CN1639871A - 高频半导体器件及制造方法 - Google Patents

高频半导体器件及制造方法 Download PDF

Info

Publication number
CN1639871A
CN1639871A CNA038048132A CN03804813A CN1639871A CN 1639871 A CN1639871 A CN 1639871A CN A038048132 A CNA038048132 A CN A038048132A CN 03804813 A CN03804813 A CN 03804813A CN 1639871 A CN1639871 A CN 1639871A
Authority
CN
China
Prior art keywords
dielectric layer
source area
semiconductor body
earth shield
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038048132A
Other languages
English (en)
Other versions
CN100356580C (zh
Inventor
克里斯托弗·P·卓根
韦恩·R·博格尔
丹尼尔·J·莱弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP USA Inc
Original Assignee
Freescale Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freescale Semiconductor Inc filed Critical Freescale Semiconductor Inc
Publication of CN1639871A publication Critical patent/CN1639871A/zh
Application granted granted Critical
Publication of CN100356580C publication Critical patent/CN100356580C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/4175Source or drain electrodes for field effect devices for lateral devices where the connection to the source or drain region is done through at least one part of the semiconductor substrate thickness, e.g. with connecting sink or with via-hole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Abstract

一种半导体器件(10),具有栅极(15)、源极(19)和漏极(20)以及用第一金属层构图形成的栅极总线(25)和第一接地屏蔽(24)以及用第二金属层构图形成的第二接地屏蔽(31)。第一接地屏蔽(24)和第二接地屏蔽(31)降低了器件(10)的电容,从而使其适用于高频应用和封装在塑料封装中。

Description

高频半导体器件及制造方法
技术领域
本发明一般涉及半导体器件,更具体地,涉及制造横向扩散金属氧化物半导体(LDMOS)器件的结构和方法。
背景技术
在例如蜂窝基站等应用中所用的半导体器件要求在高频下工作。对于这种类型的应用,由于射频(RF)LDMOS功率晶体管在从100MHz到约2GHz的频率范围内可以提供好的性能,所以受到关注。
由于散热的原因,RFLDMOS器件通常封装在昂贵的金属/陶瓷封装中。但是,由于塑料封装工艺成本较低,所以对于某些低到中功率应用,希望在塑料封装中封装这些器件。另外,塑料封装技术最近取得了改进,现在可以用来封装用在更高功率应用中的器件。
构成塑料封装的塑料注模化合物在器件内引起某些寄生电容增加,并使器件不能在器件的电容变得至关重要的GHz频率范围内使用。器件中的电容是寄生的,会降低RF性能,例如,功率增益和漏极效率。
发明内容
因此,需要提供一种LDMOS器件,特别是为高频应用设计的RF LDMOS器件,当封装在塑料封装中时具有低的电容。
根据本发明的一方面,提供一种制造半导体器件的方法,包括以下步骤:提供半导体本体;在半导体本体上形成栅极结构;在半导体本体中形成源极区和漏极区,其中源极区与栅极结构的一侧相邻,漏极区与栅极结构的另一侧相邻;在栅极结构上和与源极区相邻的半导体本体的一部分上形成第一介质层;形成电连接到源极区的源极接触;在与源极区相邻的第一介质层上形成栅极总线;在栅极总线和源极接触上形成第二介质层;以及在栅极总线上的第二介质层的一部分上形成金属层,并且电连接到源极接触。
根据本发明的另一方面,提供一种制造LDMOS器件的方法,包括以下步骤:提供半导体本体;在半导体本体上形成栅极结构;在半导体本体中形成源极区和漏极区,其中源极区与栅极结构的一侧相邻,漏极区与栅极结构的另一侧相邻;在栅极结构上和与源极区相邻的半导体本体的一部分上形成第一层间介质层;形成电连接到源极区并覆盖栅极结构的第一接地屏蔽;在与源极区相邻的第一介质层上形成栅极总线;在栅极总线和第一接地屏蔽上形成第二层间介质层;以及在栅极总线上的第二介质层的一部分上形成第二接地屏蔽,并且电连接到第一接地屏蔽上。
根据本发明的另一方面,提供一种半导体器件,包括:半导体本体;在半导体本体上的栅极结构;在半导体本体中的源极区和漏极区,其中源极区与栅极结构的一侧相邻,漏极区与栅极结构的另一侧相邻;在栅极结构上和与源极区相邻的半导体本体的一部分上的第一介质层;源极接触电连接到源极区;在与源极区相邻的第一介质层上的栅极总线;在栅极总线和源极接触上的第二介质层;以及在栅极总线上的第二介质层的一部分上的金属层,并且电连接到源极接触上。
附图说明
图1示出了在根据本发明的制造的开始阶段器件的一部分的剖面图;
图2示出了在根据本发明进一步处理图1的器件的剖面图;
图3示出了在根据本发明进一步处理图2的器件的剖面图;以及
图4示出了图3的器件的顶部布局图。
具体实施方式
通常,本发明提供形成即使密封在塑料封装中也具有较低电容的半导体器件的设计和方法,在高频应用中特别有用。具体地,利用第一和第二接地屏蔽的横向扩散金属氧化物半导体(LDMOS)器件设计提供低寄生电容。
图1示出了在根据本发明的制造的开始阶段器件10的实施例的一部分的放大剖面图。描述和示出了LDMOS器件的简化形式,以便将注意力集中在本发明的新颖特性上,包括栅极总线以及在第一金属层中形成的接地屏蔽和在第二金属层中形成的接地屏蔽的设计,如在下面更详细介绍的那样。在属于本发明的相同受让人,Motorola,Inc.,的Costa等人发表的美国专利No.5,578,860中介绍了没有本发明的新颖特性的形成LDMOS器件的结构和工艺,并且引入作为参考。
仍然参考图1,器件10包括半导体本体11。半导体本体11最好为P型硅材料,并且一般包括P+掺杂的衬底12和在P+掺杂的衬底12上形成的轻掺杂P外延层13。通过光刻、离子注入和扩散/退火技术在P掺杂的外延层13中至少到达P+掺杂的衬底12形成吸收区(sinker region)14。吸收区14是重掺杂的(P+型),从而形成到源极区19的背侧连接(从P+掺杂的衬底12的外表面)的低阻通路(将在下面介绍)。
然后,在半导体本体11上形成栅极结构15。为了方便说明,以高度简化的方式示出了栅极结构15。栅极结构15由栅极介质层和栅极电极(没有单独示出)构成。最好,栅极电极包括重掺杂多晶半导体层和在多晶半导体层上形成的栅极欧姆或金属层。最好,栅极金属层由钨/硅合金构成,但是,其它材料也是合适的,包括钛、氮化钛、钼等。多晶半导体层一般为N型掺杂。
然后在器件10上形成并构图掩模层或光致抗蚀剂层17,留下形成都是N型掺杂区的源极区19和漏极区20的开口。最好,通过光致抗蚀剂17的开口在半导体本体11中选择性的离子注入砷形成源极区19和漏极区20。离子注入之后通常是退火工艺。栅极结构15的一部分也作为掩模,从而所形成的源极区19自对准栅极结构15的一侧。在形成源极区19的栅极结构15的另一侧的半导体本体11中形成漏极区20。
图2示出了进一步处理的图1的器件。这里,已经去掉了光致抗蚀剂17,在器件10的上表面上形成第一层间介质层(ILD0层)22,并用在源极区19和漏极区20上的开口构图,如图2所示。在本发明中,ILD0层22的一部分留在源极区19的一部分上和吸收区14上。常规光致抗蚀剂和蚀刻技术用来提供在ILD0层22中的开口。
最好,ILD0层22由硅酸盐玻璃层构成。具体的,硅酸盐玻璃层由首先淀积的未掺杂的硅酸盐玻璃(USG)、在USG上淀积的磷硅酸盐玻璃(PSG)和在PSG上淀积的第二层USG,USG/PSG/USG的总厚度在从3000到20000埃的范围内。使用常规化学气相淀积(CVD)技术淀积USG/PSG/USG层。使用PSG层用于积聚硅酸盐玻璃中存在的任何杂质。
仍然参考图2,在器件10的表面形成第一欧姆或金属层,并构图,以提供第一接地屏蔽24、栅极总线25和第一漏极接触26。最好,第一金属层的厚度在从1.0到1.5微米的范围内。第一金属层通常包括铝、铝合金或多层金属化物质,例如钛-钨合金层接着是铝-铜合金层。
例如,包括第一接地屏蔽24、栅极总线25和漏极接触26的第一金属层由铝或铝合金,例如,铝铜钨合金(AlCuW)构成,以提供低电阻率的金属化物质。或者,第一金属层由750到3000埃的钛-钨(TiW)阻挡金属层和在TiW层上的至少1.0微米的铝合金(例如,AlCu)层构成。最好,第一金属层的总厚度在5000到30000埃之间。
最好,常规溅射技术用来形成第一金属层。光致抗蚀剂和蚀刻技术用来限定源极接触或第一接地屏蔽24、栅极总线25和第一漏极接触26。
源极接触或第一接地屏蔽24与源极区19电接触。第一接地屏蔽24覆盖栅极结构15,减小在漏极区20(包括第一漏极接触26和第二漏极接触33,如图3所示和介绍)和栅极结构15之间的寄生电容。在本实施例中,形成第一接地屏蔽24覆盖栅极结构15并在ILD0层22上。但是,可以在ILD0层22的一部分上形成第一接地屏蔽24,并且不延伸到栅极结构15上,仅作为源极接触24。第一接地屏蔽24覆盖栅极结构15并不是实现本发明的益处所必需的,因为将形成第二接地屏蔽31,如下面参考图3所讨论的。在栅极结构15的指状物之间的ILD0层22上形成栅极总线25。每个漏极接触26与漏极区20电接触。
现在参考图3,在ILD0层22、栅极总线25、第一接地屏蔽24和漏极接触26上形成第二层间介质层(ILD1层)29。ILD1层29最好由厚度在0.5到4.0微米范围内的二氧化硅(等离子体增强的CVD(PECVD)二氧化硅是合适的)构成。希望ILD1层29平坦,所以最好在两步中淀积二氧化硅,在两次淀积之间具有平坦化步骤。
仍然参考图3,是用常规光刻和蚀刻技术在ILD1层29中形成接触开口或过孔。在ILD1层29上和在ILD1层29中的接触开口或过孔中形成第二欧姆或金属层,并构图以定义第二接地屏蔽31和第二漏极接触33。最好,第二金属层由铝或铝合金构成,更优选厚度在大约5000到60000埃范围内的AlCuW合金。AlCuW金属化物质对电迁移有关的失效提供增强保护。
形成第二接地屏蔽31覆盖栅极总线25和源极区19,并且电连接到第一接地屏蔽24。第二接地屏蔽31覆盖栅极总线25,从而进一步降低漏-栅极电容。用第一金属层(而不是第二金属层)形成栅极总线25允许在栅极总线25上形成的第二接地屏蔽31进一步降低器件的电容。第二漏极接触33电连接到第一漏极接触26,并且形成键合焊盘区。
现在参考图4,示出了图3的顶部布局图,可以看到如何在栅极结构15的指状物之间形成栅极总线25,并且平行于栅极结构15的指状物延伸。栅极总线25在接触区27周期性地电连接到栅极结构15,以便栅极电阻(Rg)保持足够低,从而不降低器件10的功率增益。
现在重新参考图3,通过在器件10上形成钝化层35最终完成器件10的处理。钝化层35最好由磷硅酸盐玻璃(PSG)和在PSG层上组合形成的PECVD二氧化硅/氮化硅膜构成。随后,使用常规封装技术将器件10封装在塑料封装37中。塑料封装37由注模化合物构成。应当注意,在第二源极接触/第二接地屏蔽31和漏极接触33之间形成塑料封装37的注模化合物。构成塑料封装37的塑料对漏极区20(包括第一漏极接触26和第二漏极接触33)与栅极总线25之间的电容有贡献。
虽然只示出了LDMOS的一部分,但是,应当理解,引入多个上述结构的器件形成LDMOS器件。通常,以交替的源极区19和漏极区20相互交错方式设计LDMOS结构10。栅极结构15和漏极区20的指状物长度可以为300到1000微米。此外,LDMOS器件可以与无源器件(例如,电阻、电容和电感)和其它有源器件(例如,逻辑器件)集成在一起,并且这种器件也在本发明的范围内。
此外,虽然上面介绍了N沟道LDMOS结构,但是根据本发明的结构和方法也支持N和P型掺杂剂变换的P沟道LDMOS结构。
现在,应当理解,提供了在塑料封装中具有较低电容的LDMOS器件的结构和方法,特别有利于高频应用。该结构和方法利用由第一金属层定义的栅极总线25和第一接地屏蔽24以及由覆盖栅极总线25的第二金属层定义的第二接地屏蔽31。第一接地屏蔽24和第二接地屏蔽31起减小栅-漏极电容的作用。本发明的LDMOS在高频应用中提供好的性能,并且比封装在常规金属/陶瓷封装中的LDMOS器件显著降低成本。
由此,提供完全满足上述优点的LDMOS器件的设计和工艺。虽然参考特定说明的实施例介绍和说明了本发明,但是,这些示例性实施例并不是要限定本发明。本领域的技术人员应当认识到,可以不脱离本发明的精神进行改变和修改。因此,落入附带的权利要求书及其等价物的范围内的所有这种改变和修改都包括在本发明中。

Claims (12)

1.一种制造半导体器件的方法,包括以下步骤:
提供半导体本体;
在半导体本体上形成栅极结构;
在半导体本体中形成源极区和漏极区,其中源极区与栅极结构的一侧相邻,漏极区与栅极结构的另一侧相邻;
在栅极结构上和与源极区相邻的半导体本体的一部分上形成第一介质层;
形成电连接到源极区的源极接触;
在与源极区相邻的第一介质层上形成栅极总线;
在栅极总线和源极接触上形成第二介质层;以及
在栅极总线上的第二介质层的一部分上形成金属层,并且金属层电连接到源极接触。
2.根据权利要求1的方法,其中形成第一介质层的步骤包括形成由硅酸盐玻璃层构成的第一介质层。
3.根据权利要求1的方法,其中形成源极接触的步骤还包括源极接触提供第一接地屏蔽,以减小在栅极结构和漏极区之间的电容。
4.根据权利要求1的方法,其中形成源极接触和形成栅极总线的步骤包括由相同的金属化层形成源极接触和栅极总线。
5.根据权利要求1的方法,其中形成金属层的步骤还包括金属层提供第二接地屏蔽,以减小在栅极总线和漏极区之间的电容。
6.根据权利要求1的方法,其中形成源极接触的步骤包括形成第一接地屏蔽,形成金属层的步骤包括形成第二接地屏蔽。
7.根据权利要求1的方法,还包括在塑料封装中封装半导体本体的步骤。
8.一种制造LDMOS器件的方法,包括以下步骤:
提供半导体本体;
在半导体本体上形成栅极结构;
在半导体本体中形成源极区和漏极区,其中源极区与栅极结构的一侧相邻,漏极区与栅极结构的另一侧相邻;
在栅极结构上和与源极区相邻的半导体本体的一部分上形成第一层间介质层;
形成电连接到源极区并覆盖栅极结构的第一接地屏蔽;
在与源极区相邻的第一介质层上形成栅极总线;
在栅极总线和第一接地屏蔽上形成第二层间介质层;以及
在栅极总线上的第二介质层的一部分上形成第二接地屏蔽,并且第二接地屏蔽电连接到第一接地屏蔽上。
9.一种半导体器件,包括:
半导体本体;
在半导体本体上的栅极结构;
在半导体本体中的源极区和漏极区,其中源极区与栅极结构的一侧相邻,漏极区与栅极结构的另一侧相邻;
在栅极结构上和与源极区相邻的半导体本体的一部分上的第一介质层;
电连接到源极区的源极接触;
在与源极区相邻的第一介质层上的栅极总线;
在栅极总线和源极接触上的第二介质层;以及
在栅极总线上的第二介质层的一部分上的金属层,并且金属层电连接到源极接触上。
10.根据权利要求9的器件,还包括塑料封装半导体器件。
11.根据权利要求9的器件,其中源极接触为第一接地屏蔽,第一接地屏蔽减小了栅极结构和漏极区之间的电容。
12.根据权利要求9的器件,其中金属层为第二接地屏蔽,第二接地屏蔽减小了栅极总线和漏极区之间的电容。
CNB038048132A 2002-02-28 2003-02-19 高频半导体器件及制造方法 Expired - Fee Related CN100356580C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/086,061 US6744117B2 (en) 2002-02-28 2002-02-28 High frequency semiconductor device and method of manufacture
US10/086,061 2002-02-28

Publications (2)

Publication Number Publication Date
CN1639871A true CN1639871A (zh) 2005-07-13
CN100356580C CN100356580C (zh) 2007-12-19

Family

ID=27753784

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038048132A Expired - Fee Related CN100356580C (zh) 2002-02-28 2003-02-19 高频半导体器件及制造方法

Country Status (7)

Country Link
US (1) US6744117B2 (zh)
EP (1) EP1479110A1 (zh)
JP (1) JP2005519474A (zh)
KR (1) KR100968058B1 (zh)
CN (1) CN100356580C (zh)
AU (1) AU2003211162A1 (zh)
WO (1) WO2003075354A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102184911A (zh) * 2011-04-08 2011-09-14 昆山华太电子科技有限公司 大功率高频器件密勒寄生电容屏蔽结构
CN104241368A (zh) * 2013-06-18 2014-12-24 国际商业机器公司 横向扩散的金属氧化物半导体(ldmos)
CN106601722A (zh) * 2015-10-16 2017-04-26 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法和电子装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE522576C2 (sv) * 2001-03-09 2004-02-17 Ericsson Telefon Ab L M Effekt-LDMOS-transistor för radiofrekvens
DE10219116A1 (de) * 2002-04-29 2003-11-13 Infineon Technologies Ag Integrierte Schaltungsanordnung mit Verbindungslagen sowie zugehörige Herstellungsverfahren
CN100555661C (zh) * 2003-08-27 2009-10-28 Nxp股份有限公司 包括ldmos晶体管的电子器件
SE0302809D0 (sv) * 2003-10-24 2003-10-24 Infineon Technologies Ag High frequency power transistor device, integrated circuit, and fabrication method thereof
SE0302810D0 (sv) * 2003-10-24 2003-10-24 Infineon Technologies Ag Monolithically integrated circuit comprising a thin film resistor, and fabrication method thereof
US7026204B2 (en) * 2004-03-24 2006-04-11 Freescale Semiconductor, Inc. Transistor with reduced gate-to-source capacitance and method therefor
US20050274985A1 (en) * 2004-05-26 2005-12-15 Adlerstein Michael G RF decoupled field plate for FETs
US7307314B2 (en) * 2004-06-16 2007-12-11 Cree Microwave Llc LDMOS transistor with improved gate shield
US20060049464A1 (en) 2004-09-03 2006-03-09 Rao G R Mohan Semiconductor devices with graded dopant regions
EP1717850A1 (en) * 2005-04-29 2006-11-02 STMicroelectronics S.r.l. Method of manufacturing a lateral power MOS transistor
US7432133B2 (en) * 2005-10-24 2008-10-07 Freescale Semiconductor, Inc. Plastic packaged device with die interface layer
US20070090545A1 (en) * 2005-10-24 2007-04-26 Condie Brian W Semiconductor device with improved encapsulation
US7435625B2 (en) * 2005-10-24 2008-10-14 Freescale Semiconductor, Inc. Semiconductor device with reduced package cross-talk and loss
US20070200233A1 (en) * 2005-12-14 2007-08-30 Taiwan Semiconductor Manufacturing Co., Ltd. Bond pad structures with reduced coupling noise
US7368668B2 (en) * 2006-02-03 2008-05-06 Freescale Semiconductor Inc. Ground shields for semiconductors
KR100764930B1 (ko) * 2006-02-16 2007-10-09 충북대학교 산학협력단 고주파 집적 회로 장치 및 그 제조 방법
US20080258263A1 (en) * 2007-04-20 2008-10-23 Harry Yue Gee High Current Steering ESD Protection Zener Diode And Method
EP2269219B1 (en) * 2008-04-15 2012-01-25 Nxp B.V. High frequency field-effect transistor
US8212321B2 (en) * 2009-10-30 2012-07-03 Freescale Semiconductor, Inc. Semiconductor device with feedback control
EP2383786B1 (en) 2010-04-29 2018-08-15 Ampleon Netherlands B.V. Semiconductor transistor comprising two electrically conductive shield elements
US8906773B2 (en) * 2012-12-12 2014-12-09 Freescale Semiconductor, Inc. Integrated circuits including integrated passive devices and methods of manufacture thereof
KR102122593B1 (ko) * 2013-10-22 2020-06-15 삼성전자주식회사 반도체 소자
US9449969B1 (en) * 2015-06-03 2016-09-20 Futurewei Technologies, Inc. Device and method for a high isolation switch
JP6540528B2 (ja) 2016-02-04 2019-07-10 三菱電機株式会社 半導体装置及びその製造方法
US9899484B1 (en) * 2016-12-30 2018-02-20 Texas Instruments Incorporated Transistor with source field plates under gate runner layers
US10236573B2 (en) * 2017-06-20 2019-03-19 Qualcomm Incorporated On-chip coupling capacitor with patterned radio frequency shielding structure for lower loss
WO2022000269A1 (en) * 2020-06-30 2022-01-06 Innoscience (Zhuhai) Technology Co., Ltd. Semiconductor device and fabrication method thereof
US20220102522A1 (en) * 2020-09-25 2022-03-31 Intel Corporation Low resistance and reduced reactivity approaches for fabricating contacts and the resulting structures

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111069A (en) * 1975-03-26 1976-10-01 Hitachi Ltd Semiconductor device
JPS61168253A (ja) * 1985-01-19 1986-07-29 Sharp Corp 高耐圧mos電界効果半導体装置
US4805138A (en) * 1985-08-23 1989-02-14 Texas Instruments Incorporated An unerasable eprom cell
US4984200A (en) * 1987-11-30 1991-01-08 Hitachi, Ltd. Semiconductor circuit device having a plurality of SRAM type memory cell arrangement
JPH0777239B2 (ja) * 1988-09-22 1995-08-16 日本電気株式会社 浮遊ゲート型不揮発性半導体記憶装置
US5665991A (en) 1992-03-13 1997-09-09 Texas Instruments Incorporated Device having current ballasting and busing over active area using a multi-level conductor process
US5468984A (en) * 1994-11-02 1995-11-21 Texas Instruments Incorporated ESD protection structure using LDMOS diodes with thick copper interconnect
US6150722A (en) 1994-11-02 2000-11-21 Texas Instruments Incorporated Ldmos transistor with thick copper interconnect
JPH08172189A (ja) * 1994-12-20 1996-07-02 Nippondenso Co Ltd 高耐圧mos型電界効果トランジスタ
US5578860A (en) * 1995-05-01 1996-11-26 Motorola, Inc. Monolithic high frequency integrated circuit structure having a grounded source configuration
US5940721A (en) * 1995-10-11 1999-08-17 International Rectifier Corporation Termination structure for semiconductor devices and process for manufacture thereof
WO1998041071A1 (en) 1997-03-11 1998-09-17 Xemod, Inc. Hybrid module assembling method and apparatus
US5912490A (en) * 1997-08-04 1999-06-15 Spectrian MOSFET having buried shield plate for reduced gate/drain capacitance
US6614088B1 (en) * 2000-02-18 2003-09-02 James D. Beasom Breakdown improvement method and sturcture for lateral DMOS device
JP4322414B2 (ja) * 2000-09-19 2009-09-02 株式会社ルネサステクノロジ 半導体装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102184911A (zh) * 2011-04-08 2011-09-14 昆山华太电子科技有限公司 大功率高频器件密勒寄生电容屏蔽结构
CN104241368A (zh) * 2013-06-18 2014-12-24 国际商业机器公司 横向扩散的金属氧化物半导体(ldmos)
CN104241368B (zh) * 2013-06-18 2018-04-24 格芯公司 横向扩散的金属氧化物半导体(ldmos)
CN106601722A (zh) * 2015-10-16 2017-04-26 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法和电子装置

Also Published As

Publication number Publication date
CN100356580C (zh) 2007-12-19
KR20040087325A (ko) 2004-10-13
US6744117B2 (en) 2004-06-01
EP1479110A1 (en) 2004-11-24
AU2003211162A1 (en) 2003-09-16
WO2003075354A1 (en) 2003-09-12
KR100968058B1 (ko) 2010-07-08
JP2005519474A (ja) 2005-06-30
US20030160324A1 (en) 2003-08-28

Similar Documents

Publication Publication Date Title
CN100356580C (zh) 高频半导体器件及制造方法
US9614066B2 (en) Semiconductor device provided with an IE type trench IGBT
US11158557B2 (en) Semiconductor device with a passivation layer and method for producing thereof
US7138690B2 (en) Shielding structure for use in a metal-oxide-semiconductor device
US8357973B2 (en) Inverted-trench grounded-source FET structure with trenched source body short electrode
CN1126174C (zh) 单片高频集成电路及其制造方法
EP2465141B1 (en) Gallium nitride microwave and power switching transistors with matrix layout
US6521923B1 (en) Microwave field effect transistor structure on silicon carbide substrate
US8698234B2 (en) Electronic device with connecting structure
US20070007593A1 (en) Metal-oxide-semiconductor device with enhanced source electrode
US9111689B2 (en) Vertical interdigitated semiconductor capacitor
CN106469751B (zh) 半导体器件及其制作方法
US20160351668A1 (en) Stripe-Shaped Electrode Structure Including a Main Portion with a Field Electrode and an End Portion Terminating the Electrode Structure
US6803269B2 (en) High performance varactor diodes
WO2019147556A1 (en) Integrated trench capacitor formed in an epitaxial layer
CN1612356A (zh) 垂直dmos晶体管装置、集成电路及其制造方法
CN116504759B (zh) 一种半导体器件及其制备方法
KR101298425B1 (ko) 고성능 션트 커패시터를 구비하는 rf 전력 트랜지스터 디바이스 및 그 방법
US20040238854A1 (en) Field effect transistor
CN1261984A (zh) 双极功率晶体管及其制造方法
CN114078961A (zh) 包括第一沟槽结构和第二沟槽结构的功率半导体器件
US6608362B1 (en) Method and device for reducing capacitive and magnetic effects from a substrate by using a schottky diode under passive components
EP4092724A1 (en) Semiconductor die with a vertical power transistor device
CN1934703A (zh) 用于射频应用的单片集成电路
CN117616572A (zh) 半导体装置及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: FISICAL SEMICONDUCTOR INC.

Free format text: FORMER NAME: FREEDOM SEMICONDUCTOR CORP.

CP01 Change in the name or title of a patent holder

Address after: Texas in the United States

Patentee after: FREESCALE SEMICONDUCTOR, Inc.

Address before: Texas in the United States

Patentee before: FreeScale Semiconductor

CP01 Change in the name or title of a patent holder

Address after: Texas in the United States

Patentee after: NXP USA, Inc.

Address before: Texas in the United States

Patentee before: FREESCALE SEMICONDUCTOR, Inc.

CP01 Change in the name or title of a patent holder
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071219

Termination date: 20210219

CF01 Termination of patent right due to non-payment of annual fee