DE102005025416A1 - Lumineszenzdiodenchip mit einer Kontaktstruktur - Google Patents

Lumineszenzdiodenchip mit einer Kontaktstruktur Download PDF

Info

Publication number
DE102005025416A1
DE102005025416A1 DE102005025416A DE102005025416A DE102005025416A1 DE 102005025416 A1 DE102005025416 A1 DE 102005025416A1 DE 102005025416 A DE102005025416 A DE 102005025416A DE 102005025416 A DE102005025416 A DE 102005025416A DE 102005025416 A1 DE102005025416 A1 DE 102005025416A1
Authority
DE
Germany
Prior art keywords
diode chip
luminescence diode
contact
chip according
radiation exit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102005025416A
Other languages
English (en)
Inventor
Johannes Dr. Baur
Volker Dr. Härle
Raimund Dr. Oberschmid
Berthold Dr. Hahn
Andreas Weimar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Priority to DE102005025416A priority Critical patent/DE102005025416A1/de
Priority to KR1020077030310A priority patent/KR101249418B1/ko
Priority to TW095119502A priority patent/TW200703724A/zh
Priority to CN200680028603.6A priority patent/CN101238591B/zh
Priority to PCT/DE2006/000954 priority patent/WO2006128446A1/de
Priority to EP06742397.0A priority patent/EP1886360B1/de
Priority to JP2008513924A priority patent/JP5114389B2/ja
Priority to US11/921,530 priority patent/US8581279B2/en
Publication of DE102005025416A1 publication Critical patent/DE102005025416A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

Bei einem Lumineszenzdiodenchip mit einer Strahlungsaustrittsfläche (1) und einer Kontaktstruktur (2, 3, 4), die auf der Strahlungsaustrittsfläche (1) angeordnet ist, und ein Bondpad (4) und mehrere zur Stromaufweitung vorgesehene Kontaktstege (2, 3), die mit dem Bondpad (4) elektrisch leitend verbunden sind, ist das Bondpad (4) in einem Randbereich der Strahlungsaustrittsfläche (1) angeordnet. Der Lumineszenzdiodenchip zeichnet sich insbesondere durch eine verminderte Absorption der emittierten Strahlung (23) in der Kontaktstruktur (2, 3, 4) aus.

Description

  • Die Erfindung betrifft einen Lumineszenzdiodenchip nach dem Oberbegriff des Patentanspruchs 1.
  • Bei Lumineszenzdiodenchips, die mittels eines Bonddrahts elektrisch kontaktiert sind, ist in der Regel ein vergleichsweise kleiner zentraler Bereich der Chipoberfläche mit einer Kontaktfläche (Bondpad) zum Anschluss des Bonddrahts versehen. Da Lumineszenzdiodenchips in der Regel mit einer dem Bonddraht gegenüber liegenden Chipoberfläche auf einen Träger oder in ein LED-Gehäuse montiert werden, ist die Chipoberfläche, auf der das Bondpad angeordnet ist, die Strahlungsaustrittsfläche, also die Chipoberfläche, aus der zumindest der überwiegende Teil der in einer aktiven Zone des Lumineszenzdiodenchips erzeugten elektromagnetischen Strahlung aus dem Lumineszenzdiodenchip ausgekoppelt wird.
  • Bei herkömmlichen Lumineszenzdiodenchips, die eine Kantenlänge von weniger als 300 μm aufweisen, kann mit einem zentral auf der Strahlungsauskoppelfläche angeordneten Bondpad eine vergleichsweise homogene Stromverteilung im Lumineszenzdiodenchip erreicht werden. Bei großflächigen Lumineszenzdiodenchips, die zum Beispiel eine Kantenlänge von bis zu 1 mm aufweisen, kann diese Art der Kontaktierung aber nachteilig zu einer inhomogenen Bestromung des Lumineszenzdiodenchips führen, die zu einer erhöhten Vorwärtsspannung und zu einer geringen Quanteneffizienz in der aktiven Zone führt. Dieser Effekt tritt insbesondere bei Halbleitermaterialien, die eine geringe Querleitfähigkeit aufweisen, beispielsweise bei Nitridverbindungshalbleitern, auf. Die maximale Stromdichte tritt in diesem Fall in einem zentralen Bereich des Lumineszenzdiodenchips auf und verringert sich ausgehend von dem zentralen Bondpad in Richtung der Seitenflanken mit zunehmendem Abstand vom Bondpad. Dies hat eine oftmals unerwünschte ungleichmäßige Helligkeit der Strahlungsaustrittsfläche zur Folge. Weiterhin ist es nachteilig, dass die in dem zentralen Bereich des Lumineszenzdiodenchips emittierte Strahlung, in dem die größte Stromdichte auftritt, zumindest teilweise zu dem nicht transparenten Bondpad hin emittiert und somit zumindest teilweise absorbiert wird.
  • Aus der DE 199 47 030 A1 ist bekannt, die Strahlungsauskoppelfläche einer InGaAlP-LED mit einer Kontaktstruktur zu versehen, die ein zentrales Bondpad und mehrere mit dem Bondpad verbundene Kontaktstege umfasst, um eine bessere Stromaufweitung zu erzielen.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Lumineszenzdiodenchip mit einer auf der Strahlungsaustrittsfläche angeordneten verbesserten Kontaktstruktur anzugeben, die sich insbesondere durch eine verminderte Absorption von Strahlung in dem Bondpad auszeichnet.
  • Diese Aufgabe wird durch einen Lumineszenzdiodenchip nach dem Oberbegriff des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
  • Bei einem erfindungsgemäßen Lumineszenzdiodenchip mit einer Strahlungsaustrittsfläche und einer Kontaktstruktur, die auf der Strahlungsaustrittsfläche angeordnet ist und ein Bondpad und mehrere zur Stromaufweitung vorgesehene Kontaktstege, die mit dem Bondpad elektrisch leitend verbunden sind, umfasst, ist das Bondpad in einem Randbereich der Strahlungsaustrittsfläche angeordnet.
  • Durch die Anordnung des Bondpads in einem Randbereich der Strahlungsaustrittsfläche wird die durch einen zentralen Bereich der Strahlungsaustrittsfläche aus dem Lumineszenzdiodenchip austretende Strahlung vorteilhaft nicht in dem Bondpad absorbiert. Die Anordnung des Bondpads in einem Randbereich der Strahlungsaustrittsfläche ist insbesondere so zu verstehen, dass der Mittelpunkt des Bondpads einen geringeren Abstand zu zumindest einer Seitenflanke des Lumineszenzdiodenchips als zum Mittelpunkt der Strahlungsaustrittsfläche aufweist. Vorteilhaft ist es durch die Anordnung des Bondpads in einem Randbereich der Strahlungsaustrittsfläche im Gegensatz zu einem Lumineszenzdiodenchip mit einem zentral auf der Strahlungsaustrittsfläche angeordneten Bondpad nicht erforderlich, einen Bonddraht über die Strahlungsaustrittsfläche zu dem Bondpad hinzuführen. Dies ist insbesondere vorteilhaft für Lumineszenzdiodenchips, die mit vergleichsweise hohen Stromstärken, zum Beispiel mehr als 300 mA, betrieben werden, da bei einem Betrieb mit derart hohen Stromstärken ein vergleichsweise dicker Bonddraht erforderlich ist, in dem bei einer Anordnung oberhalb der Strahlungsaustrittsfläche eine nicht vernachlässigbare Absorption der emittierten Strahlung auftreten würde. Dadurch, dass auf der Strahlungsaustrittsfläche mehrere mit dem Bondpad elektrisch leitend verbundene Kontaktstege angeordnet sind, kann trotz des in einen Randbereich der Strahlungsaustrittsfläche angeordneten Bondpads eine vergleichsweise homogene Stromverteilung in dem Lumineszenzdiodenchip erreicht werden.
  • Der Abstand zwischen dem Bondpad und zumindest einer Seitenflanke des Lumineszenzdiodenchips ist vorzugsweise geringer als 30 μm. Insbesondere kann das Bondpad auch direkt an eine Seitenflanke des Lumineszenzdiodenchips angrenzen.
  • Vorteilhaft ist das Bondpad derart an einer Ecke der Strahlungsaustrittsfläche angeordnet, dass sowohl der Abstand zwischen dem Bondpad und einer ersten Seitenflanke des Lumineszenzdiodenchips als auch der Abstand zwischen dem Bondpad und einer zweiten Seitenflanke des Lumineszenzdiodenchips jeweils geringer ist als 30 μm. Insbesondere kann das Bondpad sowohl an die erste Seitenflanke als auch an die zweite Seitenflanke des Lumineszenzdiodenchips angrenzen.
  • Die Kontaktstege sind vorteilhaft derart auf der Strahlungsaustrittsfläche angeordnet, dass eine aktive Schicht des Lumineszenzdiodenchips derart homogen von einem Strom durchflossen wird, dass die Strahlungsaustrittsfläche des Lumineszenzdiodenchips eine gleichmäßige Helligkeit aufweist. Insbesondere ist vorgesehen, dass die Kontaktstege auf der Strahlungsaustrittsfläche einen Umriss zumindest eines Rechtecks oder zumindest eines Quadrats ausbilden.
  • Bevorzugt bilden die Kontaktstege die Umrisse mehrerer Rechtecke oder Quadrate aus. Vorteilhaft weisen die mehreren Rechtecke oder Quadrate jeweils zumindest eine gemeinsame Seitenkante, besonders bevorzugt sogar zwei gemeinsame Seitenkanten, auf. Insbesondere können die Kontaktstege den Umriss mehrerer Quadrate und/oder Rechtecke ausbilden, die jeweils einen gemeinsamen Eckpunkt aufweisen. In diesem Fall sind im Gegensatz zu Kontaktstrukturen, bei denen die Kontaktstege mehrere ineinander geschachtelte konzentrische Quadrate oder Rechtecke ausbilden, keine Verbindungsstege zwischen den Quadraten und/oder Rechtecken erforderlich, um diese elektrisch leitend miteinander zu verbinden.
  • Bei einer besonders bevorzugten Ausführungsform der Erfindung ist das Bondpad an einem Eckpunkt zumindest eines Rechtecks oder Quadrats, dessen Umriss durch die Kontaktstege ausgebildet wird, angeordnet. Insbesondere kann das Bondpad in einem gemeinsamen Eckpunkt mehrerer Quadrate und/oder Rechtecke angeordnet sein, dessen Umrisse durch die Kontaktstege ausgebildet werden.
  • Vorteilhaft wird von den Kontaktstegen zumindest mehr als die Hälfte der Strahlungsaustrittsfläche umschlossen. Dies bedeutet beispielsweise, dass die Kontaktstege derart zumindest eine in sich geschlossene oder zumindest annähernd geschlossene geometrische Form ausbilden, dass der überwiegende Teil der Strahlungsaustrittsfläche von dieser geometrischen Form umschlossen wird. Bei der geometrischen Form kann es sich, wie beispielsweise bei den zuvor beschriebenen bevorzugten Ausführungsformen, um ein Vieleck, insbesondere um ein Quadrat oder Rechteck, handeln. Besonders bevorzugt wird von den Kontaktstegen mehr als 80% der Strahlungsaustrittsfläche umschlossen. Insbesondere kann vorgesehen sein, dass die gesamte Strahlungsaustrittsfläche von den Kontaktstegen umschlossen wird.
  • Dadurch, dass zumindest der überwiegende Teil der Strahlungsaustrittsfläche von den Kontaktstegen umschlossen wird, kann trotz des in einem Randbereich der Strahlungsaustrittsfläche angeordneten Bondpads eine vergleichsweise homogene Stromverteilung in dem Lumineszenzdiodenchip erreicht werden. Durch die Kontaktstruktur, die aus dem Bondpad und den Kontaktstegen gebildet wird, wird auf diese Weise auch bei einem Lumineszenzdiodenchip aus Halbleitermaterialien, die eine geringe Querleitfähigkeit aufweisen, zum Beispiel bei einem auf Nitridverbindungshalbleitermaterialien basierenden Lumineszenzdiodenchip, eine vergleichsweise homogene Stromdichte und somit eine entsprechend homogene Helligkeit der Strahlungsaustrittsfläche erzielt.
  • Bei einer weiteren vorteilhaften Ausgestaltung der Erfindung ist auf einen von den Kontaktstegen umschlossenen Teilbereich der Strahlungsaustrittsfläche eine Lumineszenzkonversionsschicht aufgebracht. Die Lumineszenzkonversionsschicht enthält zumindest einen Lumineszenzkonversionsstoff, der zur Wellenlängenkonversion zumindest eines Teils der von dem Lumineszenzdiodenchip emittierten Strahlung zu größeren Wellenlängen hin geeignet ist. Auf diese Weise kann insbesondere mit einem Lumineszenzdiodenchip, der ultraviolette oder blaue Strahlung emittiert, durch Wellenlängenkonversion eines Teil der emittierten Strahlung in den komplementären Spektralbereich, beispielsweise den gelben Spektralbereich, Weißlicht erzeugt werden. Geeignete Lumineszenzkonversionsstoffe, wie zum Beispiel YAG:Ce, sind aus der WO 98/12757 bekannt, deren Inhalt hiermit insbesondere in Beug auf Leuchtstoffe durch Referenz aufgenommen wird. Die Lumineszenzkonversionsschicht ist vorteilhaft eine Kunststoffschicht, bevorzugt eine Silikonschicht, in die der zumindest eine Lumineszenzkonversionsstoff matrixartig eingebettet ist. Die Lumineszenzkonversionsschicht ist vorteilhaft mit einem Siebdruckverfahren auf die Strahlungsaustrittsfläche des Lumineszenzdiodenchips aufgebracht.
  • Bei einer weiteren bevorzugten Ausführungsform ist die Lumineszenzkonversionsschicht von den Seitenflanken des Lumineszenzdiodenchips beabstandet. Insbesondere kann vorgesehen sein, dass die Lumineszenzkonversionsschicht innerhalb eines von den Kontaktstegen umschlossenen Teilbereichs der Strahlungsaustrittsfläche angeordnet ist. Die auf der Strahlungsaustrittsfläche angeordneten Kontaktstege bilden in diesem Fall einen Rahmen für die Lumineszenzkonversionsschicht. Auf diese Weise wird vorteilhaft die Gefahr vermindert, dass das Material der Lumineszenzkonversionsschicht an die Seitenflanken des Lumineszenzdiodenchips gelangt. Dies ist insbesondere dann vorteilhaft, wenn eine mikroskopische Untersuchung der Seitenflanke des Lumineszenzdiodenchips zur Qualitätskontrolle vorgesehen ist. Eine derartige Qualitätskontrolle würde durch auf der Seitenflanke des Lumineszenzdiodenchips abgelagertes Material der Lumineszenzkonversionsschicht erschwert oder sogar unmöglich gemacht.
  • Zumindest einer der Kontaktstege weist vorteilhaft eine variable Breite auf. Unter der Breite des Kontaktstegs ist die Abmessung des Kontaktstegs in einer senkrecht zu seiner Längsrichtung und parallel zur Ebene der Strahlungsaustrittsfläche verlaufenden Richtung zu verstehen. Insbesondere kann vorgesehen sein, dass der Kontaktsteg mit variabler Breite mehrere Teilbereiche mit verschiedener Breite enthält. In diesem Fall ist die Breite der Teilbereiche des Kontaktsteges vorteilhaft an eine beim Betrieb des Lumineszenzdiodenchips durch den jeweiligen Teilbereich des Kontaktstegs auftretende Stromstärke angepasst. Die Breite der Teilbereiche ist beispielsweise derart an die im jeweiligen Teilbereich auftretende Stromstärke angepasst, dass die Stromdichte in dem jeweiligen Teilbereich einen Grenzwert, zum Beispiel 16 A/μm2 nicht überschreitet. Weiterhin sind die Breiten der Teilbereiche des Kontaktstegs mit variabler Breite und/oder die Breiten der weiteren Kontaktstege bevorzugt derart dimensioniert, dass eine Mindeststromdichte nicht unterschritten wird. Auf diese Weise wird vorteilhaft erreicht, dass die Breite der Kontaktstege und/oder der Teilbereiche des Kontaktstegs mit variabler Breite zumindest nicht wesentlich größer ist, als es für die Stromtragfähigkeit erforderlich ist. Dies hat den Vorteil, dass der von den Kontaktstegen bedeckte Teilbereich der Strahlungsaustrittsfläche vorteilhaft gering ist und somit die Absorption der von dem Lumineszenzdiodenchip erzeugten Strahlung in den auf der Strahlungsaustrittsfläche angeordneten Kontaktstegen vermindert wird.
  • Die Breite der Kontaktstege beträgt bevorzugt zwischen einschließlich 10 μm und einschließlich 40 μm.
  • Bei einer weiteren vorteilhaften Ausgestaltung ist der Lumineszenzdiodenchip ein Dünnfilm-Lumineszenzdiodenchip. Bei der Herstellung eines Dünnfilm-Lumineszenzdiodenchips wird eine funktionelle Halbleiterschichtenfolge, die insbesondere eine strahlungsemittierende aktive Schicht umfasst, zunächst epitaktisch auf einem Aufwachssubstrat aufgewachsen, anschließend ein neuer Träger auf die dem Aufwachssubstrat gegenüber liegende Oberfläche der Halbleiterschichtenfolge aufgebracht und nachfolgend das Aufwachssubstrat abgetrennt. Da insbesondere die für Nitridverbindungshalbleiter verwendeten Aufwachssubstrate, beispielsweise SiC, Saphir oder GaN vergleichsweise teuer sind, bietet dieses Verfahren insbesondere den Vorteil, dass das Aufwachssubstrat wiederverwertbar ist. Das Ablösen eines Aufwachssubstrats aus Saphir von einer Halbleiterschichtenfolge aus einem Nitridverbindungshalbleiter kann beispielsweise mit einem aus der WO 98/14986 bekanntem Laser-Lift-Off-Verfahren erfolgen.
  • Ein Grundprinzip einer Dünnfilm-LED ist beispielsweise in I. Schnitzer et al., Appl. Phys. Lett. 63 (16), 18. Oktober 1993, 2174–2176 beschrieben, deren Offenbarungsgehalt insofern hiermit durch Rückbezug aufgenommen wird.
  • Insbesondere kann der Lumineszenzdiodenchip eine Epitaxie-Schichtenfolge aufweisen, die auf Nitridverbindungshalbleitern basiert. „Auf Nitrid-Verbindungshalbleitern basierend" bedeutet im vorliegenden Zusammenhang, dass die aktive Epitaxie-Schichtenfolge oder zumindest eine Schicht davon ein Nitrid-III/V-Verbindungshalbleitermaterial, vorzugsweise AlxGayIn1-x-yN umfasst, wobei 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 und x + y ≤ 1. Dabei muss dieses Material nicht zwingend eine mathematisch exakte Zusammensetzung nach obiger Formel aufweisen. Vielmehr kann es ein oder mehrere Dotierstoffe sowie zusätzliche Bestandteile aufweisen, die die charakteristischen physikalischen Eigenschaften des AlxGayIn1-x-yN-Materials im Wesentlichen nicht ändern. Der Einfachheit halber beinhaltet obige Formel jedoch nur die wesentlichen Bestandteile des Kristallgitters (Al, Ga, In, N), auch wenn diese teilweise durch geringe Mengen weiterer Stoffe ersetzt sein können.
  • Die Strahlungsaustrittsfläche kann insbesondere eine quadratische Form aufweisen. Bei einer Ausführungsform des Lumineszenzdiodenchips beträgt zumindest eine Kantenlänge der Strahlungsaustrittsfläche 400 μm oder mehr, besonders bevorzugt 800 μm oder mehr. Insbesondere kann sogar eine Kantenlänge vom 1 mm oder mehr vorgesehen sein. Aufgrund der der Stromaufweitung durch die auf der Strahlungsaustrittsfläche angeordneten Kontaktstege kann selbst bei derart großflächigen Lumineszenzdiodenchips eine vergleichsweise homogene Stromverteilung in der aktiven Schicht erzielt werden.
  • Besonders vorteilhaft ist die aus dem Bondpad und den Kontaktstegen gebildete Kontaktstruktur für Lumineszenzdiodenchips, die mit einer Stromstärke von 300 mA oder mehr betrieben werden, da bei derart hohen Betriebsstromstärken bei herkömmlichen Lumineszenzdiodenchips eine inhomogene Stromverteilung, die ein Maximum in einem zentralen, mit dem Bondpad versehenen Bereich des Lumineszenzdiodenchips aufweisen würde, zu beobachten wäre.
  • Die Kontaktstruktur enthält vorzugsweise ein Metall oder eine Metalllegierung. Vorzugsweise ist die Kontaktstruktur eine strukturierte Ti-Pt-Au-Schichtenfolge, die ausgehend von einer angrenzenden Halbleiterschicht des Lumineszenzdiodenchips zum Beispiel eine etwa 50 nm dicke Ti-Schicht, eine etwa 50 nm dicke Pt-Schicht und eine etwa 2 μm dicke Au-Schicht umfasst. Eine Ti-Pt-Au-Schichtenfolge ist vorteilhaft unempfindlich gegenüber Elektromigration, die ansonsten, beispielsweise bei einer Aluminium enthaltenden Kontaktstruktur, auftreten könnte. Die Kontaktstruktur ist daher bevorzugt frei von Aluminium.
  • Vorteilhaft sind nur weniger als 15%, besonders bevorzugt weniger als 10% der Strahlungsaustrittsfläche von der Kontaktstruktur bedeckt. Die Absorptionsverluste innerhalb der Kontaktstruktur sind dadurch vorteilhaft gering.
  • Bei einer weiteren bevorzugten Ausführungsform enthält der Lumineszenzdiodenchip eine Halbleiterschichtenfolge mit einer aktive Schicht, wobei an einer der Strahlungsaustrittsfläche gegenüberliegenden Hauptfläche der Halbleiterschichtenfolge eine reflektierende Kontaktschicht vorgesehen ist. Ein dem Bondpad gegenüberliegender Bereich der Hauptfläche ist vorteilhaft von der reflektierenden Kontaktschicht ausgespart.
  • Die von der aktiven Schicht aus gesehen der Strahlungsaustrittsfläche gegenüber liegende Kontaktschicht ist also derart strukturiert, dass in vertikaler Richtung dem Bondpad von der aktiven Schicht aus gesehen ein nicht von der Kontaktschicht bedeckter Bereich der Hauptfläche gegenüber liegt. Dies hat den Vorteil, dass die Stromdichte in einem Bereich der aktiven Schicht, der in vertikaler Richtung unterhalb des Bondpads liegt, vermindert ist, so dass weniger Strahlung unterhalb des Bondpads erzeugt wird. Weiterhin wird durch die Aussparung der reflektierenden Kontaktschicht der Anteil der emittierten Strahlung, der von der reflektierenden Kontaktschicht in Richtung des Bondpads reflektiert wird, vermindert. Auf diese Weise wird die Absorption von Strahlung in dem Bondpad vermindert. Die Effizienz des Lumineszenzdiodenchips wird dadurch vorteilhaft erhöht.
  • Wenn die Strahlungsaustrittsfläche des Lumineszenzdiodenchips, wie zuvor beschrieben, teilweise mit einer Lumineszenzkonversionsschicht versehen ist, ist vorteilhaft ein von der aktiven Schicht aus gesehen der Lumineszenzkonversionsschicht gegenüberliegender Bereich der Hauptfläche der Halbleiterschichtenfolge, die der Kontaktstruktur gegenüberliegt, von der reflektierenden Kontaktschicht ausgespart. Auf diese Weise wird die Erzeugung von Strahlung in den Bereichen der aktiven Schicht, die in lateraler Richtung versetzt zu der auf der Strahlungsaustrittsfläche angeordneten Lumineszenzkonversionsschicht angeordnet sind, vermindert. Weiterhin wird so der Anteil der emittierten Strahlung, der von der reflektierenden Kontaktschicht in den nicht mit der Lumineszenzkonversionsschicht versehenen Teilbereich der Strahlungsaustrittsfläche reflektiert wird, vermindert.
  • Die Erfindung wird im folgenden anhand von Ausführungsbeispielen in Zusammenhang mit den 1 bis 8 näher erläutert.
  • Es zeigen:
  • 1A eine schematische Darstellung einer Aufsicht auf einen Lumineszenzdiodenchip gemäß einem ersten Ausführungsbeispiel der Erfindung,
  • 1B eine schematische Darstellung eines Querschnitts entlang der Linie AB des in 1A dargestellten Ausführungsbeispiels,
  • 2 eine schematische Darstellung einer Aufsicht auf die Strahlungsaustrittsfläche eines Lumineszenzdiodenchips gemäß einem zweiten Ausführungsbeispiel der Erfindung,
  • 3 eine schematische Darstellung einer Aufsicht auf die Strahlungsaustrittsfläche eines Lumineszenzdiodenchips gemäß einem dritten Ausführungsbeispiel der Erfindung,
  • 4 eine schematische Darstellung einer Aufsicht auf die Strahlungsaustrittsfläche eines Lumineszenzdiodenchips gemäß einem vierten Ausführungsbeispiel der Erfindung,
  • 5 eine schematische Darstellung einer Aufsicht auf die Strahlungsaustrittsfläche eines Lumineszenzdiodenchips gemäß einem fünften Ausführungsbeispiel der Erfindung,
  • 6 eine schematische Darstellung einer Aufsicht auf die Strahlungsaustrittsfläche eines Lumineszenzdiodenchips gemäß einem sechsten Ausführungsbeispiel der Erfindung,
  • 7 eine schematische Darstellung einer Aufsicht auf die Strahlungsaustrittsfläche eines Lumineszenzdiodenchips gemäß einem siebten Ausführungsbeispiel der Erfindung, und
  • 8 eine schematische Darstellung einer Aufsicht auf die Strahlungsaustrittsfläche eines Lumineszenzdiodenchips gemäß einem achten Ausführungsbeispiel der Erfindung.
  • Gleiche oder gleichwirkende Elemente sind in den Figuren mit den gleichen Bezugszeichen versehen. Die dargestellten Elemente sind nicht als maßstabsgerecht anzusehen, vielmehr können einzelne Elemente zum besseren Verständnis übertrieben groß dargestellt sein.
  • Ein erstes Ausführungsbeispiel eines Lumineszenzdiodenchips gemäß der Erfindung ist in 1A in einer Aufsicht und in 1B im Querschnitt schematisch dargestellt. Der Lumineszenzdiodenchip enthält eine Halbleiterschichtenfolge 13, die beispielsweise epitaktisch, bevorzugt mittels MOVPE, hergestellt ist. Die Halbleiterschichtenfolge 13 enthält eine strahlungsemittierende aktive Schicht 15.
  • Die aktive Schicht 15 des Lumineszenzdiodenchips umfasst beispielsweise InxAlyGa1-x-yN mit 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 und x + y ≤ 1. Die aktive Schicht 15 kann zum Beispiel als Heterostruktur, Doppelheterostruktur oder als Quantentopfstruktur ausgebildet sein. Die Bezeichnung Quantentopfstruktur umfasst dabei jegliche Struktur, bei der Ladungsträger durch Einschluss (Confinement) eine Quantisierung ihrer Energiezustände erfahren. Insbesondere beinhaltet die Bezeichnung Quantentopfstruktur keine Angabe über die Dimensionalität der Quantisierung. Sie umfasst somit unter anderem Quantentröge, Quantendrähte und Quantenpunkte und jede Kombination dieser Strukturen.
  • Aus der aktiven Schicht 15 wird elektromagnetische Strahlung 23, beispielsweise Strahlung im ultravioletten, blauen oder grünen Spektralbereich, in eine Hauptstrahlungsrichtung 24 emittiert. Die aktive Schicht 15 ist zum Beispiel zwischen mindestens einer n-leitenden Halbleiterschicht 14 und mindestens einer p-leitenden Halbleiterschicht 16 angeordnet. Die aus der aktiven Schicht 15 emittierte Strahlung 23 wird an einer Strahlungsaustrittsfläche 1 aus dem Lumineszenzdiodenchip ausgekoppelt.
  • Zur Stromeinprägung in die aktive Schicht 15 ist auf der Strahlungsaustrittsfläche 1 eine Kontaktstruktur 2, 3, 4 vorgesehen. Die Kontaktstruktur 2, 3, 4 auf der Strahlungsaustrittsfläche 1 wird durch ein Bondpad 4 und mehrere Kontaktstege 2, 3, die mit dem Bondpad 4 elektrisch leitend verbunden sind, ausgebildet. Die Kontaktstruktur 2, 3, 4 enthält vorzugsweise ein Metall oder eine Metalllegierung. Insbesondere kann die Kontaktstruktur 2, 3, 4 aus einer strukturierten Ti-Pt-Au-Schichtenfolge (nicht dargestellt) gebildet sein. Zur Strukturierung können die dem Fachmann bekannten Strukturierungsverfahren, insbesondere das Aufbringen einer Maske in Verbindung mit einem nachfolgenden Ätzprozess, eingesetzt werden. Die Ti-Pt-Au-Schichtenfolge, aus der die Kontaktstruktur 2, 3, 4 vorzugsweise hergestellt ist, enthält beispielsweise eine etwa 50 nm dicke Ti-Schicht, eine etwa 50 nm dicke Pt-Schicht und eine etwa 2 μm dicke Au-Schicht. Eine derartige Ti-Pt-Au-Schichtenfolge ist vorteilhaft unempfindlich gegenüber Elektromigration, die ansonsten, beispielsweise bei einer Aluminium enthaltenden Kontaktstruktur, auftreten könnte. Die Kontaktstruktur ist aus diesem Grund bevorzugt frei von Aluminium.
  • Bei dem Lumineszenzdiodenchip handelt es sich vorzugsweise um einen Dünnfilm-Lumineszenzdiodenchip. Die Halbleiterschichtenfolge 13 ist zum Beispiel auf einem Aufwachssubstrat hergestellt worden, das ursprünglich an einer der Strahlungsaustrittsfläche 1 zugewandten Oberfläche der Halbleiterschichtenfolge 13 angeordnet war und nachfolgend, beispielsweise mit einem aus der WO 98/14986 bekanntem Laser-Lift-Off-Verfahren, abgelöst wurde. An einer der Strahlungsaustrittsfläche 1 und somit dem ursprünglichen Aufwachssubstrat gegenüber liegenden Seite der aktiven Schicht 15 ist die Halbleiterschichtenfolge 13 auf einem Träger 21 befestigt. Beispielsweise ist die Halbleiterschichtenfolge 13 mittels einer Verbindungsschicht 20, die insbesondere eine Lotschicht sein kann, auf dem Träger 21 befestigt. Der Träger 21 ist beispielsweise eine Leiterplatte, insbesondere eine gedruckte Leiterplatte (Printed Circuit Board). Ferner kann der Träger 21 aus einer Keramik, die insbesondere Aluminiumnitrid enthalten kann, gebildet sein. Auch Träger aus einem Halbleitermaterial, wie beispielsweise Ge- oder GaAs-Träger, können verwendet werden. Eine von der Halbleiterschichtenfolge 13 abgewandte Rückseite des Trägers 21 ist zum Beispiel mit einer elektrischen Kontaktschicht 22 versehen, die einen der Kontaktstruktur 2, 3, 4 von der aktiven Schicht 15 aus gesehen gegenüber liegenden zweiten elektrischen Kontakt des Lumineszenzdiodenchips ausbildet.
  • Das Bondpad 4 der auf der Strahlungsaustrittsfläche 1 angeordneten Kontaktstruktur ist in einem Randbereich der Strahlungsaustrittsfläche 1 angeordnet. Bevorzugt ist der Abstand d1 zwischen einer Seitenflanke 9 des Lumineszenzdiodenchips und dem Bondpad 4 geringer als 30 μm. Besonders bevorzugt ist das Bondpad 4, wie in der in 1 dargestellten Aufsicht zu erkennen ist, im Bereich einer Ecke der Strahlungsaustrittsfläche 1 angeordnet. In diesem Fall beträgt der Abstand d1 des Bondpads 4 zu einer ersten Seitenflanke 9 des Lumineszenzdiodenchips und der Abstand d2 zu einer zweiten Seitenflanke 10 des Lumineszenzdiodenchips vorzugsweise jeweils 30 μm oder weniger. Eine derartige Anordnung des Bondpads in einem Randbereich der Strahlungsaustrittsfläche 1 hat den Vorteil, dass eine Absorption der in der aktiven Schicht 15 erzeugten elektromagnetischen Strahlung 23 in dem Bondpad 4 vermindert wird.
  • Um trotz der Anordnung des Bondpads 4 in einem Randbereich der Strahlungsaustrittsfläche 1 eine in lateraler Richtung homogene Stromverteilung in der aktiven Schicht 15 zu erzielen, sind mehrere Kontaktstege 2, 3, die jeweils mit dem Bondpad 4 elektrisch leitend verbunden sind, auf der Strahlungsaustrittsfläche 1 angeordnet. Beispielsweise sind, wie in der Aufsicht in 1A zu erkennen ist, mehrere Kontaktstege 2, 3 derart auf der Strahlungsaustrittsfläche 1 angeordnet, dass sie den Umriss mehrerer Quadrate 8a, 8b, 8c ausbilden. Die von den Kontaktstegen 2, 3 ausgebildeten Quadrate 8a, 8b, 8c weisen vorteilhaft jeweils zwei gemeinsame Seitenkanten auf, die jeweils durch einen Kontaktsteg 3 gebildet werden. Das Bondpad 4 ist dabei in einem gemeinsamen Eckpunkt der Quadrate 8a, 8b und 8c angeordnet.
  • Die aus dem Bondpad 4 und den Kontaktstegen 2, 3 gebildete Kontaktstruktur bewirkt einerseits eine weitgehend homogene laterale Stromverteilung in der aktiven Schicht 15, wobei nur einen derart geringer Teil der Strahlungsaustrittsfläche 1 von der Kontaktstruktur 2, 3, 4 bedeckt ist, dass nur eine vergleichsweise geringe Absorption der aus der aktiven Schicht 15 in die Hauptstrahlungsrichtung 24 emittierten Strahlung 23 innerhalb der Kontaktstruktur 2, 3, 4 erfolgt. Vorteilhaft wird zumindest ein Teilbereich 11 der Strahlungsaustrittsfläche 1 von den Kontaktstegen 2, 3 umschlossen. Zum Beispiel wird, wie in der Aufsicht in 1A zu erkennen ist, ein Teilbereich 11 der Strahlungsaustrittsfläche 1 von den Kontaktstegen 2, 3 umschlossen, der in diesem Fall innerhalb eines äußeren Quadrats 8c angeordnet ist. Die Fläche des Teilbereichs 11 umfasst also die Fläche des äußeren Quadrats 8c einschließlich der darin angeordneten inneren Quadrate 8a, 8b. Bei einer bevorzugten Ausführungsform werden mehr als 50%, besonders bevorzugt sogar mehr als 80% der Strahlungsaustrittsfläche 1 von den Kontaktstegen 2, 3 umschlossen.
  • Bei einer weiteren bevorzugten Ausführungsform weist zumindest einer der Kontaktstege eine variable Breite auf. Die Breite dieses Kontaktstegs ist in seiner Haupterstreckungsrichtung nicht konstant, sondern variiert schrittweise oder kontinuierlich. Bei dem in 1 dargestellten Ausführungsbeispiel sind zum Beispiel die beiden vom Bondpad 4 ausgehenden Kontaktstege 3 jeweils aus drei Teilbereichen 5, 6, 7 zusammengesetzt, die jeweils verschiedene Breiten aufweisen. Die Breiten der Kontaktstege 3 in den Teilbereichen 5, 6, 7 sind vorteilhaft jeweils an eine Stromstärke, die beim Betrieb des Lumineszenzdiodenchips durch den jeweiligen Teilbereich 5, 6, 7 auftritt, angepasst. Die Anpassung der Breiten der Teilbereiche 5, 6, 7 an die beim Betrieb auftretenden Stromstärken erfolgt vorzugsweise derart, dass die Querschnittsfläche der Kontaktstege derart dimensioniert ist, dass die bei Betrieb auftretende Stromdichte einen materialabhängigen zulässigen Grenzwert nicht überschreitet, wobei andererseits die Querschnittsfläche aber zumindest nicht wesentlich größer ist als durch die jeweilige Stromstärke bedingt, um unnötige Absorptionsverluste in den Kontaktstegen zu vermeiden. Beispielsweise ist die Stromstärke in den an das Bondpad angrenzenden Teilbereichen 5 der Kontaktstege 3 größer als in dem angrenzenden Teilbereichen 6 und in den Teilbereichen 6 wiederum größer als in dem angrenzenden Teilbereichen 7. Folglich ist die Breite der Kontaktstege 3 in den Teilbereichen 5 größer als in den Teilbereichen 6 und in den Teilbereichen 6 größer als in den Teilbereichen 7.
  • Auf den von den Kontaktstegen 2, 3 umschlossenen Teilbereich 11 der Strahlungsaustrittsfläche 1 ist bei einer bevorzugten Ausführungsform eine Lumineszenzkonversionsschicht 12 aufgebracht. Die Lumineszenzkonversionsschicht 12 ist beispielsweise eine Silikonschicht, in die zumindest ein Lumineszenzkonversionsstoff eingebettet ist. Bei dem mindestens einen Lumineszenzkonversionsstoff kann es sich beispielsweise um YAG:Ce oder einen anderen aus der WO98/12757 bekannten Lumineszenzkonversionsstoff handeln.
  • Mittels des Lumineszenzkonversionsstoffs wird beispielsweise die Wellenlänge zumindest eines Teils der aus der aktiven Schicht 15 emittierten Strahlung 23, die beispielsweise grünes, blaues oder ultraviolettes Licht ist, derart in einen komplementären Spektralbereich konvertiert, dass Weißlicht entsteht. Die Verwendung einer Silikonschicht als Trägerschicht für den Lumineszenzkonversionsstoff hat den Vorteil, dass Silikon vergleichsweise unempfindlich gegen kurzwellige blaue oder ultraviolette Strahlung ist. Dies ist insbesondere vorteilhaft für auf Nitridverbindungshalbleitern basierende Lumineszenzdiodenchips, bei denen die emittierte Strahlung in der Regel zumindest einen Anteil aus dem kurzwelligen blauen oder ultravioletten Spektralbereich enthält. Alternativ kann auch ein andere transparentes organisches oder anorganisches Material als Trägerschicht für den mindestens einen Lumineszenzkonversionsstoff fungieren.
  • Die Lumineszenzkonversionsschicht 12, die vorteilhaft innerhalb eines von den Kontaktstegen 2, 3 umrahmten Teilbereich 11 auf die Strahlungsaustrittsfläche 1 aufgebracht ist, grenzt insbesondere nicht an eine der Seitenflanken 9, 10 des Lumineszenzdiodenchips an. Dadurch wird insbesondere die Gefahr vermindert, dass beim Aufbringen der Lumineszenzkonversionsschicht 12 das Material der Lumineszenzkonversionsschicht auch auf die Seitenflanken 9, 10 abgeschieden wird. Eine Abscheidung des Materials der Lumineszenzkonversionsschicht 12 auf die Seitenflanken 9, 10 hätte insbesondere den Nachteil, dass eine Qualitätskontrolle eines fertig prozessierten Lumineszenzdiodenchips, die in der Regel durch eine mikroskopische Untersuchung einer der Seitenflanken 9, 10 des Lumineszenzdiodenchips erfolgt, erschwert oder sogar unmöglich gemacht würde.
  • Die Lumineszenzkonversionsschicht 12 ist beispielsweise mit einem Druckverfahren, insbesondere mit einem Siebdruckverfahren, auf den Teilbereich 11 der Strahlungsaustrittsfläche 1 aufgebracht. Die Dicke der Lumineszenzkonversionsschicht 12 beträgt typischerweise etwa 10 μm bis 20 μm.
  • An die dem Träger 21 zugewandte Hauptfläche 18 der Halbleiterschichtenfolge 13 des Lumineszenzdiodenchips grenzt eine vorteilhaft eine Kontaktschicht 17, die bevorzugt einen ohmschen Kontakt zur angrenzenden Halbleiterschicht 6 herstellt, an. Die Kontaktschicht 17 enthält vorzugsweise ein Metall wie zum Beispiel Aluminium, Silber oder Gold. Im Fall einer p-leitenden an die zweite Kontaktschicht 5 angrenzenden Nitridverbindungshalbleiterschicht 16 ist insbesondere Silber ein geeignetes Material für die Kontaktschicht 17, da Silber einen guten ohmschen Kontakt zu p-leitenden Nitridverbindungshalbleitern herstellt.
  • Vorzugsweise ist die Kontaktschicht 17 eine die emittierte Strahlung 23 reflektierende Schicht. Dies hat den Vorteil, dass elektromagnetische Strahlung, die von der aktiven Schicht 15 in Richtung des Trägers 21 emittiert wird, zumindest zum Teil zur Strahlungsaustrittsfläche 1 hin reflektiert und dort aus dem Lumineszenzdiodenchip ausgekoppelt wird. Auf diese Weise werden Absorptionsverluste, die beispielsweise innerhalb des Trägers 21 oder in der Verbindungsschicht 20 auftreten könnten, vermindert.
  • Ein dem Bondpad 4 gegenüber liegender Bereich der Hauptfläche 18 ist bevorzugt von der Kontaktschicht 17 ausgespart. Da in dem ausgesparten Bereich kein ohmscher Kontakt zwischen der Kontaktschicht 17 und der angrenzenden Halbleiterschicht 16 entsteht, wird der Stromfluss zwischen der Kontaktstruktur 2, 3, 4 auf der Strahlungsaustrittsfläche 1 und der elektrischen Kontaktschicht 22 auf der Rückseite des Trägers 21 in dem Bereich der Halbleiterschichtenfolge 13, der in lateraler Richtung zur Kontaktschicht 17 versetzt ist, vermindert. Die Strahlungserzeugung in diesem Bereich der aktiven Schicht 15 ist somit vermindert, wodurch vorteilhaft die Absorption von Strahlung innerhalb des Bondpads 4 reduziert wird.
  • Zwischen der reflektierenden Kontaktschicht 17 und der Verbindungsschicht 20 ist vorzugsweise eine Barriereschicht 19 enthalten. Die Barriereschicht 19 enthält beispielsweise TiWN. Durch die Barriereschicht 19 wird insbesondere eine Diffusion von Material der Verbindungsschicht 20, die beispielsweise eine Lotschicht ist, in die reflektierende Kontaktschicht 17 verhindert, durch die insbesondere die Reflektion der reflektierenden Kontaktschicht 17 beeinträchtigt werden könnte.
  • Ein von der aktiven Schicht 15 aus gesehen der Lumineszenzkonversionsschicht 12 gegenüberliegender Bereich der Hauptfläche 18 der Halbleiterschichtenfolge 13, die der Kontaktstruktur 2, 3, 4 gegenüberliegt, ist vorteilhaft von der reflektierenden Kontaktschicht 17 ausgespart. Auf diese Weise wird die Erzeugung von Strahlung in den Bereichen der aktiven Schicht 15, die in lateraler Richtung versetzt zu der auf der Strahlungsaustrittsfläche angeordneten Lumineszenzkonversionsschicht 12 angeordnet sind, vermindert. Weiterhin wird so der Anteil der emittierten Strahlung, der von der reflektierenden Kontaktschicht 17 in den nicht mit der Lumineszenzkonversionsschicht 12 versehenen Teilbereich der Strahlungsaustrittsfläche 1 reflektiert wird, vermindert.
  • Alternative Ausgestaltungen der auf die Strahlungsaustrittsfläche 1 aufgebrachten Kontaktstruktur, die das Bondpad 4 und die Kontaktstege 2, 3 umfasst, werden im folgenden anhand der in den 2 bis 8 dargestellten Ausführungsbeispiele erläutert. Dabei ist jeweils nur die Aufsicht auf die Strahlungsaustrittsfläche 1 des Lumineszenzdiodenchips gezeigt. Im Querschnitt können die jeweiligen Lumineszenzdiodenchips beispielsweise gleich aufgebaut sein wie das in 1B im Querschnitt dargestellte erste Ausführungsbeispiel. Weiterhin kann der Lumineszenzdiodenchip aber auch eine beliebige andere dem Fachmann bekannte Ausführungsform aufweisen. Insbesondere muss es sich bei dem Lumineszenzdiodenchip nicht notwendigerweise um einen Dünnfilm-Lumineszenzdiodenchip handeln.
  • Die in den 2 und 3 dargestellten Kontaktstrukturen unterscheiden sich von der in 1A dargestellten Kontaktstruktur des ersten Ausführungsbeispiels dadurch, dass die Anzahl der Quadrate, deren Umriss durch die Kontaktstege 2, 3 ausgebildet wird, erhöht wurde.
  • Bei der in der 2 dargestellten Kontaktstruktur bilden die Kontaktstege 2, 3 vier ineinander geschachtelte Quadrate 8a, 8b, 8c, 8d aus. Wie bei dem ersten Ausführungsbeispiel weisen die ineinander geschachtelten Quadrate jeweils zwei gemeinsame Seitenkanten 3 auf, und das Bondpad 4 ist in einem gemeinsamen Eckpunkt der Quadrate 8a, 8b, 8c, 8d angeordnet.
  • Bei dem in 3 dargestellten Ausführungsbeispiel umfasst die Kontaktstruktur fünf ineinander geschachtelte Quadrate 8a, 8b, 8c, 8d, 8e. Die Anzahl der erforderlichen Kontaktstege 2, 3 hängt insbesondere von der Größe der Strahlungsaustrittsfläche 1 und der Querleitfähigkeit des darunter liegenden Halbleitermaterials ab.
  • Die aus den Kontaktstegen 2, 3 gebildeten Strukturen auf der Strahlungsaustrittsfläche 1 müssen nicht notwendigerweise in sich geschlossene geometrische Strukturen darstellen. Beispielsweise sind bei dem in der 4 dargestellten Ausführungsbeispiel ausgehend von zwei vom Bondpad ausgehenden Kontaktstegen 3, die eine variable Breite aufweisen, mehrere weitere Kontaktstege 2 fingerförmig über die Strahlungsaustrittsfläche geführt, die aber nicht zu Quadraten miteinander verbunden sind.
  • Das in 5 dargestellte Ausführungsbeispiel einer Kontaktstruktur unterscheidet sich von den zuvor beschriebenen Ausführungsbeispielen dadurch, dass die Kontaktstruktur nicht aus ineinander geschachtelten Quadraten, die zwei gemeinsame Seitenkanten aufweisen, sondern von zwei konzentrischen Quadraten 8g, 8h, die durch zwei durch das Zentrum der Quadrate 8g, 8h verlaufende Kontaktstege 2 elektrisch leitend miteinander verbunden sind.
  • Bei dem in 6 dargestellten Ausführungsbeispiel ist die Kontaktstruktur wie bei dem in 3 dargestellten Ausführungsbeispiel aus fünf ineinander geschachtelten Quadraten 8a, 8b, 8c, 8d, 8e gebildet, die jeweils zwei durch Kontaktstege 3, die eine variable Breite aufweisen, ausgebildete gemeinsame Seitenflanken aufweisen. Das Bondpad 4 ist bei dem in 6 dargestellten Ausführungsbeispiel im Gegensatz zu dem in 3 dargestellten Ausführungsbeispiel derart an einem gemeinsamen Eckpunkt der von der Kontaktstegen 2, 3 ausgebildeten Quadrate 8a, 8b, 8c, 8d, 8e angeordnet, dass es vollständig innerhalb der von den Kontaktstegen ausgebildeten Quadrate angeordnet ist. Das Bondpad 4 weist die Form eines Quadrats auf, bei dem zwei Seitenflanken jeweils mit den zwei gemeinsamen Seitenflanken der von den Kontaktstegen ausgebildeten Quadrate 8a, 8b, 8c, 8d, 8e übereinstimmen. Bei dieser Ausführungsform ist der Abstand der Kontaktstege, die das äußere Quadrat 8e ausbilden, zu den Seitenflanken 9, 10 des Lumineszenzdiodenchips vergleichsweise gering. Insbesondere kann der von dem äußeren Quadrat 8a umschlossene Teilbereich 11 der Strahlungsaustrittsfläche 1 mehr als 80% der Strahlungsaustrittsfläche 1 umfassen. Dies ist insbesondere vorteilhaft, wenn eine Lumineszenzkonversionsschicht auf den Teilbereich 11 der Strahlungsaustrittsfläche 1 aufgebracht ist, da auf diese Weise nahezu die gesamte Strahlungsaustrittsfläche 1 zur Erzeugung von Weißlicht mit Lumineszenzkonversion ausgenutzt werden kann.
  • Bei dem in 7 dargestellten Ausführungsbeispiel sind im Vergleich zu dem in 6 dargestellten Ausführungsbeispiel keine innerhalb des Quadrats 8a angeordnete Kontaktstege vorgesehen. Die Kontaktstruktur wird in diesem Fall allein durch das Bondpad 4 und die Kontaktstege 2, die in einem geringen Abstand, vorzugsweise von weniger als 30 μm, entlang der Seitenflanken 9, 10 des Lumineszenzdiodenchips über die Strahlungsaustrittsfläche 1 geführt sind, ausgebildet. Das Bondpad 4 muss nicht notwendigerweise, wie in den zuvor dargestellten Ausführungsbeispielen, eine quadratische Form aufweisen. Vielmehr kann es, wie beispielsweise in 7 dargestellt ist, eine abgerundete Ecke oder auch eine andere geometrische Form aufweisen.
  • Das in 8 dargestellte Ausführungsbeispiel einer Kontaktstruktur entspricht im wesentlichen dem in 7 dargestellten Ausführungsbeispiel, wobei zusätzlich in einem zentralen Bereich der Strahlungsaustrittsfläche 1 ein inneres Quadrat 8i durch vier Kontaktstege ausgebildet wird, die jeweils mit Verbindungsstegen mit den Eckpunkten eines äußeren Quadrats 8a verbunden sind. Dieses Ausführungsbeispiel verdeutlicht, dass bei der aus mehreren Kontaktstegen gebildeten Kontaktstruktur die Kontaktstege nicht notwendigerweise senkrecht zueinander verlaufen müssen. Vielmehr können mehrere Kontaktstege auch beliebige andere Winkel, beispielsweise 45°-Winkel, miteinander einschließen. Alternativ ist es auch denkbar, dass die Kontaktstege gekrümmte geometrische Formen, beispielsweise Kreise, ausbilden.
  • Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen oder Ausführungsbeispielen angegeben ist.

Claims (25)

  1. Lumineszenzdiodenchip mit einer Strahlungsaustrittsfläche (1) und einer Kontaktstruktur (2, 3, 4), die auf der Strahlungsaustrittsfläche (1) angeordnet ist und ein Bondpad (4) und mehrere zur Stromaufweitung vorgesehene Kontaktstege (2, 3), die mit dem Bondpad (4) elektrisch leitend verbunden sind, umfasst, dadurch gekennzeichnet, dass das Bondpad (4) in einem Randbereich der Strahlungsaustrittsfläche (1) angeordnet ist.
  2. Lumineszenzdiodenchip nach Anspruch 1, dadurch gekennzeichnet, dass der Abstand d1 zwischen dem Bondpad (4) und zumindest einer Seitenflanke (9) des Lumineszenzdiodenchips geringer ist als 30 μm.
  3. Lumineszenzdiodenchip nach Anspruch 2, dadurch gekennzeichnet, dass der Abstand d2 zwischen dem Bondpad (4) und einer weiteren Seitenflanke (10) des Lumineszenzdiodenchips geringer ist als 30 μm.
  4. Lumineszenzdiodenchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kontaktstege (2, 3) auf der Strahlungsaustrittsfläche (1) den Umriss zumindest eines Rechtecks oder Quadrats (8a, 8b, 8c) ausbilden.
  5. Lumineszenzdiodenchip nach Anspruch 4, dadurch gekennzeichnet, dass die Kontaktstege (2, 3) den Umriss mehrerer Rechtecke oder Quadrate (8a, 8b, 8c) ausbilden.
  6. Lumineszenzdiodenchip nach Anspruch 5, dadurch gekennzeichnet, dass die mehreren Rechtecke oder Quadrate (8a, 8b, 8c) jeweils zumindest eine gemeinsame Seitenkante aufweisen.
  7. Lumineszenzdiodenchip nach Anspruch 6, dadurch gekennzeichnet, dass die mehreren Rechtecke oder Quadrate (8a, 8b, 8c) jeweils zwei gemeinsame Seitenkanten aufweisen.
  8. Lumineszenzdiodenchip nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass das Bondpad (4) an einem Eckpunkt des zumindest einen Rechtecks oder Quadrats (8a, 8b, 8c) angeordnet ist.
  9. Lumineszenzdiodenchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kontaktstege (2, 3) einen Teilbereich (11) der Strahlungsaustrittsfläche (1) umschließen.
  10. Lumineszenzdiodenchip nach Anspruch 9, dadurch gekennzeichnet, dass die Kontaktstege (2, 3) mehr als 80% der Strahlungsaustrittsfläche (1) umschließen.
  11. Lumineszenzdiodenchip nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass auf den von den Kontaktstegen (2, 3) umschlossenen Teilbereich (11) der Strahlungsaustrittsfläche (1) eine Lumineszenzkonversionsschicht (12) aufgebracht ist.
  12. Lumineszenzdiodenchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest einer der Kontaktstege (3) eine variable Breite aufweist.
  13. Lumineszenzdiodenchip nach Anspruch 12, dadurch gekennzeichnet, dass der Kontaktsteg (3) mit variabler Breite mehrere Teilbereiche (5, 6, 7) mit verschiedener Breite enthält.
  14. Lumineszenzdiodenchip nach Anspruch 13, dadurch gekennzeichnet, dass die Breite der Teilbereiche (5, 6, 7) des Kontaktstegs (3) an eine beim Betrieb des Lumineszenzdiodenchips durch den jeweiligen Teilbereich (5, 6, 7) auftretende Stromstärke angepasst ist.
  15. Lumineszenzdiodenchip einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Breite der Kontaktstege (2, 3) zwischen einschließlich 10 μm und einschließlich 40 μm beträgt.
  16. Lumineszenzdiodenchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Lumineszenzdiodenchip ein Dünnfilm-Lumineszenzdiodenchip ist.
  17. Lumineszenzdiodenchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Lumineszenzdiodenchip ein aktive Schicht (15) aufweist, die InxAlyGa1-x-yN mit 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 und x + y ≤ 1, enthält.
  18. Lumineszenzdiodenchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Länge zumindest einer Seitenkante (9, 10) der Strahlungsaustrittsfläche (1) 400 μm oder mehr beträgt.
  19. Lumineszenzdiodenchip nach Anspruch 18, dadurch gekennzeichnet, dass die Länge zumindest einer Seitenkante (9, 10) der Strahlungsaustrittsfläche (1) 800 μm oder mehr beträgt.
  20. Lumineszenzdiodenchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Betrieb des Lumineszenzdiodenchips mit einer Stromstärke von 300 mA oder mehr vorgesehen ist.
  21. Lumineszenzdiodenchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kontaktstruktur (2, 3, 4) eine strukturierte Ti-Pt-Au-Schichtenfolge ist.
  22. Lumineszenzdiodenchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kontaktstruktur (2, 3, 4) frei von Aluminium ist.
  23. Lumineszenzdiodenchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass weniger als 15% der Strahlungsaustrittsfläche (1) von der Kontaktstruktur (2, 3, 4) bedeckt sind.
  24. Lumineszenzdiodenchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Lumineszenzdiodenchip eine Halbleiterschichtenfolge (13) enthält, die eine aktive Schicht (15) umfasst, und dass an einer der Strahlungsaustrittsfläche (1) gegenüberliegenden Hauptfläche (18) der Halbleiterschichtenfolge (13) eine reflektierende Kontaktschicht (17) vorgesehen ist, wobei ein dem Bondpad (4) gegenüberliegender Bereich der Hauptfläche (18) von der Kontaktschicht (17) ausgespart ist.
  25. Lumineszenzdiodenchip nach Anspruch 24 unter Rückbezug auf Anspruch 11, dadurch gekennzeichnet, dass ein der Lumineszenzkonversionsschicht (12) gegenüberliegender Bereich der Hauptfläche (18) von der Kontaktschicht (17) ausgespart ist.
DE102005025416A 2005-06-02 2005-06-02 Lumineszenzdiodenchip mit einer Kontaktstruktur Withdrawn DE102005025416A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE102005025416A DE102005025416A1 (de) 2005-06-02 2005-06-02 Lumineszenzdiodenchip mit einer Kontaktstruktur
KR1020077030310A KR101249418B1 (ko) 2005-06-02 2006-06-02 콘택 구조물을 갖는 발광 다이오드 칩
TW095119502A TW200703724A (en) 2005-06-02 2006-06-02 Luminescence diode chip with a contact structure
CN200680028603.6A CN101238591B (zh) 2005-06-02 2006-06-02 具有接触结构的发光二极管芯片
PCT/DE2006/000954 WO2006128446A1 (de) 2005-06-02 2006-06-02 Lumineszenzdiodenchip mit einer kontaktstruktur
EP06742397.0A EP1886360B1 (de) 2005-06-02 2006-06-02 Lumineszenzdiodenchip mit einer kontaktstruktur
JP2008513924A JP5114389B2 (ja) 2005-06-02 2006-06-02 コンタクト構造を有する発光ダイオードチップ
US11/921,530 US8581279B2 (en) 2005-06-02 2006-06-02 Light-emitting diode chip comprising a contact structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005025416A DE102005025416A1 (de) 2005-06-02 2005-06-02 Lumineszenzdiodenchip mit einer Kontaktstruktur

Publications (1)

Publication Number Publication Date
DE102005025416A1 true DE102005025416A1 (de) 2006-12-14

Family

ID=36944125

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102005025416A Withdrawn DE102005025416A1 (de) 2005-06-02 2005-06-02 Lumineszenzdiodenchip mit einer Kontaktstruktur

Country Status (8)

Country Link
US (1) US8581279B2 (de)
EP (1) EP1886360B1 (de)
JP (1) JP5114389B2 (de)
KR (1) KR101249418B1 (de)
CN (1) CN101238591B (de)
DE (1) DE102005025416A1 (de)
TW (1) TW200703724A (de)
WO (1) WO2006128446A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007046519A1 (de) * 2007-09-28 2009-04-02 Osram Opto Semiconductors Gmbh Dünnfilm-LED mit einer Spiegelschicht und Verfahren zu deren Herstellung
DE102008035900A1 (de) * 2008-04-30 2009-11-05 Osram Opto Semiconductors Gmbh Leuchtdiodenchip
DE102008030821A1 (de) 2008-06-30 2009-12-31 Osram Opto Semiconductors Gmbh Elektroluminieszierende Vorrichtung und Verfahren zur Herstellung einer elektroluminieszierenden Vorrichtung
WO2010025694A3 (de) * 2008-09-03 2010-05-14 Osram Opto Semiconductors Gmbh Optoelektronisches bauteil
DE102011010503A1 (de) * 2011-02-07 2012-08-09 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip
US11004876B2 (en) 2016-05-13 2021-05-11 Osram Oled Gmbh Method for producing a semiconductor chip and semiconductor chip
DE102017108949B4 (de) 2016-05-13 2021-08-26 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiterchip

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2446611B (en) * 2007-02-14 2011-08-17 Bookham Technology Plc Low creep metallization for optoelectronic applications
DE102008011809A1 (de) * 2007-12-20 2009-06-25 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
US8384115B2 (en) * 2008-08-01 2013-02-26 Cree, Inc. Bond pad design for enhancing light extraction from LED chips
KR101017395B1 (ko) * 2008-12-24 2011-02-28 서울옵토디바이스주식회사 복수개의 발광셀들을 갖는 발광 소자 및 그것을 제조하는 방법
JP5136398B2 (ja) * 2008-12-26 2013-02-06 豊田合成株式会社 Iii族窒化物系化合物半導体発光素子
JP2011086899A (ja) * 2009-09-15 2011-04-28 Toyoda Gosei Co Ltd Iii族窒化物半導体発光素子
KR100986556B1 (ko) * 2009-10-22 2010-10-07 엘지이노텍 주식회사 발광소자 및 그 제조방법
TWI412161B (zh) * 2009-11-06 2013-10-11 Semileds Optoelectronics Co 發光二極體裝置
EP2660883B1 (de) 2009-12-09 2019-03-27 LG Innotek Co., Ltd. Lichtemittierende Vorrichtung, Herstellungsverfahren für die lichtemittierende Vorrichtung, Gehäuse für lichtemittierende Vorrichtung und Beleuchtungssystem
DE102009060750A1 (de) 2009-12-30 2011-07-07 OSRAM Opto Semiconductors GmbH, 93055 Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung
JP5725927B2 (ja) 2010-05-18 2015-05-27 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. 高効率発光ダイオード及びその製造方法
GB2482110B (en) * 2010-07-05 2014-08-27 Cambridge Display Tech Ltd Lighting elements
EP2597688B1 (de) * 2010-07-23 2017-08-30 Nichia Corporation Lichtemittierendes element
US8283652B2 (en) * 2010-07-28 2012-10-09 SemiLEDs Optoelectronics Co., Ltd. Vertical light emitting diode (VLED) die having electrode frame and method of fabrication
WO2012020346A1 (en) * 2010-08-10 2012-02-16 Koninklijke Philips Electronics N.V. Shunting layer arrangement for leds
CN102479902B (zh) * 2010-11-23 2017-04-12 晶元光电股份有限公司 发光组件
JP5605189B2 (ja) * 2010-11-26 2014-10-15 豊田合成株式会社 半導体発光素子
JP5741164B2 (ja) * 2011-04-12 2015-07-01 日亜化学工業株式会社 発光素子
JP5754269B2 (ja) * 2011-07-07 2015-07-29 日亜化学工業株式会社 発光素子
JP5961377B2 (ja) 2011-12-21 2016-08-02 スタンレー電気株式会社 半導体発光素子
JP6071043B2 (ja) * 2012-11-14 2017-02-01 スタンレー電気株式会社 半導体発光素子
WO2015089432A1 (en) * 2013-12-12 2015-06-18 Terahertz Device Corporation Electrical contacts to light-emitting diodes for improved current spreading and injection
TWD169527S (zh) 2014-08-20 2015-08-01 晶元光電股份有限公司 發光二極體元件之部分
WO2017026753A1 (ko) * 2015-08-07 2017-02-16 엘지이노텍 주식회사 발광소자 및 발광소자 패키지
KR102425124B1 (ko) * 2015-08-24 2022-07-26 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자 및 발광소자 패키지
CN105789386A (zh) * 2016-03-21 2016-07-20 映瑞光电科技(上海)有限公司 一种提高垂直led芯片电流扩展的制作方法
TWI719931B (zh) * 2020-10-22 2021-02-21 光鋐科技股份有限公司 微型發光二極體

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012757A1 (de) * 1996-09-20 1998-03-26 Siemens Aktiengesellschaft Wellenlängenkonvertierende vergussmasse, deren verwendung und verfahren zu deren herstellung
DE69710539T2 (de) * 1996-07-24 2002-10-31 Sony Corp Ohmsche Elektrode und Verfahren zu ihrer Herstellung
DE20115914U1 (de) * 2001-09-27 2003-02-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Beleuchtungseinheit mit mindestens einer LED als Lichtquelle
WO2003052838A2 (en) * 2001-12-13 2003-06-26 Rensselaer Polytechnic Institute Light-emitting diode with planar omni-directional reflector
US6650018B1 (en) * 2002-05-24 2003-11-18 Axt, Inc. High power, high luminous flux light emitting diode and method of making same
US6649942B2 (en) * 2001-05-23 2003-11-18 Sanyo Electric Co., Ltd. Nitride-based semiconductor light-emitting device

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008718A (en) 1989-12-18 1991-04-16 Fletcher Robert M Light-emitting diode with an electrically conductive window
US5233204A (en) 1992-01-10 1993-08-03 Hewlett-Packard Company Light-emitting diode with a thick transparent layer
JP3666444B2 (ja) 1992-10-15 2005-06-29 セイコーエプソン株式会社 面発光型半導体レーザおよびその製造方法
US5861636A (en) 1995-04-11 1999-01-19 Nec Corporation Surface emitting visible light emiting diode having ring-shaped electrode
JPH0936431A (ja) * 1995-07-13 1997-02-07 Toshiba Corp 半導体発光素子
US5981384A (en) * 1995-08-14 1999-11-09 Micron Technology, Inc. Method of intermetal dielectric planarization by metal features layout modification
DE19640594B4 (de) 1996-10-01 2016-08-04 Osram Gmbh Bauelement
US6677619B1 (en) 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
CN100485984C (zh) * 1997-01-09 2009-05-06 日亚化学工业株式会社 氮化物半导体元器件
US6268618B1 (en) 1997-05-08 2001-07-31 Showa Denko K.K. Electrode for light-emitting semiconductor devices and method of producing the electrode
AU747260B2 (en) 1997-07-25 2002-05-09 Nichia Chemical Industries, Ltd. Nitride semiconductor device
JP3744211B2 (ja) 1997-09-01 2006-02-08 日亜化学工業株式会社 窒化物半導体素子
DE19741609C2 (de) 1997-09-20 2003-02-27 Vishay Semiconductor Gmbh Verwendung einer Übergitterstruktur aus einer Mehrzahl von hintereinander angeordneten Heterogrenzflächenschichtfolgen zur Verbesserung der lateralen Stromausbreitung in einer lichtemittierenden Halbleiterdiode
DE19747433A1 (de) 1997-10-28 1999-05-06 Vishay Semiconductor Gmbh Lichtemittierende Halbleiterdiode
US6541797B1 (en) 1997-12-04 2003-04-01 Showa Denko K. K. Group-III nitride semiconductor light-emitting device
JP3680558B2 (ja) 1998-05-25 2005-08-10 日亜化学工業株式会社 窒化物半導体素子
JP2000091638A (ja) 1998-09-14 2000-03-31 Matsushita Electric Ind Co Ltd 窒化ガリウム系化合物半導体発光素子
JP2001053339A (ja) 1999-08-11 2001-02-23 Toshiba Corp 半導体発光素子およびその製造方法
DE19947030A1 (de) 1999-09-30 2001-04-19 Osram Opto Semiconductors Gmbh Oberflächenstrukturierte Lichtemissionsdiode mit verbesserter Stromeinkopplung
JP3893874B2 (ja) 1999-12-21 2007-03-14 日亜化学工業株式会社 窒化物半導体発光素子の製造方法
JP3821128B2 (ja) 2001-07-12 2006-09-13 日亜化学工業株式会社 半導体素子
DE10146719A1 (de) * 2001-09-20 2003-04-17 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Beleuchtungseinheit mit mindestens einer LED als Lichtquelle
JP2003133589A (ja) * 2001-10-23 2003-05-09 Mitsubishi Cable Ind Ltd GaN系半導体発光ダイオード
JP4148494B2 (ja) * 2001-12-04 2008-09-10 シャープ株式会社 窒化物系化合物半導体発光素子およびその製造方法
DE10303977A1 (de) 2002-01-31 2003-11-27 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Halbleiterbauelements
DE10243757A1 (de) 2002-01-31 2004-04-01 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von Halbleiterchips
TWI226139B (en) 2002-01-31 2005-01-01 Osram Opto Semiconductors Gmbh Method to manufacture a semiconductor-component
DE10303978A1 (de) 2002-01-31 2003-11-27 Osram Opto Semiconductors Gmbh Dünnfilmhalbleiterbauelement und Verfahren zu dessen Herstellung
DE10203795B4 (de) 2002-01-31 2021-12-09 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Halbleiterbauelements
JP2004055646A (ja) 2002-07-17 2004-02-19 Sumitomo Electric Ind Ltd 発光ダイオード素子のp側電極構造
US6787882B2 (en) * 2002-10-02 2004-09-07 The United States Of America As Represented By The Secretary Of The Navy Semiconductor varactor diode with doped heterojunction
US7474999B2 (en) * 2002-12-23 2009-01-06 Cadence Design Systems, Inc. Method for accounting for process variation in the design of integrated circuits
KR101058302B1 (ko) 2003-01-31 2011-08-22 오스람 옵토 세미컨덕터스 게엠베하 박막 반도체 소자 및 상기 소자의 제조 방법
CN100530705C (zh) 2003-01-31 2009-08-19 奥斯兰姆奥普托半导体有限责任公司 用于制造一个半导体元器件的方法
JP2004363572A (ja) * 2003-05-12 2004-12-24 Showa Denko Kk 半導体発光素子および発光ダイオード
JP2005012092A (ja) 2003-06-20 2005-01-13 Stanley Electric Co Ltd 光ファイバ用ledおよびその製造方法
JP4120493B2 (ja) 2003-06-25 2008-07-16 松下電工株式会社 発光ダイオードおよび発光装置
WO2005043587A2 (en) 2003-10-10 2005-05-12 The Regents Of The University Of California Design methodology for multiple channel heterostructures in polar materials
DE102005003460A1 (de) * 2004-01-26 2005-10-13 Osram Opto Semiconductors Gmbh Dünnfilm-LED mit einer Stromaufweitungsstruktur

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69710539T2 (de) * 1996-07-24 2002-10-31 Sony Corp Ohmsche Elektrode und Verfahren zu ihrer Herstellung
WO1998012757A1 (de) * 1996-09-20 1998-03-26 Siemens Aktiengesellschaft Wellenlängenkonvertierende vergussmasse, deren verwendung und verfahren zu deren herstellung
US6649942B2 (en) * 2001-05-23 2003-11-18 Sanyo Electric Co., Ltd. Nitride-based semiconductor light-emitting device
DE20115914U1 (de) * 2001-09-27 2003-02-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Beleuchtungseinheit mit mindestens einer LED als Lichtquelle
WO2003052838A2 (en) * 2001-12-13 2003-06-26 Rensselaer Polytechnic Institute Light-emitting diode with planar omni-directional reflector
US6650018B1 (en) * 2002-05-24 2003-11-18 Axt, Inc. High power, high luminous flux light emitting diode and method of making same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
I. SCHNITZER et al.: 30% external quantum effi- cienty from surface textured, thin-film light- emitting diodes. In: Appl. Phys. Lett. 64 (16), 1993, S. 1274-2176. *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007046519A1 (de) * 2007-09-28 2009-04-02 Osram Opto Semiconductors Gmbh Dünnfilm-LED mit einer Spiegelschicht und Verfahren zu deren Herstellung
US9252331B2 (en) 2007-09-28 2016-02-02 Osram Opto Semiconductors Gmbh Thin-film LED having a mirror layer and method for the production thereof
DE102008035900A1 (de) * 2008-04-30 2009-11-05 Osram Opto Semiconductors Gmbh Leuchtdiodenchip
US8530923B2 (en) 2008-04-30 2013-09-10 Osram Opto Semiconductor Gmbh LED chip
DE102008030821A1 (de) 2008-06-30 2009-12-31 Osram Opto Semiconductors Gmbh Elektroluminieszierende Vorrichtung und Verfahren zur Herstellung einer elektroluminieszierenden Vorrichtung
WO2010000225A1 (de) 2008-06-30 2010-01-07 Osram Opto Semiconductors Gmbh Elektrolumineszierende vorrichtung und verfahren zur herstellung einer elektrolumineszierenden vorrichtung
US8217566B2 (en) 2008-06-30 2012-07-10 Osram Opto Semiconductors Gmbh Electroluminescent device and method for producing an electroluminescent device
WO2010025694A3 (de) * 2008-09-03 2010-05-14 Osram Opto Semiconductors Gmbh Optoelektronisches bauteil
US8278767B2 (en) 2008-09-03 2012-10-02 Osram Opto Semiconductors Gmbh Optoelectronic component
DE102011010503A1 (de) * 2011-02-07 2012-08-09 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip
US11004876B2 (en) 2016-05-13 2021-05-11 Osram Oled Gmbh Method for producing a semiconductor chip and semiconductor chip
DE102017108949B4 (de) 2016-05-13 2021-08-26 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiterchip

Also Published As

Publication number Publication date
EP1886360A1 (de) 2008-02-13
US8581279B2 (en) 2013-11-12
TW200703724A (en) 2007-01-16
CN101238591A (zh) 2008-08-06
CN101238591B (zh) 2012-07-18
KR20080026558A (ko) 2008-03-25
KR101249418B1 (ko) 2013-04-03
EP1886360B1 (de) 2018-08-22
US20090212307A1 (en) 2009-08-27
WO2006128446A1 (de) 2006-12-07
JP5114389B2 (ja) 2013-01-09
JP2008543068A (ja) 2008-11-27

Similar Documents

Publication Publication Date Title
EP1886360B1 (de) Lumineszenzdiodenchip mit einer kontaktstruktur
EP1709694B1 (de) Dünnfilm-led mit einer stromaufweitungsstruktur
EP2519980B1 (de) Lichtemittierender halbleiterchip
EP2193550B1 (de) Strahlungsemittierender halbleiterkörper
EP2191520B1 (de) Lichtemittierende dünnfilm-diode mit einer spiegelschicht und verfahren zu deren herstellung
DE102007022947A1 (de) Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen
DE19517697A1 (de) Strahlungsemittierende Diode
WO2001091195A1 (de) Lumineszenzdiodenchip mit einer auf gan basierenden strahlungsemittierenden epitaxieschichtenfolge und verfahren zu dessen herstellung
DE102006051745A1 (de) LED-Halbleiterkörper und Verwendung eines LED-Halbleiterkörpers
DE19832852A1 (de) Halbleiter-Lichtemissionsvorrichtung
WO2007076796A1 (de) Led-halbleiterkörper und verwendung eines led-halbleiterkörpers
DE102008051048A1 (de) Optoelektronischer Halbleiterkörper
DE10153321B4 (de) Leuchtdiode mit Bragg-Reflektor und Verfahren zur Herstellung derselben
DE102005003460A1 (de) Dünnfilm-LED mit einer Stromaufweitungsstruktur
WO2009068006A2 (de) Optoelektronischer halbleiterkörper und verfahren zur herstellung eines optoelektronischen halbleiterkörpers
DE10026254A1 (de) Lumineszenzdiodenchip mit einer auf GaN basierenden strahlungsemittierenden Epitaxieschichtenfolge
EP2304816B1 (de) Elektrolumineszierende vorrichtung und verfahren zur herstellung einer elektrolumineszierenden vorrichtung
EP2619807B1 (de) Optoelektronischer halbleiterchip und verfahren zu dessen herstellung
DE102004016697B4 (de) Verfahren zum Herstellen von Halbleiterchips umfassend ein Verbindungsverfahren, das Löten mit einem Lot umfasst, und Halbleiterchip
DE102017117164A1 (de) Optoelektronischer Halbleiterchip, Hochvolthalbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
DE10220333A1 (de) Strahlungsemittierendes Halbleiterbauelement
DE102013100470A1 (de) Optoelektronischer Halbleiterchip
DE102011114380A1 (de) Strahlungsemittierender Halbleiterchip

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee