CN1738195A - 高频放大电路及使用该电路的移动通信终端 - Google Patents

高频放大电路及使用该电路的移动通信终端 Download PDF

Info

Publication number
CN1738195A
CN1738195A CNA2005100846425A CN200510084642A CN1738195A CN 1738195 A CN1738195 A CN 1738195A CN A2005100846425 A CNA2005100846425 A CN A2005100846425A CN 200510084642 A CN200510084642 A CN 200510084642A CN 1738195 A CN1738195 A CN 1738195A
Authority
CN
China
Prior art keywords
terminal
circuit
reference voltage
field
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005100846425A
Other languages
English (en)
Inventor
中山雅央
高木恒洋
稻森正彦
本吉要
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1738195A publication Critical patent/CN1738195A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0035Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements
    • H03G1/007Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements using FET type devices

Abstract

增益控制电路12包括作为可变电阻器工作的FET 41。将施加到栅极控制端子23的控制电压VC提供给FET 41的栅极。将由参考电压电路13获得的参考电压Vref1提供给FET 41的源极和漏极。控制参考电压Vref1以便补偿FET 41的阈值电压的变化。FET 41的电阻值根据控制电压VC变化,并且因此高频放大电路10的增益也连续变化。

Description

高频放大电路及使用该电路的移动通信终端
技术领域
本发明涉及高频放大电路和使用该电路的移动通信终端,并且尤为具体地涉及在移动通信终端的发射部件的高频电路模块等中设置的高频放大电路以及使用该电路的移动通信终端,其中所述高频放大电路用于根据给定的控制电压来执行增益控制。
背景技术
近年来,在移动通信领域中,可兼容于多种通信系统的组合蜂窝电话终端正在成为主流移动通信终端。这种组合蜂窝电话终端的例子可兼容于PDC(个人数字蜂窝)系统和W-CDMA(宽带码分多址)系统。所述PDC系统具有的优点在于提供宽服务区,而W-CDMA系统具有的优点在于提供高数据通信率。可兼容于这两种系统的组合蜂窝电话终端具有这两种系统的优点,并因此被期望在将来快速地推广。除了这种终端外,现在正在研究使用W-CDMA系统的可兼容于多个频段的通信系统。
这种移动通信终端将具有不同频率的多个信号用作载波,并且因此包括与各个频率相对应的多个高频电路模块(参见下面所述的图2)。同时,为了减小移动通信终端的大小,考虑的重点是减少衬底上的元件数目,并因此减小高频电路模块的大小。
图30是示出可兼容于多个通信系统的移动通信终端中包括的常规高频放大电路的结构的方框图。在图30中,匹配电路901、904和906是用于执行阻抗变换的阻抗匹配电路。将从信号输入端子911输入的高频信号通过匹配电路901输入到增益控制电路902。增益控制电路902根据施加到增益控制端子913的控制电压VC来衰减输入信号,并输出衰减后的信号。通过放大器903对从增益控制电路902输出的输出信号进行放大。通过匹配电路904将从放大器903输出的输出信号输入到放大器905,并由放大器905对该输出信号进行放大。通过匹配电路906将从放大器905输出的输出信号从信号输出端子912输出。通过利用D/A变换器将一个数字控制信号变换为模拟信号来产生施加到增益控制端子913的控制电压VC,其中所述数字控制信号是从控制部件(未示出)输出的。
图31是示出图30所示的高频放大电路中的控制电压和输出功率之间的关系的曲线图,其中所述关系是在输入功率稳定的情况下获得的。如图31所示,当控制电压VC低于VL时,输出功率大约固定为PL,当控制电压VC高于VH时,输出功率大约固定为PH,并且当控制电压VC在等于或高于VL和等于或低于VH时,根据控制电压VC来连续变化。
通过使用具有此种特性的高频放大电路,可以控制移动通信终端的发射功率。例如,对于由PDC系统代表的时分多址系统,在移动通信终端和基站之间进行突发通信。因此,如图32所示,在移动通信终端和基站之间传输的信号的功率,在通信期间为高,而在非通信期间为低。通过在通信期间向高频放大电路的增益控制端子913(图30)提供第一控制电压以及在非通信期间提供低于第一控制电压的第二控制电压可以容易地产生这种传输信号。
在上述移动通信终端的发射部件的高频电路模块中包含的增益控制电路是通过使用例如MESFET(金属半导体场效应晶体管)来配置。在包含FET的增益控制电路中,利用作为可变电阻器工作的FET来执行增益控制。通常已知的包含FET的增益控制电路例如在日本特开平专利公开No.10-256853中进行了介绍。
图33是示出在日本特开平专利公开No.10-256853中描述的常规增益控制电路920的电路图。在图33中示出的增益控制电路920包括用于衰减控制的电阻器921、922和FET 923,并且用作可变衰减电路。如图33所示,电阻器921设置在信号输入端子931和信号输出端子932之间。信号输入端子931还与电阻器922的一端相连,并且电阻器922的另一端与正电源924相连。FET 923与电阻器921并联设置。电阻器921靠近信号输入端子931的一端与FET 923的源极相连,电阻器921靠近信号输出端子932的一端与FET 923的漏极相连。FET 923的栅极通过电阻器925与衰减控制端子933相连。控制电压VC被施加到衰减控制端子933,以调整增益控制电路920中的衰减。
下文中,电源924的电压值被表示为Vref,FET 923的阈值电压被表示为Vth,施加到衰减控制端子933的电压被表示为VC,而FET923的栅极、源极和漏极上的电位分别表示为Vg、Vs和Vd。FET 923处于断开状态(即,源极和漏极之间的电阻值为高阻态的状态)时的控制电压VC的最大值被表示为VC(off)。FET 923处于导通状态(即,源极和漏极之间的电阻值为低阻态的状态)时的控制电压VC的最小值被表示为VC(on)。VC(off)和VC(on)之间的差值被表示为Vw。
当FET 923正好处于断开状态(即,当如果栅极的电位变得高于当前值,那么FET 923将不处于断开状态时),栅极和源极的电位具有由公式(1)表示的关系。
    Vg-Vs=Vth                  (1)
由于电阻器921、922和925的压降被忽略,利用电源924的电压值Vref和VC(off)通过公式(2)到(4)来表示FET 923的各端子的电位。
    Vg=VC(off)                 (2)
    Vs=Vref                    (3)
    Vd=Vref                   (4)
通过使用公式(2)和(3)来替换公式(1),使用电压VC(off)来获得公式(5)。由公式(6)来表示VC(on)。
    VC(off)=Vref+Vth          (5)
    VC(on)=Vref+Vth+Vw        (6)
根据公式(2)到(5),可以明白的是,由FET 923的阈值电压Vth和电源924的电压值Vref来确定当FET 923正好处于断开状态时FET 923的各端子上的电位。
在图33中所示的常规增益控制电路中,在电源924的电压值Vref固定的情况下改变控制电压VC,从而使得FET923的栅极和源极之间的电位改变,并且FET 923的源极和漏极之间的导通电阻值改变。在这个行为中,信号输入端931和信号输出端932之间的衰减根据控制电压VC变化。因此,可以根据控制电压VC来执行增益控制。
然而,上述常规增益控制电路具有下述问题。如上所述,利用常规增益控制电路来实现公式(5)。然而,当由于例如生产过程中的不一致性或工作温度变化造成FET 923的阈值电压Vth变化时,FET 923正好处于断开状态时的控制电压VC(off)变化。由于这个原因,对于常规增益控制电路,当由于例如生产过程中的不一致性或工作温度变化造成FET 923的阈值电压变化时,FET 923中的高频信号的衰减变化,并且因此高频放大电路的增益变化。
另外,对于常规增益控制电路,利用(i)当FET 923处于断开状态时FET 923的源极和漏极之间的导通电阻和(ii)当FET 923处于导通状态时的导通电阻之间的差值来确定动态范围。为了扩大该动态范围,需要提高控制电压的分辨度,这使得将具有高输出电压分辨度的D/A变换器连接到增益控制端成为必须。这扩大了D/A变换器的电路规模,并因此增加了衰减的控制参数,从而使控制电路更加复杂。
发明内容
因此,本发明的一个目的是提供一种由例如生产过程中的不一致性或工作温度变化引起的FET的阈值电压的变化对增益施加的影响减小的高频放大电路,一种具有更广的增益控制范围同时防止控制电路增大或复杂化的高频放大电路,以及一种使用这种高频放大电路的移动通信终端。
本发明具有下述特点以获得上述目的。
根据本发明的高频放大电路包括一个端子组,该端子组包括向其输入待放大的高频信号的信号输入端子,用于输出放大后的高频信号的信号输出端子,向其施加控制电压的增益控制端子,以及向其施加参考电压的参考电压端子;放大器,设置在信号输入端子和信号输出端子之间,用于放大输入的高频信号;增益控制电路,设置在信号输入端子和信号输出端子之间且与放大器串联,用于根据施加到增益控制端子上的控制电压来改变输入的高频信号的衰减;以及参考电压电路,用于根据施加到参考电压端子的参考电压来产生内部参考电压,并将所产生的内部参考电压提供给增益控制电路。所述增益控制电路包括至少一个用于在其栅极接收控制电压的第一场效应晶体管,所述增益控制电路的电阻值根据给定的控制电压而改变。所述参考电压电路包括其阈值电压基本上等于所述至少一个第一场效应晶体管的阈值电压的第二场效应晶体管,该第二场效应晶体管被设置来利用阈值电压产生相对于参考电压变化的内部参考电压。所述增益控制电路利用连续改变的所述至少一个第一场效应晶体管的电阻值来连续改变输入的高频信号的衰减。参考电压电路将内部参考电压提供给所述至少一个第一场效应晶体管的源极和/或漏极,由此抵消由所述至少一个第一场效应晶体管的阈值电压对增益控制电路中的高频信号的衰减的变化施加的影响。
在这种情况下,所述高频放大电路还包括设置在信号输入端子和接地端子之间的衰减电路,或设置在信号输出端子和接地端子之间的衰减电路。或者,所述高频放大电路还包括设置在信号输入端子和接地端子之间的衰减电路,以及设置在信号输出端子和接地端子之间的衰减电路。所述衰减电路可以包括彼此串联的电阻器和电容器。
所述增益控制电路还可以包括连接到所述至少一个第一场效应晶体管的源极和漏极的电阻器。
或者,所述增益控制电路可以包括设置在增益控制端子和接地端子之间的控制电压分压电路,用于分压控制电压以获得多个电压;多个彼此串联的第一场效应晶体管,并且其中每个的栅极上施加有通过控制电压分压电路获得的电压;以及多个电阻器,其与所述多个第一场效应晶体管的源极和漏极相连。
所述参考电压电路可以包括在参考电压端子和接地端子之间设置的参考电压分压电路,用于分压所述参考电压;设置在参考电压端子和所述第二场效应晶体管的漏极之间的电阻器;以及设置在接地端子和所述第二场效应晶体管的源极之间的电阻器。优选地,在通过参考电压分压电路获得的电压被施加给所述第二场效应晶体管的栅极的情况下,第二场效应晶体管的漏极或源极上的电位被作为内部参考电压输出。
或者,根据本发明的高频放大电路包括一个端子组,该端子组包括向其输入待放大的高频信号的信号输入端子,用于输出放大后的高频信号的信号输出端子,向其施加控制电压的增益控制端子,以及向其施加参考电压的参考电压端子;放大器,设置在信号输入端子和信号输出端子之间,用于放大输入的高频信号;增益控制电路,设置在信号输入端子和信号输出端子之间且与放大器串联,用于根据施加到增益控制端子上的控制电压来改变输入高频信号的衰减;以及参考电压电路,用于根据施加到参考电压端子的参考电压来产生内部参考电压,并将所产生的内部参考电压提供给增益控制电路。所述增益控制电路包括用于在其栅极接收控制电压的第一场效应晶体管,所述增益控制电路的电阻值根据给定的控制电压而改变。所述参考电压电路包括多个第二场效应晶体管,用于利用该第二场效应晶体管的阈值电压产生相对于参考电压变化的电压;以及分压电路,用于分压所产生的电压。所述增益控制电路利用连续改变的所述第一场效应晶体管的电阻值来连续改变输入的高频信号的衰减。参考电压电路将由分压电路获得的电压提供给所述第一场效应晶体管的源极和/或漏极作为内部参考电压,由此抵消由所述第一场效应晶体管的阈值电压对增益控制电路中的高频信号的衰减的变化施加的影响。
在这种情况下,所述增益控制电路还可以包括连接到所述第一场效应晶体管的源极和漏极的电阻器。所述参考电压电路可以包括设置在参考电压端子和接地端子之间的参考电压分压电路,用于分压所述参考电压;以及设置在参考电压端子和接地端子之间且彼此并联的两个第二场效应晶体管,作为所述多个第二场效应晶体管。在所述两个第二场效应晶体管中,一个第二场效应晶体管可以被配置成使得通过参考电压分压电路获得的电压被施加到该第二场效应晶体管的栅极,第一电阻器设置在该第二场效应晶体管的漏极和参考电压端子之间,并且第二电阻器被设置在该第二场效应晶体管的源极和接地端子之间。另一个第二场效应晶体管可以被配置成使得该第二场效应晶体管的栅极连接到该一个第二场效应晶体管的源极,第三电阻器设置在该另一个第二场效应晶体管的漏极和参考电压端子之间,并且设置彼此串联连接的第四电阻器和第五电阻器作为该另一个第二场效应晶体管的源极和接地端子之间的分压电路。第四电阻器和第五电阻器之间的电位可以作为内部参考电压被输出。
或者,根据本发明的高频放大电路包括一个端子组,该端子组包括分别向其输入待放大的第一和第二高频信号的第一和第二信号输入端子,用于分别输出放大后的高频信号的第一和第二信号输出端子,向其施加控制电压的增益控制端子,以及向其施加参考电压的参考电压端子;第一放大器,设置在第一信号输入端子和第一信号输出端子之间,用于放大输入的第一高频信号;第二放大器,设置在第二信号输入端子和第二信号输出端子之间,用于放大输入的第二高频信号;第一增益控制电路,设置在第一信号输入端子和第一信号输出端子之间且与第一放大器串联,用于根据施加到增益控制端子上的控制电压来改变输入的第一高频信号的衰减;第二增益控制电路,设置在第二信号输入端子和第二信号输出端子之间且与第二放大器串联,用于根据施加到增益控制端子上的控制电压来改变输入的第二高频信号的衰减;以及参考电压电路,用于根据施加到参考电压端子的参考电压来产生第一和第二内部参考电压,并将所产生的第一和第二内部参考电压分别提供给第一和第二增益控制电路。所述第一增益控制电路可以包括用于在其栅极接收控制电压的第一场效应晶体管,所述第一增益控制电路的电阻值根据给定的控制电压而改变。所述第二增益控制电路可以包括用于在其栅极接收控制电压的第二场效应晶体管,所述第二增益控制电路的电阻值根据给定的控制电压而改变。所述参考电压电路包括多个第三场效应晶体管,用于利用第三场效应晶体管的阈值电压产生相对于参考电压变化的电压,以及分压电路,用于对所产生的电压进行分压且产生第一和第二内部参考电压。所述第一和第二增益控制电路利用连续改变的所述第一和第二场效应晶体管的电阻值来分别连续改变输入的第一和第二高频信号的衰减。参考电压电路将由分压电路产生的第一和第二内部参考电压分别提供给所述第一和第二场效应晶体管的源极和/或漏极,由此分别抵消由所述第一和第二场效应晶体管的阈值电压对第一和第二增益控制电路中的高频信号的衰减的变化施加的影响。
在这种情况下,所述第一和第二增益控制电路还可以包括连接到所述第一场效应晶体管的源极和漏极的电阻器。
所述参考电压电路可以包括设置在参考电压端子和接地端子之间的参考电压分压电路,用于分压所述参考电压;设置在参考电压端子和接地端子之间且彼此并联的两个第三场效应晶体管,作为所述多个第三场效应晶体管。在所述两个第三场效应晶体管中,一个第三场效应晶体管可以被配置成使得通过参考电压分压电路获得的电压被施加到该第三场效应晶体管的栅极,第一电阻器设置在该第三场效应晶体管的漏极和参考电压端子之间,并且第二电阻器设置在该第三场效应晶体管的源极和接地端子之间。另一个第三场效应晶体管可以被配置成使得该第三场效应晶体管的栅极与该一个第三场效应晶体管的源极相连,第三电阻器设置在该另一个第三场效应晶体管的漏极和参考电压端子之间,并且设置第四电阻器到第七电阻器作为在该另一个第三场效应晶体管的源极和接地端子之间的分压电路。包括第四和第五电阻器的第一电阻串联电路与包括第六和第七电阻器的第二电阻串联电路彼此并联。第四电阻器和第五电阻器之间的电位可以作为第一内部参考电压输出到第一增益控制电路;而第六电阻器和第七电阻器之间的电位可以作为第二内部参考电压输出到第二增益控制电路。
或者,所述参考电压电路可以包括设置在参考电压端子和接地端子之间的参考电压分压电路,用于分压所述参考电压;设置在参考电压端子和接地端子之间且彼此并联的两个第三场效应晶体管,作为所述多个第三场效应晶体管。在所述两个第三场效应晶体管中,一个第三场效应晶体管可以被配置成使得通过参考电压分压电路获得的电压被施加到该第三场效应晶体管的栅极,第一电阻器设置在该第三场效应晶体管的漏极和参考电压端子之间,并且第二电阻器被设置在该第三场效应晶体管的源极和接地端子之间。另一个第三场效应晶体管可以被配置成使得该第三场效应晶体管的栅极与该一个第三场效应晶体管的源极相连,第三电阻器设置在该另一个第三场效应晶体管的漏极和参考电压端子之间,并且设置串联连接的第四、第五和第六电阻器作为在该另一个第三场效应晶体管的源极和接地端子之间的分压电路。第五电阻器和第六电阻器之间的电位可以作为第一内部参考电压输出到第一增益控制电路;而第四电阻器和第五电阻器之间的电位可以作为第二内部参考电压输出到第二增益控制电路。
或者,根据本发明的高频放大电路包括一个端子组,该端子组包括向其输入待放大的高频信号的信号输入端子,用于输出放大后的高频信号的信号输出端子,向其施加控制电压的增益控制端子,以及向其施加参考电压的参考电压端子;连接在所述信号输入端子和信号输出端子之间的信号线,用于使输入的高频信号在其中流过;设置在信号线上的放大器,用于放大输入的高频信号;控制电压电路,用于根据施加到增益控制端子的控制电压产生内部控制电压;以及设置在信号线上的增益控制电路,用于根据内部控制电压来改变在信号线上流过的高频信号的衰减。所述增益控制电路可以包括在信号输入端子和接地端子之间设置的第一场效应晶体管,用于在其栅极接收控制电压,并且在其源极和/或漏极上接收内部控制电压,所述增益控制电路的电阻值根据给定的控制电压而改变。所述控制电压电路可以包括其阈值电压基本上等于所述第一场效应晶体管的阈值电压的第二场效应晶体管,该第二场效应晶体管被设置来利用阈值电压产生相对于控制电压变化的内部参考电压。所述增益控制电路利用连续变化的所述第一场效应晶体管的电阻值来连续地改变在信号线上流过的高频信号的衰减。控制电压电路将所述内部控制电压提供给增益控制电路,由此抵消由所述第一场效应晶体管的阈值电压对增益控制电路中的高频信号的衰减的变化施加的影响。
在这种情况下,所述增益控制电路还可以包括连接到所述第一场效应晶体管的源极和漏极的电阻器。控制电压电路还可以包括在参考电压端子和第二场效应晶体管的漏极之间设置的电阻器;以及在接地端子和第二场效应晶体管的源极之间设置的电阻器。可以将控制电压施加给所述第二场效应晶体管的栅极。所述第一场效应晶体管的漏极和/或源极可以连接到所述第二场效应晶体管的源极或漏极。
根据本发明的移动通信终端包括高频电路模块,该高频电路模块包括合成部件、发射部件、接收部件和共用部件。所述发射部件包括用于将输入调制信号转换成具有彼此不同的发射频率的多个发射信号的调制器;以及多个放大部件,分别用于放大通过调制器获得的多个发射信号。所述多个放大部件中的每个包括具有可变增益的高频放大电路,用于放大通过调制器获得的多个发射信号中的一个;带通滤波器,用于从通过高频放大电路放大的发射信号中提取出预定频段的信号分量;具有固定增益的高输出高频放大电路,用于放大由带通滤波器提取的信号;以及隔离器,设置在高输出高频放大电路和共用部件之间,用于使信号在从高输出高频放大电路到共用部件的一个方向上。至少一个高频放大电路是上述高频放大电路之一。
从结合附图的本发明的下述详细描述,本发明的这些和其他目的、特点、方面和优点将会更加明显。
附图说明
图1是示出根据本发明第一实施例的高频放大电路结构的方框图;
图2是示出包括图1中所示的高频放大电路的蜂窝电话终端的无线部件的结构的方框图;
图3是在图1所示的高频放大电路中包括的增益控制电路的电路图;
图4是示出图3所示的增益控制电路中的控制电压和插入损失之间的关系的曲线图;
图5是在图1中示出的高频放大电路中包括的参考电压电路的电路图;
图6是示出图3所示的增益控制电路中的控制电压和输入/输出功率比之间的关系的曲线图;
图7是示出图3所示的增益控制电路中的控制电压和增益控制灵敏度之间的关系的曲线图;
图8是示出根据本发明第二实施例的高频放大电路结构的方框图;
图9是在图8所示的高频放大电路中包括的增益控制电路的电路图;
图10A是示出图9所示的增益控制电路中包括的第一FET中的控制电压和插入损失之间的关系的曲线图;
图10B是示出图9所示的增益控制电路中包括的第二FET中的控制电压和插入损失之间的关系的曲线图;
图10C是示出图9所示的增益控制电路中包括的FET连接的电路中的控制电压和插入损失之间的关系的曲线图;
图11是示出图9所示的增益控制电路中的控制电压和输入/输出功率比之间的关系的曲线图;
图12是示出图9所示的增益控制电路中的控制电压和增益控制灵敏度之间的关系的曲线图;
图13是示出根据本发明第三实施例的高频放大电路结构的方框图;
图14是在图13所示的高频放大电路中包括的参考电压电路的电路图;
图15是示出图13所示的高频放大电路中包括的增益控制电路中的控制电压和输入/输出功率比之间的关系的曲线图;
图16是示出图13所示的高频放大电路中包括的增益控制电路中的控制电压和增益控制灵敏度之间的关系的曲线图;
图17是示出根据本发明第四实施例的高频放大电路结构的方框图;
图18是图17所示的高频放大电路中包括的参考电压电路的电路图;
图19是示出在图17所示的高频放大电路中包括的第一增益控制电路中的控制电压和输入/输出功率比之间的关系的曲线图;
图20是示出在图17所示的高频放大电路中包括的第一增益控制电路中的控制电压和增益控制灵敏度之间的关系的曲线图;
图21是示出在图17所示的高频放大电路中包括的第二增益控制电路中的控制电压和输入/输出功率比之间的关系的曲线图;
图22是示出在图17所示的高频放大电路中包括的第二增益控制电路中的控制电压和增益控制灵敏度之间的关系的曲线图;
图23是示出图17所示的高频放大电路中包括的参考电压电路的另一示例的电路图;
图24是根据本发明第五实施例的高频放大电路结构的方框图;
图25是图24所示的高频放大电路中包括的增益控制电路的电路图;
图26是示出在图25所示的增益控制电路中的控制电压和插入损失之间的关系的曲线图;
图27是在图24所示的高频放大电路中包括的控制电压电路的电路图;
图28是示出在图25所示的增益控制电路中控制电压和输入/输出功率比之间的关系的曲线图;
图29是示出在图25所示的增益控制电路中控制电压和增益控制灵敏度之间的关系的曲线图;
图30是常规高频放大电路的结构的方框图;
图31是示出常规高频放大电路中控制电压和输出功率之间的关系的曲线图;
图32是示出输入到常规高频放大电路的突发信号的信号波形图;和
图33是常规高频放大电路中包括的增益控制电路的电路图。
发明详述
第一实施例
图1是示出根据本发明第一实施例的高频放大电路10的结构的方框图。图2是示出包括图1所示的高频放大电路10的蜂窝电话终端的无线部件的结构的方框图。在图1中示出的高频放大电路10用作图2中示出的蜂窝电话终端的无线部件中的高频放大电路202和/或高频放大电路206。换言之,根据本实施例的蜂窝电话终端是图2中示出的移动通信终端,其中高频放大电路202和206中的至少一个具有图1中示出的高频放大电路10的结构。
在详细描述高频放大电路10之前,将详细描述图2中示出的蜂窝电话终端的无线部件。根据本实施例的蜂窝电话终端可兼容于包括PDC系统和W-CDMA系统的多个通信系统。如图2所示,蜂窝电话终端的无线部件包括发射部件200、合成部件300、接收部件400和共用部件500。
合成部件300包括温控晶体振荡器301(图2中标为“TCXO”)、锁相环电路302(图2中标为“PLL”)、以及压控振荡器303(图2中标为“VCO”)。合成部件300将具有预定频率的信号提供给发射部件200和接收部件400。
发射部件200包括调制器201、高频放大电路202和206、带通滤波器203和207、高输出高频放大电路204和208,以及隔离器205和209。调制器201基于输入信号,使用具有彼此不同的发射频率的载波来执行两种方式的调制,并且输出两个发射信号(下文,称为“第一和第二发射信号”)。在第一放大部件中包括高频放大电路202、带通滤波器203、高输出高频放大电路204和隔离器205。在第二放大部件中包括高频放大电路206、带通滤波器207、高输出高频放大电路208和隔离器209,第二放大部件和第一放大部件相互独立地工作。
调制器201将例如根据PDC系统调制的发射信号(发射频率:大约900MHz)输出作为第一发射信号,而将根据W-CDMA系统调制的发射信号(发射频率:大约1.9GHz)输出作为第二发射信号。第一和第二发射信号被分别输入到第一和第二放大部件。高频放大电路202是一个可变增益放大电路,并且将第一发射信号(1mW或更小)放大到最大大约为10mW。带通滤波器203从由高频放大电路202放大的高频信号中提取发射波段的信号分量。高输出高频放大电路204是固定增益放大电路,并且将从带通滤波器203输出的高频信号(10mW或更小)放大到最大大约为1W。隔离器205使得信号沿从高输出高频放大电路204到共用部件500的方向传递。在第二放大部件中包括的元件以基本上相同的行为工作。
共用部件500包括天线501和502,以及双工器503和504。双工器503具有连接到隔离器205的输出端的TX端子,连接到接收部件400的两个输入端子中的一个的RX端子,以及连接到天线501的ANT端子。双工器504具有连接到隔离器209的输出端的TX端子,连接到接收部件400的两个输入端子中的另一个的RX端子,以及连接到天线502的ANT端子。
接收部件400包括高频放大电路401和403、带通滤波器402、404和406,以及解调器405。高频放大电路401将由天线501接收的接收信号放大,并且带通滤波器402从高频放大电路401输出的输出信号中提取发射波段的信号分量。高频放大电路403将由天线502接收的接收信号放大,并且带通滤波器404从高频放大电路403输出的输出信号中提取发射波段的信号分量。解调器405对由带通滤波器402和404提取的两个信号分量和从合成部件300输出的信号进行混频。带通滤波器406从解调器405输出的输出信号中提取中频信号。
下文,参照图1来详细描述高频放大电路10。高频放大电路10包括匹配电路11、增益控制电路12、参考电压电路13、放大器14、匹配电路15、放大器16和匹配电路17。高频放大电路10还包括信号输入端子21、信号输出端子22、增益控制端子23、参考电压端子31、电源端子32和33,以及接地端子34到38。如上所述,高频放大电路10用作图2中示出的蜂窝电话终端中的高频放大电路202和/或高频放大电路206。
增益控制电路12包括信号输入端子121、信号输出端子122、增益控制端子123、参考电压端子124,以及接地端子125和126。参考电压电路13包括参考电压端子131、参考电压输出端子132以及接地端子133。参考电压输出端子132连接到参考电压端子124。参考电压端子131和接地端子133分别连接到参考电压端子31和接地端子36。增益控制端子123连接到增益控制端子23。接地端子125和126分别连接到接地端子34和35。电源端子32和33分别连接到放大器14和16的电源端子。接地端子37和38分别连接到放大器14和16的接地端子。
高频放大电路10对输入的高频信号执行电平调整,并且随后执行两级放大。将待放大的高频信号从信号输入端子21输入,并且从信号输出端子22输出放大后的信号。为了控制高频放大电路10的增益,向增益控制端子23提供控制电压VC。向参考电压端子31提供预定参考电压Vref,并且分别向电源端子32和33提供预定电源电压Vdd1和Vdd2。
匹配电路11、15和17是阻抗匹配电路,用于对输入信号执行阻抗变换。放大器14执行第一级放大,而放大器16执行第二级放大。增益控制电路12根据施加到增益控制端子23的控制电压VC来衰减输入信号,并且输出衰减后的信号。
更详细地,信号输入端子21连接到匹配电路11的输入端子。匹配电路11的输出端子连接到增益控制电路12的信号输入端子121。增益控制电路12的信号输出端子122连接到放大器14的输入端子。放大器14的输出端子连接到匹配电路15的输入端子。匹配电路15的输出端子连接到放大器16的输入端子相连。放大器16的输出端子连接到匹配电路17的输入端子。匹配电路17的输出端子连接到信号输出端子22。
通过匹配电路11将输入的高频信号输入到增益控制电路12,并且由增益控制电路12对该输入的高频信号进行衰减。由放大器14对从增益控制电路12输出的输出信号进行放大。通过匹配电路15将从放大器14输出的输出信号输入到放大器16并由放大器16进行放大。通过匹配电路17将从放大器16输出的输出信号从信号输出端子22输出。
下文,详细描述由高频放大电路10执行的增益控制。增益控制电路12基于施加到增益控制端子23上的控制电压VC改变增益控制电路12的电阻值,从而来衰减输入高频信号。参考电压电路13获得用于补偿增益控制电路12的电阻值的变化的参考电压Vref1(即,如果控制电压VC是恒定的,那么增益控制电路12的电阻值也是恒定时的电压),并且将参考电压Vref1提供给增益控制电路12。高频放大电路10因此通过使用施加到增益控制端子23的控制电压VC和通过参考电压电路13获得的参考电压Vref1来控制增益控制电路12中的衰减,从而执行增益控制。
图3是示出增益控制电路12的详细结构的电路图。如图3所示,信号输入端子121连接到电容器43的一端以及电容器51的一端。电容器43的另一端连接到FET 41的源极、电阻器42的一端以及电阻器45的一端。电阻器45的另一端连接到参考电压端子124。电阻器42的另一端连接到FET 41的漏极以及电容器44的一端。信号输出端子122连接到电容器44的另一端以及电容器56的一端。
电容器51的另一端连接到电阻器52的一端。电阻器52的另一端连接到电容器53的一端。电容器53的另一端连接到接地端子125。电容器56的另一端连接到电阻器57的一端。电阻器57的另一端连接到电容器58的一端。电容器58的另一端连接到接地端子126。增益控制端子123连接到电阻器46的一端。电阻器46的另一端连接到FET 41的栅极。
在增益控制电路12中,可变电阻电路40包括设置在信号输入端子121和信号输出端子122之间的FET 41、电阻器42、以及电容器43和44。衰减电路50包括设置在信号输入端子121和接地端子125之间的电容器51和53,以及电阻器52。衰减电路55包括设置在信号输出端子122和接地端子126之间的电容器56和58,以及电阻器57。
由于电容器43和44设置在信号输入端子121和信号输出端子122之间,所以端子121和122之间的直流电阻无限大。由于电容器51和53设置在信号输入端子121和接地端子125之间,所以端子121和125之间的直流电阻也无限大。由于电容器56和58设置在信号输出端子122和接地端子126之间,所以端子122和126之间的直流电阻也无限大。
在增益控制电路12中,FET 41的源极和漏极可以彼此替换。电阻器45的一端可以连接到FET 41的漏极以及电阻器42的另一端,而不是FET 41的源极和电阻器42的一端。在衰减电路50中,电容器51和电阻器52可以彼此替换,电阻器52和电容器53可以彼此替换,并且可以省掉电容器51和53中的一个。可以对衰减电路55进行基本上相同的修改。
下文,将介绍包括在增益控制电路12中的作为可变电阻器的FET41的操作。在增益控制电路12中,FET 41的源极和漏极之间的电阻值是根据施加到增益控制端子123的控制电压VC和施加到参考电压端子124的参考电压Vref1来改变的。结果是,改变了信号输入端子121和信号输出端子122之间的衰减。因此,执行了高频放大电路10的增益控制。
图4是示出增益控制电路12中的控制电压和插入损失之间的关系的曲线图。在图4中,横轴表示施加到FET 41的栅极的控制电压VC,而纵轴表示FET 41的源极和漏极之间的衰减。从图4可以意识到,FET41的源极和漏极之间的阻抗处于以下三种状态之一。
(a)当VC<VC(off)时,固定为约-20dB;
(b)当VC>VC(on)时,固定为约0dB;和
(c)当VC(off)≤VC≤VC(on)时,根据VC的值而连续变化。
下文中,上述(a)中的状态被称为“断开状态”,上述(b)中的状态被称为“导通状态”,而上述(c)中的状态被称为“可变电阻状态”。FET 41的阈值电压被表示为Vth1,FET 41的栅极、源极和漏极上的电位分别被表示为Vg、Vs和Vd。VC(off)和VC(on)之间的差被表示为Vw。
假设电阻器42、45和46的电阻值足够高,并且这些电阻器上的压降可以忽略,那么FET 41的栅极上的电位基本上等于控制电压VC,而FET 41的源极和漏极上的电位基本上等于参考电压Vref1。即,实现公式(11)到(13)。
    Vg=VC                       (11)
    Vd=Vref1                    (12)
    Vs=Vref1                    (13)
当FET 41正好被置于断开状态(即,当如果栅极上的电位变得高于当前值那么FET 41将不处于断开状态时),FET 41的栅极和源极上的电位具有由公式(14)表示的关系。
    Vg-Vs=Vth1               (14)
在此点上,公式(15)也可以实现。
    Vg=VC(off)               (15)
通过用公式(13)和(15)来替代公式(14),可以使用VC(off)得到公式(16)。VC(on)可以由公式(17)表示。
    VC(off)=Vref1+Vth1       (16)
    VC(on)=Vref1+Vth1+Vw     (17)
根据公式(11)到(13)和(16),可以明白的是,在FET 41正好被置于断开状态时的FET 41的各端子上的电位由FET 41的阈值电压Vth1和施加到参考电压端子124的电压值Vref1来确定。
在增益控制电路12中,通过在用于补偿电阻值的参考电压Vref1被施加到参考电压端子124的状态下改变施加到增益控制端子123的控制电压VC,从而改变FET 41的栅极和源极之间的电位。因此,改变了FET 41的源极和漏极之间的导通电阻值。结果是,信号输入端子121和信号输出端子122之间的衰减根据控制电压VC变化。因此,执行了增益控制。
增益控制电路12包括信号输入端子121和接地端子125之间的衰减电路50以及信号输出端子122和接地端子126之间的衰减电路55。当控制电压VC变化并且FET 41的源极和漏极之间的电阻值也因此变化时,FET 41的源极和漏极之间的阻抗变化。衰减电路50和55用来减小阻抗中的变化。
图5是示出参考电压电路13的具体结构的电路图。如图5所示,参考电压端子131连接到电阻器61的一端。电阻器61的另一端连接到电阻器62的一端、电阻器63的一端以及电阻器65的一端。电阻器63的另一端连接到FET 67的栅极和电阻器64的一端。下文中,在电阻器63的另一端、FET 67的栅极以及电阻器64的该一端的连接点上的电位被表示V1。电阻器65的另一端连接到FET 67的漏极。参考电压输出端子132连接到FET 67的源极和电阻器66的一端。接地端子133连接到电阻器62的另一端、电阻器64的另一端以及电阻器66的另一端。参考电压输出端子132可以连接到FET 67的漏极而不是源极。
下文中,将介绍参考电压电路13的操作。假设电阻器65和66的电阻值足够高并且在FET 67的漏极和源极之间流动的电流可以被忽略。在FET 67的阈值电压为Vth时,施加到FET 67的栅极的电压V1由使用FET 67的阈值电压Vth和从参考电压输出端子132输出的电压值Vref1的公式(21)表示。
    Vref1=V1-Vth               (21)
在参考电压电路13中,通过合适地选择电阻器61到64的电阻值来将电位V1设定为预定的理想值。
在使用相同的半导体工艺来制造增益控制电路12和参考电压电路13的情况下,电路12和13中包括的FET的阈值电压彼此基本相等。因此,实现公式(22)。
    Vth1=Vth                   (22)
因此,根据公式(16)、(17)、(21)和(22),由公式(23)和(24)来表示增益控制电路12中的VC(off)和VC(on)。
    VC(off)=V1                 (23)
    VC(on)=V1+Vw               (24)
公式(23)和公式(24)都不包括依赖于FET的阈值电压的项。因此,即使当FET的阈值电压变化时,VC(off)和VC(on)不受此种变化的影响,并且由增益控制电路12执行的增益控制也不受此种变化影响。由于这个原因,可以减小由FET的阈值电压的变化引起的增益的变化。
接下来,将描述在高频放大电路10中的FET的阈值电压变化时的增益控制特性的具体示例。这里,作为示例,将描述在从信号输入端子121输入的信号的频率为1.95GHz且施加到参考电压端子131的参考电压Vref为3V的条件下执行的实验结果。对于这种情况,在FET 41和FET 67的阈值电压Vth为-0.6V、-0.5V和-0.4V的情况下,施加到增益控制端子123的控制电压从0V变到3V。该结果将被示出。
图6是示出工作在上述条件下的增益控制电路12中的控制电压和输入/输出功率比之间的关系的曲线图。图7是示出工作在上述条件下的增益控制电路12中的控制电压和增益控制灵敏度之间的关系的曲线图。在图6和图7中,横轴表示施加到增益控制端子23的控制电压VC。在图6中,纵轴表示在输入到信号输入端子121的输入信号的功率和从信号输出端子122输出的输出信号的功率之间的比值PG。在图7中,纵轴表示增益控制灵敏度GS。所述“增益控制灵敏度”由通过利用控制电压来差分图6中示出的功率比值PG而获得的差分系数表示。
根据图6和图7,即使当FET的阈值电压变化时,增益控制电路12的特性也基本上不受此种变化的影响。因此,即使当FET的阈值电压由于制造工艺的不一致性或工作温度的变化而改变时,高频放大电路10也可以减小增益控制特性以及增益控制灵敏度的变化。
如上所述,根据本实施例的高频放大电路可以减小由于包括在增益控制电路中的FET的阈值电压变化而引起的增益的变化。
参考电压电路13可以包括在电阻器63、64和FET 67的栅极的连接点之间具有足够高电阻值的电阻器。
第二实施例
图8是示出根据本发明第二实施例的高频放大电路18的结构的方框图。类似于根据第一实施例的高频放大电路10,图8中示出的高频放大电路18用作图2中示出的蜂窝电话终端中的高频放大电路202和/或高频放大电路206。换言之,根据本实施例的蜂窝电话终端是图2中示出的蜂窝电话终端,其中高频放大电路202和206中的至少一个具有图8中示出的高频放大电路18的结构。在本实施例的元件中,与第一实施例中的那些相同的元件具有相同的参考标记,并且省略其说明。
高频放大电路18与根据第一实施例的高频放大电路10(图1)的区别在于包括增益控制电路19而不是增益控制电路12,并且另外包括接地端子39。高频放大电路18的操作基本上与高频放大电路10的操作相同。
增益控制电路19包括信号输入端子191、信号输出端子192、增益控制端子193、参考电压端子194,以及接地端子195到197。参考电压输出端子132连接到参考电压端子194。增益控制端子193连接到增益控制端子23。接地端子195到197分别连接到接地端子34、35和39。
图9是示出增益控制电路19的具体结构的电路图。如图9所示,信号输入端子191连接到电容器75的一端以及电容器51的一端。电容器75的另一端连接到FET 71的源极、电阻器73的一端以及电阻器77的一端。电阻器77的另一端连接到参考电压端子194。电阻器73的另一端连接到电阻器74的一端、FET 71的漏极以及FET 72的源极。电阻器74的另一端连接到FET 72的漏极和电容器76的一端。信号输出端子192连接到电容器76的另一端以及电容器56的一端。电容器51、53和电阻器52以与第一实施例中相同的方式相连。接地端子195连接到电容器53的另一端。电容器56、58和电阻器57以与第一实施例中相同的方式相连。接地端子196连接到电容器58的另一端。
增益控制端子193连接到电阻器81的一端。电阻器81的另一端连接到电阻器82的一端和电阻器78的一端。下文中,在电阻器81的另一端、电阻器82的一端以及电阻器78的一端的连接点上的电位被表示为VC1。电阻器78的另一端连接到FET 71的栅极。电阻器82的另一端连接到电阻器83的一端以及电阻器79的一端。下文中,在电阻器82的另一端、电阻器83的一端以及电阻器79的一端的连接点处的电位被表示为VC2。电阻器79的另一端连接到FET 72的栅极。接地端子197连接到电阻器83的另一端。
在增益控制电路19中,可变电阻电路70包括设置在信号输入端子191和信号输出端子192之间的FET 71和72、电阻器73和74、和电容器75和76。衰减电路50包括设置在信号输入端子191和接地端子195之间的电容器51、53和电阻器52。衰减电路55包括设置在信号输出端子192和接地端子196之间的电容器56、58和电阻器57。分压电路80包括设置在增益控制端子193和接地端子197之间的电阻器81到83。
类似于第一实施例,在增益控制电路19中,信号输入端子191和信号输出端子192之间的直流电阻、信号输入端子191和接地端子195之间的直流电阻、以及信号输出端子192和接地端子196之间的直流电阻都是无限大的。
同样在增益控制电路19中,FET 71的源极和漏极可以彼此替换。FET 72的源极和漏极可以彼此替换。在衰减电路50,电容器51和电阻器52可以彼此替换,电阻器52和电容器53可以彼此替换,并且可以省掉电容器51和53中的一个。对衰减电路55进行基本上相同的修改。
电阻器77的一端连接到FET 71的漏极、电阻器73的另一端以及FET 72的源极,而不是FET 71的源极和电阻器73的一端。或者,电阻器77的一端可以连接到FET 72的漏极以及电阻器74的另一端。可变电阻电路70可以包括在源极和漏极之间具有多个栅极的多栅极FET,而不是FET 71和72。
下文中,将介绍包括在增益控制电路19中的作为可变电阻的FET71和72的操作。同样在增益控制电路19中,FET 71的源极和FET 72的漏极之间的电阻值根据施加到增益控制端子193的控制电压VC和施加到参考电压端子194的参考电压Vref1而改变。结果是,信号输入端子191和信号输出端子192之间的衰减被改变。因此,执行了高频放大电路18的增益控制。
图10A、图10B和图10C是分别示出FET 71、FET72和包括彼此连接的FET 71和FET 72的电路(下文称为“FET连接电路”)中的控制电压和插入损失之间的关系的曲线图。在图10A中,横轴表示施加到FET 71的栅极的电压VC1,而纵轴表示FET 71的源极和漏极之间的衰减。在图10B中,横轴表示施加到FET 72的栅极的电压VC2,而纵轴表示FET 72的源极和漏极之间的衰减。
从图10A可以意识到,FET 71的源极和漏极之间的阻抗处于以下三种状态之一。
(a1)当VC1<VC1(off)时,固定为约-20dB;
(b1)当VC1>VC1(on)时,固定为约0dB;和
(c1)当VC1(off)≤VC1≤VC1(on)时,根据VC1的值而连续变化。
类似地,从图10B可以意识到,FET 72的源极和漏极之间的阻抗处于以下三种状态之一。
(a2)当VC2<VC2(off)时,固定为约-20dB;
(b2)当VC2>VC2(on)时,固定为约0dB;和
(c2)当VC2(off)≤VC2≤VC2(on)时,根据VC2的值而连续变化。
下文中,FET 71的阈值电压被表示为Vth1,FET 71的栅极、源极和漏极上的电位分别被表示为Vg1、Vs1和Vd1。VC1(off)和VC1(on)之间的差被表示为Vw。
假设电阻器73、74、77到79的电阻值足够高,并且这些电阻器上的压降可以忽略,那么FET 71的栅极上的电位基本上等于电压VC1,而FET 71的源极和漏极上的电位基本上等于参考电压Vref1,即,实现公式(31)到(33)。
    Vg1=VC1                      (31)
    Vd1=Vref1                    (32)
    Vs1=Vref1                    (33)
当FET 71正好被置于断开状态时,FET 71的栅极和源极上的电位具有公式(34)表示的关系。
    Vg1-Vs1=Vth1                 (34)
在此点上,公式(35)也可以实现。
    Vg1=VC1(off)                 (35)
通过用公式(33)和(35)来替代公式(34),使用VC1(off)可以得到公式(36)。VC1(on)可以由公式(37)表示。
    VC1(off)=Vref1+Vth1          (36)
    VC1(on)=Vref1+Vth1+Vw        (37)
根据公式(31)到(33)和(36),可以明白的是,在FET 71正好被置于断开状态时的FET 71的各端子上的电位由FET 71的阈值电压Vth1和施加到参考电压端子194的电压值Vref1来确定。
FET 72的栅极、源极和漏极上的电位分别被表示为Vg2、Vs2和Vd2。假设FET 72的阈值电压等于FET 71的阈值电压Vth1,并且VC2(off)和VC2(on)之间的差等于Vw。对于FET 72,类似于FET71,实现公式(41)到(47)。
    Vg2=VC2                      (41)
    Vd2=Vref1                    (42)
    Vs2=Vref1                    (43)
    Vg2-Vs2=Vth1                 (44)
    Vg2=VC2(off)                 (45)
    VC2(off)=Vref1+Vth1          (46)
    VC2(on)=Vref1+Vth1+Vw        (47)
根据公式(41)到(43)和(46),可以明白的是,在FET 72正好被置于断开状态时的FET 72的各端子上的电位由FET 72的阈值电压Vth1和施加到参考电压端子194的电压值Vref1来确定。
接下来,将介绍FET连接电路。电阻器81到83的电阻值将分别被表示为R1到R3。α=(R1+R2+R3)/(R2+R3),β=(R1+R2+R3)/R3。当电压VC1变成VC1(off)和VC1(on)时,控制电压VC的值分别表示为VC1off和VC1on。当电压VC2变成VC2(off)和VC2(on)时,控制电压VC的值分别表示为VC2off和VC2on。通过公式(51)到(54)来表示这些值。
    VC1off=α×VC1(off)          (51)
    VC1on=α×VC1(on)            (52)
    VC2off=β×VC2(off)          (53)
    VC2on=β×VC2(on)            (54)
假设FET 71和72的特性彼此相同,VC1(off)和VC1(on)分别匹配VC2(off)和VC2(on)。由于α<β,公式(55)和(56)被实现。
    VC1off<VC2off                (55)
    VC1on<VC2on                  (56)
由于VC1(off)<VC1(on)和VC2(off)<VC2(on),公式(57)和(58)被实现。
    VC1off<VC1on                 (57)
    VC2off<VC2on                 (58)
根据公式(55)到(58),应该明白的是,在VC1off、VC1on、VC2off和VC2on中,VC1off最小,而VC2on最大。
图10C示出了在FET连接电路中控制电压和插入损失之间的关系。在图10C中,横轴表示施加到增益控制端子193的控制电压VC,而纵轴表示FET 71的源极和FET 72的漏极之间的衰减。从图10C可以意识到,FET 71的源极和FET 72的漏极之间的阻抗处于以下三种状态之一。
(a3)当VC<VC(off)时,固定为约-40dB;
(b3)当VC>VC(on)时,固定为约0dB;和
(c3)当VC(off)≤VC≤VC(on)时,根据VC的值而连续变化。
在这种情况下,VC(off)和VC(on)分别由公式(59)和(60)表示,
VC(off)=VC1off
       =α×VC1(off)
       =α×(Vref1+Vth1)          (59)
VC(on)=VC2on
      =β×VC2(on)
      =β×(Vref1+Vth1+Vw)        (60)
在增益控制电路19中,通过在用于补偿电阻值的参考电压Vref1被施加到参考电压端子194的情况下改变施加到增益控制端子193的控制电压VC,从而改变FET 71和FET 72的栅极和源极之间的电压。因此,FET 71的源极和FET 72的漏极之间的导通电阻值被改变。结果是,信号输入端子191和信号输出端子192之间的衰减根据控制电压VC变化。因此,执行了增益控制。增益控制电路19中的衰减电路50和55的功能和第一实施例中相同。
高频放大电路18包括如图3所示的参考电压电路13。参考电压电路13的结构和操作如上述第一实施例中所述,并且将不再在这里描述。同样对于高频放大电路18,实现了公式(61)和(62)。
Vref1=V1-Vth            (61)
Vth1=Vth                (62)
因此,根据公式(59)到(62),增益控制电路19中的VC(off)和VC(on)分别由公式(63)和(64)表示。
VC(Off)=α×V1            (63)
VC(on)=β×(V1+Vw)        (64)
公式(63)和公式(64)都不包括依赖于FET的阈值电压的项。因此,即使当FET的阈值电压变化时,增益控制电路19中的VC(off)和VC(on)也不受此种变化的影响,并且由增益控制电路19执行的增益控制也不受此种变化的影响。由于这个原因,可以减小由FET的阈值电压中的变化引起的增益的变化。
接下来,将介绍当高频放大电路18中的FET的阈值电压变化时的增益控制特性的具体示例。这里,作为示例,将描述在与第一实施例中所述的输入信号的频率、参考电压、FET的阈值电压和控制电压一样的情况下执行的实验结果。与图6和图7中示出的那些对应的关于高频放大电路18的结果如图11和图12中所示。
根据图11和图12,即使当FET的阈值电压变化时,增益控制电路19的特性也基本上不受此种变化的影响。因此,即使当FET的阈值电压由于制造工艺的不一致性或工作温度的变化而改变时,高频放大电路18也可以减小增益控制特性以及增益控制灵敏度的变化。
与图6和图7中示出的特性相比较,图11和图12中所示的特性呈现出其中输入/输出功率比变化的控制电压的较大范围和增益控制灵敏度的较低峰值(大约90dB/V)。因此,高频放大电路18的动态范围可以被扩大,而不必提高用于获得控制电压VC的D/A变换器的分辨度,同时防止控制电路被扩大或复杂化。
由于可变电阻电路70包括多个FET 71和72,所以,输入到可变电阻电路70的输入端的信号的电平可以分配到多个FET。因此,可以在不增加FET的栅极宽度的情况下改善FET相对于输入信号的失真特性。
第三实施例
图13是示出根据本发明第三实施例的高频放大电路600的结构的方框图。类似于根据第一实施例的高频放大电路10,图13中示出的高频放大电路600用作图2中示出的蜂窝电话终端中的高频放大电路202和/或高频放大电路206。换言之,根据本实施例的蜂窝电话终端是图2中示出的蜂窝电话终端,其中高频放大电路202和206中的至少一个具有图13中示出的高频放大电路600的结构。在本实施例的元件中,与第一实施例中的那些相同的元件具有相同的参考标记,并且省略其说明。
高频放大电路600与根据第一实施例的高频放大电路10(图1)的区别在于包括参考电压电路601而不是参考电压电路13。高频放大电路600的操作基本上与高频放大电路10的操作相同。与高频放大电路10不同,包括在高频放大电路600中的参考电压电路601具有一种电路结构,该电路结构考虑到在增益控制电路12中包括的FET的阈值电压与在参考电压电路601中包括的FET的阈值电压彼此不同。
参考电压电路601包括参考电压端子701、参考电压输出端子702和接地端子703。参考电压输出端子702连接到参考电压端子124。参考电压端子701和接地端子703分别连接到参考电压端子31和接地端子36。
下文中,将介绍由高频放大电路600执行的增益控制。增益控制电路12通过根据施加到增益控制端子23的控制电压VC改变增益控制电路12的电阻值,从而衰减输入高频信号。参考电压电路601获得用于补偿增益控制电路12中的FET的电阻值中的变化的参考电压Vref1(即,如果控制电压VC恒定那么增益控制电路12的电阻值也恒定时的电压),并且将该参考电压Vref1提供给增益控制电路12。高频放大电路600因此通过使用施加到增益控制端子23的控制电压VC和由参考电压电路601获得的参考电压Vref1来控制增益控制电路12中的衰减,从而执行增益控制。
增益控制电路12的结构和操作与关于根据第一实施例的高频放大电路10描述的结构和操作相同,并不在此再次描述。
图14是示出参考电路601的具体结构的电路图。如图14所示,参考电压端子701连接到电阻器704的一端。电阻器704的另一端连接到电阻器705的一端、电阻器708的一端以及电阻器712的一端。电阻器705的另一端连接到FET 710的栅极以及电阻器706的一端。下文中,电阻器705的另一端、FET 710的栅极和电阻器706的一端的连接点处的电位被表示为V2。电阻器708的另一端连接到FET 710的漏极。FET 710的源极连接到电阻器709的一端和电阻器711的一端。电阻器712的另一端连接到FET 713的漏极。电阻器711的另一端连接到FET 713的栅极。FET 713的源极连接到电阻器714的一端。下文中,FET 713的源极和电阻器714的一端的连接点处的电位被表示为V3。参考电压输出端子702连接到电阻器714的另一端以及电阻器715的一端。电阻器707的一端连接到电阻器706的另一端、电阻器709的另一端以及电阻器715的另一端。下文中,电阻器707的一端、电阻器706的另一端、电阻器709的另一端以及电阻器715的另一端的连接点处的电位被表示为V4。接地端子703连接到电阻器707的另一端。
对于包括在参考电压电路601中的电阻器704到707的每一个,使用具有约几KΩ的电阻值的电阻器。对于电阻708、709、711、712、714和715中的每一个,使用具有约几十KΩ的电阻值的电阻器。在增益控制电路12中包括的FET 41具有约-0.55V的阈值电压。包括在参考电压电路601中的FET 710和FET 713中的每一个具有一个如下所述的与FET 41不同的阈值电压,如-0.4V、-0.5V和-0.6V。
下文中,介绍参考电压电路601的操作。假设电阻器708和709的电阻值足够高并且在FET 710的漏极和源极之间流动的电流可以被忽略,电阻器712、714和715的电阻值足够高并且在FET 713的漏极和源极之间流动的电流可以被忽略。
在FET 710和FET 713的阈值电压为Vth2的情况下,施加到FET710的栅极的电压V2利用FET 710和FET 713的阈值电压Vth2和电压值V3由公式(71)表示。
V2=V3+2·Vth2                (71)
参考电压输出端子702的电压Vref1利用电压值V3和V4由公式(72)表示,其中电阻器714和715的电阻值分别为R4和R5,且γ=R5/(R4+R5)。
Vref1=γ·V3-(γ-1)·V4      (72)
通过用公式(71)来替代公式(72),参考电压输出端子702的电压Vref1的值利用电压值V2和V4以及阈值电压Vth2由公式(73)表示。
Vref1=γ·(V2-2·Vth2)-(γ-1)·V4    (73)
根据公式(16)、(17)和(73),增益控制电路12中的VC(off)和VC(on)分别由公式(74)和(75)表示,其中包括在增益控制电路12中的FET 41的阈值电压为Vth1。
VC(off)=Vth1-2·γ·Vth2+γ·V2-(γ-1)·V4        (74)
VC(on)=Vth1-2·γ·Vth2+γ·V2-(γ-1)·V4+Vw      (75)
在公式(74)和(75)中,关于阈值电压Vth1和Vth2的项被定义为δ=Vth1-2·γ·Vth2。由于γ=R5/(R4+RS),所以γ<1。从上面可以明白的是,即使当Vth1和Vth2为不同的值时,通过合适地设定γ的值,可以使δ为0。换言之,在公式(74)和(75)中每一个包括的包含阈值电压的项都可以通过根据Vth1和Vth2的值来设定γ的值而使其为零。
在半导体芯片上形成的高频放大电路中包括的FET具有近似相同的阈值电压。但是,应该注意的是,当这些FET包括具有不同栅极宽度的栅极或在FET的源电极和漏电极之间设置多个栅电极时,FET的阈值电压具有不同值。虽然如此,即使当这些FET的阈值电压由于其结构不同而不同时,这些FET的阈值电压根据工作温度变化而改变的量近似相同。
因此,即使当参考电压电路601中的FET的阈值电压和增益控制电路12中的FET的阈值电压彼此不同时,通过合适地选择参考电压电路601中的电阻器714和715的电阻值,可以防止VC(off)和VC(on)受到FET的阈值电压的变化的影响。因此,增益控制电路12的增益控制特性也不会如此受影响。因此,可以减小由FET的阈值电压的变化引起的增益的变化。
接下来,描述当高频放大电路600中的FET的阈值电压变化时增益控制特性的具体示例。这里,作为示例,将描述在从信号输入端子121输入的信号的频率为1.95GHz且施加到参考电压端子701的参考电压Vref为3V的情况下执行的实验结果。对于此种情况,在FET710和FET 713的阈值电压Vth2为-0.6V、-0.5V和-0.4V的情况下,施加到增益控制端子123的控制电压从0V变到3V。该结果将被示出。
图15是示出工作在上述条件下的增益控制电路12中的控制电压和输入/输出功率比之间的关系的曲线图。图16是示出工作在上述条件下的增益控制电路12中的控制电压和增益控制灵敏度之间的关系的曲线图。在图15和图16中,横轴表示施加到增益控制端子23上的控制电压VC。在图15中,纵轴表示输入到信号输入端子121的输入信号的功率和从信号输出端子122输出的输出信号的功率之间的比值PG。在图16中,纵轴表示增益控制灵敏度GS。
根据图15和图16,即使当FET的阈值电压变化,增益控制电路12的特性也基本上不受这种变化的影响。因此,即使当FET的阈值电压由于制造工艺的不一致性或工作温度的变化而造成变化时,高频放大电路600也可以减小增益控制特性以及增益控制灵敏度的变化。
如上所述,即使在增益控制电路中的FET的阈值电压和参考电压电路中的FET的阈值电压彼此不同时,根据本实施例的高频放大电路也可以减小由于包括在增益控制电路中的FET的阈值电压变化引起的增益的变化。
第四实施例
图17是示出根据本发明第四实施例的高频放大电路602的结构的方框图。图17中示出的高频放大电路602用作图2中示出的蜂窝电话终端中的高频放大电路202和高频放大电路206。换言之,根据本实施例的蜂窝电话终端是图2中示出的蜂窝电话终端,其中高频放大电路202和206一起具有图17中示出的高频放大电路602的结构。
下文中,参照图17来详细描述高频放大电路602。高频放大电路602包括匹配电路11、增益控制电路(第一增益控制电路)12、参考电压电路603、放大器14、匹配电路15、放大器16、匹配电路17、匹配电路611、增益控制电路(第二增益控制电路)612、放大器614、匹配电路615、放大器616和匹配电路617。
高频放大电路602还包括信号输入端子21、信号输出端子22、增益控制端子23、参考电压端子31、电源端子32和33,以及接地端子34到38。高频放大电路602还包括信号输入端子651、信号输出端子652、电源端子653和654,以及接地端子655到658。
增益控制电路12包括信号输入端子121、信号输出端子122、增益控制端子123、参考电压端子124、以及接地端子125和126。增益控制电路612包括信号输入端子621、信号输出端子622、增益控制端子623、参考电压端子624、以及接地端子625和626。
参考电压电路603包括参考电压端子721、参考电压输出端子(第一参考电压输出端子)722、参考电压输出端子(第二参考电压输出端子)723和接地端子724。参考电压输出端子722和723分别连接到参考电压端子124和624。参考电压端子721连接到参考电压端子31。接地端子724连接到接地端子36。
增益控制端子123连接到增益控制端子23。接地端子125和126分别连接到接地端子34和35。电源端子32和33分别连接到放大器14和16的电源端子。接地端子37和38分别连接到放大器14和16的接地端子。
增益控制端子623连接到增益控制端子23。接地端子625和626分别连接到接地端子657和658。电源端子653和654分别连接到放大器614和616的电源端子。接地端子655和656分别连接到放大器614和616的接地端子。
高频放大电路602对输入的高频信号执行电平调整,并随后执行两级放大。将待放大的高频信号从信号输入端子21或信号输入端子651输入,并且从信号输出端子22或信号输出端子652输出放大后的信号。
为了控制高频放大电路602的增益,向增益控制端子23提供控制电压VC。向参考电压端子31提供预定参考电压Vref,并且分别向电源端子32和33提供预定电源电压Vdd1和Vdd2。分别向电源端子653和654提供预定电源电压Vdd3和Vdd4。
匹配电路11、15、17、611、615和617是阻抗匹配电路,用于对输入信号执行阻抗变换。放大器14和614执行第一级放大,而放大器16和616执行第二级放大。增益控制电路12和612根据施加到增益控制端子23上的控制电压VC来衰减输入信号,并且输出衰减后的信号。
更详细地,信号输入端子21连接到匹配电路11的输入端子。匹配电路11的输出端子连接到增益控制电路12的信号输入端子121。增益控制电路12的信号输出端子122连接到放大器14的输入端子。放大器14的输出端子连接到匹配电路15的输入端子。匹配电路15的输出端子连接到放大器16的输入端子。放大器16的输出端子连接到匹配电路17的输入端子。匹配电路17的输出端子连接到信号输出端子22。
信号输入端子651连接到匹配电路611的输入端子。匹配电路611的输出端子连接到增益控制电路612的信号输入端子621。增益控制电路612的信号输出端子622连接到放大器614的输入端子。放大器614的输出端子连接到匹配电路615的输入端子。匹配电路615的输出端子连接到放大器616的输入端子。放大器616的输出端子连接到匹配电路617的输入端子。匹配电路617的输出端子连接到信号输出端子652。
通过匹配电路611将输入到输入信号端子651的高频信号输入到增益控制电路612,并且由增益控制电路612对该输入高频信号进行衰减。由放大器614对从增益控制电路612输出的输出信号进行放大。通过匹配电路615将从放大器614输出的输出信号输入到放大器616,并由放大器616对该信号进行放大。通过匹配电路617将从放大器616输出的输出信号从信号输出端子652输出。
增益控制电路12和612的结构和操作与关于根据第一实施例的高频放大电路10的上述结构和操作相同,并在此不再进行描述。
增益控制电路12的控制电压VC由公式(76)和(77)表示,其中增益控制电路12的参考电压端子124的电压为Vref3,并且增益控制电路12的FET 41的阈值电压为Vth3。
VC(off)=Vref3+Vth3              (76)
VC(on)=Vref3+Vth3+Vw            (77)
增益控制电路612的控制电压VC由公式(78)和(79)表示,其中增益控制电路612的参考电压端子624的电压为Vref4,并且增益控制电路612的FET的阈值电压为Vth4。
VC(off)=Vref4+Vth4            (78)
VC(on)=Vref4+Vth4+Vw          (79)
因此,通过使用施加到增益控制端子23的控制电压VC和由参考电压电路603获得的参考电压Vref3和Vref4来控制增益控制电路12中的衰减以及增益控制电路612中的衰减,从而来执行高频放大电路602的增益控制。
图18是示出参考电压电路603的具体结构的电路图。如图18所示,参考电压端子721连接到电阻器725的一端。电阻器725的另一端连接到电阻器726的一端、电阻器729的一端以及电阻器733的一端。电阻器726的另一端连接到FET 731的栅极以及电阻器727的一端。下文中,电阻器726的另一端、FET 731的栅极和电阻器727的一端的连接点处的电位被表示为V5。电阻器729的另一端连接到FET731的漏极。FET 731的源极连接到电阻器730的一端和电阻器732的一端。电阻器733的另一端连接到FET 734的漏极。电阻器732的另一端连接到FET 734的栅极。FET 734的源极连接到电阻器735的一端以及电阻器737的一端。下文中,FET 734的源极、电阻器735的一端以及电阻器737的一端的连接点处的电位被表示为V6。参考电压输出端子722连接到电阻器735的另一端以及电阻器736的一端。参考电压输出端子723连接到电阻器737的另一端以及电阻器738的一端。电阻器728的一端连接到电阻器727的另一端、电阻器730的另一端、电阻器736的另一端以及电阻器738的另一端。下文中,电阻器728的一端、电阻器727的另一端、电阻器730的另一端、电阻器736的另一端以及电阻器738的另一端的连接点处的电位被表示为V7。接地端子724连接到电阻器728的另一端。
对于包括在参考电压电路603中的电阻器725到728中的每一个,使用具有约几KΩ的电阻值的电阻器。对于电阻729、730、732、733和735到738中的每一个,使用具有约几十KΩ的电阻值的电阻器。在增益控制电路12和612中包括的FET的每个具有约-0.55V的阈值电压。包括在参考电压电路601中的FET 731和FET 734中的每一个具有一个如下所述的与FET 41不同的阈值电压,如-0.4V、-0.5V和-0.6V。
下文中,将介绍参考电压电路603的操作。假设电阻器729和730的电阻值足够高,并且在FET 731的漏极和源极之间流动的电流可以被忽略,电阻器733、735、736、737和738的电阻值足够高,并且在FET 734的漏极和源极之间流动的电流可以被忽略。
其中FET 731和FET 734的阈值电压为Vth5,施加到FET 731的栅极的电压V5利用FET 731和FET 734的阈值电压Vth5和电压值V6由公式(80)表示。
V5=V6+2·Vth5        (80)
参考电压输出端子(第一参考电压输出端子)722的电压Vref3利用电压值V6和V7由公式(81)表示,其中电阻器735和736的电阻值分别为R6和R7,且ε=R7/(R6+R7)。
Vref3=ε·V6-(ε-1)·V7        (81)
通过用公式(80)来替代公式(81),参考电压输出端子722的电压Vref3的值利用电压值V5和V7以及阈值电压Vth5由公式(82)表示。
Vref3=ε·(V5-2·Vth5)-(ε-1)·V7        (82)
同样,参考电压输出端子(第二参考电压输出端子)723的电压Vref4利用电压值V6和V7由公式(83)表示,其中电阻器737和738的电阻值分别为R8和R9,且ξ=R9/(R8+R9)。
Vref4=ξ·V6-(ξ-1)·V7        (83)
通过用公式(80)来替代公式(83),参考电压输出端子723的电压Vref4的值利用电压值V5和V7以及阈值电压Vth5由公式(84)表示。
Vref4=ξ·(V5-2·Vth5)-(ξ-1)·V7       (84)
根据公式(76)、(77)和(82),增益控制电路(第一增益控制电路)12中的VC(off)和VC(on)分别由公式(85)和(86)表示。
VC(off)=Vth3-2·ε·Vth5+ε·V5-(ε-1)·V7    (85)
VC(on)=Vth3-2·ε·Vth5+ε·V5-(ε-1)·V7+Vw  (86)
同样,根据公式(78)、(79)和(84),增益控制电路(第二增益控制电路)612中的VC(off)和VC(on)分别由公式(87)和(88)表示。
VC(off)=Vth4-2·ξ·Vth5+ξ·V5-(ξ-1)·V7      (87)
VC(on)=Vth4-2·ξ·Vth5+ξ·V5-(ξ-1)·V7+Vw    (88)
在公式(85)和(86)中,关于FET的阈值电压Vth3和Vth5的项被定义为η=Vth3-2·ε·Vth5。由于ε=R7/(R6+R7),所以ε<1。从上面可以明白的是,即使当Vth3和Vth4为不同的值时,通过合适地设定ε的值,可以使η为0。
类似地,在公式(87)和(88)中,关于FET的阈值电压Vth4和Vth5的项被定义为κ=Vth4-2·ξ·Vth5。由于ξ=R9/(R8+R9),所以ξ<1。从上面可以明白的是,即使当Vth4和Vth5为不同的值时,通过合适地设定ξ的值,可以使κ为0。
换言之,在公式(85)和(86)的每一个中包含阈值电压的项可以通过根据Vth3和Vth5的值来选择ε的值而使其为零。同样地,在公式(87)和(88)的每一个中包含阈值电压的项可以通过根据Vth4和Vth5的值来选择ξ的值使其为零。
在半导体芯片上形成的高频放大电路中包括的FET具有近似相同的阈值电压。但是,应该注意的是,当FET包括具有不同的栅极宽度的栅极或在FET的源电极和漏电极之间设置多个栅电极时,FET的阈值电压具有不同值。虽然如此,即使当FET的阈值电压由于其结构不同而不同时,这些FET的阈值电压根据工作温度变化而改变的量近似相同。
因此,即使当参考电压电路603中的FET的阈值电压、增益控制电路12中的FET的阈值电压以及增益控制电路612中的FET的阈值电压彼此不同时,通过合适地选择参考电压电路603的电阻器735、736、737和738的电阻值,可以防止VC(off)和VC(on)受到FET的阈值电压的变化的影响。因此,第一增益控制电路12和第二增益控制电路612的增益控制特性也不会如此受影响。因此,可以减小由FET的阈值电压的变化而引起的增益的变化。
接下来,将介绍具有不同频率和不同信号电平的高频信号被输入到高频放大电路602的信号输入端子21和651的情形。
通常,由输入到增益控制电路的信号的信号电平来确定增益控制电路中使用的FET的尺寸。当FET具有不同尺寸时,FET具有不同的阈值电压。由于即使当增益控制电路12和增益控制电路612的FET具有不同的阈值电压时,高频放大电路602的参考电压电路603也能正常工作,所以高频放大电路602不必包括多个参考电压电路。因此,高频放大电路602允许灵活地设置这两个增益控制电路中的FET的尺寸,并因此具有减小的规模。
接下来,将介绍当高频放大电路602中的FET的阈值电压变化时增益控制特性的具体示例。这里,作为示例,将描述在从信号输入端子121输入的信号的频率为1.95GHz、施加到参考电压端子721的参考电压Vref为3V且从信号输入端子621输入的信号的频率为810MHz的情况下执行的实验结果。对于此种情况,在FET 731和FET 734的阈值电压Vth5为-0.6V、-0.5V和-0.4V的情况下,施加到增益控制端子123的控制电压从0V变到3V。该结果将被示出。
图19是示出工作在上述条件下的增益控制电路12中的控制电压和输入/输出功率比之间的关系的曲线图。图20是示出工作在上述条件下的增益控制电路12中的控制电压和增益控制灵敏度之间的关系的曲线图。在图19和图20中,横轴表示施加到增益控制端子23上的控制电压VC。在图19中,纵轴表示在输入到信号输入端子121的输入信号的功率和从信号输出端子122输出的输出信号的功率之间的比值PG。在图20中,纵轴表示增益控制灵敏度GS。
图21是示出工作在上述条件下的增益控制电路612中的控制电压和输入/输出功率比之间的关系的曲线图。图22是示出工作在上述条件下的增益控制电路612中的控制电压和增益控制灵敏度之间的关系的曲线图。在图21和图22中,横轴表示施加到增益控制端子23上的控制电压VC。在图21中,纵轴表示在输入到信号输入端子621的输入信号的功率和从信号输出端子622输出的输出信号的功率之间的比值PG。在图22中,纵轴表示增益控制灵敏度GS。
根据图19到图22,即使当FET的阈值电压变化,增益控制电路12和612的特性也基本上不受此种变化的影响。因此,即使当FET的阈值电压由于制造工艺的不一致性或工作温度的变化而变化时,高频放大电路602也可以减小增益控制特性以及增益控制灵敏度的变化。
如上所述,即使在增益控制电路中的FET的阈值电压和参考电压电路中的FET的阈值电压彼此不同时,根据本实施例的高频放大电路也可以减小由于包括在增益控制电路中的FET的阈值电压变化而引起的增益的变化。
取代参考电压电路603,可以使用图23中示出的参考电压电路604。可以提供基本上相同的效果。在参考电压电路604中,电阻器735、736和739串联连接在FET 734的漏极和电阻器728之间。参考电压输出端子722连接在电阻器736和739之间,并且参考电压输出端子723连接在电阻器735和736之间。
第五实施例
图24是示出根据本发明第五实施例的高频放大电路605的结构的方框图。类似于根据第一实施例的高频放大电路10,图24中示出的高频放大电路605用作图2中示出的蜂窝电话终端中的高频放大电路202和/或高频放大电路206。换言之,根据本实施例的蜂窝电话终端是图2中示出的蜂窝电话终端,其中高频放大电路202和206中的至少一个具有图24中示出的高频放大电路605的结构。
下文中,参照图24来详细描述高频放大电路605。高频放大电路605包括匹配电路11、增益控制电路606、控制电压电路607、放大器14、匹配电路15、放大器16和匹配电路17。高频放大电路605还包括信号输入端子21、信号输出端子22、增益控制端子23、参考电压端子31、电源端子32和33,以及接地端子34、35、37、38和659。
增益控制电路606包括信号输入端子751、信号输出端子752、增益控制端子758、参考电压端子757、以及接地端子755和756。控制电压电路607包括参考电压端子764、控制电压输入端子767、参考电压输出端子765、控制电压输出端子766以及接地端子768。接地端子755和756分别连接到接地端子34和35。
控制电压输出端子766连接到增益控制端子758。参考电压输出端子765连接到参考电压端子757。参考电压端子764连接到参考电压端子31。接地端子768连接到接地端子659。
电源端子32和33分别连接到放大器14和16的电源端子。接地端子37和38分别连接到放大器14和16的接地端子。
高频放大电路605对输入的高频信号执行电平调整,并随后执行两级放大。将待放大的高频信号从信号输入端子21输入,并且从信号输出端子22输出放大后的信号。为了控制高频放大电路605的增益,向增益控制端子23提供控制电压VC。向参考电压端子31提供预定参考电压Vref,并且分别向电源端子32和33提供预定电源电压Vdd1和Vdd2。
匹配电路11、15和17是阻抗匹配电路,用于对输入信号执行阻抗变换。放大器14执行第一级放大,而放大器16执行第二级放大。增益控制电路606根据施加到增益控制端子23上的控制电压VC来衰减输入信号,并且输出衰减后的信号。
更详细地,信号输入端子21连接到匹配电路11的输入端子。匹配电路11的输出端子连接到增益控制电路606的信号输入端子751。增益控制电路606的信号输出端子752连接到放大器14的输入端子。放大器14的输出端子连接到匹配电路15的输入端子。匹配电路15的输出端子连接到放大器16的输入端子。放大器16的输出端子连接到匹配电路17的输入端子。匹配电路17的输出端子连接到信号输出端子22。
通过匹配电路11将输入的高频信号输入到增益控制电路606,并且由增益控制电路606对该输入高频信号进行衰减。由放大器14对从增益控制电路606输出的输出信号进行放大。通过匹配电路15将从放大器14输出的输出信号输入到放大器16,并由放大器16进行放大。通过匹配电路17将从放大器16输出的输出信号从信号输出端子22输出。
下文中,描述由高频放大电路605执行的增益控制。增益控制电路606通过根据施加到增益控制端子23的控制电压VC改变增益控制电路606的电阻值来衰减输入的高频信号。
控制电压电路607获得控制电压VC3和用于补偿增益控制电路606的FET 760的电阻值中的变化的参考电压Vref5,并且将该控制电压VC3和参考电压Vref5给予增益控制电路606。高频放大电路605因此通过使用施加到增益控制端子23的控制电压VC和由参考电压电路607获得的控制电压VC3和参考电压Vref5来控制增益控制电路606中的衰减,从而执行增益控制。
图25是示出参考电压电路606的具体结构的电路图。如图25所示,信号输入端子751连接到电容器51的一端、电容器56的一端以及信号输出端子752。电容器51的另一端连接到FET 760的漏极以及电阻器761的一端。电阻器761的另一端连接到FET 760的源极、电容器53的一端以及电阻器763的一端。电容器53的另一端连接到接地端子755。电容器56的另一端连接到电阻器57的一端。电阻器57的另一端连接到电容器58的一端。电容器58的另一端连接到接地端子756。增益控制端子758连接到电阻器763的另一端。参考电压端子757连接到电阻器762的一端。FET 760的栅极连接到电阻器762的另一端。
在增益控制电路606中,可变电阻电路759包括设置在信号输入端子751和接地端子755之间的FET 760、电阻器761以及电容器51和53。
衰减电路55包括设置在信号输出端子752和接地端子756之间的电容器56和58以及电阻器57。由于电容器51和53设置在信号输入端子751和接地端子755之间,所以端子751和755之间的直流电阻无限大。由于电容器56和58设置在信号输出端子752和接地端子756之间,所以端子752和756之间的直流电阻也无限大。
在增益控制电路606中,FET 760的源极和漏极可以彼此替换。电阻器763的一端可以连接到FET 760的漏极以及电阻器761的一端,而不是FET 760的源极和电阻器761的另一端。
在衰减电路55中,电容器56和电阻器57可以彼此替换,电阻器57和电容器58可以彼此替换,并且可以省掉电容器56和58中的一个。
下文中,将介绍在增益控制电路606中包括的FET 760作为可变电阻器的情形。
在增益控制电路606中,FET 760的源极和漏极之间的电阻值是根据施加到增益控制端子758的控制电压VC3和施加到参考电压端子757的参考电压Vref5来改变的。结果是,改变了在信号输入端子751和信号输出端子752之间的衰减。按照这种行为,执行高频放大电路605的增益控制。
图26是示出可变电阻电路759的控制电压和增益控制电路606中的插入损失之间的关系的曲线图。在图26中,横轴表示施加到FET760的源极或漏极上的控制电压VC3,而纵轴表示信号输入端子751和信号输出端子752之间的衰减。
从图26可以意识到,FET 760的源极和漏极之间的阻抗处于以下三种状态之一。
(a)当VC3<VC3(off)时,固定为约-20dB;
(b)当VC3>VC3(on)时,固定为约0dB;和
(c)当VC3(off)≤VC3≤VC3(on)时,根据VC3的值而连续变化。
下文中,上述(a)中的状态被称为“断开状态”,上述(b)中的状态被称为“导通状态”,而上述(c)中的状态被称为“可变电阻状态”。FET 760的阈值电压被表示为Vth6,FET 760的栅极、源极和漏极上的电位分别被表示为Vg3、Vs3和Vd3。VC3(off)和VC3(on)之间的差被表示为Vw。
假设电阻器761、762和763的电阻值足够高,并且这些电阻器上的压降可以忽略,那么FET 760的栅极上的电位基本上等于参考电压Vref5,而FET 760的源极和漏极上的电位基本上等于控制电压VC3。
即,实现公式(89)到(91)。
    Vg3=Vref5              (89)
    Vd3=VC3                (90)
    Vs3=VC3                (91)
当FET 760正好被置于断开状态(即,当如果栅极上的电位变得高于当前值那么FET 760将不处于断开状态时),FET 760的栅极和源极上的电位具有公式(92)表示的关系。
    Vg3-Vs3=Vth6    (92)
在此点上,公式(93)也可以实现。
    Vs3=VC3(on)     (93)
通过用公式(91)和(93)来替代公式(92),可以使用VC3(on)获得公式(94)。VC3(off)由公式(95)表示。
    VC3(on)=Vref5-Vth6        (94)
    VC3(off)=Vref5-Vth6-Vw    (95)
根据公式(94)和(95)可以明白的是,在FET 760正好被置于断开状态时的FET 760的各端子上的电位由FET 760的阈值电压Vth6和施加到参考电压端子757的电压值Vref5确定。
在增益控制电路606中,通过在将电压Vref5施加到参考电压端子757的情况下改变控制电压VC3,从而来改变FET 760的栅极和源极之间的电位,该控制电压VC3施加到增益控制端子758并且包括用于补偿FET 760的阈值电压的补偿电压。因此,FET 760的源极和漏极之间的导通电阻值被改变。按照这种行为,信号输入端子751和信号输出端子752之间的衰减根据控制电压VC变化。因此,执行了增益控制。
增益控制电路606包括信号输出端子752和接地端子756之间的衰减电路55。当改变控制电压VC并且FET 760的源极和漏极之间的电阻值也因此变化时,FET 760的源极和漏极之间的阻抗变化。衰减电路55用来减小阻抗的变化。
图27是示出控制电压电路607的具体结构的电路图。如图27所示,参考电压端子764连接到电阻器769的一端。电阻器769的另一端连接到电阻器770的一端以及电阻器774的一端。电阻器770的另一端连接到电阻器771的一端以及电阻器772的一端。电阻器774的另一端连接到FET 775的漏极。FET 775的源极连接到电阻器776的一端以及控制电压输出端子766。参考电压输出端子765连接到电阻器772的另一端。控制电压输入端子767连接到电阻器773的一端。电阻器773的另一端连接到FET 775的栅极。接地端子768连接到电阻器771的另一端以及电阻器776的另一端。
对于包括在控制电压电路607中的电阻器769到771中的每一个,使用具有约几百Ω到约几十KΩ的电阻值的电阻器。对于电阻772、773、774和776中的每一个,使用具有约几十KΩ的电阻值的电阻器。
下文中,将介绍控制电压电路607的操作。假设电阻器774和776的电阻值足够高并且在FET 775的漏极和源极之间流动的电流可以被忽略。还假设电阻器773的电阻值足够高并且电阻器773上的压降可以被忽略。其中FET 775的阈值电压为Vth7,控制电压输入端子767上的电压VC和控制电压输出端子766上的电压VC3之间的关系由公式(96)表示。
VC=VC3+Vth7             (96)
根据电阻器769、770和771的电阻值来设定参考电压输出端子765上的参考电压Vref5。
在使用相同的半导体工艺制造增益控制电路606和控制电压电路607的情况下,在电路606和607中包括的FET的阈值电压基本上彼此相等。因此,实现公式(97)。
Vth6=Vth7               (97)
因此,根据公式(94)到(97),增益控制电路606的VC(on)和VC(off)由公式(98)和(99)表示。
VC(on)=Vref5            (98)
VC(off)=Vref5-Vw        (99)
公式(98)和(99)都不包括依赖于FET的阈值电压的项。因此,即使当FET的阈值电压变化时,VC(off)和VC(on)也不受此种变化的影响,并且由增益控制电路606执行的增益控制也不会受此种变化的影响。由于这个原因,可以减小由FET的阈值电压的变化而引起的增益的变化。
接下来,将介绍当高频放大电路605中的FET的阈值电压变化时增益控制特性的具体示例。这里,作为示例,将描述在从信号输入端子21输入的信号的频率为1.95GHz且施加到参考电压端子31的参考电压Vref为3.5V的情况下执行的实验结果。对于此种情况,在FET760和FET 775的阈值电压为-0.6V、-0.5V和-0.4V的情况下,施加到增益控制端子23的控制电压VC从0V变到3V。该结果将被示出。
图28是示出工作在上述条件下的增益控制电路606中的控制电压和输入/输出功率比之间的关系的曲线图。图29是示出工作在上述条件下的增益控制电路606中的控制电压和增益控制灵敏度之间的关系的曲线图。在图28和图29中,横轴表示施加到增益控制端子23上的控制电压VC。在图28中,纵轴表示在输入到信号输入端子751的输入信号的功率和从信号输出端子752输出的输出信号的功率之间的比值PG。在图29中,纵轴表示增益控制灵敏度GS。
根据图28和图29,即使当FET 760和775的阈值电压变化,增益控制电路606的特性也基本上不受此种变化的影响。因此,即使当FET的阈值电压由于制造工艺的不一致性或工作温度的变化而变化时,高频放大电路605也可以减小增益控制特性以及增益控制灵敏度的变化。
如上所述,根据本实施例的高频放大电路可以减小由于包括在增益控制电路中的FET的阈值电压变化而引起的增益的变化。
在上述每一个实施例中,下述修改是适用的。例如,在第一到第四实施例中,增益控制电路在输入端和输出端都包括衰减电路。或者,根据应用所要求的增益控制电路的特性,增益控制电路可以仅在输入端包括衰减电路,仅在输出端包括衰减电路,或在输入端和输出端都不包括衰减电路。在第五实施例中,增益控制电路可以不包括衰减电路。
在上述每一个实施例中,高频放大电路包括参考电压端子31和电源端子32和33。或者,参考电压端子31还可以用作电源端子32或33。利用此种结构,可以减少高频放大电路中包括的端子的数目,并且可以减小高频放大电路的安装面积。
虽然已经详细介绍了本发明,但上述说明书在各个方面都只是说明性的,而不是限制性的。应该理解的是,在不脱离本发明的范围的情况下,可以进行许多其他的修改和变形。

Claims (23)

1、一种具有可变增益的高频放大电路,包括:
一个端子组,包括向其输入待放大的高频信号的信号输入端子、用于输出放大后的高频信号的信号输出端子、向其施加控制电压的增益控制端子以及向其施加参考电压的参考电压端子;
放大器,设置在所述信号输入端子和所述信号输出端子之间,用于放大所述输入的高频信号;
增益控制电路,设置在所述信号输入端子和所述信号输出端子之间且与所述放大器串联连接,用于根据施加到所述增益控制端子的所述控制电压来改变所述输入的高频信号的衰减;以及
参考电压电路,用于从施加到所述参考电压端子上的所述参考电压来产生内部参考电压,并将所产生的内部参考电压提供给所述增益控制电路;
其中:
所述增益控制电路包括至少一个第一场效应晶体管,用于在其栅极接收所述控制电压,所述增益控制电路的电阻值根据所述给定的控制电压而变化;
所述参考电压电路包括第二场效应晶体管,其阈值电压基本上等于所述至少一个第一场效应晶体管的阈值电压,所述第二场效应晶体管被设置来产生内部参考电压,该内部参考电压相对于所述参考电压偏移了所述阈值电压;
所述增益控制电路利用连续变化的所述至少一个第一场效应晶体管的电阻值来连续地改变所述输入的高频信号的衰减;并且
所述参考电压电路将所述内部参考电压提供给所述至少一个第一场效应晶体管的源极和/或漏极,由此抵消由所述至少一个第一场效应晶体管的阈值电压对所述增益控制电路中的所述高频信号的衰减的变化施加的影响。
2、如权利要求1所述的高频放大电路,还包括设置在所述信号输入端子和接地端子之间的衰减电路,并且该衰减电路包括彼此串联连接的电阻器和电容器。
3、如权利要求1所述的高频放大电路,还包括设置在所述信号输出端子和接地端子之间的衰减电路,并且该衰减电路包括彼此串联连接的电阻器和电容器。
4、如权利要求1所述的高频放大电路,还包括设置在所述信号输入端子和接地端子之间的衰减电路以及设置在所述信号输出端子和所述接地端子之间的衰减电路,每个衰减电路包括彼此串联连接的电阻器和电容器。
5、如权利要求1所述的高频放大电路,其中所述增益控制电路还包括连接到所述至少一个第一场效应晶体管的源极和漏极的电阻器。
6、如权利要求1所述的高频放大电路,其中所述增益控制电路包括:
控制电压分压电路,设置在所述增益控制端子和接地端子之间,用于对所述控制电压进行分压,以获得多个电压;
多个彼此串联连接的所述第一场效应晶体管,并且每个所述第一场效应晶体管的栅极上将要施加由所述控制电压分压电路获得的所述电压;以及
多个电阻器,连接到所述多个第一场效应晶体管的源极和漏极。
7、如权利要求1所述的高频放大电路,其中所述参考电压电路包括:
参考电压分压电路,设置在所述参考电压端子和接地端子之间,用于对所述参考电压进行分压;
设置在所述参考电压端子和所述第二场效应晶体管的漏极之间的电阻器;以及
设置在所述接地端子和所述第二场效应晶体管的源极之间的电阻器;
其中在由所述参考电压分压电路获得的电压被施加到所述第二场效应晶体管的栅极的情况下,所述第二场效应晶体管的漏极或源极处的电位被输出作为所述内部参考电压。
8、一种具有可变增益的高频放大电路,包括:
一个端子组,包括向其输入待放大的高频信号的信号输入端子、用于输出放大后的高频信号的信号输出端子、向其施加控制电压的增益控制端子以及向其施加参考电压的参考电压端子;
放大器,设置在所述信号输入端子和所述信号输出端子之间,用于放大所述输入的高频信号;
增益控制电路,设置在所述信号输入端子和所述信号输出端子之间且与所述放大器串联连接,用于根据施加到所述增益控制端子上的所述控制电压来改变所述输入的高频信号的衰减;以及
参考电压电路,用于从施加到所述参考电压端子上的所述参考电压来产生内部参考电压,并将所产生的内部参考电压提供给所述增益控制电路;
其中:
所述增益控制电路包括第一场效应晶体管,用于在其栅极上接收所述控制电压,所述增益控制电路的电阻值根据所述给定的控制电压而变化;
所述参考电压电路包括多个第二场效应晶体管和分压电路,所述第二场效应晶体管用于产生相对于所述参考电压偏移了所述第二场效应晶体管的阈值电压的电压,所述分压电路用于对所产生的电压进行分压;
所述增益控制电路利用连续变化的所述第一场效应晶体管的电阻值来连续地改变所述输入的高频信号的衰减;并且
所述参考电压电路将由所述分压电路获得的电压提供给所述第一场效应晶体管的源极和/或漏极作为所述内部参考电压,由此抵消由所述第一场效应晶体管的阈值电压对所述增益控制电路中的所述高频信号的衰减的变化施加的影响。
9、如权利要求8所述的高频放大电路,其中所述增益控制电路还包括连接到所述第一场效应晶体管的源极和漏极的电阻器。
10、如权利要求8所述的高频放大电路,其中所述参考电压电路包括:
参考电压分压电路,设置在所述参考电压端子和接地端子之间,用于对所述参考电压进行分压;以及
作为所述多个第二场效应晶体管的两个第二场效应晶体管,设置在所述参考电压端子和所述接地端子之间,并且彼此并联连接;
其中:
在所述两个第二场效应晶体管中,一个第二场效应晶体管被配置成使得由所述参考电压分压电路获得的电压被施加到该第二场效应晶体管的栅极,第一电阻器设置在该第二场效应晶体管的漏极和所述参考电压端子之间,并且第二电阻器设置在该第二场效应晶体管的源极和所述接地端子之间;
另一个第二场效应晶体管被配置成使得该另一个第二场效应晶体管的栅极连接到所述一个第二场效应晶体管的源极,第三电阻器设置在该另一个第二场效应晶体管的漏极和所述参考电压端子之间,并且在该另一个第二场效应晶体管的源极和所述接地端子之间设置彼此串联连接的第四电阻器和第五电阻器作为所述分压电路;并且
所述第四电阻器和所述第五电阻器之间的电位被输出作为所述内部参考电压。
11、一种具有可变增益的高频放大电路,包括:
一个端子组,包括分别向其输入待放大的第一和第二高频信号的第一和第二信号输入端子、分别用于输出放大后的高频信号的第一和第二信号输出端子、向其施加控制电压的增益控制端子以及向其施加参考电压的参考电压端子;
第一放大器,设置在所述第一信号输入端子和所述第一信号输出端子之间,用于放大所述输入的第一高频信号;
第二放大器,设置在所述第二信号输入端子和所述第二信号输出端子之间,用于放大所述输入的第二高频信号;
第一增益控制电路,设置在所述第一信号输入端子和所述第一信号输出端子之间且与所述第一放大器串联连接,用于根据施加到所述增益控制端子上的所述控制电压来改变所述输入的第一高频信号的衰减;
第二增益控制电路,设置在所述第二信号输入端子和所述第二信号输出端子之间且与所述第二放大器串联连接,用于根据施加到所述增益控制端子上的所述控制电压来改变所述输入的第二高频信号的衰减;以及
参考电压电路,用于从施加到所述参考电压端子上的所述参考电压来产生第一和第二内部参考电压,并将所产生的第一和第二内部参考电压分别提供给所述第一和第二增益控制电路;
其中:
所述第一增益控制电路包括第一场效应晶体管,用于在其栅极上接收所述控制电压,所述第一增益控制电路的电阻值根据所述给定的控制电压而变化;
所述第二增益控制电路包括第二场效应晶体管,用于在其栅极上接收所述控制电压,所述第二增益控制电路的电阻值根据所述给定的控制电压而变化;
所述参考电压电路包括多个第三场效应晶体管和分压电路,所述第三场效应晶体管用于产生相对于所述参考电压偏移了所述第三场效应晶体管的阈值电压的电压,所述分压电路用于对所产生的电压进行分压并产生所述第一和第二内部参考电压;
所述第一和第二增益控制电路利用连续变化的所述第一和第二场效应晶体管的电阻值来分别连续地改变所述输入的第一和第二高频信号的衰减;并且
所述参考电压电路将由所述分压电路产生的所述第一和第二内部参考电压分别提供给所述第一和第二场效应晶体管的源极和/或漏极,由此分别抵消由所述第一和第二场效应晶体管的阈值电压对所述第一和第二增益控制电路中的所述高频信号的衰减的变化施加的影响。
12、如权利要求11所述的高频放大电路,其中所述第一增益控制电路还包括连接到所述第一场效应晶体管的源极和漏极的电阻器。
13、如权利要求11所述的高频放大电路,其中所述第二增益控制电路还包括连接到所述第二场效应晶体管的源极和漏极的电阻器。
14、如权利要求11所述的高频放大电路,其中所述参考电压电路包括:
参考电压分压电路,设置在所述参考电压端子和接地端子之间,用于对所述参考电压进行分压;
作为所述多个第三场效应晶体管的两个第三场效应晶体管,设置在所述参考电压端子和所述接地端子之间,并且彼此并联连接;
在所述两个第三场效应晶体管中,一个第三场效应晶体管被配置成使得由所述参考电压分压电路获得的电压被施加到该一个第三场效应晶体管的栅极,第一电阻器设置在该一个第三场效应晶体管的漏极和所述参考电压端子之间,并且第二电阻器设置在该一个第三场效应晶体管的源极和所述接地端子之间;
另一个第三场效应晶体管被配置成使得该另一个第三场效应晶体管的栅极连接到前述一个第三场效应晶体管的源极,第三电阻器设置在该另一个第三场效应晶体管的漏极和所述参考电压端子之间,并且第四到第七电阻器作为所述分压电路设置在该另一个第三场效应晶体管的源极和所述接地端子之间;
包括所述第四和第五电阻器的第一电阻器串联电路与包括所述第六和第七电阻器的第二电阻器串联电路彼此并联连接;
所述第四电阻器和所述第五电阻器之间的电位作为所述第一内部参考电压输出到所述第一增益控制电路;并且
所述第六电阻器和所述第七电阻器之间的电位作为所述第二内部参考电压输出到所述第二增益控制电路。
15、如权利要求11所述的高频放大电路,其中所述参考电压电路包括:
参考电压分压电路,设置在所述参考电压端子和接地端子之间,用于对所述参考电压进行分压;
作为所述多个第三场效应晶体管的两个第三场效应晶体管,设置在所述参考电压端子和接地端子之间,并且彼此并联连接;
在所述两个第三场效应晶体管中,一个第三场效应晶体管被配置成使得由所述参考电压分压电路获得的电压被施加到该一个第三场效应晶体管的栅极,第一电阻器设置在该一个第三场效应晶体管的漏极和所述参考电压端子之间,并且第二电阻器设置在该一个第三场效应晶体管的源极和所述接地端子之间;
另一个第三场效应晶体管被配置成使得该另一个第三场效应晶体管的栅极连接到所述一个第三场效应晶体管的源极,第三电阻器设置在该另一个第三场效应晶体管的漏极和所述参考电压端子之间,并且在该另一个第三场效应晶体管的源极和所述接地端子之间设置串联连接的第四、第五和第六电阻器作为所述分压电路;
所述第五电阻器和所述第六电阻器之间的电位作为所述第一内部参考电压输出到所述第一增益控制电路;并且
所述第四电阻器和所述第五电阻器之间的电位作为所述第二内部参考电压输出到所述第二增益控制电路。
16、一种具有可变增益的高频放大电路,包括:
一个端子组,包括向其输入待放大的高频信号的信号输入端子、用于输出放大后的高频信号的信号输出端子、向其施加控制电压的增益控制端子,以及向其施加参考电压的参考电压端子;
信号线,连接在所述信号输入端子和所述信号输出端子之间,用于允许所述输入的高频信号流过;
放大器,设置在所述信号线上,用于放大所述输入的高频信号;
控制电压电路,用于从施加到所述增益控制端子上的所述控制电压来产生内部控制电压;以及
增益控制电路,设置在所述信号线上,用于根据所述内部控制电压来改变在所述信号线上流过的所述高频信号的衰减;
其中:
所述增益控制电路包括设置在所述信号输入端子和接地端子之间的第一场效应晶体管,用于在其栅极接收所述参考电压,并且在其源极和/或漏极接收所述内部控制电压,所述增益控制电路的电阻值根据所述给定的内部控制电压而变化;
所述控制电压电路包括其阈值电压基本上等于所述第一场效应晶体管的阈值电压的第二场效应晶体管,该第二场效应晶体管被设置来用于产生所述内部控制电压,该内部控制电压相对于所述控制电压偏移了所述阈值电压的量;
所述增益控制电路利用连续变化的所述第一场效应晶体管的电阻值来连续地改变流过所述信号线的所述高频信号的衰减;并且
所述控制电压电路将所述内部控制电压提供给所述增益控制电路,由此抵消由所述第一场效应晶体管的所述阈值电压对所述增益控制电路中的所述高频信号的衰减的变化施加的影响。
17、如权利要求16所述的高频放大电路,其中所述增益控制电路还包括连接到所述第一场效应晶体管的所述源极和所述漏极的电阻器。
18、如权利要求16所述的高频放大电路,其中所述控制电压电路还包括:
设置在所述参考电压端子和所述第二场效应晶体管的漏极之间的电阻器;以及
设置在所述接地端子和所述第二场效应晶体管的源极之间的电阻器;
其中:
所述控制电压被施加到所述第二场效应晶体管的栅极上;并且
所述第一场效应晶体管的所述漏极和/或所述源极连接到所述第二场效应晶体管的所述源极或所述漏极。
19、一种移动通信终端,包括:
高频电路模块,包括合成部件、发射部件、接收部件和共用部件;其中:
所述发射部件包括:
调制器,用于将输入的调制信号转换成具有彼此不同的发射频率的多个发射信号;以及
多个放大部件,分别用于放大通过所述调制器获得的所述多个发射信号;
所述多个放大部件中的每一个包括:
具有可变增益的高频放大电路,用于放大通过所述调制器获得的所述多个发射信号中的一个;
带通滤波器,用于从通过所述高频放大电路放大的发射信号中提取出预定频段的信号分量;
具有固定增益的高输出高频放大电路,用于放大由所述带通滤波器提取的信号;以及
隔离器,设置在所述高输出高频放大电路和所述共用部件之间,用于使所述信号在从所述高输出高频放大电路到所述共用部件的一个方向上;并且
所述高频放大电路中的至少一个包括:
一个端子组,包括向其输入待放大的高频信号的信号输入端子、用于输出放大后的高频信号的信号输出端子、向其施加控制电压的增益控制端子,以及向其施加参考电压的参考电压端子;
放大器,设置在所述信号输入端子和所述信号输出端子之间,用于放大所述输入的高频信号;
增益控制电路,设置在所述信号输入端子和所述信号输出端子之间且与所述放大器串联连接,用于根据施加到所述增益控制端子上的所述控制电压来改变所述输入的高频信号的衰减;以及
参考电压电路,用于从施加到所述参考电压端子上的所述参考电压来产生内部参考电压,并将所产生的内部参考电压提供给所述增益控制电路;
其中:
所述增益控制电路包括至少一个第一场效应晶体管,用于在其栅极接收所述控制电压,所述增益控制电路的电阻值根据所述给定的控制电压而变化;
所述参考电压电路包括第二场效应晶体管,其阈值电压基本上等于所述至少一个第一场效应晶体管的阈值电压,所述第二场效应晶体管被设置来产生所述内部参考电压,该内部参考电压相对于所述参考电压偏移了所述阈值电压;
所述增益控制电路利用连续变化的所述至少一个第一场效应晶体管的电阻值来连续地改变所述输入的高频信号的衰减;并且
所述参考电压电路将所述内部参考电压提供给所述至少一个第一场效应晶体管的源极和/或漏极,由此抵消由所述至少一个第一场效应晶体管的阈值电压对所述增益控制电路中的所述高频信号的衰减的变化施加的影响。
20、如权利要求19所述的移动通信终端,其中所述增益控制电路包括:
设置在所述增益控制端子和接地端子之间的控制电压分压电路,用于对所述控制电压进行分压,以获得多个电压;
彼此串联连接的多个所述第一场效应晶体管,并且每个所述第一场效应晶体管的栅极上将要施加由所述控制电压分压电路获得的所述电压;以及
连接到所述多个第一场效应晶体管的源极和漏极的多个电阻器。
21、一种移动通信终端,包括:
高频电路模块,包括合成部件、发射部件、接收部件和共用部件;其中:
所述发射部件包括:
调制器,用于将输入的调制信号转换成具有彼此不同的发射频率的多个发射信号;以及
多个放大部件,分别用于放大通过所述调制器获得的所述多个发射信号;
所述多个放大部件中的每个包括:
具有可变增益的高频放大电路,用于放大通过所述调制器获得的所述多个发射信号中的一个;
带通滤波器,用于从通过所述高频放大电路放大的所述发射信号中提取预定频段的信号分量;
具有固定增益的高输出高频放大电路,用于放大由所述带通滤波器提取的所述信号;以及
隔离器,设置在所述高输出高频放大电路和所述共用部件之间,用于使所述信号在从所述高输出高频放大电路到所述共用部件的一个方向上;并且
所述高频放大电路中的至少一个包括:
一个端子组,包括向其输入待放大的高频信号的信号输入端子、用于输出放大后的高频信号的信号输出端子、向其施加控制电压的增益控制端子,以及向其施加参考电压的参考电压端子;
放大器,设置在所述信号输入端子和所述信号输出端子之间,用于放大所述输入的高频信号;
增益控制电路,设置在所述信号输入端子和所述信号输出端子之间且与所述放大器串联连接,用于根据施加到所述增益控制端子上的所述控制电压来改变所述输入的高频信号的衰减;以及
参考电压电路,用于从施加到所述参考电压端子上的所述参考电压来产生内部参考电压,并将所产生的内部参考电压提供给所述增益控制电路;
其中:
所述增益控制电路包括第一场效应晶体管,用于在其栅极接收所述控制电压,所述增益控制电路的电阻值根据所述给定的控制电压而变化;
所述参考电压电路包括多个第二场效应晶体管和分压电路,所述第二场效应晶体管用于产生相对于所述参考电压偏移了所述第二场效应晶体管的阈值电压的电压,所述分压电路用于对所产生的电压进行分压;
所述增益控制电路利用连续变化的所述第一场效应晶体管的电阻值来连续地改变所述输入的高频信号的衰减;并且
所述参考电压电路将由所述分压电路获得的电压作为所述内部参考电压提供给所述第一场效应晶体管的源极和/或漏极,由此抵消由所述第一场效应晶体管的阈值电压对所述增益控制电路中的所述高频信号的衰减的变化施加的影响。
22、一种移动通信终端,包括:
高频电路模块,包括合成部件、发射部件、接收部件和共用部件;其中:
所述发射部件包括:
调制器,用于将输入的调制信号转换成具有彼此不同的发射频率的多个发射信号;以及
多个放大部件,分别用于放大通过所述调制器获得的所述多个发射信号;
所述多个放大部件中的每个包括:
具有可变增益的高频放大电路,用于放大通过所述调制器获得的多个发射信号中的一个;
带通滤波器,用于从通过所述高频放大电路放大的所述发射信号中提取预定频段的信号分量;
具有固定增益的高输出高频放大电路,用于放大由所述带通滤波器提取的信号;以及
隔离器,设置在所述高输出高频放大电路和所述共用部件之间,用于使所述信号在从所述高输出高频放大电路到所述共用部件的一个方向上;并且
所述高频放大电路中的至少一个包括:
一个端子组,包括分别向其输入待放大的第一和第二高频信号的第一和第二信号输入端子、分别用于输出放大后的高频信号的第一和第二信号输出端子、向其施加控制电压的增益控制端子以及向其施加参考电压的参考电压端子;
第一放大器,设置在所述第一信号输入端子和所述第一信号输出端子之间,用于放大所述输入的第一高频信号;
第二放大器,设置在所述第二信号输入端子和所述第二信号输出端子之间,用于放大所述输入的第二高频信号;
第一增益控制电路,设置在所述第一信号输入端子和所述第一信号输出端子之间且与所述第一放大器串联连接,用于根据施加到所述增益控制端子上的所述控制电压来改变所述输入的第一高频信号的衰减;
第二增益控制电路,设置在所述第二信号输入端子和所述第二信号输出端子之间且与所述第二放大器串联连接,用于根据施加到所述增益控制端子上的所述控制电压来改变所述输入的第二高频信号的衰减;以及
参考电压电路,用于从施加到所述参考电压端子上的所述参考电压来产生第一和第二内部参考电压,并将所产生的第一和第二内部参考电压分别提供给所述第一和第二增益控制电路;
其中:
所述第一增益控制电路包括第一场效应晶体管,用于在其栅极接收所述控制电压,所述第一增益控制电路的电阻值根据所述给定的控制电压而变化;
所述第二增益控制电路包括第二场效应晶体管,用于在其栅极接收所述控制电压,所述第二增益控制电路的电阻值根据所述给定的控制电压而变化;
所述参考电压电路包括多个第三场效应晶体管和分压电路,所述第三场效应晶体管用于产生相对于所述参考电压偏移了所述第三场效应晶体管的阈值电压的电压,所述分压电路用于对所产生的电压进行分压并产生所述第一和第二内部参考电压;
所述第一和第二增益控制电路利用连续变化的所述第一和第二场效应晶体管的电阻值来分别连续地改变所述输入的第一和第二高频信号的衰减;并且
所述参考电压电路将由所述分压电路产生的所述第一和第二内部参考电压分别提供给所述第一和第二场效应晶体管的源极和/或漏极,由此分别抵消由所述第一和第二场效应晶体管的阈值电压对所述第一和第二增益控制电路中的所述高频信号的衰减的变化施加的影响。
23、一种移动通信终端,包括:
高频电路模块,包括合成部件、发射部件、接收部件和共用部件;其中:
所述发射部件包括:
调制器,用于将输入的调制信号转换成具有彼此不同的发射频率的多个发射信号;以及
多个放大部件,分别用于放大通过所述调制器获得的所述多个发射信号;
所述多个放大部件中的每个包括:
具有可变增益的高频放大电路,用于放大通过所述调制器获得的所述多个发射信号中的一个;
带通滤波器,用于从通过所述高频放大电路放大的所述发射信号中提取预定频段的信号分量;
具有固定增益的高输出高频放大电路,用于放大由所述带通滤波器提取的所述信号;以及
隔离器,设置在所述高输出高频放大电路和所述共用部件之间,用于使所述信号在从所述高输出高频放大电路到所述共用部件的一个方向上;并且
所述高频放大电路中的至少一个包括:
一个端子组,包括向其输入待放大的高频信号的信号输入端子、用于输出放大后的高频信号的信号输出端子、向其施加控制电压的增益控制端子以及向其施加参考电压的参考电压端子;
信号线,连接在所述信号输入端子和所述信号输出端子之间,用于允许所述输入的高频信号流过;
放大器,设置在所述信号线上,用于放大所述输入的高频信号;
控制电压电路,用于从施加到所述增益控制端子上的所述控制电压来产生内部控制电压;以及
增益控制电路,设置在所述信号线上,用于根据所述内部控制电压来改变在所述信号线上流过的所述高频信号的衰减;
其中:
所述增益控制电路包括设置在所述信号输入端子和接地端子之间的第一场效应晶体管,用于在其栅极接收所述参考电压,并且在其源极和/或漏极接收所述内部控制电压,所述增益控制电路的电阻值根据所述给定的内部控制电压而变化;
所述控制电压电路包括其阈值电压基本上等于所述第一场效应晶体管的阈值电压的第二场效应晶体管,该第二场效应晶体管被设置来用于产生所述内部参考电压,该内部参考电压相对于所述控制电压偏移了所述阈值电压;
所述增益控制电路利用连续变化的所述第一场效应晶体管的电阻值来连续地改变流过所述信号线的所述高频信号的衰减;并且
所述控制电压电路将所述内部控制电压提供给所述增益控制电路,由此抵消由所述第一场效应晶体管的所述阈值电压对所述增益控制电路中的所述高频信号的衰减的变化施加的影响。
CNA2005100846425A 2004-08-20 2005-07-15 高频放大电路及使用该电路的移动通信终端 Pending CN1738195A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004241071 2004-08-20
JP241071/2004 2004-08-20

Publications (1)

Publication Number Publication Date
CN1738195A true CN1738195A (zh) 2006-02-22

Family

ID=35910242

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005100846425A Pending CN1738195A (zh) 2004-08-20 2005-07-15 高频放大电路及使用该电路的移动通信终端

Country Status (3)

Country Link
US (1) US7340229B2 (zh)
JP (1) JP4746648B2 (zh)
CN (1) CN1738195A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103828231A (zh) * 2011-09-30 2014-05-28 科莱韦奇公司 资源池放大器
WO2014161233A1 (zh) * 2013-04-03 2014-10-09 京东方科技集团股份有限公司 Tft阈值电压补偿电路及方法、移位寄存器和显示装置
CN109687841A (zh) * 2018-12-21 2019-04-26 中国电子科技集团公司第五十五研究所 宽带温补衰减器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5512740B2 (ja) * 2012-05-11 2014-06-04 シャープ株式会社 高周波回路およびそれを備えた高周波モジュール
US9899133B2 (en) 2013-08-01 2018-02-20 Qorvo Us, Inc. Advanced 3D inductor structures with confined magnetic field
US9444417B2 (en) 2013-03-15 2016-09-13 Qorvo Us, Inc. Weakly coupled RF network based power amplifier architecture
US9294045B2 (en) 2013-03-15 2016-03-22 Rf Micro Devices, Inc. Gain and phase calibration for closed loop feedback linearized amplifiers

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515131B2 (zh) 1974-11-09 1980-04-21
US4371842A (en) * 1980-10-24 1983-02-01 Sperry Corporation Self-adjusting dual mode automatic gain control circuit
JPS61216504A (ja) 1985-03-22 1986-09-26 Toshiba Corp 増幅回路用基準電位発生回路
JPS6326115A (ja) * 1986-07-18 1988-02-03 Fujitsu Ltd 3値コントロ−ル回路
US4890077A (en) * 1989-03-28 1989-12-26 Teledyne Mec FET monolithic microwave integrated circuit variable attenuator
JPH05315871A (ja) * 1992-05-12 1993-11-26 Hitachi Ltd ステップ減衰器
JP3556328B2 (ja) * 1995-07-11 2004-08-18 株式会社ルネサステクノロジ 内部電源回路
JP3565667B2 (ja) * 1996-10-08 2004-09-15 富士通株式会社 利得可変半導体回路
JPH10256853A (ja) 1997-03-14 1998-09-25 Toshiba Corp 可変減衰器およびこれを用いた高周波増幅器
JPH10261925A (ja) 1997-03-17 1998-09-29 Toshiba Corp 高周波増幅器
DE69939359D1 (de) * 1998-04-24 2008-10-02 Matsushita Electric Ind Co Ltd Verstärker
JP2000124749A (ja) * 1998-10-16 2000-04-28 Matsushita Electric Ind Co Ltd 半導体集積装置
JP3605314B2 (ja) * 1999-05-31 2004-12-22 松下電器産業株式会社 携帯電話端末装置
JP2000347755A (ja) * 1999-06-09 2000-12-15 Mitsubishi Electric Corp 半導体装置
JP3798198B2 (ja) * 1999-09-29 2006-07-19 株式会社ルネサステクノロジ 高周波電力増幅モジュールおよび無線通信装置
JP3544351B2 (ja) 1999-11-26 2004-07-21 松下電器産業株式会社 高周波増幅回路およびそれを用いた移動体通信端末
JP2001196898A (ja) 2000-01-05 2001-07-19 Fujitsu Ltd 弾性表面波フィルタ
JP3332082B2 (ja) 2000-01-17 2002-10-07 日本電気株式会社 高周波可変減衰回路
JP2002246802A (ja) 2001-02-13 2002-08-30 Mitsubishi Electric Corp 半導体スイッチ、移相回路及び減衰器
JP3853612B2 (ja) 2001-06-06 2006-12-06 松下電器産業株式会社 減衰器
JP4027822B2 (ja) * 2003-03-11 2007-12-26 松下電器産業株式会社 Agc回路

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103828231A (zh) * 2011-09-30 2014-05-28 科莱韦奇公司 资源池放大器
CN103828231B (zh) * 2011-09-30 2016-02-17 马克西姆综合产品公司 资源池放大器
USRE47383E1 (en) 2011-09-30 2019-05-07 Maxim Integrated Products, Inc. Resource pooling amplifier
WO2014161233A1 (zh) * 2013-04-03 2014-10-09 京东方科技集团股份有限公司 Tft阈值电压补偿电路及方法、移位寄存器和显示装置
US9418756B2 (en) 2013-04-03 2016-08-16 Boe Technology Group Co., Ltd. Threshold voltage compensation circuit of thin film transistor and method for the same, shift register, and display device
CN109687841A (zh) * 2018-12-21 2019-04-26 中国电子科技集团公司第五十五研究所 宽带温补衰减器
CN109687841B (zh) * 2018-12-21 2022-08-19 中国电子科技集团公司第五十五研究所 宽带温补衰减器

Also Published As

Publication number Publication date
JP4746648B2 (ja) 2011-08-10
JP2008206208A (ja) 2008-09-04
US7340229B2 (en) 2008-03-04
US20060040629A1 (en) 2006-02-23

Similar Documents

Publication Publication Date Title
CN1277351C (zh) D类放大器
CN1252914C (zh) 差动电路、放大电路及使用它们的显示装置
CN1578114A (zh) 调制电路设备、调制方法和无线电通信设备
CN1292533C (zh) 平衡高频器件,平衡特性的改进方法和采用此类器件的平衡高频电路
CN1397106A (zh) 高频放大器及混频器
CN1467919A (zh) 传输电路装置及无线通信装置
CN1948974A (zh) 半导体集成电路装置及电子装置
CN1941615A (zh) 差动放大器与数字/模拟转换器以及显示装置
CN1389016A (zh) 高频放大器、前馈放大器及失真补偿放大器
CN1738195A (zh) 高频放大电路及使用该电路的移动通信终端
CN1790912A (zh) 半导体集成电路装置
CN1284304C (zh) 可变增益放大装置和无线电通信装置
CN1440120A (zh) 低消耗电流的驱动电路
CN1551489A (zh) 可变阻抗电路以及使用它的放大器、乘法器、高频电路
CN1610251A (zh) 高频功率放大器电路与用于高频功率放大器的电子部件
CN1499737A (zh) 能够与寄生电容产生串联谐振的收发信机
CN1695335A (zh) 发射机
CN1707941A (zh) 多级放大设备以及使用该设备的接收设备和发送设备
CN1855701A (zh) 差动放大器、显示装置的数据驱动器
CN1741370A (zh) 放大器系统和方法
CN1263042C (zh) 读取电路、参考电路和半导体存储装置
CN1753059A (zh) 灰度级电压发生装置和显示面板驱动器以及显示器
CN1665133A (zh) 发送电路、通信机器、音频机器、影像机器、及发送方法
CN1794330A (zh) 电流驱动器、数据驱动器和显示装置
CN1629760A (zh) 使输出电压稳定化的电流放大电路和具备其的液晶显示装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication