t1,磁矩再次“翻转”,但由于不平衡磁矩以及各向异性,最终角度偏离90°。在时刻t4之后,MRAM器件10已被切换至’0’状态,且合成磁矩40按所需与正x-和正y-方向成45°角取向。当将’0’写成’1’时会获得类似的结果,只是使用负字电流60和负数字电流70。
现参看图8,图8表示当新状态与已存储的状态相同时利用直接写入模式进行写入的示例。在此示例中,在MRAM器件10中已存储了’0’,且现在重复电流脉冲序列100以存储’0’。在时刻t1,磁距矢量53和57试图“翻转”,但由于不平衡磁矩必须与施加磁场相抗而起作用,从而削弱了旋转。因此,存在附加的能量势垒使以旋转脱离相反状态。在时刻t2,主磁矩53几乎与正x-轴对准,与距其初始各向异性方向成小于45°的角度。在时刻t3,磁场沿正x-轴取向。不是进一步顺时针地旋转,系统现在通过改变相对于所施加场对称的SAF磁矩来降低其能量。被动磁矩57越过x-轴,主磁矩53返回到接近其最初方向,系统获得稳定。因此,在时刻t4,当去除磁场时,在MRAM器件10中所存储的状态将保持’0’。该序列说明了在图3中如区域95所示的直接写入模式的机制。因此,一般而言,为写入’0’,需要在字线60和数字线70两者中流过正电流,相反,为写入’1’,需要在字线60和数字线70两者中流过负电流。
如果施加更大的场,最终,与翻转相关地,能量减少,并且剪取值(scissor)超过正阻止触发事件出现的不平衡磁矩的偶极子能量所产生的附加能量势垒。此时,将出现触发事件,切换如区域97所述。
可对应用直接写入模式的区域95进行扩展,即,可将触发模式区域97移至更高磁场,如果时刻t3和t4相同或尽可能接近相同的话。在此情形中,当接通字电流60时,磁场方向开始时相对于位各向异性轴成45°,然后,当接通数字电流70时,其移至平行于位各向异性轴的方向。该示例类似于典型的磁场施加序列。不过,在此基本上同时切断字电流60和数字电流70,使得磁场方向不再做任何旋转。因此,所施加的场必须足够大,使得通过接通字电流60和数字电流70致使合成磁矩矢量40已移过其不易磁化轴不稳定点。现在,由于磁场方向仅旋转45°,而不是以前的90°,从而更不可能出现触发写入模式事件。具有基本一致的衰退时间t3和t4的优点在于,对场上升时间t1和t2的次序不具有任何附加限制。从而,可按任何次序接通磁场,或还可使其基本一致。
由于只有在时刻t2和时刻t3之间接通字电流60和数字电流70的MRAM器件将切换状态,从而前述写入方法具有高度选择性。在图9和图10中说明了该特性。图9表示当断开字电流60并且接通数字电流70时的脉冲序列100。图10表示MRAM器件10的状态的相应行为。在时刻t0,磁距矢量53和57以及合成磁矩矢量40的取向如图2所示。在脉冲序列100中,在时刻t1,接通数字电流70。此时,HD 90将致使合成磁矩矢量40指向正x-方向。
由于字电流60从未接通,合成磁矩矢量53和57从未转过其各向异性不易磁化轴不稳定点。结果,当在时刻t3切断数字电流70时,磁距矢量53和57将重新将其定向在最接近的最佳方向,在此情形为时刻t0处的初始方向。因此,不会切换MRAM器件10的状态。应该理解,如果在与上述相似的时刻接通字电流60并且数字电流70不被接通,将出现同样的结果。该特性确保仅对阵列中的一个MRAM器件进行切换,而其他器件保持其初始状态。从而,避免无意的切换,并使位差错率最小。
对本领域技术人员而言,会易于想到此处所述实施例的多种改变和变型。在这些改变和变型并不偏离本发明实质的前提下,期望将它们包括在本发明的范围之内,并仅通过后面权利要求的合理解释进行评定。
以上通过如此清晰和简明的术语充分描述了本发明,从而本领域技术人员能够理解以及实现本发明,本发明权利要求为:

Claims (10)

1.一种切换磁电阻存储器件的方法,包括步骤:
提供与第一导体和第二导体邻近的磁电阻存储器元件,其中,磁电阻存储器元件包括通过隧道势垒分隔的第一磁区和第二磁区,第一磁区和第二磁区中的至少一个包括N个反铁磁耦合的铁磁材料层,其中,N为至少等于2的整数,且其中各层具有经过调整以提供写入模式的磁矩,而且第一和第二磁区中的每个具有邻近隧道势垒且在时刻t0取向在初始最佳方向的磁距矢量,并且其中该初始最佳方向相对于第一导体和第二导体成约45度角;
在时刻t1,接通流过第一导体的第一电流;
在时刻t2,接通流过第二导体的第二电流;
在时刻t3,切断流过第一导体的第一电流;和
在时刻t4,切断流过第二导体的第二电流,其中使时刻t0、t1、t2、t3和t4为t0<t1<t2<t3<t4,并且接近隧道势垒的磁距矢量中的一个沿不同于所述初始最佳方向的方向取向,并且其中第一导体和第二导体中的每个中的电流以相同极性进行脉冲从而写入一状态,并且第一导体和第二导体中的每个中的电流以该相同极性进行脉冲从而反转该状态。
2.如权利要求1所述的方法,其中:
第一磁区是栓固磁区并且第二磁区是自由磁区,自由磁区包括N个反铁磁耦合的铁磁材料层,该N个层限定一体积,而且其中第一和第二磁区之一的子层磁矩分数平衡比在大约0≤|Mbr|≤0.1的范围内。
3.一种磁电阻阵列,包括:
第一导体;
第二导体;
与第一和第二导体邻近的磁电阻器件,该磁电阻器件包括:
第一磁区;
隧道势垒;和
第二磁区,该第二磁区被隧道势垒与第一磁区分隔,第二磁区包括一多层结构,该多层结构具有沿着与所述第一和第二导体成约45度角的方向上的各向异性易磁化轴取向的磁矩,并且第二磁区的磁矩分数平衡比(Mbr)的量值在大约0≤|Mbr|≤0.1的范围内。
4.如权利要求3所述的磁电阻阵列,其中,通过以下方式存储信息:用第一导体上具有第一极性的第一电流和第二导体上具有第一极性的第二电流将要被写入的位位置从第一逻辑状态切换到第二逻辑状态,以及用第一导体上具有第一极性的第三电流和第二导体上具有第一极性的第四电流将要被写入的位位置从第二逻辑状态切换到第一逻辑状态,其中第一导体是数字线并且第二导体是字线。
5.如权利要求4所述的磁电阻阵列,还包括用于读取磁电阻阵列的初始状态并将该初始状态与磁电阻阵列中要存储的新状态进行比较,以及仅在新状态不同于初始状态的情况下响应该比较而对磁电阻阵列进行编程的电路。
6.如权利要求3所述的磁电阻阵列,其中:
第一导体是字线;
第二导体是数字线;
所述磁电阻器件与数字线和字线邻近;
第一磁区是栓固磁区;
第二磁区是自由磁区;
所述多层结构包括N个反铁磁耦合的铁磁材料层,其中,N为大于或等于2的整数,且其中该N个铁磁材料层限定一体积,N个铁磁材料层中的各层具有经过调整以提供写入模式的磁矩,而且其中自由和栓固磁区之一的子层磁矩分数平衡比在大约0≤|Mbr|≤0.1的范围内,且自由磁区具有接近隧道势垒且沿在t0时刻的初始最佳方向取向的磁距矢量;并且
该磁电阻阵列被配置为通过以下方式存储信息:在时刻t1向字线提供字线电流脉冲,并在时刻t3切断字线电流脉冲,而在时刻t2另外将数字线电流脉冲提供给数字线,并且在时刻t4切断数字线电流脉冲,其中t0<t1<t2<t3<t4,这导致在时刻t4时靠近隧道势垒的自由磁区的磁距矢量的取向不同于所述初始最佳方向。
7.如权利要求3所述的磁电阻阵列,其中:
第一导体是字线;
第二导体是数字线;并且
所述磁电阻器件被夹在字线和数字线之间。
8.如权利要求3所述的磁电阻阵列,其中所述磁矩是所述多层结构的多个磁矩的合成磁矩。
9.如权利要求3所述的磁电阻阵列,其中该多层结构是合成反铁磁层材料。
10.如权利要求3所述的磁电阻阵列,其中该多层结构包括N个反铁磁耦合的铁磁材料层,其中N为大于或等于2的整数。
CN028227050A 2001-10-16 2002-09-24 一种切换磁电阻存储器件的方法和磁电阻阵列 Expired - Lifetime CN1610949B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/978,859 2001-10-16
US09/978,859 US6545906B1 (en) 2001-10-16 2001-10-16 Method of writing to scalable magnetoresistance random access memory element
PCT/US2002/030437 WO2003034437A2 (en) 2001-10-16 2002-09-24 Writing to a mram element comprising a synthetic antiferromagnetic layer

Publications (2)

Publication Number Publication Date
CN1610949A CN1610949A (zh) 2005-04-27
CN1610949B true CN1610949B (zh) 2010-06-09

Family

ID=25526458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN028227050A Expired - Lifetime CN1610949B (zh) 2001-10-16 2002-09-24 一种切换磁电阻存储器件的方法和磁电阻阵列

Country Status (9)

Country Link
US (2) US6545906B1 (zh)
EP (1) EP1474807A2 (zh)
JP (1) JP4292239B2 (zh)
KR (1) KR100898875B1 (zh)
CN (1) CN1610949B (zh)
AU (1) AU2002327059A1 (zh)
HK (1) HK1075321A1 (zh)
TW (1) TW583666B (zh)
WO (1) WO2003034437A2 (zh)

Families Citing this family (308)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545906B1 (en) * 2001-10-16 2003-04-08 Motorola, Inc. Method of writing to scalable magnetoresistance random access memory element
US7390584B2 (en) * 2002-03-27 2008-06-24 Nve Corporation Spin dependent tunneling devices having reduced topological coupling
US6762952B2 (en) * 2002-05-01 2004-07-13 Hewlett-Packard Development Company, L.P. Minimizing errors in a magnetoresistive solid-state storage device
JP3808799B2 (ja) * 2002-05-15 2006-08-16 株式会社東芝 磁気ランダムアクセスメモリ
US6826077B2 (en) * 2002-05-15 2004-11-30 Hewlett-Packard Development Company, L.P. Magnetic random access memory with reduced parasitic currents
US6633498B1 (en) * 2002-06-18 2003-10-14 Motorola, Inc. Magnetoresistive random access memory with reduced switching field
US6816402B2 (en) * 2002-06-21 2004-11-09 Micron Technology, Inc. Row and column line geometries for improving MRAM write operations
US6683815B1 (en) * 2002-06-26 2004-01-27 Silicon Magnetic Systems Magnetic memory cell and method for assigning tunable writing currents
US7095646B2 (en) * 2002-07-17 2006-08-22 Freescale Semiconductor, Inc. Multi-state magnetoresistance random access cell with improved memory storage density
US7067862B2 (en) * 2002-08-02 2006-06-27 Unity Semiconductor Corporation Conductive memory device with conductive oxide electrodes
US6898112B2 (en) * 2002-12-18 2005-05-24 Freescale Semiconductor, Inc. Synthetic antiferromagnetic structure for magnetoelectronic devices
US6888743B2 (en) * 2002-12-27 2005-05-03 Freescale Semiconductor, Inc. MRAM architecture
US6909631B2 (en) * 2003-10-02 2005-06-21 Freescale Semiconductor, Inc. MRAM and methods for reading the MRAM
US6714442B1 (en) * 2003-01-17 2004-03-30 Motorola, Inc. MRAM architecture with a grounded write bit line and electrically isolated read bit line
KR100615600B1 (ko) * 2004-08-09 2006-08-25 삼성전자주식회사 고집적 자기램 소자 및 그 제조방법
US6952364B2 (en) * 2003-03-03 2005-10-04 Samsung Electronics Co., Ltd. Magnetic tunnel junction structures and methods of fabrication
WO2004084226A1 (en) 2003-03-20 2004-09-30 Koninklijke Philips Electronics N.V. Simultaneous reading from and writing to different memory cells
US6667899B1 (en) * 2003-03-27 2003-12-23 Motorola, Inc. Magnetic memory and method of bi-directional write current programming
US7648158B2 (en) 2003-04-03 2010-01-19 Takata Corporation Twin airbag
US6714446B1 (en) * 2003-05-13 2004-03-30 Motorola, Inc. Magnetoelectronics information device having a compound magnetic free layer
US6816431B1 (en) * 2003-05-28 2004-11-09 International Business Machines Corporation Magnetic random access memory using memory cells with rotated magnetic storage elements
US6778429B1 (en) 2003-06-02 2004-08-17 International Business Machines Corporation Write circuit for a magnetic random access memory
JP4863151B2 (ja) * 2003-06-23 2012-01-25 日本電気株式会社 磁気ランダム・アクセス・メモリとその製造方法
US8471263B2 (en) * 2003-06-24 2013-06-25 Sang-Yun Lee Information storage system which includes a bonded semiconductor structure
US6956763B2 (en) * 2003-06-27 2005-10-18 Freescale Semiconductor, Inc. MRAM element and methods for writing the MRAM element
EP1649468B1 (en) * 2003-07-22 2007-11-14 Nxp B.V. Compensating a long read time of a memory device in data comparison and write operations
US7911832B2 (en) 2003-08-19 2011-03-22 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US8755222B2 (en) 2003-08-19 2014-06-17 New York University Bipolar spin-transfer switching
US6967366B2 (en) 2003-08-25 2005-11-22 Freescale Semiconductor, Inc. Magnetoresistive random access memory with reduced switching field variation
US6956764B2 (en) * 2003-08-25 2005-10-18 Freescale Semiconductor, Inc. Method of writing to a multi-state magnetic random access memory cell
US6842365B1 (en) 2003-09-05 2005-01-11 Freescale Semiconductor, Inc. Write driver for a magnetoresistive memory
US6859388B1 (en) 2003-09-05 2005-02-22 Freescale Semiconductor, Inc. Circuit for write field disturbance cancellation in an MRAM and method of operation
JP4759911B2 (ja) * 2003-09-09 2011-08-31 ソニー株式会社 磁気記憶素子及び磁気メモリ
WO2005038812A1 (ja) * 2003-09-16 2005-04-28 Nec Corporation 半導体記憶装置及び半導体記憶装置のデータ書き込み方法
US7372722B2 (en) * 2003-09-29 2008-05-13 Samsung Electronics Co., Ltd. Methods of operating magnetic random access memory devices including heat-generating structures
KR100615089B1 (ko) * 2004-07-14 2006-08-23 삼성전자주식회사 낮은 구동 전류를 갖는 자기 램
KR100835275B1 (ko) * 2004-08-12 2008-06-05 삼성전자주식회사 스핀 주입 메카니즘을 사용하여 자기램 소자를 구동시키는방법들
KR100568512B1 (ko) * 2003-09-29 2006-04-07 삼성전자주식회사 열발생층을 갖는 자기열 램셀들 및 이를 구동시키는 방법들
US7369428B2 (en) * 2003-09-29 2008-05-06 Samsung Electronics Co., Ltd. Methods of operating a magnetic random access memory device and related devices and structures
JP2005129801A (ja) * 2003-10-24 2005-05-19 Sony Corp 磁気記憶素子及び磁気メモリ
JP4631267B2 (ja) * 2003-10-27 2011-02-16 ソニー株式会社 磁気記憶素子及び磁気メモリ
US7286421B2 (en) * 2003-10-28 2007-10-23 International Business Machines Corporation Active compensation for operating point drift in MRAM write operation
US7045838B2 (en) * 2003-10-31 2006-05-16 International Business Machines Corporation Techniques for coupling in semiconductor devices and magnetic device using these techniques
JP4765248B2 (ja) * 2003-11-10 2011-09-07 ソニー株式会社 磁気メモリ
US7602000B2 (en) * 2003-11-19 2009-10-13 International Business Machines Corporation Spin-current switched magnetic memory element suitable for circuit integration and method of fabricating the memory element
US7088608B2 (en) * 2003-12-16 2006-08-08 Freescale Semiconductor, Inc. Reducing power consumption during MRAM writes using multiple current levels
US7370260B2 (en) * 2003-12-16 2008-05-06 Freescale Semiconductor, Inc. MRAM having error correction code circuitry and method therefor
JP4581394B2 (ja) * 2003-12-22 2010-11-17 ソニー株式会社 磁気メモリ
JP3935150B2 (ja) * 2004-01-20 2007-06-20 株式会社東芝 磁気ランダムアクセスメモリ
JP4737437B2 (ja) * 2004-03-05 2011-08-03 日本電気株式会社 トグル型磁気ランダムアクセスメモリ
JP3809445B2 (ja) * 2004-03-05 2006-08-16 株式会社東芝 磁気抵抗ランダムアクセスメモリおよびその駆動方法
US7109539B2 (en) * 2004-03-09 2006-09-19 International Business Machines Corporation Multiple-bit magnetic random access memory cell employing adiabatic switching
JP3908746B2 (ja) * 2004-03-12 2007-04-25 株式会社東芝 磁気ランダムアクセスメモリ
JP2005260175A (ja) * 2004-03-15 2005-09-22 Sony Corp 磁気メモリ及びその記録方法
US7266486B2 (en) * 2004-03-23 2007-09-04 Freescale Semiconductor, Inc. Magnetoresistive random access memory simulation
US7414881B2 (en) * 2004-03-31 2008-08-19 Nec Corporation Magnetization direction control method and application thereof to MRAM
JP2005310840A (ja) * 2004-04-16 2005-11-04 Toshiba Corp 磁気ランダムアクセスメモリ
FR2869445B1 (fr) * 2004-04-26 2006-07-07 St Microelectronics Sa Element de memoire vive magnetique
US7274057B2 (en) * 2004-04-26 2007-09-25 International Business Machines Corporation Techniques for spin-flop switching with offset field
US7154798B2 (en) * 2004-04-27 2006-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. MRAM arrays and methods for writing and reading magnetic memory devices
US7635993B2 (en) * 2004-05-18 2009-12-22 Nxp B.V. Digital magnetic current sensor and logic
US7502248B2 (en) * 2004-05-21 2009-03-10 Samsung Electronics Co., Ltd. Multi-bit magnetic random access memory device
US7506236B2 (en) * 2004-05-28 2009-03-17 International Business Machines Corporation Techniques for operating semiconductor devices
US7102916B2 (en) * 2004-06-30 2006-09-05 International Business Machines Corporation Method and structure for selecting anisotropy axis angle of MRAM device for reduced power consumption
US7187576B2 (en) 2004-07-19 2007-03-06 Infineon Technologies Ag Read out scheme for several bits in a single MRAM soft layer
JP4460965B2 (ja) * 2004-07-22 2010-05-12 株式会社東芝 磁気ランダムアクセスメモリ
US7576956B2 (en) * 2004-07-26 2009-08-18 Grandis Inc. Magnetic tunnel junction having diffusion stop layer
US7098495B2 (en) * 2004-07-26 2006-08-29 Freescale Semiconducor, Inc. Magnetic tunnel junction element structures and methods for fabricating the same
KR100660539B1 (ko) * 2004-07-29 2006-12-22 삼성전자주식회사 자기 기억 소자 및 그 형성 방법
US7075807B2 (en) * 2004-08-18 2006-07-11 Infineon Technologies Ag Magnetic memory with static magnetic offset field
JP4868198B2 (ja) 2004-08-19 2012-02-01 日本電気株式会社 磁性メモリ
KR100568542B1 (ko) * 2004-08-19 2006-04-07 삼성전자주식회사 자기 램 소자의 기록방법
US7200032B2 (en) * 2004-08-20 2007-04-03 Infineon Technologies Ag MRAM with vertical storage element and field sensor
US7092284B2 (en) * 2004-08-20 2006-08-15 Infineon Technologies Ag MRAM with magnetic via for storage of information and field sensor
US7088612B2 (en) * 2004-08-20 2006-08-08 Infineon Technologies Ag MRAM with vertical storage element in two layer-arrangement and field sensor
US7916520B2 (en) * 2004-08-25 2011-03-29 Nec Corporation Memory cell and magnetic random access memory
JP4822126B2 (ja) * 2004-08-26 2011-11-24 日本電気株式会社 磁気抵抗素子及び磁気ランダムアクセスメモリ
JP2006086362A (ja) * 2004-09-16 2006-03-30 Toshiba Corp 磁気記憶装置
JP3962048B2 (ja) * 2004-09-28 2007-08-22 株式会社東芝 半導体メモリ
US8179711B2 (en) * 2004-10-26 2012-05-15 Samsung Electronics Co., Ltd. Semiconductor memory device with stacked memory cell and method of manufacturing the stacked memory cell
US20060092688A1 (en) * 2004-10-29 2006-05-04 International Business Machines Corporation Stacked magnetic devices
JP3959417B2 (ja) * 2004-10-29 2007-08-15 株式会社東芝 半導体メモリの読み出し回路
US6937497B1 (en) 2004-11-18 2005-08-30 Maglabs, Inc. Magnetic random access memory with stacked toggle memory cells
US6992910B1 (en) * 2004-11-18 2006-01-31 Maglabs, Inc. Magnetic random access memory with three or more stacked toggle memory cells and method for writing a selected cell
WO2006054469A1 (ja) * 2004-11-22 2006-05-26 Nec Corporation 強磁性膜、磁気抵抗素子、及び磁気ランダムアクセスメモリ
US7129098B2 (en) * 2004-11-24 2006-10-31 Freescale Semiconductor, Inc. Reduced power magnetoresistive random access memory elements
JP4388008B2 (ja) * 2004-11-30 2009-12-24 株式会社東芝 半導体記憶装置
US7200033B2 (en) * 2004-11-30 2007-04-03 Altis Semiconductor MRAM with coil for creating offset field
US7088611B2 (en) * 2004-11-30 2006-08-08 Infineon Technologies Ag MRAM with switchable ferromagnetic offset layer
JP2006156844A (ja) 2004-11-30 2006-06-15 Toshiba Corp 半導体記憶装置
DE602005022398D1 (de) 2004-11-30 2010-09-02 Toshiba Kk Anordnung der Schreiblinien in einer MRAM-Vorrichtung
WO2006059559A1 (ja) * 2004-12-01 2006-06-08 Nec Corporation 磁気ランダムアクセスメモリ、その動作方法及びその製造方法
JP2006165327A (ja) * 2004-12-08 2006-06-22 Toshiba Corp 磁気ランダムアクセスメモリ
JPWO2006062150A1 (ja) * 2004-12-10 2008-06-12 日本電気株式会社 磁気ランダムアクセスメモリ
JP4012196B2 (ja) * 2004-12-22 2007-11-21 株式会社東芝 磁気ランダムアクセスメモリのデータ書き込み方法
US7133309B2 (en) * 2005-01-10 2006-11-07 International Business Machines Corporation Method and structure for generating offset fields for use in MRAM devices
US7622784B2 (en) * 2005-01-10 2009-11-24 International Business Machines Corporation MRAM device with improved stack structure and offset field for low-power toggle mode writing
EP1684305B1 (en) * 2005-01-14 2011-05-11 Bundesrepublik Deutschland, vertr. durch das Bundesministerium f. Wirtschaft und Technologie, Magnetic memory device and method of magnetization reversal of the magnetization of at least one magnetic memory element
US20060171197A1 (en) * 2005-01-31 2006-08-03 Ulrich Klostermann Magnetoresistive memory element having a stacked structure
US7543211B2 (en) * 2005-01-31 2009-06-02 Everspin Technologies, Inc. Toggle memory burst
US7154771B2 (en) * 2005-02-09 2006-12-26 Infineon Technologies Ag Method of switching an MRAM cell comprising bidirectional current generation
WO2006085545A1 (ja) * 2005-02-09 2006-08-17 Nec Corporation トグル型磁気ランダムアクセスメモリ及びトグル型磁気ランダムアクセスメモリの書き込み方法
US7180113B2 (en) * 2005-02-10 2007-02-20 Infineon Technologies Ag Double-decker MRAM cell with rotated reference layer magnetizations
US7099186B1 (en) * 2005-02-10 2006-08-29 Infineon Technologies Ag Double-decker MRAM cells with scissor-state angled reference layer magnetic anisotropy and method for fabricating
JP5077802B2 (ja) * 2005-02-16 2012-11-21 日本電気株式会社 積層強磁性構造体、及び、mtj素子
US20080273381A1 (en) * 2005-03-01 2008-11-06 Siu-Tat Chui Method for Switching Random Access Memory Elements and Magnetic Element Structures
US20070263430A1 (en) * 2006-05-15 2007-11-15 Siu-Tat Chui Method for switching magnetic random access memory elements and magnetic element structures
US7102919B1 (en) * 2005-03-11 2006-09-05 Taiwan Semiconductor Manufacturing Co., Ltd. Methods and devices for determining writing current for memory cells
JP5181672B2 (ja) * 2005-03-29 2013-04-10 日本電気株式会社 磁気ランダムアクセスメモリ
US7298597B2 (en) * 2005-03-29 2007-11-20 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor based on spin accumulation effect with free layer stabilized by in-stack orthogonal magnetic coupling
JP2006294179A (ja) * 2005-04-14 2006-10-26 Renesas Technology Corp 不揮発性記憶装置
US7158407B2 (en) * 2005-04-29 2007-01-02 Freescale Semiconductor, Inc. Triple pulse method for MRAM toggle bit characterization
US7205596B2 (en) * 2005-04-29 2007-04-17 Infineon Technologies, Ag Adiabatic rotational switching memory element including a ferromagnetic decoupling layer
JP4877575B2 (ja) * 2005-05-19 2012-02-15 日本電気株式会社 磁気ランダムアクセスメモリ
US7453720B2 (en) * 2005-05-26 2008-11-18 Maglabs, Inc. Magnetic random access memory with stacked toggle memory cells having oppositely-directed easy-axis biasing
JP5051538B2 (ja) * 2005-06-03 2012-10-17 日本電気株式会社 Mram
JP2006344653A (ja) 2005-06-07 2006-12-21 Toshiba Corp 磁気ランダムアクセスメモリ
JP4911318B2 (ja) * 2005-08-02 2012-04-04 日本電気株式会社 磁気ランダムアクセスメモリ及びその動作方法
JP5050853B2 (ja) * 2005-08-02 2012-10-17 日本電気株式会社 Mram
KR100915975B1 (ko) * 2005-08-03 2009-09-10 인더스트리얼 테크놀로지 리서치 인스티튜트 저전류로 자기저항 랜덤 액세스 메모리의 자기 모멘트를전환하는 방법
US7420837B2 (en) * 2005-08-03 2008-09-02 Industrial Technology Research Institute Method for switching magnetic moment in magnetoresistive random access memory with low current
WO2007020823A1 (ja) * 2005-08-15 2007-02-22 Nec Corporation 磁気メモリセル、磁気ランダムアクセスメモリ、及び磁気ランダムアクセスメモリへのデータ読み書き方法
US7224601B2 (en) 2005-08-25 2007-05-29 Grandis Inc. Oscillating-field assisted spin torque switching of a magnetic tunnel junction memory element
JP5035620B2 (ja) * 2005-09-14 2012-09-26 日本電気株式会社 磁気ランダムアクセスメモリの波形整形回路
US7859034B2 (en) * 2005-09-20 2010-12-28 Grandis Inc. Magnetic devices having oxide antiferromagnetic layer next to free ferromagnetic layer
US7973349B2 (en) * 2005-09-20 2011-07-05 Grandis Inc. Magnetic device having multilayered free ferromagnetic layer
US7777261B2 (en) 2005-09-20 2010-08-17 Grandis Inc. Magnetic device having stabilized free ferromagnetic layer
JP2007087524A (ja) * 2005-09-22 2007-04-05 Renesas Technology Corp 不揮発性半導体記憶装置
US8089803B2 (en) * 2005-10-03 2012-01-03 Nec Corporation Magnetic random access memory and operating method of the same
JP5046189B2 (ja) * 2005-10-03 2012-10-10 日本電気株式会社 磁気ランダムアクセスメモリ
WO2007046350A1 (ja) * 2005-10-18 2007-04-26 Nec Corporation Mramの動作方法
WO2007046349A1 (ja) * 2005-10-18 2007-04-26 Nec Corporation Mram、及びその動作方法
US7352613B2 (en) * 2005-10-21 2008-04-01 Macronix International Co., Ltd. Magnetic memory device and methods for making a magnetic memory device
US7301801B2 (en) * 2005-10-28 2007-11-27 International Business Machines Corporation Tuned pinned layers for magnetic tunnel junctions with multicomponent free layers
US7569902B2 (en) * 2005-10-28 2009-08-04 Board Of Trustees Of The University Of Alabama Enhanced toggle-MRAM memory device
US7203089B1 (en) 2005-11-17 2007-04-10 Macronix International Co., Ltd. Systems and methods for a magnetic memory device that includes two word line transistors
US7352614B2 (en) * 2005-11-17 2008-04-01 Macronix International Co., Ltd. Systems and methods for reading and writing a magnetic memory device
US7257019B2 (en) * 2005-11-17 2007-08-14 Macronix International Co., Ltd. Systems and methods for a magnetic memory device that includes a single word line transistor
US7313043B2 (en) * 2005-11-29 2007-12-25 Altis Semiconductor Snc Magnetic Memory Array
JP5068016B2 (ja) 2005-11-30 2012-11-07 ルネサスエレクトロニクス株式会社 不揮発性記憶装置
US7280388B2 (en) * 2005-12-07 2007-10-09 Nahas Joseph J MRAM with a write driver and method therefor
US7206223B1 (en) 2005-12-07 2007-04-17 Freescale Semiconductor, Inc. MRAM memory with residual write field reset
US7430135B2 (en) * 2005-12-23 2008-09-30 Grandis Inc. Current-switched spin-transfer magnetic devices with reduced spin-transfer switching current density
TWI279802B (en) 2005-12-30 2007-04-21 Ind Tech Res Inst Memory structure and the write method
US7755153B2 (en) * 2006-01-13 2010-07-13 Macronix International Co. Ltd. Structure and method for a magnetic memory device with proximity writing
TWI312153B (en) * 2006-01-20 2009-07-11 Ind Tech Res Inst Power source for magnetic random access memory and magnetic random access memory using the same
US7463510B2 (en) * 2006-01-20 2008-12-09 Industrial Technology Research Institute High-bandwidth magnetoresistive random access memory devices
US7577017B2 (en) * 2006-01-20 2009-08-18 Industrial Technology Research Institute High-bandwidth magnetoresistive random access memory devices and methods of operation thereof
US7368301B2 (en) 2006-01-27 2008-05-06 Magic Technologies, Inc. Magnetic random access memory with selective toggle memory cells
US7280389B2 (en) * 2006-02-08 2007-10-09 Magic Technologies, Inc. Synthetic anti-ferromagnetic structure with non-magnetic spacer for MRAM applications
US20070187785A1 (en) * 2006-02-16 2007-08-16 Chien-Chung Hung Magnetic memory cell and manufacturing method thereof
TWI300224B (en) * 2006-02-21 2008-08-21 Ind Tech Res Inst Structure of magnetic memory cell and magnetic memory device
US7894249B2 (en) * 2006-02-27 2011-02-22 Nec Corporation Magnetoresistive element and magnetic random access memory
US20080055792A1 (en) * 2006-03-07 2008-03-06 Agency For Science, Technology And Research Memory cells and devices having magnetoresistive tunnel junction with guided magnetic moment switching and method
JP4406407B2 (ja) * 2006-03-13 2010-01-27 株式会社東芝 磁気ランダムアクセスメモリ
US7848137B2 (en) 2006-03-24 2010-12-07 Nec Corporation MRAM and data read/write method for MRAM
US20070246787A1 (en) * 2006-03-29 2007-10-25 Lien-Chang Wang On-plug magnetic tunnel junction devices based on spin torque transfer switching
JP2007273523A (ja) * 2006-03-30 2007-10-18 Tdk Corp 磁気メモリ及びスピン注入方法
TWI320929B (en) * 2006-04-18 2010-02-21 Ind Tech Res Inst Structure and access method for magnetic memory cell structure and circuit of magnetic memory
US7349243B2 (en) * 2006-04-20 2008-03-25 Taiwan Semiconductor Manufacturing Company, Ltd. 3-parameter switching technique for use in MRAM memory arrays
US20070247939A1 (en) * 2006-04-21 2007-10-25 Nahas Joseph J Mram array with reference cell row and methof of operation
TWI300225B (en) * 2006-04-28 2008-08-21 Ind Tech Res Inst Method for accessing data on magnetic memory
EP1863034B1 (en) * 2006-05-04 2011-01-05 Hitachi, Ltd. Magnetic memory device
US7728384B2 (en) * 2006-05-30 2010-06-01 Macronix International Co., Ltd. Magnetic random access memory using single crystal self-aligned diode
US8497538B2 (en) 2006-05-31 2013-07-30 Everspin Technologies, Inc. MRAM synthetic antiferromagnet structure
US7535069B2 (en) * 2006-06-14 2009-05-19 International Business Machines Corporation Magnetic tunnel junction with enhanced magnetic switching characteristics
JP4518049B2 (ja) * 2006-07-03 2010-08-04 ソニー株式会社 記憶装置
US7433225B2 (en) * 2006-07-06 2008-10-07 International Business Machines Corporation Scalable magnetic random access memory device
US7502249B1 (en) * 2006-07-17 2009-03-10 Grandis, Inc. Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements
US8693238B2 (en) * 2006-08-07 2014-04-08 Nec Corporation MRAM having variable word line drive potential
US7851840B2 (en) * 2006-09-13 2010-12-14 Grandis Inc. Devices and circuits based on magnetic tunnel junctions utilizing a multilayer barrier
US8477528B2 (en) * 2006-10-16 2013-07-02 Nec Corporation Magnetic memory cell and magnetic random access memory
JP2008117930A (ja) * 2006-11-02 2008-05-22 Sony Corp 記憶素子、メモリ
JP5146836B2 (ja) * 2006-12-06 2013-02-20 日本電気株式会社 磁気ランダムアクセスメモリ及びその製造方法
US7453740B2 (en) 2007-01-19 2008-11-18 International Business Machines Corporation Method and apparatus for initializing reference cells of a toggle switched MRAM device
TWI320930B (en) * 2007-01-29 2010-02-21 Ind Tech Res Inst Direct writing method on magnetic memory cell and magetic memory cell structure
US7719882B2 (en) * 2007-02-06 2010-05-18 Taiwan Semiconductor Manufacturing Company, Ltd. Advanced MRAM design
WO2008099626A1 (ja) 2007-02-13 2008-08-21 Nec Corporation 磁気抵抗効果素子、および磁気ランダムアクセスメモリ
TWI324344B (en) * 2007-02-16 2010-05-01 Ind Tech Res Inst Writing method on magnetic memory cell and magetic memory array structure
WO2008102650A1 (ja) 2007-02-21 2008-08-28 Nec Corporation 半導体記憶装置
JP4438806B2 (ja) * 2007-02-21 2010-03-24 ソニー株式会社 メモリ
TWI333208B (en) * 2007-03-26 2010-11-11 Ind Tech Res Inst Magnetic memory and method for manufacturing the same
US7599215B2 (en) * 2007-03-30 2009-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Magnetoresistive random access memory device with small-angle toggle write lines
JP4905866B2 (ja) * 2007-04-17 2012-03-28 日本電気株式会社 半導体記憶装置及びその動作方法
US7539047B2 (en) * 2007-05-08 2009-05-26 Honeywell International, Inc. MRAM cell with multiple storage elements
TWI333207B (en) * 2007-05-30 2010-11-11 Ind Tech Res Inst Magnetic memory cell with multiple-bit in stacked structure and magnetic memory device
US8416611B2 (en) 2007-06-25 2013-04-09 Nec Corporation Magnetoresistance effect element and magnetic random access memory
US7957179B2 (en) * 2007-06-27 2011-06-07 Grandis Inc. Magnetic shielding in magnetic multilayer structures
US20090034321A1 (en) 2007-08-01 2009-02-05 Honeywell International Inc. Magnetoresistive Element with a Biasing Layer
US8120127B2 (en) 2007-08-03 2012-02-21 Nec Corporation Magnetic random access memory and method of manufacturing the same
WO2009019947A1 (ja) * 2007-08-03 2009-02-12 Nec Corporation 磁壁ランダムアクセスメモリ
TWI415124B (zh) * 2007-08-09 2013-11-11 Ind Tech Res Inst 磁性隨機存取記憶體
TW200907964A (en) * 2007-08-09 2009-02-16 Ind Tech Res Inst Structure of magnetic memory cell and magnetic memory device
US7982275B2 (en) * 2007-08-22 2011-07-19 Grandis Inc. Magnetic element having low saturation magnetization
WO2009037910A1 (ja) * 2007-09-19 2009-03-26 Nec Corporation 磁気ランダムアクセスメモリ、その書き込み方法、及び磁気抵抗効果素子
US9812184B2 (en) 2007-10-31 2017-11-07 New York University Current induced spin-momentum transfer stack with dual insulating layers
US7596045B2 (en) * 2007-10-31 2009-09-29 International Business Machines Corporation Design structure for initializing reference cells of a toggle switched MRAM device
KR101237005B1 (ko) 2007-11-09 2013-02-26 삼성전자주식회사 저항체를 이용한 비휘발성 메모리 장치, 이를 포함하는메모리 시스템, 및 이의 구동 방법
KR101291721B1 (ko) * 2007-12-03 2013-07-31 삼성전자주식회사 저항체를 이용한 비휘발성 메모리 장치, 이를 포함하는메모리 시스템
TWI343055B (en) * 2007-12-10 2011-06-01 Ind Tech Res Inst Magnetic memory cell structure with thermal assistant and magnetic random access memory
KR101365683B1 (ko) * 2007-12-27 2014-02-20 삼성전자주식회사 가변 저항 메모리 장치, 그것의 플렉서블 프로그램 방법,그리고 그것을 포함하는 메모리 시스템
KR101424176B1 (ko) * 2008-03-21 2014-07-31 삼성전자주식회사 저항체를 이용한 비휘발성 메모리 장치, 이를 포함하는메모리 시스템
KR20090109345A (ko) * 2008-04-15 2009-10-20 삼성전자주식회사 저항체를 이용한 비휘발성 메모리 장치, 이를 포함하는메모리 시스템
US7894248B2 (en) * 2008-09-12 2011-02-22 Grandis Inc. Programmable and redundant circuitry based on magnetic tunnel junction (MTJ)
US7880209B2 (en) * 2008-10-09 2011-02-01 Seagate Technology Llc MRAM cells including coupled free ferromagnetic layers for stabilization
GB2465370A (en) * 2008-11-13 2010-05-19 Ingenia Holdings Magnetic data storage comprising a synthetic anti-ferromagnetic stack arranged to maintain solitons
KR20100058825A (ko) * 2008-11-25 2010-06-04 삼성전자주식회사 저항체를 이용한 반도체 장치, 이를 이용한 카드 또는 시스템 및 상기 반도체 장치의 구동 방법
JP2010135512A (ja) * 2008-12-03 2010-06-17 Sony Corp 抵抗変化型メモリデバイス
JP2010134986A (ja) * 2008-12-03 2010-06-17 Sony Corp 抵抗変化型メモリデバイス
US8184476B2 (en) * 2008-12-26 2012-05-22 Everspin Technologies, Inc. Random access memory architecture including midpoint reference
KR20100097407A (ko) * 2009-02-26 2010-09-03 삼성전자주식회사 저항성 메모리 장치, 이를 포함하는 메모리 시스템 및 저항성 메모리 장치의 프로그램 방법
KR20100107609A (ko) * 2009-03-26 2010-10-06 삼성전자주식회사 저항성 메모리 장치, 이를 포함하는 메모리 시스템 및 저항성 메모리 장치의 기입 방법
FR2946183B1 (fr) * 2009-05-27 2011-12-23 Commissariat Energie Atomique Dispositif magnetique a polarisation de spin.
JP2011008849A (ja) * 2009-06-24 2011-01-13 Sony Corp メモリ及び書き込み制御方法
US8411493B2 (en) 2009-10-30 2013-04-02 Honeywell International Inc. Selection device for a spin-torque transfer magnetic random access memory
JPWO2011065323A1 (ja) 2009-11-27 2013-04-11 日本電気株式会社 磁気抵抗効果素子、および磁気ランダムアクセスメモリ
US8411497B2 (en) 2010-05-05 2013-04-02 Grandis, Inc. Method and system for providing a magnetic field aligned spin transfer torque random access memory
GB201015497D0 (en) 2010-09-16 2010-10-27 Cambridge Entpr Ltd Magnetic data storage
GB201020727D0 (en) 2010-12-07 2011-01-19 Cambridge Entpr Ltd Magnetic structure
US8339843B2 (en) 2010-12-17 2012-12-25 Honeywell International Inc. Generating a temperature-compensated write current for a magnetic memory cell
US8467234B2 (en) 2011-02-08 2013-06-18 Crocus Technology Inc. Magnetic random access memory devices configured for self-referenced read operation
JP5686626B2 (ja) 2011-02-22 2015-03-18 ルネサスエレクトロニクス株式会社 磁気メモリ及びその製造方法
US8488372B2 (en) * 2011-06-10 2013-07-16 Crocus Technology Inc. Magnetic random access memory devices including multi-bit cells
US8576615B2 (en) 2011-06-10 2013-11-05 Crocus Technology Inc. Magnetic random access memory devices including multi-bit cells
US8525709B2 (en) * 2011-09-21 2013-09-03 Qualcomm Incorporated Systems and methods for designing ADC based on probabilistic switching of memories
US9082888B2 (en) 2012-10-17 2015-07-14 New York University Inverted orthogonal spin transfer layer stack
US9082950B2 (en) 2012-10-17 2015-07-14 New York University Increased magnetoresistance in an inverted orthogonal spin transfer layer stack
US8982613B2 (en) 2013-06-17 2015-03-17 New York University Scalable orthogonal spin transfer magnetic random access memory devices with reduced write error rates
US9263667B1 (en) 2014-07-25 2016-02-16 Spin Transfer Technologies, Inc. Method for manufacturing MTJ memory device
US9337412B2 (en) 2014-09-22 2016-05-10 Spin Transfer Technologies, Inc. Magnetic tunnel junction structure for MRAM device
US9384827B1 (en) 2015-03-05 2016-07-05 Northrop Grumman Systems Corporation Timing control in a quantum memory system
US9728712B2 (en) 2015-04-21 2017-08-08 Spin Transfer Technologies, Inc. Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US10468590B2 (en) 2015-04-21 2019-11-05 Spin Memory, Inc. High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory
WO2016198886A1 (en) 2015-06-10 2016-12-15 The University Of Nottingham Magnetic storage devices and methods
US9853206B2 (en) 2015-06-16 2017-12-26 Spin Transfer Technologies, Inc. Precessional spin current structure for MRAM
US9773974B2 (en) 2015-07-30 2017-09-26 Spin Transfer Technologies, Inc. Polishing stop layer(s) for processing arrays of semiconductor elements
US10163479B2 (en) 2015-08-14 2018-12-25 Spin Transfer Technologies, Inc. Method and apparatus for bipolar memory write-verify
US9741926B1 (en) 2016-01-28 2017-08-22 Spin Transfer Technologies, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer
US9721636B1 (en) 2016-01-28 2017-08-01 Western Digital Technologies, Inc. Method for controlled switching of a MRAM device
US10437491B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register
US10437723B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device
US10460781B2 (en) 2016-09-27 2019-10-29 Spin Memory, Inc. Memory device with a dual Y-multiplexer structure for performing two simultaneous operations on the same row of a memory bank
US10546625B2 (en) 2016-09-27 2020-01-28 Spin Memory, Inc. Method of optimizing write voltage based on error buffer occupancy
US10360964B2 (en) 2016-09-27 2019-07-23 Spin Memory, Inc. Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device
US11119910B2 (en) 2016-09-27 2021-09-14 Spin Memory, Inc. Heuristics for selecting subsegments for entry in and entry out operations in an error cache system with coarse and fine grain segments
US10446210B2 (en) 2016-09-27 2019-10-15 Spin Memory, Inc. Memory instruction pipeline with a pre-read stage for a write operation for reducing power consumption in a memory device that uses dynamic redundancy registers
US10366774B2 (en) 2016-09-27 2019-07-30 Spin Memory, Inc. Device with dynamic redundancy registers
US10628316B2 (en) 2016-09-27 2020-04-21 Spin Memory, Inc. Memory device with a plurality of memory banks where each memory bank is associated with a corresponding memory instruction pipeline and a dynamic redundancy register
US10818331B2 (en) 2016-09-27 2020-10-27 Spin Memory, Inc. Multi-chip module for MRAM devices with levels of dynamic redundancy registers
US11119936B2 (en) 2016-09-27 2021-09-14 Spin Memory, Inc. Error cache system with coarse and fine segments for power optimization
US10991410B2 (en) 2016-09-27 2021-04-27 Spin Memory, Inc. Bi-polar write scheme
US11151042B2 (en) 2016-09-27 2021-10-19 Integrated Silicon Solution, (Cayman) Inc. Error cache segmentation for power reduction
US10665777B2 (en) 2017-02-28 2020-05-26 Spin Memory, Inc. Precessional spin current structure with non-magnetic insertion layer for MRAM
US10672976B2 (en) 2017-02-28 2020-06-02 Spin Memory, Inc. Precessional spin current structure with high in-plane magnetization for MRAM
US10032978B1 (en) 2017-06-27 2018-07-24 Spin Transfer Technologies, Inc. MRAM with reduced stray magnetic fields
US10481976B2 (en) 2017-10-24 2019-11-19 Spin Memory, Inc. Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers
US10656994B2 (en) 2017-10-24 2020-05-19 Spin Memory, Inc. Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques
US10529439B2 (en) 2017-10-24 2020-01-07 Spin Memory, Inc. On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects
US10489245B2 (en) 2017-10-24 2019-11-26 Spin Memory, Inc. Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them
US10679685B2 (en) 2017-12-27 2020-06-09 Spin Memory, Inc. Shared bit line array architecture for magnetoresistive memory
US10891997B2 (en) 2017-12-28 2021-01-12 Spin Memory, Inc. Memory array with horizontal source line and a virtual source line
US10360962B1 (en) 2017-12-28 2019-07-23 Spin Memory, Inc. Memory array with individually trimmable sense amplifiers
US10395711B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Perpendicular source and bit lines for an MRAM array
US10516094B2 (en) 2017-12-28 2019-12-24 Spin Memory, Inc. Process for creating dense pillars using multiple exposures for MRAM fabrication
US10811594B2 (en) 2017-12-28 2020-10-20 Spin Memory, Inc. Process for hard mask development for MRAM pillar formation using photolithography
US10395712B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Memory array with horizontal source line and sacrificial bitline per virtual source
US10424726B2 (en) 2017-12-28 2019-09-24 Spin Memory, Inc. Process for improving photoresist pillar adhesion during MRAM fabrication
US10840439B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Magnetic tunnel junction (MTJ) fabrication methods and systems
US10270027B1 (en) 2017-12-29 2019-04-23 Spin Memory, Inc. Self-generating AC current assist in orthogonal STT-MRAM
US10840436B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Perpendicular magnetic anisotropy interface tunnel junction devices and methods of manufacture
US10199083B1 (en) 2017-12-29 2019-02-05 Spin Transfer Technologies, Inc. Three-terminal MRAM with ac write-assist for low read disturb
US10367139B2 (en) 2017-12-29 2019-07-30 Spin Memory, Inc. Methods of manufacturing magnetic tunnel junction devices
US10360961B1 (en) 2017-12-29 2019-07-23 Spin Memory, Inc. AC current pre-charge write-assist in orthogonal STT-MRAM
US10424723B2 (en) 2017-12-29 2019-09-24 Spin Memory, Inc. Magnetic tunnel junction devices including an optimization layer
US10886330B2 (en) 2017-12-29 2021-01-05 Spin Memory, Inc. Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch
US10784439B2 (en) 2017-12-29 2020-09-22 Spin Memory, Inc. Precessional spin current magnetic tunnel junction devices and methods of manufacture
US10546624B2 (en) 2017-12-29 2020-01-28 Spin Memory, Inc. Multi-port random access memory
US10236047B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM
US10236048B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. AC current write-assist in orthogonal STT-MRAM
US10236439B1 (en) 2017-12-30 2019-03-19 Spin Memory, Inc. Switching and stability control for perpendicular magnetic tunnel junction device
US10255962B1 (en) 2017-12-30 2019-04-09 Spin Memory, Inc. Microwave write-assist in orthogonal STT-MRAM
US10319900B1 (en) 2017-12-30 2019-06-11 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with precessional spin current layer having a modulated moment density
US10229724B1 (en) 2017-12-30 2019-03-12 Spin Memory, Inc. Microwave write-assist in series-interconnected orthogonal STT-MRAM devices
US10141499B1 (en) 2017-12-30 2018-11-27 Spin Transfer Technologies, Inc. Perpendicular magnetic tunnel junction device with offset precessional spin current layer
US10339993B1 (en) 2017-12-30 2019-07-02 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic assist layers for free layer switching
US10468588B2 (en) 2018-01-05 2019-11-05 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic enhancement layers for the precessional spin current magnetic layer
US10438995B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Devices including magnetic tunnel junctions integrated with selectors
US10438996B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Methods of fabricating magnetic tunnel junctions integrated with selectors
US10388861B1 (en) 2018-03-08 2019-08-20 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US10446744B2 (en) 2018-03-08 2019-10-15 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US10784437B2 (en) 2018-03-23 2020-09-22 Spin Memory, Inc. Three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US20190296228A1 (en) 2018-03-23 2019-09-26 Spin Transfer Technologies, Inc. Three-Dimensional Arrays with Magnetic Tunnel Junction Devices Including an Annular Free Magnetic Layer and a Planar Reference Magnetic Layer
US11107978B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Methods of manufacturing three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US11107974B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Magnetic tunnel junction devices including a free magnetic trench layer and a planar reference magnetic layer
US10411185B1 (en) 2018-05-30 2019-09-10 Spin Memory, Inc. Process for creating a high density magnetic tunnel junction array test platform
US10692569B2 (en) 2018-07-06 2020-06-23 Spin Memory, Inc. Read-out techniques for multi-bit cells
US10600478B2 (en) 2018-07-06 2020-03-24 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10559338B2 (en) 2018-07-06 2020-02-11 Spin Memory, Inc. Multi-bit cell read-out techniques
US10593396B2 (en) 2018-07-06 2020-03-17 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10447278B1 (en) 2018-07-17 2019-10-15 Northrop Grumman Systems Corporation JTL-based superconducting logic arrays and FPGAs
US10650875B2 (en) 2018-08-21 2020-05-12 Spin Memory, Inc. System for a wide temperature range nonvolatile memory
US10818346B2 (en) 2018-09-17 2020-10-27 Northrop Grumman Systems Corporation Quantizing loop memory cell system
US10699761B2 (en) 2018-09-18 2020-06-30 Spin Memory, Inc. Word line decoder memory architecture
US10971680B2 (en) 2018-10-01 2021-04-06 Spin Memory, Inc. Multi terminal device stack formation methods
US11621293B2 (en) 2018-10-01 2023-04-04 Integrated Silicon Solution, (Cayman) Inc. Multi terminal device stack systems and methods
US10580827B1 (en) 2018-11-16 2020-03-03 Spin Memory, Inc. Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching
US11107979B2 (en) 2018-12-28 2021-08-31 Spin Memory, Inc. Patterned silicide structures and methods of manufacture
US11024791B1 (en) 2020-01-27 2021-06-01 Northrop Grumman Systems Corporation Magnetically stabilized magnetic Josephson junction memory cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966323A (en) * 1997-12-18 1999-10-12 Motorola, Inc. Low switching field magnetoresistive tunneling junction for high density arrays
EP1061592A2 (en) * 1999-06-17 2000-12-20 Matsushita Electric Industrial Co., Ltd. Magneto-resistance effect element, and its use as memory element

Family Cites Families (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3163853A (en) 1958-02-20 1964-12-29 Sperry Rand Corp Magnetic storage thin film
US3448438A (en) * 1965-03-19 1969-06-03 Hughes Aircraft Co Thin film nondestructive memory
US3573760A (en) * 1968-12-16 1971-04-06 Ibm High density thin film memory and method of operation
US3638199A (en) * 1969-12-19 1972-01-25 Ibm Data-processing system with a storage having a plurality of simultaneously accessible locations
US3707706A (en) 1970-11-04 1972-12-26 Honeywell Inf Systems Multiple state memory
US3913080A (en) 1973-04-16 1975-10-14 Electronic Memories & Magnetic Multi-bit core storage
US4103315A (en) 1977-06-24 1978-07-25 International Business Machines Corporation Antiferromagnetic-ferromagnetic exchange bias films
US4356523A (en) 1980-06-09 1982-10-26 Ampex Corporation Narrow track magnetoresistive transducer assembly
US4351712A (en) 1980-12-10 1982-09-28 International Business Machines Corporation Low energy ion beam oxidation process
JPS5845619A (ja) 1981-09-09 1983-03-16 Hitachi Ltd 磁気抵抗効果型薄膜磁気ヘッド
JPS60500187A (ja) * 1982-12-30 1985-02-07 インタ−ナシヨナル・ビジネス・マシ−ンズ・コ−ポレ−シヨン データ処理システム
US4455626A (en) * 1983-03-21 1984-06-19 Honeywell Inc. Thin film memory with magnetoresistive read-out
US4663685A (en) * 1985-08-15 1987-05-05 International Business Machines Magnetoresistive read transducer having patterned longitudinal bias
US4780848A (en) 1986-06-03 1988-10-25 Honeywell Inc. Magnetoresistive memory with multi-layer storage cells having layers of limited thickness
US4731757A (en) * 1986-06-27 1988-03-15 Honeywell Inc. Magnetoresistive memory including thin film storage cells having tapered ends
US4751677A (en) * 1986-09-16 1988-06-14 Honeywell Inc. Differential arrangement magnetic memory cell
US4754431A (en) * 1987-01-28 1988-06-28 Honeywell Inc. Vialess shorting bars for magnetoresistive devices
US4825325A (en) * 1987-10-30 1989-04-25 International Business Machines Corporation Magnetoresistive read transducer assembly
US4884235A (en) 1988-07-19 1989-11-28 Thiele Alfred A Micromagnetic memory package
US5039655A (en) 1989-07-28 1991-08-13 Ampex Corporation Thin film memory device having superconductor keeper for eliminating magnetic domain creep
US5075247A (en) 1990-01-18 1991-12-24 Microunity Systems Engineering, Inc. Method of making hall effect semiconductor memory cell
US5173873A (en) 1990-06-28 1992-12-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High speed magneto-resistive random access memory
JP3483895B2 (ja) 1990-11-01 2004-01-06 株式会社東芝 磁気抵抗効果膜
JP2601022B2 (ja) * 1990-11-30 1997-04-16 日本電気株式会社 半導体装置の製造方法
US5159513A (en) 1991-02-08 1992-10-27 International Business Machines Corporation Magnetoresistive sensor based on the spin valve effect
US5284701A (en) * 1991-02-11 1994-02-08 Ashland Oil, Inc. Carbon fiber reinforced coatings
CA2060835A1 (en) 1991-02-11 1992-08-12 Romney R. Katti Integrated, non-volatile, high-speed analog random access memory
EP0507451B1 (en) 1991-03-06 1998-06-17 Mitsubishi Denki Kabushiki Kaisha Magnetic thin film memory device
KR930008856B1 (ko) 1991-05-15 1993-09-16 금성일렉트론 주식회사 혼합용액의 일정비율 혼합장치
JP3065736B2 (ja) 1991-10-01 2000-07-17 松下電器産業株式会社 半導体記憶装置
US5258884A (en) 1991-10-17 1993-11-02 International Business Machines Corporation Magnetoresistive read transducer containing a titanium and tungsten alloy spacer layer
US5268806A (en) 1992-01-21 1993-12-07 International Business Machines Corporation Magnetoresistive transducer having tantalum lead conductors
US5285339A (en) * 1992-02-28 1994-02-08 International Business Machines Corporation Magnetoresistive read transducer having improved bias profile
US5398200A (en) * 1992-03-02 1995-03-14 Motorola, Inc. Vertically formed semiconductor random access memory device
US5347485A (en) 1992-03-03 1994-09-13 Mitsubishi Denki Kabushiki Kaisha Magnetic thin film memory
US5329486A (en) 1992-04-24 1994-07-12 Motorola, Inc. Ferromagnetic memory device
US5448515A (en) 1992-09-02 1995-09-05 Mitsubishi Denki Kabushiki Kaisha Magnetic thin film memory and recording/reproduction method therefor
US5420819A (en) * 1992-09-24 1995-05-30 Nonvolatile Electronics, Incorporated Method for sensing data in a magnetoresistive memory using large fractions of memory cell films for data storage
US5617071A (en) * 1992-11-16 1997-04-01 Nonvolatile Electronics, Incorporated Magnetoresistive structure comprising ferromagnetic thin films and intermediate alloy layer having magnetic concentrator and shielding permeable masses
US5301079A (en) * 1992-11-17 1994-04-05 International Business Machines Corporation Current biased magnetoresistive spin valve sensor
US5348894A (en) 1993-01-27 1994-09-20 Texas Instruments Incorporated Method of forming electrical connections to high dielectric constant materials
US5343422A (en) 1993-02-23 1994-08-30 International Business Machines Corporation Nonvolatile magnetoresistive storage device using spin valve effect
US5396455A (en) * 1993-04-30 1995-03-07 International Business Machines Corporation Magnetic non-volatile random access memory
JP3179937B2 (ja) 1993-05-01 2001-06-25 株式会社東芝 半導体装置
US5349302A (en) 1993-05-13 1994-09-20 Honeywell Inc. Sense amplifier input stage for single array memory
JPH0766033A (ja) 1993-08-30 1995-03-10 Mitsubishi Electric Corp 磁気抵抗素子ならびにその磁気抵抗素子を用いた磁性薄膜メモリおよび磁気抵抗センサ
JP3223480B2 (ja) 1993-09-10 2001-10-29 本田技研工業株式会社 内燃エンジンの蒸発燃料処理装置
US5477482A (en) 1993-10-01 1995-12-19 The United States Of America As Represented By The Secretary Of The Navy Ultra high density, non-volatile ferromagnetic random access memory
US5408377A (en) * 1993-10-15 1995-04-18 International Business Machines Corporation Magnetoresistive sensor with improved ferromagnetic sensing layer and magnetic recording system using the sensor
US5832534A (en) 1994-01-04 1998-11-03 Intel Corporation Method and apparatus for maintaining cache coherency using a single controller for multiple cache memories
US5442508A (en) 1994-05-25 1995-08-15 Eastman Kodak Company Giant magnetoresistive reproduce head having dual magnetoresistive sensor
US5528440A (en) 1994-07-26 1996-06-18 International Business Machines Corporation Spin valve magnetoresistive element with longitudinal exchange biasing of end regions abutting the free layer, and magnetic recording system using the element
US5452243A (en) 1994-07-27 1995-09-19 Cypress Semiconductor Corporation Fully static CAM cells with low write power and methods of matching and writing to the same
WO1996011469A1 (en) 1994-10-05 1996-04-18 Philips Electronics N.V. Magnetic multilayer device including a resonant-tunneling double-barrier structure
US5567523A (en) 1994-10-19 1996-10-22 Kobe Steel Research Laboratories, Usa, Applied Electronics Center Magnetic recording medium comprising a carbon substrate, a silicon or aluminum nitride sub layer, and a barium hexaferrite magnetic layer
JP3714696B2 (ja) 1994-10-21 2005-11-09 富士通株式会社 半導体記憶装置
US6189077B1 (en) * 1994-12-15 2001-02-13 Texas Instruments Incorporated Two computer access circuit using address translation into common register file
US5496759A (en) * 1994-12-29 1996-03-05 Honeywell Inc. Highly producible magnetoresistive RAM process
US5534793A (en) 1995-01-24 1996-07-09 Texas Instruments Incorporated Parallel antifuse routing scheme (PARS) circuit and method for field programmable gate arrays
US5587943A (en) 1995-02-13 1996-12-24 Integrated Microtransducer Electronics Corporation Nonvolatile magnetoresistive memory with fully closed flux operation
US5541868A (en) 1995-02-21 1996-07-30 The United States Of America As Represented By The Secretary Of The Navy Annular GMR-based memory element
JPH08287422A (ja) 1995-04-07 1996-11-01 Alps Electric Co Ltd 磁気抵抗効果型ヘッド
US6169687B1 (en) * 1995-04-21 2001-01-02 Mark B. Johnson High density and speed magneto-electronic memory for use in computing system
US5585986A (en) 1995-05-15 1996-12-17 International Business Machines Corporation Digital magnetoresistive sensor based on the giant magnetoresistance effect
JP2778626B2 (ja) 1995-06-02 1998-07-23 日本電気株式会社 磁気抵抗効果膜及びその製造方法並びに磁気抵抗効果素子
US5702831A (en) 1995-11-06 1997-12-30 Motorola Ferromagnetic GMR material
JP3767930B2 (ja) 1995-11-13 2006-04-19 沖電気工業株式会社 情報の記録・再生方法および情報記憶装置
US5659499A (en) 1995-11-24 1997-08-19 Motorola Magnetic memory and method therefor
US5828578A (en) 1995-11-29 1998-10-27 S3 Incorporated Microprocessor with a large cache shared by redundant CPUs for increasing manufacturing yield
JP3293437B2 (ja) * 1995-12-19 2002-06-17 松下電器産業株式会社 磁気抵抗効果素子、磁気抵抗効果型ヘッド及びメモリー素子
US5569617A (en) 1995-12-21 1996-10-29 Honeywell Inc. Method of making integrated spacer for magnetoresistive RAM
US5712612A (en) * 1996-01-02 1998-01-27 Hewlett-Packard Company Tunneling ferrimagnetic magnetoresistive sensor
US5909345A (en) * 1996-02-22 1999-06-01 Matsushita Electric Industrial Co., Ltd. Magnetoresistive device and magnetoresistive head
US5635765A (en) * 1996-02-26 1997-06-03 Cypress Semiconductor Corporation Multi-layer gate structure
US5764567A (en) 1996-11-27 1998-06-09 International Business Machines Corporation Magnetic tunnel junction device with nonferromagnetic interface layer for improved magnetic field response
US5640343A (en) 1996-03-18 1997-06-17 International Business Machines Corporation Magnetic memory array using magnetic tunnel junction devices in the memory cells
US5650958A (en) 1996-03-18 1997-07-22 International Business Machines Corporation Magnetic tunnel junctions with controlled magnetic response
US5835314A (en) 1996-04-17 1998-11-10 Massachusetts Institute Of Technology Tunnel junction device for storage and switching of signals
JP3076244B2 (ja) 1996-06-04 2000-08-14 日本電気株式会社 多層配線の研磨方法
US5732016A (en) * 1996-07-02 1998-03-24 Motorola Memory cell structure in a magnetic random access memory and a method for fabricating thereof
US5905996A (en) * 1996-07-29 1999-05-18 Micron Technology, Inc. Combined cache tag and data memory architecture
US5745408A (en) * 1996-09-09 1998-04-28 Motorola, Inc. Multi-layer magnetic memory cell with low switching current
US5734605A (en) * 1996-09-10 1998-03-31 Motorola, Inc. Multi-layer magnetic tunneling junction memory cells
US5894447A (en) * 1996-09-26 1999-04-13 Kabushiki Kaisha Toshiba Semiconductor memory device including a particular memory cell block structure
US5861328A (en) * 1996-10-07 1999-01-19 Motorola, Inc. Method of fabricating GMR devices
US5699293A (en) 1996-10-09 1997-12-16 Motorola Method of operating a random access memory device having a plurality of pairs of memory cells as the memory device
US5757056A (en) * 1996-11-12 1998-05-26 University Of Delaware Multiple magnetic tunnel structures
US5801984A (en) 1996-11-27 1998-09-01 International Business Machines Corporation Magnetic tunnel junction device with ferromagnetic multilayer having fixed magnetic moment
US5729410A (en) * 1996-11-27 1998-03-17 International Business Machines Corporation Magnetic tunnel junction device with longitudinal biasing
US5748519A (en) * 1996-12-13 1998-05-05 Motorola, Inc. Method of selecting a memory cell in a magnetic random access memory device
US5761110A (en) 1996-12-23 1998-06-02 Lsi Logic Corporation Memory cell capable of storing more than two logic states by using programmable resistances
JP3325478B2 (ja) * 1996-12-27 2002-09-17 ワイケイケイ株式会社 磁気抵抗効果素子および磁気検出器並びにその使用方法
US5804485A (en) 1997-02-25 1998-09-08 Miracle Technology Co Ltd High density metal gate MOS fabrication process
US5902690A (en) * 1997-02-25 1999-05-11 Motorola, Inc. Stray magnetic shielding for a non-volatile MRAM
US5768181A (en) 1997-04-07 1998-06-16 Motorola, Inc. Magnetic device having multi-layer with insulating and conductive layers
US5898612A (en) * 1997-05-22 1999-04-27 Motorola, Inc. Magnetic memory cell with increased GMR ratio
US5774394A (en) 1997-05-22 1998-06-30 Motorola, Inc. Magnetic memory cell with increased GMR ratio
US5856008A (en) * 1997-06-05 1999-01-05 Lucent Technologies Inc. Article comprising magnetoresistive material
US5838608A (en) 1997-06-16 1998-11-17 Motorola, Inc. Multi-layer magnetic random access memory and method for fabricating thereof
US5804250A (en) 1997-07-28 1998-09-08 Eastman Kodak Company Method for fabricating stable magnetoresistive sensors
JPH1168192A (ja) * 1997-08-18 1999-03-09 Hitachi Ltd 多重トンネル接合、トンネル磁気抵抗効果素子、磁気センサおよび磁気記録センサヘッド
DE19744095A1 (de) * 1997-10-06 1999-04-15 Siemens Ag Speicherzellenanordnung
US5831920A (en) 1997-10-14 1998-11-03 Motorola, Inc. GMR device having a sense amplifier protected by a circuit for dissipating electric charges
JPH11134620A (ja) * 1997-10-30 1999-05-21 Nec Corp 強磁性トンネル接合素子センサ及びその製造方法
US6188549B1 (en) * 1997-12-10 2001-02-13 Read-Rite Corporation Magnetoresistive read/write head with high-performance gap layers
US6048739A (en) * 1997-12-18 2000-04-11 Honeywell Inc. Method of manufacturing a high density magnetic memory device
US5852574A (en) 1997-12-24 1998-12-22 Motorola, Inc. High density magnetoresistive random access memory device and operating method thereof
US6180444B1 (en) * 1998-02-18 2001-01-30 International Business Machines Corporation Semiconductor device having ultra-sharp P-N junction and method of manufacturing the same
US6069820A (en) * 1998-02-20 2000-05-30 Kabushiki Kaisha Toshiba Spin dependent conduction device
KR19990087860A (ko) * 1998-05-13 1999-12-27 이데이 노부유끼 자성물질을이용한소자및그어드레싱방법
US6055179A (en) * 1998-05-19 2000-04-25 Canon Kk Memory device utilizing giant magnetoresistance effect
US6175475B1 (en) * 1998-05-27 2001-01-16 International Business Machines Corporation Fully-pinned, flux-closed spin valve
DE19823826A1 (de) * 1998-05-28 1999-12-02 Burkhard Hillebrands MRAM-Speicher sowie Verfahren zum Lesen/Schreiben digitaler Information in einen derartigen Speicher
US6023395A (en) * 1998-05-29 2000-02-08 International Business Machines Corporation Magnetic tunnel junction magnetoresistive sensor with in-stack biasing
JP3234814B2 (ja) * 1998-06-30 2001-12-04 株式会社東芝 磁気抵抗効果素子、磁気ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
DE59904972D1 (de) * 1998-07-15 2003-05-15 Infineon Technologies Ag Speicherzellenanordnung, bei der ein elektrischer widerstand eines speicherelements eine information darstellt und durch ein magnetfeld beeinflussbar ist, und verfahren zu deren herstellung
US5953248A (en) * 1998-07-20 1999-09-14 Motorola, Inc. Low switching field magnetic tunneling junction for high density arrays
US6195240B1 (en) * 1998-07-31 2001-02-27 International Business Machines Corporation Spin valve head with diffusion barrier
US6072717A (en) * 1998-09-04 2000-06-06 Hewlett Packard Stabilized magnetic memory cell
US6172903B1 (en) * 1998-09-22 2001-01-09 Canon Kabushiki Kaisha Hybrid device, memory apparatus using such hybrid devices and information reading method
US6016269A (en) * 1998-09-30 2000-01-18 Motorola, Inc. Quantum random address memory with magnetic readout and/or nano-memory elements
TW440835B (en) * 1998-09-30 2001-06-16 Siemens Ag Magnetoresistive memory with raised interference security
US6178074B1 (en) * 1998-11-19 2001-01-23 International Business Machines Corporation Double tunnel junction with magnetoresistance enhancement layer
US6055178A (en) * 1998-12-18 2000-04-25 Motorola, Inc. Magnetic random access memory with a reference memory array
US6175515B1 (en) * 1998-12-31 2001-01-16 Honeywell International Inc. Vertically integrated magnetic memory
US6567246B1 (en) * 1999-03-02 2003-05-20 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect element and method for producing the same, and magnetoresistance effect type head, magnetic recording apparatus, and magnetoresistance effect memory element
US6191972B1 (en) * 1999-04-30 2001-02-20 Nec Corporation Magnetic random access memory circuit
JP3592140B2 (ja) * 1999-07-02 2004-11-24 Tdk株式会社 トンネル磁気抵抗効果型ヘッド
US6343032B1 (en) * 1999-07-07 2002-01-29 Iowa State University Research Foundation, Inc. Non-volatile spin dependent tunnel junction circuit
US6383574B1 (en) * 1999-07-23 2002-05-07 Headway Technologies, Inc. Ion implantation method for fabricating magnetoresistive (MR) sensor element
US6052302A (en) * 1999-09-27 2000-04-18 Motorola, Inc. Bit-wise conditional write method and system for an MRAM
US6169689B1 (en) * 1999-12-08 2001-01-02 Motorola, Inc. MTJ stacked cell memory sensing method and apparatus
JP2001184870A (ja) * 1999-12-27 2001-07-06 Mitsubishi Electric Corp 連想メモリ装置およびそれを用いた可変長符号復号装置
US6185143B1 (en) * 2000-02-04 2001-02-06 Hewlett-Packard Company Magnetic random access memory (MRAM) device including differential sense amplifiers
US6911710B2 (en) * 2000-03-09 2005-06-28 Hewlett-Packard Development Company, L.P. Multi-bit magnetic memory cells
US6211090B1 (en) * 2000-03-21 2001-04-03 Motorola, Inc. Method of fabricating flux concentrating layer for use with magnetoresistive random access memories
DE10113853B4 (de) * 2000-03-23 2009-08-06 Sharp K.K. Magnetspeicherelement und Magnetspeicher
US6205073B1 (en) * 2000-03-31 2001-03-20 Motorola, Inc. Current conveyor and method for readout of MTJ memories
JP3800925B2 (ja) * 2000-05-15 2006-07-26 日本電気株式会社 磁気ランダムアクセスメモリ回路
DE10036140C1 (de) * 2000-07-25 2001-12-20 Infineon Technologies Ag Verfahren und Anordnung zum zerstörungsfreien Auslesen von Speicherzellen eines MRAM-Speichers
JP4309075B2 (ja) * 2000-07-27 2009-08-05 株式会社東芝 磁気記憶装置
US6363007B1 (en) * 2000-08-14 2002-03-26 Micron Technology, Inc. Magneto-resistive memory with shared wordline and sense line
US6392922B1 (en) * 2000-08-14 2002-05-21 Micron Technology, Inc. Passivated magneto-resistive bit structure and passivation method therefor
US6538921B2 (en) * 2000-08-17 2003-03-25 Nve Corporation Circuit selection of magnetic memory cells and related cell structures
JP3075807U (ja) * 2000-08-23 2001-03-06 船井電機株式会社 磁気テープ装置
DE10041378C1 (de) * 2000-08-23 2002-05-16 Infineon Technologies Ag MRAM-Anordnung
DE10043440C2 (de) * 2000-09-04 2002-08-29 Infineon Technologies Ag Magnetoresistiver Speicher und Verfahren zu seinem Auslesen
JP4693292B2 (ja) * 2000-09-11 2011-06-01 株式会社東芝 強磁性トンネル接合素子およびその製造方法
JP4726290B2 (ja) * 2000-10-17 2011-07-20 ルネサスエレクトロニクス株式会社 半導体集積回路
US6538919B1 (en) * 2000-11-08 2003-03-25 International Business Machines Corporation Magnetic tunnel junctions using ferrimagnetic materials
US6351409B1 (en) * 2001-01-04 2002-02-26 Motorola, Inc. MRAM write apparatus and method
US6385109B1 (en) * 2001-01-30 2002-05-07 Motorola, Inc. Reference voltage generator for MRAM and method
US6515895B2 (en) * 2001-01-31 2003-02-04 Motorola, Inc. Non-volatile magnetic register
US6358756B1 (en) * 2001-02-07 2002-03-19 Micron Technology, Inc. Self-aligned, magnetoresistive random-access memory (MRAM) structure utilizing a spacer containment scheme
US6392923B1 (en) * 2001-02-27 2002-05-21 Motorola, Inc. Magnetoresistive midpoint generator and method
US6392924B1 (en) * 2001-04-06 2002-05-21 United Microelectronics Corp. Array for forming magnetoresistive random access memory with pseudo spin valve
WO2003019586A1 (en) * 2001-08-30 2003-03-06 Koninklijke Philips Electronics N.V. Magnetoresistive device and electronic device
US6545906B1 (en) * 2001-10-16 2003-04-08 Motorola, Inc. Method of writing to scalable magnetoresistance random access memory element
US6531723B1 (en) * 2001-10-16 2003-03-11 Motorola, Inc. Magnetoresistance random access memory for improved scalability
US6720597B2 (en) * 2001-11-13 2004-04-13 Motorola, Inc. Cladding of a conductive interconnect for programming a MRAM device using multiple magnetic layers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966323A (en) * 1997-12-18 1999-10-12 Motorola, Inc. Low switching field magnetoresistive tunneling junction for high density arrays
EP1061592A2 (en) * 1999-06-17 2000-12-20 Matsushita Electric Industrial Co., Ltd. Magneto-resistance effect element, and its use as memory element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
全文.

Also Published As

Publication number Publication date
JP4292239B2 (ja) 2009-07-08
US20030072174A1 (en) 2003-04-17
AU2002327059A1 (en) 2003-04-28
US20030128603A1 (en) 2003-07-10
CN1610949A (zh) 2005-04-27
WO2003034437A2 (en) 2003-04-24
KR100898875B1 (ko) 2009-05-25
JP2005505889A (ja) 2005-02-24
EP1474807A2 (en) 2004-11-10
TW583666B (en) 2004-04-11
US6545906B1 (en) 2003-04-08
HK1075321A1 (en) 2005-12-09
WO2003034437A3 (en) 2003-08-07
US7184300B2 (en) 2007-02-27
KR20040058244A (ko) 2004-07-03

Similar Documents

Publication Publication Date Title
CN1610949B (zh) 一种切换磁电阻存储器件的方法和磁电阻阵列
CN1729537B (zh) 具有减小的翻转磁场的磁致电阻随机存取存储器
US6654278B1 (en) Magnetoresistance random access memory
US7235408B2 (en) Synthetic antiferromagnetic structure for magnetoelectronic devices
US7502253B2 (en) Spin-transfer based MRAM with reduced critical current density
US6956764B2 (en) Method of writing to a multi-state magnetic random access memory cell
EP1805766B1 (en) Spin-transfer based mram using angular-dependent selectivity
US7932571B2 (en) Magnetic element having reduced current density
US6269018B1 (en) Magnetic random access memory using current through MTJ write mechanism
US20080055792A1 (en) Memory cells and devices having magnetoresistive tunnel junction with guided magnetic moment switching and method
JP2005510048A (ja) 縮小可能性が改良された磁気抵抗ランダムアクセスメモリ
KR100943112B1 (ko) 토글 메모리를 기록하는 회로 및 방법
US7206223B1 (en) MRAM memory with residual write field reset

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1075321

Country of ref document: HK

ASS Succession or assignment of patent right

Owner name: EVERSPIN TECHNOLOGIES, INC.

Free format text: FORMER OWNER: FREEDOM SEMICONDUCTORS CO.

Effective date: 20090403

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20090403

Address after: Arizona USA

Applicant after: EVERSPIN TECHNOLOGIES, Inc.

Address before: Texas in the United States

Applicant before: FreeScale Semiconductor

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1075321

Country of ref document: HK

CX01 Expiry of patent term

Granted publication date: 20100609

CX01 Expiry of patent term