CN1871684B - 采用fib准备的样本的抓取元件的显微镜检查的方法、系统和设备 - Google Patents

采用fib准备的样本的抓取元件的显微镜检查的方法、系统和设备 Download PDF

Info

Publication number
CN1871684B
CN1871684B CN2004800311077A CN200480031107A CN1871684B CN 1871684 B CN1871684 B CN 1871684B CN 2004800311077 A CN2004800311077 A CN 2004800311077A CN 200480031107 A CN200480031107 A CN 200480031107A CN 1871684 B CN1871684 B CN 1871684B
Authority
CN
China
Prior art keywords
sample
grasping element
fib
preparing
described sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004800311077A
Other languages
English (en)
Other versions
CN1871684A (zh
Inventor
乔治·斯基德莫尔
马修·D.·艾里斯
阿隆·吉思博格
肯尼思·布雷
金博利·塔克
罗伯特·弗拉隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zyvex Corp
Original Assignee
Zyvex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zyvex Corp filed Critical Zyvex Corp
Publication of CN1871684A publication Critical patent/CN1871684A/zh
Application granted granted Critical
Publication of CN1871684B publication Critical patent/CN1871684B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
    • H01J37/185Means for transferring objects between different enclosures of different pressure or atmosphere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving
    • G01N2001/2886Laser cutting, e.g. tissue catapult
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/32Micromanipulators structurally combined with microscopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2007Holding mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/204Means for introducing and/or outputting objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31745Etching microareas for preparing specimen to be viewed in microscopes or analyzed in microanalysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31749Focused ion beam

Abstract

在一个实施例中,一种方法包括通过利用聚焦离子束(FIB)切割衬底来从衬底上至少部分地切断样本;通过激活抓取元件(155)捕捉衬底样本;以及使被捕捉的样本与衬底分离。被捕捉的样本被与衬底相分离,并且被输送到电子显微镜(190)以便检查。

Description

采用FIB准备的样本的抓取元件的显微镜检查的方法、系统和设备
本发明是利用国家标准技术研究所(NIST)所资助的70NANB1H3021下的美国政府支持而完成的。美国政府拥有本发明的某些权利。
本发明还与2004年2月23日递交的Baur等人的题为“AUTOMATED AND SEMI-AUTOMATED PROBING IN ACHARGED PARTICLE BEAM DEVICE(带电粒子束设备中的自动和半自动探测)”的美国临时申请No.60/546,840相关并要求其优先权,这里通过引用将其公开内容全部包含进来。
本发明还与以下申请相关:(1)Dyer等人的题为“MANIPULATION SYSTEM FOR MANIPULATING A SAMPLEUNDER STUDY WITH A MICROSCOPE(用于操作利用显微镜研究的样本的操纵系统)”的PCT申请号PCT/US03/16695;以及(2)Yu等人的题为“MODULAR MANIPULATION SYSTEM FORMANIPULATING A SAMPLE UNDER STUDY WITH AMICROSCOPE"(用于操作利用显微镜研究的样本的模块化操纵系统)”的美国专利申请No.10/173,543;这里通过引用将其公开内容全部包含进来。
背景技术
要检查和操纵微尺度和毫微尺度的物体需要电子显微镜设备。一般而言,电子显微镜采用电子束来照射被研究的样本,其中电子束的波长远小于光学显微镜中使用的光波长。现代电子显微镜可以以高达约一百万的放大倍率以亚毫微米的分辨率(例如0.1nm的分辨率)来查看原子级别的细节。电子显微镜和其他可被类似地采用的显微镜包括原子力显微镜、扫描探针显示镜、扫描隧道显微镜、近场光学扫描显微镜和透射电子显微镜,及其他。
扫描电子显微镜(SEM)是另一种类型的电子显微镜。在典型SEM中,电子束被聚焦到一点上并被扫描过样本表面。检测器收集从表面反射或其他方式源自表面的后向散射和二次电子,并将其转换成用于产生样本的逼真的三维图像的信号。在扫描过程期间,检测器接收到的来自表在凹陷的电子较少,因此在产生的图像中表面上较低的区域显得较暗。SEM可提供的放大倍率高达二十万,有可能更高。
聚焦离子束(FIB)系统与扫描电子显微镜类似,只不过不是采用电子束,而是将离子束扫描过样本。离子束被从液态金属离子源(例如镓)中喷射出,其斑点大小一般小于约10nm。在准备样本以便之后通过TEM或其他电子显微镜检查时,可采用FIB技术。
为TEM准备的FIB样本通常是通过“举出(lift-out)”方法来制造的,以提供一种迅速地从感兴趣的特定部位准备对电子透明的截面的手段。在举出方法中,体积相对较大的样本可被插入FIB腔中,以便可从样本的表面产生样本。然后通过使用电子探针将样本“举出”,该电子探针将样本从其沟槽中取回并将样本放置在检查栅格上。
但是,利用静电探针来对取回的样本进行精确定位和/或定向是困难的。例如,由于样本仅通过静电力而临时附着到探针,因此样本不是绝对紧固的,而可能移开和/或被污染或毁坏。因此需要其上附着或焊接了样本的检查栅格。这种过程只允许了在单个方位上检查样本,从而若要彻底检查衬底或衬底区域则可能需要检查多个样本。
附图说明
当参考附图理解以下详细描述时,将最充分地理解本公开的多个方面。要强调,根据工业上的标准做法,各种特征可能不是按比例绘制的。实际上,为了论述清晰,各种特征的尺寸可能被任意增大或减小。
图1是根据本公开的多个方面的用于显微镜检查的系统的一个实施例的至少一部分的示意图。
图2是根据本公开的多个方面的抓取(grasping)元件的一个实施例的至少一部分的示意图。
图3是根据本公开的多个方面的抓取元件的另一个实施例的至少一部分的示意图。
图4A是根据本公开的多个方面的抓取元件的另一个实施例的至少一部分的示意图。
图4B和4C是根据本公开的多个方面的抓取元件的另一个实施例的至少一部分的示意图。
图4D和4E是根据本公开的多个方面的抓取元件的另一个实施例的至少一部分的示意图。
图5是根据本公开的多个方面的抓取元件的另一个实施例的至少一部分的示意图。
图6是根据本公开的多个方面的具有用FIB准备的样本的衬底的一个实施例的至少一部分的示意图。
图7是根据本公开的多个方面的具有用FIB准备的样本的衬底的一个实施例的至少一部分的顶视图。
图8是根据本公开的多个方面的系统的一个实施例的至少一部分的框图。
图9是根据本公开的多个方面的图8所示的系统的一部分的一个实施例的框图。
具体实施方式
要理解,以下公开提供了许多不同的实施例,或示例,以用于实现各种实施例的不同特征。以下描述了组件和布置的特定示例以简化本公开。当然,它们只是示例,而不打算是限制性的。此外,本公开在各种示例中可能重复多个附图标记和/或字母。这种重复是出于简单和清楚目的的,而其本身并不规定所论述的各种实施例和/或配置之间的关系。此外,在以下描述中,在第二特征上方或上面形成第一特征可包括以直接接触的方式形成第一和第二特征的实施例,也可以包括形成了插入在第一和第二特征之间的另外的特征以使得第一和第二特征可能没有直接接触的实施例。
参考图1,其中示出的是根据本公开的多个方面的显微镜检查系统100的一个实施例的至少一部分的示意图。系统100可包括容纳聚焦离子束(FIB)装置120的FIB腔110。FIB腔110还可能包围着台130,除了其他类型的台以外,台130例如可以是用来支撑衬底140的台,该衬底140是要在样本的FIB准备之后通过电子显微镜检查的衬底。FIB腔110可以是传统的或未来开发的真空腔或其他类型的腔,在其中可执行FIB工序。FIB装置120可包括传统的或未来开发的用于对衬底140执行FIB工序的装置,例如用于准备衬底140的样本以供检查。例如,FIB装置120可包括用于生成离子束的离子源,以及用于将离子束照射到规定的位置的离子束光学系统。台130可被配置为在多达6个自由度中相对于FIB腔110和/或FIB装置120对衬底140进行定位和定向。
系统100还包括装卸组合件150或者例如可用来在FIB腔110和电子显微镜腔160之间输送用FIB准备的样本的其他装配、定向和/或操纵工具。装卸组合件150可以以可拆卸的方式耦合到FIB腔110或电子显微镜腔160,虽然装卸组合件也可以是自立式装置。装卸组合件150包括抓取元件155,该抓取元件155被配置为与用FIB准备的样本接口。在某些实施例中,装卸组合件150或其某些部分或功能可以基本上被包围在使用它的腔中,例如FIB腔110和/或电子显微镜腔160。例如,定位系统或其他类型的操纵器可构成装卸组合件150的至少一部分,并且可被包围在样本在其中被操纵的腔内。
系统100还可包括多于一个装卸组合件150,其中每一个可包括一个或多个抓取元件155。每个抓取元件155也可被配置为与一个或多个用FIB准备的样本接口。这样,正如下文中进一步描述的,可以连续或并行地准备和/或操纵多个样本,这可能是经由自动操作进行的。在采用多于一个装卸组合件150或抓取元件155的情况下,每个装卸组合件150可以基本类似或不基本类似,并且每个抓取元件155可以基本类似或不基本类似。
抓取元件155也可被配置为在多达6个自由度中对FIB样本进行定位和/或定向,例如将用FIB准备的样本定位在电子显微镜腔160中的检查栅格170上,或者在检查期间将用FIB准备的样本紧固在电子显微镜腔160中,这可能是在没有检查栅格170的情况下进行的。例如通过对抓取元件155的静电、热和/或压电激活,可以激活抓取元件155以抓取用FIB准备的样本。或者,或另外,可以解除对抓取元件155的激活以抓取用FIB准备的样本。即,抓取元件155可被配置为在通电状态中抓取用FIB准备的样本并且在断电状态中松开用FIB准备的样本,在断电状态中抓取用FIB准备的样本并且在通电状态中松开用FIB准备的样本,或者在断电状态中抓取用FIB准备的样本并且在断电状态中松开用FIB准备的样本。
装卸组合件150,以及可能的抓取元件155,可以是手工操作的和/或机器人操作的(自动化的),以使得在FIB腔110中准备样本、将样本传送到电子显微镜腔160和/或在电子显微镜腔160中检查样本期间执行的一个或多个工序步骤一旦被发起就能在只要很少或几乎不要人类交互的情况下执行。某些工序步骤也可以被先前的工序步骤自动发起,而只要很少或几乎不要人类交互。
电子显微镜腔160可以是传统或未来开发的真空腔或其他类型的腔,在其中可执行电子显微镜工序。电子显微镜腔160可包括台180,该台180用于支撑检查栅格170,或者如果未使用检查栅格170,则用于支撑用FIB准备的样本和/或用于与装卸组合件150协同工作以在检查期间对用FIB准备的样本进行定位和定向。电子显微镜腔160还包括用于检查用FIB准备的样本的检查装置190。在一个实施例中,检查装置190包括透射电子显微镜(TEM)。当然,检查装置190也可包括其他显微镜装置,包括但不限于扫描电子显微镜(SEM)、原子力显微镜、扫描探针显微镜、扫描隧道显微镜(STM)或近场光学扫描显微镜。检查装置190还可包括不同于电子显微镜的检查装置,或者除电子显微镜之外还包括其他检查装置,例如离子或光学显微镜。但是,仅为简单起见,这里提及任何显微镜装置或设备可能是指电子显微镜设备,虽然这种提及是打算也包括其他显微镜设备,例如离子或光学显微镜。检查装置190还可包括多于一个显微镜装置。例如,电子显微镜腔160和/或系统100可包括多个腔,每个腔用于检查过程中的一个或多个步骤,以便一个或多个腔可被用于检查和/或更多的样本准备步骤。
在系统100操作的一个实施例中,可能通过操纵台130和/或装卸组合件150来在FIB腔110中对要检查的衬底140进行定向。然后,执行传统或未来开发的FIB过程,以限定来自衬底140的样本以供后续检查。然后该样本通过手工操作和/或机器人操作被抓取元件155抓取、啮合、紧固或以其他方式捕捉(以下统称为“捕捉”),随后通过手工操作和/或机器人操作被从FIB腔110移除。然后装卸组合件150和抓取元件155将用FIB准备的样本传送到电子显微镜腔160并对用FIB准备的样本进行定向以供电子显微镜装置190检查。用FIB准备的样本的传送和/或定向可以是手工操作或机器人操作的(自动化的)。
在检查期间用FIB准备的样本可保持被抓取元件155捕捉。在另一个实施例中,在检查之前,装卸组合件150和抓取元件155要在检查栅格170上对用FIB准备的样本进行定位和定向,以便用FIB准备的样本在检查之前被抓取元件155松开。此外,或者作为替换,装卸组合件150和抓取元件155可以在放置在电子显微镜腔160中之前在检查栅格170上对用FIB准备的样本进行定位和/或定向,其中在用FIB准备的样本被抓取元件155松开之后,随后在电子显微镜腔160中检查栅格170被定位和/或定向。
系统100的操作可能不需要在通过电子显微镜进行检查之前从FIB腔移除用FIB准备的样本。例如,单个腔(或多个带腔的工具)可包括FIB装置120和电子显微镜装置190两者。因此,用FIB准备的样本可以仅仅在FIB和电子显微镜装置120、190之间被输送,并且被装卸组合件150和抓取元件155适当地定向,或者在FIB装置120被重新定位为远离样本并且电子显微镜装置190被重新定位为紧邻样本以便检查的同时,用FIB准备的样本可以基本上保持静止。
在某些实施例中,检查栅格170可包括抓取装置或其他用于耦合或紧固样本的装置,例如一个或多个闩锁、夹具、插座、手柄、它们的组合,等等。这种抓取装置可包括和/或类似以下所述的抓取元件的一个或多个实施例。例如,在一个实施例中,检查栅格170可包括这样的抓取装置,该抓取装置包括两个或更多个抓取构件,这两个抓取构件偏向彼此或以其他方式紧邻或接触,其中抓取构件可具有弹性或可偏性。在这种实施例中,用FIB准备的样本可被促使去到抓取构件之间的位置,并且被抓取元件155松开,以便检查栅格170抓取构件的可偏性质可以紧固样本而不要求样本被焊接或以其他方式永久地固定到检查栅格170上。检查栅格170的抓取构件还可以具有与用FIB准备的样本的外部或其他轮廓相对应的内部或其他轮廓,例如可被配置为或许在一个或多个预定的位置上使相对于检查栅格170紧固的样本刚化(rigidize),或以其他方式改进或帮助相对于检查栅格170紧固的样本。
因此,在某些实施例中,抓取元件155可被用于最初在检查栅格170上定位样本、松开样本并且随后重新抓取样本并以新的方位在检查栅格170上对样本进行重新定向和定位。类似地,在某些实施例中,抓取元件155可被用于最初在检查栅格170上定位样本,松开样本,随后重新抓取样本以将样本传送到另一个检查和/或处理环境,例如另外的显微镜腔。
参考图2,其中示出的是根据本公开的各个方面的抓取元件200的一个实施例的至少一部分的示意图。在一个实施例中,抓取元件200可用于图1所示的系统100中,例如起抓取元件155的作用。抓取元件200可包括主体210,该主体210之上或之中形成了结合垫215。抓取元件200还包括促动器220,用于抓取例如通过FIB技术从衬底202准备的样本205。促动器220包括一个或多个促动构件230,这些促动构件可以是或可以包括带状直线式构件和/或其他形状的构件。促动构件230的远端240可以是主体210的一部分或者可以以其他方式耦合到主体210。促动构件230的近端也可以或许通过隔离构件250彼此耦合。作为替换,促动构件230中的一个或多个可基本上跨越促动器220的宽度,其可能具有成角度的或弓形凹陷轮廓(例如朝着主体210的中央部分歪斜,就像图2中那样)或者成角度的或弓形凸起轮廓(例如远离主体210的中央部分歪斜)。
促动器220还包括作为促动构件230的一部分或者耦合到促动构件230的抓取构件270。抓取构件270被配置为在抓取元件200的激活或解除激活时紧固用FIB准备的样本205。例如,促动构件230可被配置为响应于暴露到热能而膨胀和收缩。这种暴露可以通过采用加热灯、加热板或加热炉来实现。局部加热也可用激光设备来实现。在一个实施例中,促动构件230被配置为响应于由沿促动构件230传播的电流所生成的热能而膨胀和收缩。例如,促动构件230或抓取元件200的其他部分可包括响应于电流而温度增大的电阻性元件或材料。因此,促动构件230可直接或间接地耦合到结合垫215或其他用于与电流或电压源互连的装置。
在抓取元件200响应于电阻性加热而被激活或解除激活的实施例中,可在促动器220内提供这种电阻性加热的电阻性元件可包括一段电阻性材料,例如单晶硅、掺杂的多晶硅和/或其他传统的或未来开发的响应于电流生成热能的材料。电阻性元件可位于促动构件230之中或之上,或者抓取元件200之中或之上的与促动构件230的距离充分短的其他位置处,以便当抓取元件200被激活时由电阻性元件散逸的热能足以导致促动构件230响应于热能而膨胀和收缩。
作为补充或作为替换,促动构件230可以被配置为响应于暴露到施加在抓取构件270上或施加到促动构件230的偏置电压而膨胀和收缩。这种偏置可通过将促动构件230或抓取构件270与电压源互连而实现,其中可能采用结合垫215作为这种互连装置。在一个实施例中,促动构件230可被配置为不是响应于热能而膨胀和/或收缩,以便促动构件230可能不是以热的方式来促动的,而是通过其他装置来促动的。在一个实施例中,促动构件230,或其某些部分,和/或与其相关联的支撑结构,可包括形状记忆合金,其中包括可被以电和/或热的方式激活的那些。
促动构件230在其响应于暴露到热能而温度增大时膨胀。虽然本公开预期了多种热膨胀方案(例如几何条件、热膨胀系数和相应的膨胀方向),但是图示实施例将促动构件230示为长度比宽度或高度大得多。从而,暴露到热能将会导致促动构件230在长度上的膨胀大于在任何其他方向上的膨胀。但是,由于促动构件230的末端240是固定的,因此促动构件230在长度上的膨胀将会导致它们朝着主体210的中央部分皱起或平移。因此,促动构件230和隔离构件250的中心将会朝着主体210的中央部分平移。由于促动构件230的中点可能都在相同方向上偏离中心歪斜,因此在膨胀期间促动构件230中的每一个将会在相同方向上皱起或平移。
隔离构件250朝着主体210的中央部分的后续平移导致抓取构件270的相对的部分之间的角度减小。因此,除了隔离构件250朝着主体210的中央部分平移外,抓取构件270也可能向内旋转,从而抓取用FIB准备的样本205的相对的侧。
在一个实施例中,在激活定位中抓取构件270的定位,例如在响应于暴露到热能的定位之后的定位,可以是松开样本的定位。在这种实施例中,抓取构件270可在断电条件下紧固用FIB准备的样本205。即,抓取构件270可响应于热能或其他激活手段彼此膨胀开来或分离,并且一旦去除热能或其他激活手段,则可能收缩到闭合的位置。因此,只有最初要在抓取样本205之前、将抓取构件270定位在样本205附近时才需要热能或其他激活手段,以使得当在腔或工具之间输送用FIB准备的样本205的同时或者当在腔或工具内对用FIB准备的样本205进行定位或定向期间,不需要连续施加热能。
在一个实施例中,抓取元件200可被制造为微电子机械(MEMS)设备。例如,一个绝缘层以及一个或多个导电层可被相继堆叠在衬底上。主体210和促动器220可通过显微机械加工和/或传统的或未来开发的蚀刻过程而被限定在导电层中,其中可能采用光阻材料或其他材料的掩膜。结合垫215可由与主体210相同的导电层形成,或者结合垫215可被限定在限定主体210的导电层之上的第二导电层之中。抓取元件200还包括用于与装卸组合件(例如图1所示的装卸组合件150)接口的装置,虽然这种接口装置并不受本公开的范围所限。这种接口装置也可被限定在限定主体210的层中。绝缘层可包括未掺杂的硅、二氧化硅、其他氧化物或电绝缘材料,并且一个或多个导电层可包括掺杂的多晶硅、金和/或其他导电材料。
参考图3,其中示出的是根据本发明的多个方面的抓取元件300的另一个实施例的至少一部分的示意图。
抓取元件300可包括主体310,该主体310之上或之中形成了结合垫315。抓取元件300还可包括促动器320,用于捕捉通过FIB技术从衬底302准备的样本305。促动器320包括一个或多个促动构件330,这些促动构件可以是或可以包括带状直线式构件和/或其他形状的构件。促动构件330的末端340可以是主体310的一部分或者可以以其他方式耦合到主体310。促动构件330也可以在其中点350处或附近耦合到彼此,耦合或许是通过隔离构件进行的。此外,中点350可具有朝着或远离主体310的中央位置略微偏移或歪斜的中性位置。在图示实施例中,中点350远离主体310的中央部分歪斜。
抓取元件300还包括抓取构件370,该抓取构件370是促动构件330的一部分或者耦合到促动构件330。抓取构件370被配置为在抓取元件300被激活或解除激活时紧固用FIB准备的305。例如,抓取构件370可包括压缩结合末端执行器375,该压缩结合末端执行器375被配置为与用FIB准备的样本305接口。当然,压缩结合末端执行器375的形状并不局限于图3所示的基本上半球或半圆的形状,并且可以具有其他形状,以与用FIB准备的样本305接口,以便帮助从衬底302移除样本305。例如,压缩结合末端执行器375可以具有弓形的、成角度的或直线的凹陷形状,这种形状可帮助将压缩结合末端执行器375引导到用FIB准备的样本305的边缘。压缩结合末端执行器375可以是或可以包括膜或其他表面处理,这种膜或其他表面处理是有延展性的、导热的和/或导电的,以帮助与用FIB准备的样本305结合。例如,该膜可以包括金、银、铟和/或其他材料。压缩结合末端执行器375的表面处理或表面上经处理的部分可以是、可以包括或可以产生自一个或多个过程,这些过程修改压缩结合末端执行器375的表面或以其他方式增强结合能力。这种膜和/或表面处理可采用纳米管结构或材料或其他可能的纹理构成,其可以提供固有的顺从性和/或增大范德瓦耳斯(Van der Waals)结合力。
促动构件330可被配置为响应于暴露到热能而膨胀和收缩。这种暴露可以通过采用加热灯、加热板或加热炉来实现。局部加热也可用激光设备来实现。在一个实施例中,促动构件330被配置为响应于由沿促动构件330或抓取元件300的其他部分传播的电流所生成的热能而膨胀和收缩。例如,促动构件330可包括响应于电流而温度增大的电阻性元件或材料。因此,促动构件330可直接或间接地耦合到结合垫315或其他用于与电流或电压源互连的装置。
在抓取元件300响应于电阻性加热而被激活的实施例中,可在促动器320内提供这种电阻性加热的电阻性元件可包括一段电阻性材料,例如掺杂的多晶硅和/或其他传统的或未来开发的响应于电流而散逸热能的材料。电阻性元件可位于促动构件330之中或之上,或者抓取元件300之中或之上的与促动构件330的距离充分短的其他位置处,以便当抓取元件300被激活时由电阻性元件散逸的热能足以导致促动构件330响应于热能而膨胀和收缩。作为补充或作为替换,促动构件330可以被配置为响应于暴露到施加到促动构件330的偏置电压而膨胀和收缩。这种偏置可通过将促动构件330与电压源互连而实现,其中可能采用结合垫315作为这种互连装置。促动构件330在其响应于暴露到热能而温度增大时膨胀。虽然本公开预期了多种热膨胀方案(例如几何条件、热膨胀系数和相应的膨胀方向),但是图示实施例将促动构件330示为长度比宽度或高度大得多。从而,暴露到热能将会导致促动构件330在长度上的膨胀大于在任何其他方向上的膨胀。但是,由于促动构件330的末端340是固定的,因此促动构件330在长度上的膨胀将会导致它们皱起。因此,促动构件330的中点350将会横向平移。由于促动构件330的中点350可能都在相同方向上偏离中心歪斜,因此在膨胀期间促动构件330中的每一个将会在相同方向上皱起。
促动构件330的中点350远离主体310的中央部分的平移导致抓取构件370也远离主体310的中央部分平移。因此,压缩结合末端执行器375将会与用FIB准备的样本305接触。压缩结合末端执行器375可以仅通过由于促动构件330的膨胀而经由抓取构件370施加的力而与用FIB准备的样本305结合。但是,可通过暴露到声能和/或热能而辅助末端执行器375和用FIB准备的样本305之间的结合。这种暴露到热能可能如上所述,其中暴露到热能和/或去除热能导致在末端执行器375和用FIB准备的样本305之间形成机械和/或化学结合。暴露到声能可包括从位于抓取元件300中央或远离抓取元件300处的源辐射高频声波或压力波。
在一个实施例中,图3所示的抓取构件370的定位可以是偏置或激活定位,例如在响应于暴露到热能的定位之后的定位。因此,只有最初紧固用FIB准备的样本305时才需要热能或其他激活手段,以使得当在腔或工具之间输送用FIB准备的样本305的同时或者当在腔或工具内对用FIB准备的样本205进行定位或定向期间,不需要连续施加热能或其他激活手段。
在另一个实施例中,抓取构件370可以刚性地耦合到主体310。在这种实施例中,抓取元件300可能不包括促动构件330或任何其他促动组件。即,仅通过定位主体310,就可将抓取构件370定位成紧邻用FIB准备的样本305或与用FIB准备的样本305相接触。随后可以例如通过传导电流经过抓取构件370可使抓取构件370暴露到热能,从而热能可熔化或催化末端执行器375的一部分或者以其他方式帮助抓取构件370与用FIB准备的样本305的结合。用FIB准备的样本305可包括一层具有相当大的硬度的材料,例如铂或钨,以提供一个坚硬的表面,例如在形成抓取构件370和用FIB准备的样本305之间的压缩结合期间,抓取构件370可被按压到该表面上。从而,除了将抓取元件300的至少一部分暴露到热能和/或其他能量外,或者作为将抓取元件300的至少一部分暴露到热能和/或其他能量的替换,激活抓取元件300可包括从物理上定位抓取元件300。
参考图4A,其中示出的是根据本公开的各个方面的抓取元件400A的另一个实施例的至少一部分的示意图。抓取元件400A在构成和制造上可以与图2所示的抓取元件200基本类似,并且可用于电子显微镜系统中,例如图1所示的系统。
抓取元件400A可包括主体410,该主体410之上或之中形成了结合垫415。抓取元件400A还包括促动器420,用于抓取例如通过FIB技术从衬底402准备的样本405。促动器420包括一个或多个促动构件430,这些促动构件可以是或可以包括带状直线式构件和/或其他形状的构件。促动构件430的第一末端440可以是主体410的一部分或者可以以其他方式耦合到主体410。
促动构件430在与主体410相反的末端上还包括抓取构件470A。抓取构件470A可以是促动构件430的一部分或者耦合到促动构件430。抓取构件470A被配置为在抓取元件400A的激活或解除激活时紧固用FIB准备的样本405。例如,抓取构件470A可包括三角尖端475,该三角尖端被配置为适配在用FIB准备的样本405周围或与其他方式与用FIB准备的样本405相对应。作为补充或作为替换,抓取构件470A可被配置为与例如在FIB过程期间形成在衬底402和/或样本405中的一个或多个孔、缝隙、凹陷、缺口、槽、沟或其他开口403配合、啮合、适配或以其他方式相对应。尖端475的形状并不局限于图4A所示的三角形或钝角三角形,而可以是其他形状,以适配到用FIB准备的样本405周围和/或适配到开口403中,以抓取样本405和从衬底402上移除样本405。
促动构件430可被配置为响应于暴露到热能而膨胀和收缩。这种暴露可以通过采用加热灯、加热板或加热炉来实现。局部加热也可用激光设备来实现。在一个实施例中,促动构件430被配置为响应于由沿促动构件430或抓取元件400A的其他部分传播的电流所生成的热能而膨胀和收缩。例如,促动构件430可包括响应于电流而温度增大的电阻性元件或材料。因此,促动构件430可直接或间接地耦合到结合垫415或其他用于与电流或电压源互连的装置。
在抓取元件400A响应于电阻性加热而被激活的实施例中,可在促动器420内提供这种电阻性加热的电阻性元件可包括一段电阻性材料,例如掺杂的多晶硅和/或其他传统的或未来开发的响应于电流生成热能的材料。电阻性元件可位于促动构件430之中或之上,或者抓取元件400A之中或之上的与促动构件430的距离充分短的其他位置处,以便当抓取元件400A被激活时由电阻性元件散逸的热能足以导致促动构件430响应于热能而膨胀和收缩。
作为补充或作为替换,促动构件430可以被配置为响应于暴露到施加在抓取构件470A上或施加到促动构件430的偏置电压而膨胀和收缩。这种偏置可通过将促动构件430或抓取构件470A与电压源互连而实现,其中可能采用结合垫415作为这种互连装置。
促动构件430在其响应于暴露到热能而温度增大时膨胀。虽然本公开预期了多种热膨胀方案(例如几何条件、热膨胀系数和相应的膨胀方向),但是图示实施例将促动构件430示为长度比宽度或高度大得多。从而,暴露到热能将会导致促动构件430在长度上的膨胀大于在任何其他方向上的膨胀。促动构件430的膨胀将会导致抓取构件470A远离主体410在横向伸展。因此,抓取构件470A将会与用FIB准备的样本405接口。用FIB准备的样本405和尖端475的倾斜表面的相互作用将会导致抓取构件分离到必要的程度,以使得抓取构件470A将会至少部分地滑过用FIB准备的样本的边缘。当从热能暴露或其他激活手段中去除抓取元件400A时,抓取构件470A将会朝着图4A所示的中性位置偏移,从而抓取用FIB准备的样本405的侧面并捕捉用FIB准备的样本405以便进行随后的平移、定位和/或定向。
在一个实施例中,促动构件430可以是柔性构件,所述柔性构件被配置为没有响应于热能的激活或其他激活的情况下抓取用FIB准备的样本405。例如,可以使促动构件430紧邻用FIB准备的样本405,然后将其按压在样本405的末端上。由于促动构件430可以是柔性构件,因此它们可能响应于被强制处于构件430之间的用FIB准备的样本405而分离。但是,促动构件430的柔性性质可能导致它们在沿样本405的侧面向下滑动时捏挤或抓取用FIB准备的样本405。然后,可以使用FIB准备的样本405完全从衬底402切断,以使得它仅通过其与柔性促动构件430之间的互相作用适配而保持被捕捉。从而,除了将抓取元件400A暴露到热能、静电能和/或压电驱动能或手段之外,或者作为将抓取元件400A暴露到热能、静电能和/或压电驱动能或手段的替换,促动抓取元件400A可包括以物理方式定位抓取元件400A。
同时参考图4B和4C,其中示出的是图4A所示的抓取元件400A的另一个实施例的示意图,在这里用标号400B来标示它。除了下面可能描述的外,抓取元件400B可以与抓取元件400A基本类似。从而,在图示实施例中,抓取元件400B包括与图4A所示的抓取构件470A基本类似的抓取构件470B。
但是,抓取构件470B中的每一个包括内部轮廓475,该内部轮廓475被配置为与用FIB准备的样本405的轮廓啮合、配合或以其他方式至少部分地相对应。例如,内部轮廓475可具有与样本405中的一个或多个凹陷或开口407相对应的堞形、齿形、锯齿形或其他波浪形的轮廓,正如图4B和4C所示的实施例中那样。因此,在抓取元件400B被定位在样本405上时,抓取元件400B的内部轮廓475可以与样本405的至少一部分相啮合,如图4C所示。当然,样本405的截面形状可能不符合或类似图4B和4C所示的样本405的基本上矩形的截面。此外,这种具有基本上非矩形的截面的用FIB准备的样本也可用于本公开范围内的其他实施例,包括以上所述的那些。
在某些实施例中,当抓取元件400B被定位在样本405上方时,样本405可促使抓取构件470B分开或以其他方式使抓取构件470B偏转。因此,抓取构件470B的某些实施例可包括带角度的、斜坡状的、凹陷的、凸起的或其他形状的表面(例如表面476),该表面可以响应于与样本的接触而促使抓取构件470分开,和/或可帮助将抓取元件400B引导到样本405上。抓取构件470B还可在抓取元件400B被定位在样本405上方时被激活或解除激活,激活或解除激活例如是通过暴露到电能和/或热能和/或其他激活手段(包括以上所述的那些)而进行的。
此外,抓取构件470B可能不像图4B和4C和此处的其他实施例中那样是彼此的镜像。例如,可以只有抓取构件470B中的第一抓取构件具有上述内部轮廓475,该内部轮廓475可基本上与样本405的轮廓至少一部分相对应,而第二抓取构件可具有基本上平坦的轮廓、或者不是第一抓取轮廓475的镜像或与之相对应的轮廓。在这种实施例中,第二抓取构件的轮廓也可以不与样本405的轮廓的任何部分相对应。当然,抓取元件400B的抓取构件470B之间的这种相异性也可适用于本公开的范围内的抓取元件的其他实施例。
同时参考图4D和4E,其中示出的是图4A所示的抓取元件400A的另一个实施例的示意图,在这里用标号400C来标示它。除了下面可能描述的外,抓取元件400C可以与抓取元件400A基本类似。从而,在图示实施例中,抓取元件400C包括与图4A所示的抓取构件470A基本类似的抓取构件470C。
但是,抓取构件470C中的每一个包括内部轮廓475,该内部轮廓475被配置为与用FIB准备的样本405配合或以其他方式至少部分地相对应。图4D和4E还示出样本405可具有除了这里示出的基本上矩形的截面之外的截面形状。例如,图4E和4E所示的样本405具有基本上三角形的截面。在其他实施例中,样本405的截面可具有其他几何形状,包括非对称或不规则形状。但是,不论样本405的特定截面形状如何,抓取构件470C的内部轮廓475都可以基本上符合、啮合、配合或以其他方式对应于样本405的截面形状。在某些实施例中,抓取构件470C的内部轮廓475与样本405的截面之间的对应关系可能足以允许抓取元件400C通过撕扯、劈开、打破、折断、分裂或以其他方式损坏样本405中的将样本405连接到衬底402的渐缩的、颈缩的、细的或其他部分来从衬底402移除样本405,移除可能只通过抓取样本405并使抓取元件400C远离衬底402平移来进行。
在某些实施例中,当抓取元件400C被定位在样本405上方时,样本405可促使抓取构件470C分开或以其他方式使抓取构件470C偏转。因此,抓取构件470C的某些实施例可包括带角度的、斜坡状的、凹陷的、凸起的或其他形状的表面(例如表面476),该表面可以响应于与样本的接触而促使抓取构件470分开,和/或可帮助将抓取元件400B引导到样本405上。抓取构件470B还可在抓取元件400B被定位在样本405上方时被激活或解除激活,激活或解除激活例如是通过暴露到电能和/或热能和/或其他激活手段(包括以上所述的那些)而进行的。
此外,抓取构件470B可能不像图4B和4C中所示实施例和此处的其他实施例中那样是彼此的镜像。例如,可以只有抓取构件470B中的第一抓取构件具有上述内部轮廓475,该内部轮廓475可基本上与样本405的轮廓至少一部分相对应,而第二抓取构件可具有基本上平坦的轮廓、或者不是第一抓取轮廓475的镜像或与之相对应的轮廓。在这种实施例中,第二抓取构件的轮廓也可以不与样本405的轮廓的任何部分相对应。当然,抓取元件400B的抓取构件470B之间的这种相异性也可适用于本公开的范围内的抓取元件的其他实施例。
参考图5,其中示出的是根据本发明的多个方面构成的抓取元件500的另一个实施例的至少一部分的示意图。抓取元件500可用于电子显微镜系统中,例如图1所示的系统100中,并且在其他方面可以类似于参考图1-3和4A-4E描述的抓取元件。
抓取元件500包括主体510,在一个实施例中该主体510基本上包括导线段。主体510可包括钨或其他材料,从所述钨或其他材料可从导线段形成探针。例如,主体可包括钨导线段,该钨导线段的末端515被蚀刻或以其他方式形成为探针尖端。在一个实施例中,从主体510形成的探针的尖端可具有在约0.1mm到约1.0mm之间的直径,并且可以具有小于约20nm的尖端曲率半径。当然,末端515的形状并不局限于图5所示的形状,而可以是其他形状以与用FIB准备的样本405接口,以便从衬底402移除样本405。例如,末端515可以具有弓形或基本上直线形的凹陷形状,以及其他形状,包括那些可能帮助将其引导到用FIB准备的样本405的边缘的形状。
主体510的末端515的至少一部分可被涂覆以可延展层520。可延展层520可包括金、银、铟、它们的合金和/或其他可延展材料。这样,末端515可充当被配置为与用FIB准备的样本505接口的压缩结合末端执行器。
在操作期间,可通过定位主体510而将末端515定位成与用FIB准备的样本405紧邻或接触。末端515随后可被暴露到热能、压缩能和/或声能,从而能量可软化或熔化可延展层520的至少一部分或以其他方式将主体510结合到用FIB准备的样本405。用FIB准备的样本405可包括一层具有相当大的硬度的材料,例如铂或钨,以提供一个坚硬的表面,主体510可被按压到该表面上。
参考图6,其中示出的是根据本发明的多个方面的用FIB准备的样本405的另一个实施例的截面图,在这里用标号605来标志它。样本605的构成和制造可以基本与以上所述的样本405类似。可通过两次(或更多次)穿过FIB来准备样本605。例如,对于图6所示的实施例,可通过进行至少两次其方向相对于衬底602的表面602a成锐角的FIB穿过来形成样本605。衬底602可以与以上所述的衬底基本类似。就像图示实施例中那样,该锐角可以约为45度,虽然其他角度也处于本公开的范围内。从而,就像图6中那样,样本605的侧壁605a之间的相对角度a可能约为90度,但是也可在约10度到约150度之间变动,虽然其他实施例也处于本公开的范围内。
在某些实施例中,样本605的三角形或楔形截面可帮助抓取元件(例如上述抓取元件)稳固地捕捉样本605。当然,样本605的截面形状也可以是其他形状而仍能帮助这种捕捉,例如具有一个或多个渐缩形侧壁605a或以其他方式具有变化的宽度的其他截面形状,包括宽度不线性变化的实施例(例如阶梯式轮廓)。在一个实施例中,样本605的外部轮廓可以基本上或至少部分地符合或配合用于捕捉样本605的抓取元件中的凹陷或开口的内部轮廓,所述抓取元件例如是以上所述的抓取元件400A、400B和/或400C。
参考图7,其中示出的是根据本公开的多个方面的上述样本405的另一个实施例的顶视图,在这里用标号705来标示它。样本705在构成和制造上可以与样本405、605基本上类似。样本705包括非矩形周边705b。当然,具有除图7所示的周边705b的其他周边形状的样本也在本公开的范围内。
样本705还可包括将样本705连接到衬底602的细的、可能渐缩的部分705c。在其他实施例中,除了渐缩部分705c以外,或者作为渐缩部分705c的替换,可采用类似定位的凹口部分或以其他方式配置的部分。这种渐缩的、颈缩的、细的、凹口的或其他形状的区域可提供样本705的被削弱的部分,应力可能响应于促使样本705远离衬底602而集中在该部分处,所述促使远离可能是在利用包括上述抓取在内的抓取元件抓取样本705之后执行的。当然,作为采用这种部分705c的替换,或者除了采用这种部分705c之外,可以例如通过采用激光、显微机械加工、选择性蚀刻和/或其他过程来切断衬底602的连接衬底602和样本705的部分。
处于本公开的范围内的抓取元件制造、样本准备、样本传送和定向以及样本检查的不同方面可以是自动化的。例如,可采用一个或多个操纵器(其中每一个可以是或可以包括图1所示的装卸组合件150的实施例)以便在FIB腔中对样本进行放置和/或定向,可能是在样本台上进行放置和/或定向。从而,在根据本发明的多个方面的一个或多个过程期间可采用自动化的样本交换。可采用一个或多个操纵器来将样本放置在栅格支撑器上,该栅格支撑器可以固定地安放和/或安放在附加定位机构上。
可以是或可以包括个人计算机或其他计算设备(以下统称为“PC”)的控制装置可对正在分析的样本进行定位和定向。这种定位和/或定向可采用显微镜的成像束,所述显微镜例如是扫描电子显微镜(SEM)、透射电子显微镜(TEM)、其他电子显微镜、光学显微镜或其他类型的显微镜。此外,或者作为替换,这种定位和/或定向可以采用其他可以被配置为相对于成像装置对操纵器、装卸组合件、抓取元件、末端执行器或其组件(包括机器人组件)进行定向的装置。
注意,虽然本申请的规定可能具体是指例如在其检查过程或阶段期间的SEM或TEM的采用或使用,但是本公开的多个方面可应用于或者易于适应于采用除TEM之外的其他显微镜的应用。例如,在一个实施例中,样本准备可以在FIB装置腔中执行,所准备的样本可以在仍在FIB腔中的同时被抓取和与其衬底分离,并且分离后的样本可以在TEM装置腔中被检查。但是,在其他实施例中,样本可以在双重用途FIB/SEM工具的腔中或除专用FIB腔之外的其他腔中被准备,并且样本可以在TEM腔中联合地被抓取和与其衬底分离,随后被检查。在某些实施例中,样本准备、捕捉、切断、检查和其他操纵中的一个或多个或每一个可通过自动操作来执行或辅助,其中包括经由FIB腔、SEM腔、TEM腔或其他显微镜装置腔内容纳的机器人或其他自动化设备。PC可以定位抓取元件(例如以上参考这里的附图所描述的抓取元件)的相对位置,例如相对于被分析的样本的位置,定位时可能采用电子显微镜的成像束。在一个实施例中,作为补充或作为替换,可采用光学显微镜,其中PC和/或其他设备可包括这种相对位置确定期间采用的特征检测软件。PC随后可将抓取元件驱动到样本上方或其他邻近的位置处,降低抓取元件以使样本与抓取元件啮合,然后闭合抓取元件以紧固样本。如上所述,闭合抓取元件以紧固样本的过程可包括抓取元件的激活或解除激活,或者只是使抓取元件相对于样本平移就可以允许抓取元件靠近样本或以其他方式紧固样本。
在某些实施例中,要将样本与衬底分离可能需要附加的FIB切割和/或其他过程。然后,或者作为替换,样本被操纵器拉离衬底。然后操纵器可定位栅格放置位置,定位时可能采用传感器和/或视觉反馈,例如来自成像束的视觉反馈。然后可以使样本与栅格放置位置对准。在某些实施例中,在栅格放置位置的表面处可注入气体,以便清洁、净化或以其他方式调节表面。
然后操纵器可以使样本与栅格对准并啮合,并且FIB束可被用来将样本焊接或以其他方式固定到栅格上。在其他实施例中,可采用其他装置来固定样本的位置和/或方位,例如通过利用抓取元件(例如上述抓取元件)来对样本进行紧固(或保持紧固)和定向。但是,如果样本被固定到栅格,则样本随后也可以与抓取元件脱离,并且操纵器可拉离。
以下描述这种举出(“拾取”)过程和放置过程的其他方面。注意,虽然以下所描述的许多方面是就拾取过程来描述的,但是这些方面也可应用于或易于适应于放置过程。
为了实现上述过程的自动化,提供抓取元件、抓取构件、装卸组合件和操作器的可操作性、样本的检查和/或任何过程控制测量能力的各种设备可以被可通信地耦合,作为自动化显微镜样本准备系统(其中显微镜可以指SEM、STM、TEM、光学和/或其他显微镜装置中的一个或多个)。从而,可从一个设备向另一个设备发送信息,以便发起、调整或终止诸如以下过程:准备样本以便引入到(粒子)束设备中,将样本引入到束设备中,准备样本以供测量和/或操纵,将抓取元件定位到邻近样本上的目标区域处,激活抓取元件以抓取、啮合或以其他方式接触目标区域,以及操纵所准备的样本。
此外,为了实现这种过程的自动操作,自动化显微镜样本准备系统可包括参考系统,以便构成自动化显微镜样本准备系统的各种设备的运动组件可彼此参考,以及参考构成系统的固定设备(例如运动部件与运动部件以及运动部件与固定部件)。通过使各种设备的运动组件彼此参考,可自动地相对于希望处理的样本特征定位抓取元件。此外,由于自动化显微镜样本准备系统被可通信地耦合,因此参考系统所收集的信息可在设备之间传输,以便发起、监视、调整、终止或收集与设备所执行的特定过程相关的数据。
参考系统可以包括诸如位置传感器、压力传感器、环境传感器、材料/元素传感器、定时器和/或定位工序(例如通过成像定位)之类的设备,这些设备可操作以用于收集关于自动化显微镜样本准备系统中采用的、或利用自动化显微镜样本准备系统采用的各种设备的信息,以及用于收集关于自动化显微镜样本准备系统中采用的、或利用自动化显微镜样本准备系统采用的设备所执行的过程的信息。参考系统还可包括编程/软件,用于将传感器、定时器和/或定位过程收集到的信息转换成可以在设备之间传输的消息。例如,来自参考系统的消息可以采取电子信号的形式,或者可以采取由与参考系统相关联的软件所生成的命令的形式。在一个实施例中,参考系统被实现为控制例程的一部分,该控制例程被编程到自动化显微镜样本准备系统的可通信地耦合的设备之一中。在一个这种示例中,参考系统在控制例程中被实现在被编程到定位控制设备的一组过程中,该定位控制设备向抓取元件提供可操作性。除其他子例程外,控制例程还可包括各种用于实现这里所公开的自动化样本准备的子例程。
这种参考系统的细节将会根据要执行的自动化过程的类型而变化。例如,参考系统将样本准备实现为自动化过程所需要的信息将会与参考系统将获得样本测量值实现为自动化过程所需要的信息不同。但是,一般而言,不论要执行的自动化过程的类型如何,参考系统一般都将会依赖于某些因素,例如样本相对于带电粒子束设备产生的束的位置、抓取元件相对于样本的位置和/或样本的“地图”。样本的“地图”是指关于可用于确定样本上的特征的位置的关于样本的数据。例如,样本可能是其上形成了某些特征的半导体芯片。样本芯片的地图提供关于需要被处理的样本一个或多个特征的位置信息。样本的地图可从多种源获得,包括但不局限于CAD数据、用户对样本的手动培训以及由用户或外部系统指定的一组参考坐标。作为替换,需要被处理的样本可以被自动检测和处理,因此地图是由自动操作本身动态地创建和发现的。
参考系统可采用从控制例程所实现的过程获得的信息,该过程用于确定定位在带电粒子束设备的样本腔中的样本相对于带电粒子束设备的束的位置。作为替换或作为补充,控制例程可包括用于确定样本相对于定位台或抓取元件的位置,然后发现所述台或抓取元件相对于束的位置。作为替换或作为补充,控制例程可以包括用于确定抓取元件相对于定位台的位置,然后发现所述台相对于束的位置。根据一个示例,控制例程实现标准图像分析过程,以确定样本相对于束或定位台或抓取元件的位置。例如,图像可以得自从扫描的带电粒子束或其他这种能够创建适当表示的设备所创建的表示,以供图像分析软件使用。样本和/或台和/或抓取元件上的参考特征可被用于图像分析中,以创建数学坐标系统,以便向参考系统描述样本和/或台和/或抓取元件的位置/方位。
参考系统还可以采用从控制例程所实现的过程获得的信息,该过程用于确定抓取元件相对于样本腔中的样本的位置的位置/方位。存在若干种实现该过程的可能的方式。根据一个示例,抓取元件相对于束或台的位置/方位是利用适当的图像分析技术来确定。作为替换或作为补充,抓取元件相对于装卸组合件的位置/方位被确定,然后抓取元件相对于粒子束或台的位置/方位被确定。抓取元件的位置/方位可通过用诸如图像分析之类的技术来确定,或者通过移动到为这种需求提供适当反馈的机械或电气或激光传感器来确定。
可采用以上述方式获得的地图,参考系统可向提供抓取元件的操作性的设备传输信息,该设备例如是定位器控制设备,其触发设备以驱动将抓取元件定位到指定的特征上方或定位到其他的所需位置/方位。例如,所述特征相对于地图的坐标和被检查的样本的实际位置(在其位于样本腔中时),以及抓取元件的实际位置和/或定位器的实际位置可以以数学方式被组合。
参考图8,其中示出的是上述参考系统可在其中操作的自动化显微镜样本准备系统的一个实施例的至少一部分的框图。根据图8所示的典型自动化显微镜样本准备系统,系统800包括:定位器控制设备800a,该定位器控制设备800a包括和/或可操作用于控制例如抓取元件所耦合到的装卸组合件(例如图1所示的组合件150);带电粒子束设备800b;以及测量设备800c。定位器800a和上述装卸组合件150的多个方面可能是类似的,因此在某些情况下在以下描述中互换地使用这些术语可以是适当的。
例如,定位器控制设备800a,例如可从Zyvex Corporation商业上获得的S100 Nanomanipulator System,可被耦合到这里所公开的自动化显微镜样本准备系统中。又例如,测量设备800c,例如也是商业上可获得的Keithley 4200,可被耦合到这里所公开的自动化显微镜样本准备系统中。类似地,带电粒子束设备800b,例如可从FEI、LEO、Hitachi或JEOL获得的SEM或FIB,可被耦合到自动化显微镜样本准备系统中。抗污染单元800d,例如也是商业上可获得的EvactronModel 30,也可被耦合到这里所公开的自动化显微镜样本准备系统中。
定位器控制设备800a、带电粒子束设备800b、测量设备800c和/或抗污染单元800d要被耦合成使得信息被从一个设备发送到另一个,以便启动和/或控制诸如以下过程:将样本引入到带电粒子束设备中,准备抓取以便处理样本,将抓取元件定位在邻近样本上的目标区域附近,激活抓取元件以与目标区域接触,和/或处理样本。设备之间的通信可由控制例程来解释,该控制例程可被编程到系统800中的设备之一中。控制例程可以进行操作以指示构成系统800的设备响应于从带电粒子束设备800b或其他与系统800相耦合的设备接收到的信息来发起、监视特定过程、收集与特定过程相关的数据、调整或终止特定过程,例如准备样本或抓取元件。
根据一个示例,控制例程被编程到单个计算机或机器(例如“主控制计算机”)中,该计算机或机器负责指导定位器控制设备800a、带电粒子束设备800b、测量设备800c和/或抗污染单元800d中的一个或多个的操作,并且还负责控制多个前述过程。例如,用于将样本引入到带电粒子束设备中的过程可以由操作定位控制设备和将抓取元件驱动到所需位置的同一计算机所控制。此外,数据采集板可被实现在操作定位控制设备的计算机或机器上,例如,使设备能够获得测量值或者执行过程(否则将由测量设备的计算机、机器或操作系统所实现)。
在控制例程和自动化显微镜样本准备系统的设备中的一个或全部操作驻留在单个机器上的示例中,各种设备之间的通信是经由软件实现的。根据另一个示例,定位器控制设备800a、带电粒子束设备800b、测量设备800c和抗污染单元800d中的一个或多个包括单独的计算机或机器以指导其操作。在这种示例中,每个设备被诸如有线、线缆、网络(即经由以太网的TCP/IP网络、1394连接)或无线协议等的通道可通信地耦合。从而,自动化显微镜样本准备系统的设备之间的通信可被描述成经由单独的计算机经由物理网络访问的逻辑操作/子系统,或者可以本地驻留在主控制计算机。
参考图9,用于使得构成系统800的诸个设备能够通信的典型配置的至少一部分被示为框图。在这个示例性配置中,示出了用于操纵示例的操纵平台810。这里所使用的操纵包括但不局限于在X、Y和Z方向上移动样本,并且可能还包括但不局限于确定样本的特征和化学特性,例如执行电气、机械、光学或化学测量,或者其组合。操纵平台810可包括基底806,其中布置了操纵器模块接口站点,例如站点812,虽然在某些实施例中在基底806上可包括多于一个操纵器模块接口站点。操纵器模块接口站点812可能能够接收操纵器或以类似配置的模块,例如美国专利申请序列号No.10/173,543中所描述的,这里通过引用将其全部公开内容包含进来。
平台810可包括用于接收要被操纵的样本的样本台815。平台810还可包括接口807,该接口807使得基底806能够被耦合到带电粒子束设备800b,例如SEM/FIB。在带电粒子束设备800b是SEM/FIB的示例中,样本被布置在样本台815上,并且操纵平台810通过经由接口807耦合到SEM/FIB而被部署在SEM/FIB的样本腔内。从而,例如,一旦平台810被耦合到SEM/FIB,布置在样本台815上的样本可以与被用来操纵样本的(一个或多个)操纵器模块同时被成像。
如图9中进一步示出的,定位器控制设备800a被耦合到操纵平台810。当操纵平台810通过接口807被耦合到带电粒子束设备800b时,带电粒子束设备800b和定位器控制设备800a被可通信地耦合,以使得信息可被发送到和发送自带电粒子束设备800b和定位器控制设备800a,以及位于这些设备内的获取用于参考系统中的信息的传感器。
为了耦合到一个或多个接口站点812的(一个或多个)操纵器模块的操作的自动化控制而对定位器控制设备800a进行编程。根据一个示例,控制例程(或许包括参考系统作为一组方法)也被编程到定位器控制设备800a中,以指示构成系统800的设备响应于从带电粒子束设备800b或测量设备800c接收到的信息发起、监视特定过程、收集与特定过程相关的数据、调整或终止特定过程,例如准备抓取元件/对抓取元件进行定向、准备样本或者促动抓取元件和/或装卸组合件。
可以通过适当的软件和硬件来使得根据本公开的多个方面的一个自动化样本输送系统能够传输被控制例程和/或参考系统所使用的信息。除了用于实现适当通信的硬件和软件之外,自动化样本输送系统还可包括可操作以用于传送样本(例如从样本装载站到样本腔中)的输送机构(例如电动机、压电电动机、MEMS电动机、用于机械促动的气体力学技术,或者摩擦降低方法,等等)。
根据一个示例,通过工具、夹具、托架、夹钳、抓取元件真空装置或其他方式将样本保持在装载站中的适当位置处,其中执行可选的去处理(de-processing)和准备。在一个示例中,抓取元件在样本被引入样本腔中之前先就地被引入并被调节,抓取元件可以在样本被保持在装载位置的同时被定位在样本腔内并且被调节或表征。当控制例程接收抓取元件被适当调节的信号时(如果执行了这种调节),则控制例程随后可触发自动化样本传送系统的传送机构,以将样本引入样本腔中。
对样本的就地处理除其他过程外还可包括执行一个或多个FIB切割,例如以限定样本的轮廓和/或截面。作为补充或作为替换,就地处理还可包括样本和/或衬底表面的净化,所述净化例如是通过用可从XEI Scientific,Redwood City,CA商业上获得的EVACTRON
Figure 048311077_0
SEM-CLEANTM设备来进行的。一般而言,EVACTRONSEM-CLEANTM设备利用低功率RF等离子体来从空气制造氧基,所述氧基随后氧化SEM或其他显微镜内部的碳氢化合物并且以化学方式蚀刻掉这些碳氢化合物。其他附加或替换处理可包括FIB溅镀、离子枪溅镀以及等离子或基清洁,这些处理中的任何一个都可通过控制例程的子例程实现。
在引入之后,并且在可选的样本就地准备和调节之后(如果执行的话),样本的存在被通信到控制例程。不论样本是在抓取之前还是之后被定位在样本腔内的,可能在接收到关于抓取元件已被适当地调节和/或样本已在样本腔中放好的信息之后,控制例程将会访问参考系统和定位器控制设备,以将抓取元件定位在样本或其上的感兴趣的特征上方、或以其他方式邻近样本或其上的感兴趣的特征。例如,样本上的感兴趣的特征可以是TEM样本试片点(coupon points),抓取元件最终可在这些点处采样样本或以其他方式与样本接触,从而这些点可以被称为“采样接触点”。在采样接触点“上方”可以描述这样一个位置,根据该位置,可确定和执行去到采样接触点的“最终”轨迹。根据一个示例,这种位置与接触采样点所在的平面正交。将抓取元件定位在采样接触点附近可以通过参考系统或采用参考系统来实现。
如上所述,参考系统使得构成自动化显微镜样本准备系统的各种设备的运动(和静止)组件能够彼此参考,以及参考所述显微镜。从而,关于样本、抓取元件、装卸组合件和/或样本地图的相对位置的信息可被参考系统用来向控制例程提供适当的消息,控制例程将适当的消息传输到定位控制设备,以移动抓取元件,以便抓取元件被适当地定位,例如相对于接触采样点被适当定位。根据本公开的多个方面,也可实现其他接近方法,在这些方法中,抓取元件不与所需的采样接触点相接触,并且不一定正好在采样接触点上方,但是仍可被移动到与采样接触点相接触。一旦控制例程已将适当位置通知给定位器控制设备,定位器控制设备就包含用于将定位器、装卸组合件或控制抓取元件的其他设备移动到这些位置的适当的硬件和软件。作为一个示例,定位器控制设备800a以美国专利申请No.10/173,543中描述的方式操作定位器和操纵模块。
控制例程以一个或多个用于抓取元件定位的子例程来增强定位器控制设备800a的操作,其中子例程可以监视和/或检测抓取元件相对于参考系统所记录的接触采集点的定位。抓取元件定位子例程还实现用于确定抓取元件何时到达了采样接触点上方的所需位置的过程。用于抓取元件定位和确定抓取元件何时已到达所需位置的典型过程包括但不限于带电粒子束设备所实现的图像处理、利用带电粒子束定位对准标记、参照所述参考系统所获得的地图数据、在教导模式中操作带电粒子束设备、参照样本上的绝对坐标(例如先前确定的坐标的列表),以及自动化或半自动化的“指向并点击”过程。
除了上一段中描述的自动化方面之外(或者作为上一段中描述的自动化方面的替换),还可以使上述样本准备、举出、重定位、定向和/或定位中采用的一个或多个步骤或过程的多个方面自动化。例如,许多自动化方面在美国临时申请No.60/546,840中有所描述。虽然在这里许多自动化方面是在探测或准备样本或晶片的场境中描述的,但是这种方面也可应用于或易于适应于用于样本准备、举出、操纵、检查的附加过程和这里所描述的其他过程,并且是完全处于本公开的范围内的。
从而,本公开提供了一种方法,该方法在一个实施例中包括通过利用聚焦离子束(FIB)切割衬底来从衬底上至少部分地切断样本、通过激活抓取元件来捕捉衬底样本,并且使被捕捉的样本与衬底分离。
根据本发明的多个方面的一种方法的另一个实施例包括:(1)通过利用聚焦离子束(FIB)切割衬底来从衬底上至少部分地切断样本;(2)将装配工具定位在样本附近,该装配工具具有被配置为捕捉样本的压缩结合末端执行器;(3)经由压缩结合末端执行器在样本上施加力,该力具有足以导致在压缩结合末端执行器和样本之间形成压缩结合的幅值,从而捕捉样本;以及(4)使被捕捉的样本与衬底分离。
本公开还介绍了一种系统,该系统在一个实施例中包括:用于从衬底上至少部分地切断样本的聚焦离子束(FIB)装置、被配置为捕捉样本的抓取元件、用于激活抓取元件以捕捉样本的装置、以及用于使被捕捉的样本与衬底分离的装置。
在本公开中还提供了一种用于捕捉用FIB准备的样本抓取元件。在一个实施例中,该抓取元件包括被配置为被耦合到装卸组合件的主体、耦合到主体的促动构件以及耦合到促动构件并被配置为响应于促动构件的激活而捕捉用FIB准备的样本的抓取构件。
根据本公开的多个方面的方法的另一个实施例包括:(1)通过利用聚焦离子束(FIB)切割衬底来从衬底上至少部分地切断样本;(2)利用抓取元件来捕捉衬底样本;(3)使被捕捉的样本与衬底分离;以及(4)通过激活抓取元件松开被捕捉的衬底样本。样本切断、样本捕捉、样本分离和样本松开中的一个或多个可以是自动化的。
以上略述了若干实施例的特征,以便本领域的技术人员可以更好地理解本公开。本领域的技术人员应当意识到,他们可以很容易地利用本公开作为设计或修改其他过程和结构以实现与这里所介绍的实施例相同的目的和/或实现相同的优点的基础。本领域的技术人员还应当意识到,这种等同构造并不脱离本公开的精神和范围,并且他们可在这里进行各种改变、替换和更改,而不会脱离本公开的精神和范围。

Claims (11)

1.一种用于捕捉用聚焦离子束FIB准备的样本的方法,包括:
通过利用聚焦离子束FIB切割衬底来从所述衬底上至少部分地切断样本;
利用抓取元件来捕捉所述样本,其中所述抓取元件是微电子机械元件;
使所述被捕捉的样本与所述衬底分离;以及
从所述抓取元件松开所述样本;
其中捕捉所述样本和松开所述样本中的至少一个步骤包括激活所述抓取元件,其中捕捉所述样本和分离所述被捕捉的样本中的至少一个步骤是在电子显微镜中执行的。
2.如权利要求1所述的方法,其中在断电状态下利用所述抓取元件捕捉所述样本包括利用所述抓取元件无源地捕捉所述样本。
3.如权利要求1所述的方法,其中:
所述切断、捕捉、分离和松开中的至少一个步骤的至少一部分是经由自动操作执行的;以及
所述切断步骤是在FIB设备腔中执行的。
4.如权利要求1所述的方法,其中所述抓取元件包括用于机械地打开和闭合所述抓取元件的热促动装置、静电促动装置或压电促动装置。
5.如权利要求1所述的方法,其中所述抓取元件包括用于机械地打开或闭合所述抓取元件的电热促动装置。
6.如权利要求1所述的方法,其中所述抓取元件包括装配工具,并且捕捉所述样本包括:
将所述装配工具定位在所述样本附近,所述装配工具具有一个被配置为捕捉所述样本的压缩结合末端执行器,其中所述压缩结合末端执行器包括被配置为与所述样本接口的可延展层;
经由所述压缩结合末端执行器在所述样本上施加力,该力具有足以导致在所述压缩结合末端执行器和所述样本之间形成压缩结合的幅值,从而捕捉所述样本,其中在所述样本上施加力包括促动与所述压缩结合末端执行器耦合的电热促动器、静电促动器或压电促动器。
7.一种用于通过抓取元件进行显微镜检查的系统,包括:
用于从衬底上至少部分地切断样本的聚焦离子束FIB装置;
被配置为捕捉所述样本的抓取元件;
用于激活所述抓取元件以捕捉所述样本的装置;以及
用于使所述被捕捉的样本与所述衬底分离的装置;
其中所述抓取元件包括热激活的或可延展的末端执行器,该末端执行器被配置为在加热所述末端执行器时、冷却所述末端执行器时、或将所述末端执行器按压在所述样本上时捕捉所述样本,其中所述用于激活所述抓取元件的装置包括用于将所述末端执行器按压在所述样本上以形成压缩结合的装置。
8.如权利要求7所述的系统,还包括用于控制所述FIB装置、所述用于激活所述抓取元件的装置、和所述用于使所述被捕捉的样本与所述衬底分离的装置中的每一个的自动化装置。
9.一种用于捕捉用FIB准备的样本的抓取元件,包括:
配置为耦合到装卸组合件的主体;
耦合到所述主体的促动构件;以及
耦合到所述促动构件并被配置为捕捉用FIB准备的样本并且随后松开所述用FIB准备的样本的抓取构件,其中所述用FIB准备的样本的捕捉和松开中的至少一个步骤是响应于所述促动构件的热激活、静电激活或压电激活而进行的。
10.如权利要求9所述的抓取元件,其中所述用FIB准备的样本的捕捉和松开中的至少一个步骤是响应于所述促动构件的电热激活而进行的。
11.如权利要求9所述的抓取元件,其中所述抓取元件被配置为无源地捕捉所述用FIB准备的样本。
CN2004800311077A 2003-09-23 2004-09-23 采用fib准备的样本的抓取元件的显微镜检查的方法、系统和设备 Expired - Fee Related CN1871684B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US50502603P 2003-09-23 2003-09-23
US60/505,026 2003-09-23
US54684004P 2004-02-23 2004-02-23
US60/546,840 2004-02-23
PCT/US2004/031482 WO2005031789A2 (en) 2003-09-23 2004-09-23 Method, system and device for microscopic examination employing fib-prepared sample grasping element

Publications (2)

Publication Number Publication Date
CN1871684A CN1871684A (zh) 2006-11-29
CN1871684B true CN1871684B (zh) 2011-08-24

Family

ID=34396231

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800311077A Expired - Fee Related CN1871684B (zh) 2003-09-23 2004-09-23 采用fib准备的样本的抓取元件的显微镜检查的方法、系统和设备

Country Status (6)

Country Link
US (2) US7227140B2 (zh)
EP (1) EP1671346A2 (zh)
JP (1) JP2007506981A (zh)
KR (1) KR100984608B1 (zh)
CN (1) CN1871684B (zh)
WO (1) WO2005031789A2 (zh)

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914613A (en) 1996-08-08 1999-06-22 Cascade Microtech, Inc. Membrane probing system with local contact scrub
US6256882B1 (en) 1998-07-14 2001-07-10 Cascade Microtech, Inc. Membrane probing system
US9056783B2 (en) 1998-12-17 2015-06-16 Hach Company System for monitoring discharges into a waste water collection system
US7454295B2 (en) 1998-12-17 2008-11-18 The Watereye Corporation Anti-terrorism water quality monitoring system
US8958917B2 (en) 1998-12-17 2015-02-17 Hach Company Method and system for remote monitoring of fluid quality and treatment
US6914423B2 (en) 2000-09-05 2005-07-05 Cascade Microtech, Inc. Probe station
US6965226B2 (en) 2000-09-05 2005-11-15 Cascade Microtech, Inc. Chuck for holding a device under test
DE10143173A1 (de) 2000-12-04 2002-06-06 Cascade Microtech Inc Wafersonde
AU2002327490A1 (en) 2001-08-21 2003-06-30 Cascade Microtech, Inc. Membrane probing system
US8920619B2 (en) 2003-03-19 2014-12-30 Hach Company Carbon nanotube sensor
US7492172B2 (en) 2003-05-23 2009-02-17 Cascade Microtech, Inc. Chuck for holding a device under test
US7057404B2 (en) 2003-05-23 2006-06-06 Sharp Laboratories Of America, Inc. Shielded probe for testing a device under test
US8110814B2 (en) 2003-10-16 2012-02-07 Alis Corporation Ion sources, systems and methods
US7786451B2 (en) * 2003-10-16 2010-08-31 Alis Corporation Ion sources, systems and methods
US7786452B2 (en) * 2003-10-16 2010-08-31 Alis Corporation Ion sources, systems and methods
US9159527B2 (en) 2003-10-16 2015-10-13 Carl Zeiss Microscopy, Llc Systems and methods for a gas field ionization source
US7250626B2 (en) 2003-10-22 2007-07-31 Cascade Microtech, Inc. Probe testing structure
US20060219919A1 (en) * 2003-11-11 2006-10-05 Moore Thomas M TEM sample holder and method of forming same
US7427868B2 (en) 2003-12-24 2008-09-23 Cascade Microtech, Inc. Active wafer probe
US7187188B2 (en) 2003-12-24 2007-03-06 Cascade Microtech, Inc. Chuck with integrated wafer support
KR20060043141A (ko) * 2004-02-23 2006-05-15 지벡스 코포레이션 대전 입자 빔 장치 프로브 조작기
US7326293B2 (en) 2004-03-26 2008-02-05 Zyvex Labs, Llc Patterned atomic layer epitaxy
JP2006030017A (ja) * 2004-07-16 2006-02-02 Sii Nanotechnology Inc プローブ及び微小サンプルピックアップ機構
US7315023B2 (en) * 2004-07-22 2008-01-01 Omniprobe, Inc. Method of preparing a sample for examination in a TEM
JP4300168B2 (ja) * 2004-09-10 2009-07-22 株式会社日立ハイテクノロジーズ 集束イオンビーム装置、及びそれに用いる絞り
US7420381B2 (en) 2004-09-13 2008-09-02 Cascade Microtech, Inc. Double sided probing structures
US7535247B2 (en) 2005-01-31 2009-05-19 Cascade Microtech, Inc. Interface for testing semiconductors
US7656172B2 (en) 2005-01-31 2010-02-02 Cascade Microtech, Inc. System for testing semiconductors
DE102005053669B4 (de) * 2005-11-08 2007-12-13 Kilper, Roland, Dr. Probenmanipulationsvorrichtung
CN100449722C (zh) * 2005-12-08 2009-01-07 中芯国际集成电路制造(上海)有限公司 一种测定深沟槽失效深度的方法
US7403028B2 (en) 2006-06-12 2008-07-22 Cascade Microtech, Inc. Test structure and probe for differential signals
US7764072B2 (en) 2006-06-12 2010-07-27 Cascade Microtech, Inc. Differential signal probing system
US7723999B2 (en) 2006-06-12 2010-05-25 Cascade Microtech, Inc. Calibration structures for differential signal probing
WO2008091371A2 (en) 2006-07-18 2008-07-31 Multiprobe, Inc. Apparatus and method for combined micro-scale and nano-scale c-v,q-v, and i-v testing of semiconductor materials
JP4205122B2 (ja) * 2006-07-19 2009-01-07 株式会社日立ハイテクノロジーズ 荷電粒子線加工装置
EP1883095A1 (en) * 2006-07-26 2008-01-30 FEI Company Transfer mechanism for transferring a specimen
US7804068B2 (en) * 2006-11-15 2010-09-28 Alis Corporation Determining dopant information
JP2008157673A (ja) * 2006-12-21 2008-07-10 Sii Nanotechnology Inc 試料把持体の把持面作製方法
JP5055594B2 (ja) * 2007-03-13 2012-10-24 エスアイアイ・ナノテクノロジー株式会社 荷電粒子ビーム装置における試料移設方法及び荷電粒子ビーム装置
US8288737B1 (en) * 2007-04-23 2012-10-16 South Bay Technology, Inc. Ion sputter removal from thin microscopy samples with ions extracted from an RF generated plasma
EP2009420A1 (en) * 2007-06-29 2008-12-31 FEI Company Method for attaching a sample to a manipulator
US7845245B2 (en) * 2007-06-29 2010-12-07 Fei Company Method for attaching a sample to a manipulator by melting and then freezing part of said sample
US7876114B2 (en) 2007-08-08 2011-01-25 Cascade Microtech, Inc. Differential waveguide probe
WO2009155272A2 (en) * 2008-06-20 2009-12-23 Carl Zeiss Smt. Inc. Cross-section systems and methods
US8288740B2 (en) * 2008-06-27 2012-10-16 Omniprobe, Inc. Method for preparing specimens for atom probe analysis and specimen assemblies made thereby
WO2010014252A2 (en) * 2008-08-01 2010-02-04 Omniprobe, Inc. Grid holder for stem analysis in a charged particle instrument
US20100145511A1 (en) * 2008-08-18 2010-06-10 Popa Dan O Microcrawler and conveyor robots, controllers, systems, and methods
US8539854B2 (en) * 2008-10-06 2013-09-24 Board Of Regents, The University Of Texas System Microrobots with large actuation volumes, and controllers, systems, and methods
US7888957B2 (en) 2008-10-06 2011-02-15 Cascade Microtech, Inc. Probing apparatus with impedance optimized interface
DE102008052006B4 (de) * 2008-10-10 2018-12-20 3D-Micromac Ag Verfahren und Vorrichtung zur Herstellung von Proben für die Transmissionselektronenmikroskopie
US8410806B2 (en) 2008-11-21 2013-04-02 Cascade Microtech, Inc. Replaceable coupon for a probing apparatus
US8319503B2 (en) 2008-11-24 2012-11-27 Cascade Microtech, Inc. Test apparatus for measuring a characteristic of a device under test
CN101780630B (zh) * 2009-01-16 2012-11-21 财团法人工业技术研究院 聚焦式离子束系统的物件加工方法及应用于该方法的载具
TW201222617A (en) * 2010-10-07 2012-06-01 Hitachi High Tech Corp Sample device for charged particle beam
US8258473B2 (en) * 2010-11-12 2012-09-04 Nanotem, Inc. Method and apparatus for rapid preparation of multiple specimens for transmission electron microscopy
US8759765B2 (en) * 2011-08-08 2014-06-24 Omniprobe, Inc. Method for processing samples held by a nanomanipulator
WO2013109405A1 (en) * 2012-01-17 2013-07-25 The Scripps Research Institute Preparation of specimen arrays on an em grid
US8740209B2 (en) * 2012-02-22 2014-06-03 Expresslo Llc Method and apparatus for ex-situ lift-out specimen preparation
US10416046B2 (en) * 2013-04-11 2019-09-17 Rarecyte, Inc. Device, system, and method for selecting a target analyte
EP2813835B1 (en) 2013-06-14 2016-09-07 Fei Company Method of welding a frozen aqueous sample to a microprobe
JP6366704B2 (ja) 2013-06-24 2018-08-01 ディーシージー システムズ、 インコーポレイテッドDcg Systems Inc. 局所的な試料の特性によって制御されるプロービングの適応モードを備えたプロービングを利用したデータ収集システム
KR101794744B1 (ko) * 2013-08-14 2017-12-01 에프이아이 컴파니 하전 입자 비임 시스템용 회로 프로브
CN104792583B (zh) * 2014-01-17 2018-06-26 中芯国际集成电路制造(上海)有限公司 一种tem样品的制备方法
JP6239401B2 (ja) * 2014-02-12 2017-11-29 株式会社日立ハイテクサイエンス 荷電粒子ビーム装置
JP6300553B2 (ja) * 2014-02-12 2018-03-28 株式会社日立ハイテクサイエンス 荷電粒子ビーム装置
CN103969105B (zh) * 2014-05-21 2017-01-18 上海华力微电子有限公司 一种聚焦离子束机台之探针的降震装置及其降震方法
KR102352023B1 (ko) 2014-06-25 2022-01-14 디씨지 시스템스 인코포레이티드 반도체 웨이퍼 상에서 인-라인 나노프로빙을 수행하기 위한 시스템 및 반도체에서 디바이스들의 전기적 테스팅을 수행하는 방법
JP6552383B2 (ja) * 2014-11-07 2019-07-31 エフ・イ−・アイ・カンパニー 自動化されたtem試料調製
US9576772B1 (en) * 2015-08-31 2017-02-21 Fei Company CAD-assisted TEM prep recipe creation
KR101881799B1 (ko) 2017-02-22 2018-07-25 주식회사 나모텍 집속 이온빔 장치용 샘플 홀더 및 이를 이용한 샘플링 방법
EP3613543A1 (en) * 2018-08-21 2020-02-26 FEI Company Charged particle microscope with a manipulator device, and method of preparing a specimen with said charged particle microscope
CN109269451A (zh) * 2018-11-20 2019-01-25 北京智芯微电子科技有限公司 金属镀层厚度的测量方法
CN110411371A (zh) * 2019-07-31 2019-11-05 中国工程物理研究院机械制造工艺研究所 基于fib刻蚀的刀具刃口轮廓提取方法
KR20220158808A (ko) 2020-05-01 2022-12-01 주식회사 히타치하이테크 핀셋, 반송 장치 및 시료편의 반송 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0927880A1 (en) * 1997-07-22 1999-07-07 Hitachi, Ltd. Method and apparatus for preparing samples

Family Cites Families (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2782682A (en) * 1953-05-29 1957-02-26 Browning Iben Micromanipulators
US3119266A (en) * 1960-11-10 1964-01-28 Duane E Atkinson Level indicating system, method and probe
US3134942A (en) * 1960-12-13 1964-05-26 Richard E Rhodes Multiple probe resistivity measuring apparatus with workpiece support means
US3535515A (en) * 1967-06-14 1970-10-20 Us Navy Ultrasonic apparatus for electron microscope
GB1320346A (en) * 1970-05-22 1973-06-13 Ass Elect Ind Specimen stages for electron microscopes
SE436675B (sv) * 1975-08-12 1985-01-14 Ki Politekhnichsky I Im 50 Let Elektrisk motor driven genom piezoelektriska krafter
US4463257A (en) * 1982-08-05 1984-07-31 Tracor Xray Inc. Rotatable support for selectively aligning a window with the channel of a probe
US4587431A (en) * 1983-04-22 1986-05-06 Jeol Ltd. Specimen manipulating mechanism for charged-particle beam instrument
US4601551A (en) * 1984-01-23 1986-07-22 The Micromanipulator Microscope Company, Inc. Manipulation of embryos and ova
US4610475A (en) * 1984-09-06 1986-09-09 Microflex Technology, Inc. Piezoelectric polymer micromanipulator
JPS61154487A (ja) * 1984-12-26 1986-07-14 Canon Inc リニア振動波モ−タ
IE56166B1 (en) * 1985-02-15 1991-05-08 Tekscan Ltd Manipulator means
US4736129A (en) * 1985-05-30 1988-04-05 Marcon Electronics Co., Ltd. Ultrasonic motor
US4678955A (en) * 1986-04-18 1987-07-07 Rca Corporation Piezoelectric positioning device
US4729646A (en) * 1986-05-15 1988-03-08 Bausch & Lomb Incorporated Multi-use microscope having modular construction of extruded parts
US4798989A (en) * 1986-09-26 1989-01-17 Research Development Corporation Scanning tunneling microscope installed in electron microscope
EP0406413B1 (en) * 1987-08-12 1995-10-25 Olympus Optical Co., Ltd. Scanning type tunnel microscope
KR910005549B1 (ko) * 1987-10-09 1991-07-31 올림푸스 옵티칼 캄파니 리미티드 현미경의 스테이지 이송용 조미동 공용축 핸들
US5068535A (en) * 1988-03-07 1991-11-26 University Of Houston - University Park Time-of-flight ion-scattering spectrometer for scattering and recoiling for electron density and structure
JPH0758164B2 (ja) * 1988-04-22 1995-06-21 三菱電機株式会社 走査型トンネル顕微鏡の微動機構
DE3814617A1 (de) * 1988-04-29 1989-11-09 Fraunhofer Ges Forschung Greifvorrichtung
US5338997A (en) * 1988-04-29 1994-08-16 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Micromanipulator for moving objects
US4928030A (en) * 1988-09-30 1990-05-22 Rockwell International Corporation Piezoelectric actuator
US4874979A (en) * 1988-10-03 1989-10-17 Burleigh Instruments, Inc. Electromechanical translation apparatus
FR2639473A1 (fr) * 1988-11-18 1990-05-25 Chaixmeca Sarl Dispositif pour le transfert sous atmosphere controlee d'echantillons destines a l'examen en microscopie electronique en transmission
JP2839543B2 (ja) * 1989-04-12 1998-12-16 株式会社東芝 変位発生装置
JP2909829B2 (ja) * 1989-07-05 1999-06-23 セイコーインスツルメンツ株式会社 位置合わせ機能付複合走査型トンネル顕微鏡
JP3408972B2 (ja) * 1989-11-13 2003-05-19 株式会社日立製作所 荷電粒子ビーム装置及び加工方法
JPH0687003B2 (ja) * 1990-02-09 1994-11-02 株式会社日立製作所 走査型トンネル顕微鏡付き走査型電子顕微鏡
US5055680A (en) * 1990-04-03 1991-10-08 Lk Technologies, Inc. Scanning tunneling microscope
DE4023311A1 (de) * 1990-07-21 1992-01-23 Omicron Vakuumphysik Verstellvorrichtung fuer mikrobewegungen
US5225683A (en) * 1990-11-30 1993-07-06 Jeol Ltd. Detachable specimen holder for transmission electron microscope
US5124645A (en) * 1991-04-24 1992-06-23 The United States Of America As Represented By The Secretary Of The Air Force Transmission electron microscope (TEM) power probe for in-situ viewing of electromigration and operation of an integrated circuit or microprocessor
JP2774884B2 (ja) * 1991-08-22 1998-07-09 株式会社日立製作所 試料の分離方法及びこの分離方法で得た分離試料の分析方法
US5332275A (en) * 1991-11-27 1994-07-26 Microscience Group, Inc. Microgripper
US5412503A (en) * 1992-08-27 1995-05-02 U.S. Philips Corporation Specimen holder for a particle beam optical apparatus
EP0611485B1 (en) * 1992-09-07 1996-04-03 KLEINDIEK, Stephan Electromechanical positioning device
US6043548A (en) * 1993-04-14 2000-03-28 Yeda Research And Development Co., Ltd. Semiconductor device with stabilized junction
JPH0714898A (ja) * 1993-06-23 1995-01-17 Mitsubishi Electric Corp 半導体ウエハの試験解析装置および解析方法
US5677709A (en) * 1994-02-15 1997-10-14 Shimadzu Corporation Micromanipulator system with multi-direction control joy stick and precision control means
US5589723A (en) * 1994-03-29 1996-12-31 Minolta Co., Ltd. Driving apparatus using transducer
US5455420A (en) * 1994-07-12 1995-10-03 Topometrix Scanning probe microscope apparatus for use in a scanning electron
US5756997A (en) * 1996-03-04 1998-05-26 General Nanotechnology, L.L.C. Scanning probe/optical microscope with modular objective/probe and drive/detector units
US5989779A (en) * 1994-10-18 1999-11-23 Ebara Corporation Fabrication method employing and energy beam source
US5635836A (en) * 1994-10-21 1997-06-03 International Business Machines Corporation Mechanical apparatus with rod, pivot, and translation means for positioning a sample for use with a scanning microscope
DE4440758A1 (de) * 1994-11-15 1996-05-23 Klocke Volker Elektromechanische Positioniereinheit
EP0731490A3 (en) * 1995-03-02 1998-03-11 Ebara Corporation Ultra-fine microfabrication method using an energy beam
JPH08257959A (ja) * 1995-03-29 1996-10-08 Nikon Corp マイクログリッパーシステム用のマスタ入力装置
US6000280A (en) * 1995-07-20 1999-12-14 Cornell Research Foundation, Inc. Drive electrodes for microfabricated torsional cantilevers
US6172363B1 (en) * 1996-03-05 2001-01-09 Hitachi, Ltd. Method and apparatus for inspecting integrated circuit pattern
JPH10104242A (ja) * 1996-09-26 1998-04-24 Jeol Ltd 走査プローブ顕微鏡
US6007696A (en) * 1996-09-28 1999-12-28 Kabushiki Kaisha Toshiba Apparatus and method for manufacturing electrolytic ionic water and washing method using electroyltic ionic water
US5922179A (en) * 1996-12-20 1999-07-13 Gatan, Inc. Apparatus for etching and coating sample specimens for microscopic analysis
US5895084A (en) * 1997-02-19 1999-04-20 Mauro; George Cam operated microgripper
US5963956A (en) 1997-02-27 1999-10-05 Telcontar System and method of optimizing database queries in two or more dimensions
JPH10337057A (ja) * 1997-06-02 1998-12-18 Minolta Co Ltd 駆動装置
JP3900664B2 (ja) * 1997-09-26 2007-04-04 株式会社ニコン 顕微鏡
US6002136A (en) * 1998-05-08 1999-12-14 International Business Machines Corporation Microscope specimen holder and grid arrangement for in-situ and ex-situ repeated analysis
JP2000021345A (ja) * 1998-07-06 2000-01-21 Hitachi Ltd 走査型電子顕微鏡
US6744268B2 (en) 1998-08-27 2004-06-01 The Micromanipulator Company, Inc. High resolution analytical probe station
US6198299B1 (en) * 1998-08-27 2001-03-06 The Micromanipulator Company, Inc. High Resolution analytical probe station
DE19940124C2 (de) * 1998-08-31 2003-04-10 Olympus Optical Co Plattform mit einem Verschiebungsverstärkungsmechanismus
US6196061B1 (en) * 1998-11-05 2001-03-06 Nanodevices, Inc. AFM with referenced or differential height measurement
US6279007B1 (en) * 1998-11-30 2001-08-21 Microsoft Corporation Architecture for managing query friendly hierarchical values
US6344750B1 (en) * 1999-01-08 2002-02-05 Schlumberger Technologies, Inc. Voltage contrast method for semiconductor inspection using low voltage particle beam
AU3346000A (en) * 1999-01-15 2000-08-01 Regents Of The University Of California, The Polycrystalline silicon germanium films for forming micro-electromechanical systems
JP2000260852A (ja) * 1999-03-11 2000-09-22 Tokyo Electron Ltd 検査ステージ及び検査装置
SE515985C2 (sv) * 1999-06-13 2001-11-05 Nanofactory Instruments Ab Anordning för mikropositionering av objekt genom användning av mekanisk tröghet
DE19935570C2 (de) * 1999-07-30 2001-07-05 Forschungszentrum Juelich Gmbh Mikromanipulator
US6583413B1 (en) * 1999-09-01 2003-06-24 Hitachi, Ltd. Method of inspecting a circuit pattern and inspecting instrument
JP2001088100A (ja) * 1999-09-24 2001-04-03 Japan Science & Technology Corp マイクロマニピュレーション方法
US6807550B1 (en) * 1999-12-01 2004-10-19 Microsoft Corporation Methods and systems for providing random access to structured media content
AU4733601A (en) * 2000-03-10 2001-09-24 Cyrano Sciences Inc Control for an industrial process using one or more multidimensional variables
US6690101B2 (en) * 2000-03-23 2004-02-10 Elliptec Resonant Actuator Ag Vibratory motors and methods of making and using same
US6422077B1 (en) * 2000-04-06 2002-07-23 The University Of Chicago Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor
US20020138353A1 (en) 2000-05-03 2002-09-26 Zvi Schreiber Method and system for analysis of database records having fields with sets
US6597359B1 (en) * 2000-05-17 2003-07-22 Raychip, Inc. Hierarchical space subdivision hardware for ray tracing
WO2001090761A2 (en) * 2000-05-19 2001-11-29 Imago Scientific Instruments Methods of sampling specimens for microanalysis
US6420722B2 (en) * 2000-05-22 2002-07-16 Omniprobe, Inc. Method for sample separation and lift-out with one cut
US6539519B1 (en) * 2000-05-31 2003-03-25 Mark D. Meeker Spatial characteristic and logical hierarchy based manner for compactly storing IC design data and related operations
US6768110B2 (en) * 2000-06-21 2004-07-27 Gatan, Inc. Ion beam milling system and method for electron microscopy specimen preparation
US6841788B1 (en) * 2000-08-03 2005-01-11 Ascend Instruments, Inc. Transmission electron microscope sample preparation
DE60144508D1 (de) * 2000-11-06 2011-06-09 Hitachi Ltd Verfahren zur Herstellung von Proben
US6856712B2 (en) * 2000-11-27 2005-02-15 University Of Washington Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition
WO2002071031A1 (en) * 2001-03-01 2002-09-12 Moore Thomas M Total release method for sample extraction from a charged particle instrument
US6862921B2 (en) * 2001-03-09 2005-03-08 Veeco Instruments Inc. Method and apparatus for manipulating a sample
JP4200665B2 (ja) * 2001-05-08 2008-12-24 株式会社日立製作所 加工装置
US6730237B2 (en) * 2001-06-22 2004-05-04 International Business Machines Corporation Focused ion beam process for removal of copper
WO2003017745A2 (en) 2001-08-23 2003-03-06 Sciperio, Inc. Architecture tool and methods of use
WO2003028065A2 (en) * 2001-09-24 2003-04-03 Fei Company Electrostatic manipulating apparatus
JP2005505076A (ja) 2001-10-04 2005-02-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ユーザインターフェースを様式合わせする方法及び適応型ユーザインターフェースを備える装置
JP3820964B2 (ja) * 2001-11-13 2006-09-13 株式会社日立製作所 電子線を用いた試料観察装置および方法
US20040038251A1 (en) * 2002-03-04 2004-02-26 Smalley Richard E. Single-wall carbon nanotubes of precisely defined type and use thereof
US6671710B2 (en) * 2002-05-10 2003-12-30 Energy Conversion Devices, Inc. Methods of computing with digital multistate phase change materials
US6891170B1 (en) * 2002-06-17 2005-05-10 Zyvex Corporation Modular manipulation system for manipulating a sample under study with a microscope
US6967335B1 (en) 2002-06-17 2005-11-22 Zyvex Corporation Manipulation system for manipulating a sample under study with a microscope
US6777674B2 (en) * 2002-09-23 2004-08-17 Omniprobe, Inc. Method for manipulating microscopic particles and analyzing
US6927400B2 (en) * 2003-03-13 2005-08-09 Ascend Instruments, Llc Sample manipulation system
KR20060043141A (ko) * 2004-02-23 2006-05-15 지벡스 코포레이션 대전 입자 빔 장치 프로브 조작기
US7114406B2 (en) * 2004-09-16 2006-10-03 The Boeing Company End effector inspection apparatus and method
US7472736B2 (en) * 2005-02-14 2009-01-06 The Boeing Company Modular head lamination device and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0927880A1 (en) * 1997-07-22 1999-07-07 Hitachi, Ltd. Method and apparatus for preparing samples

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JP特开2000-155081A 2000.06.06
JP特开2002-62226A 2002.02.28
JP特开平11-108810A 1999.04.23
JP特开平11-135051A 1999.05.21

Also Published As

Publication number Publication date
JP2007506981A (ja) 2007-03-22
WO2005031789A2 (en) 2005-04-07
KR100984608B1 (ko) 2010-09-30
US20070187623A1 (en) 2007-08-16
US7227140B2 (en) 2007-06-05
US20050178980A1 (en) 2005-08-18
WO2005031789A3 (en) 2005-05-06
CN1871684A (zh) 2006-11-29
KR20060073966A (ko) 2006-06-29
EP1671346A2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
CN1871684B (zh) 采用fib准备的样本的抓取元件的显微镜检查的方法、系统和设备
US7071475B2 (en) Method and apparatus for specimen fabrication
US6538254B1 (en) Method and apparatus for sample fabrication
EP1515360B1 (en) Method and apparatus for manipulating a microscopic sample
JP4628361B2 (ja) 電子顕微鏡検査用試料の調製方法ならびにそれに用いる試料支持体および搬送ホルダ
JP2005251745A (ja) 荷電粒子ビーム装置プローブ操作
US20060011867A1 (en) Method and apparatus for sample formation and microanalysis in a vacuum chamber
JP4185604B2 (ja) 試料解析方法、試料作成方法およびそのための装置
JP2000147070A (ja) プローブ装置
JP4604554B2 (ja) プローブ装置
JP2006116648A (ja) マイクロマニピュレータ及びマイクロハンドリング装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SAIWEI INSTRUMENTS CO.,LTD.

Free format text: FORMER OWNER: CEWY INC.

Effective date: 20070727

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20070727

Address after: Texas USA

Applicant after: Zyvex Corp.

Address before: Texas USA

Applicant before: Zyvex Corp.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110824

Termination date: 20140923

EXPY Termination of patent right or utility model