DE102008047964A1 - Verfahren zur Kapselung einer elektronischen Anordnung - Google Patents

Verfahren zur Kapselung einer elektronischen Anordnung Download PDF

Info

Publication number
DE102008047964A1
DE102008047964A1 DE102008047964A DE102008047964A DE102008047964A1 DE 102008047964 A1 DE102008047964 A1 DE 102008047964A1 DE 102008047964 A DE102008047964 A DE 102008047964A DE 102008047964 A DE102008047964 A DE 102008047964A DE 102008047964 A1 DE102008047964 A1 DE 102008047964A1
Authority
DE
Germany
Prior art keywords
psa
pressure
sensitive adhesive
use according
electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102008047964A
Other languages
English (en)
Inventor
Jan Ellinger
Thorsten Dr. Krawinkel
Klaus Dr. Keite-Telgenbüscher
Anja Staiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tesa SE
Original Assignee
Tesa SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesa SE filed Critical Tesa SE
Priority to DE102008047964A priority Critical patent/DE102008047964A1/de
Priority to EP09168770.7A priority patent/EP2166593B1/de
Priority to US12/549,767 priority patent/US9627646B2/en
Priority to CA2678273A priority patent/CA2678273A1/en
Priority to TW098131177A priority patent/TWI521038B/zh
Priority to JP2009215102A priority patent/JP2010074165A/ja
Priority to KR1020090088015A priority patent/KR101696201B1/ko
Priority to CN200910175912.1A priority patent/CN101677072B/zh
Publication of DE102008047964A1 publication Critical patent/DE102008047964A1/de
Priority to JP2015086431A priority patent/JP6228566B2/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J125/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Adhesives based on derivatives of such polymers
    • C09J125/02Homopolymers or copolymers of hydrocarbons
    • C09J125/04Homopolymers or copolymers of styrene
    • C09J125/08Copolymers of styrene
    • C09J125/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes
    • C09J153/025Vinyl aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2835Web or sheet containing structurally defined element or component and having an adhesive outermost layer including moisture or waterproof component

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Kapselung einer elektronischen Anordnung gegen Permeanten, bei dem eine Haftklebemasse auf Basis von Vinylaromatenblockcopolymeren bereitgestellt wird und bei dem die Haftklebemasse auf und/oder um die zu kapselnden Bereiche der elektronischen Anordnung appliziert wird.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Kapselung einer elektronischen Anordnung gemäß dem Oberbegriff von Anspruch 1 sowie die Verwendung einer Haftklebemasse zur Kapselung einer elektronischen Anordnung gemäß dem Oberbegriff von Anspruch 5.
  • (Opto-)Elektronische Anordnungen werden immer häufiger in kommerziellen Produkten verwendet oder stehen kurz vor der Markteinführung. Derartige Anordnungen umfassen anorganische oder organische elektronische Strukturen, beispielsweise organische, metallorganische oder polymere Halbleiter oder auch Kombinationen dieser. Diese Anordnungen und Produkte sind je nach gewünschter Anwendung starr oder flexibel ausgebildet, wobei eine zunehmende Nachfrage nach flexiblen Anordnungen besteht. Die Herstellung derartiger Anordnungen erfolgt beispielsweise durch Druckverfahren, wie Hochdruck, Tiefdruck, Siebdruck, Flachdruck oder auch so genanntes „non impact printing”, wie etwa Thermotransferdruck, Tintenstrahldruck oder Digitaldruck. Vielfach werden aber auch auch Vakuumverfahren, wie z. B. Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD), plasmaunterstützte chemische oder physikalische Depositionsverfahren (PECVD), Sputtern, (Plasma-)Ätzen oder Bedampfung, verwendet, wobei die Strukturierung in der Regel durch Masken erfolgt.
  • Als Beispiele für bereits kommerzielle oder in ihrem Marktpotential interessante (opto-)elektronische Anwendungen seien hier elektrophoretische oder elektrochrome Aufbauten oder Displays, organische oder polymere Leuchtdioden (OLEDs oder PLEDs) in Anzeige- und Display-Vorrichtungen oder als Beleuchtung genannt, Elektrolumineszenzlampen, organische Solarzellen, bevorzugt Farbstoff- oder Polymersolarzellen, anorganische Solarzellen, bevorzugt Dünnschichtsolarzellen, insbesondere auf der Basis von Silizium, Germanium, Kupfer, Indium und Selen, organische Feldeffekt-Transistoren, organische Schaltelemente, organische optische Verstärker, organische Laserdioden, organische oder anorganische Sensoren oder auch organische- oder anorganischbasierte RFID-Transponder angeführt.
  • Als technische Herausforderung für die Realisierung ausreichender Lebensdauer und Funktion von (opto-)elektronischen Anordnungen im Bereich der anorganischen und/oder organischen (Opto-)Elektronik, ganz besonders aber im Bereich der organischen (Opto-)Elektronik ist ein Schutz der darin enthaltenen Komponenten vor Permeanten zu sehen. Permeanten können eine Vielzahl von niedermolekularen organischen oder anorganischen Verbindungen sein, insbesondere Wasserdampf und Sauerstoff.
  • Eine Vielzahl von (opto-)elektronischen Anordnungen im Bereich der anorganischen und/oder organischen (Opto-)Elektronik, ganz besonders bei Verwendung von organischen Rohstoffen, ist sowohl gegen Wasserdampf als auch gegen Sauerstoff empfindlich, wobei für viele Anordnungen das Eindringen von Wasserdampf als größeres Problem eingestuft wird. Während der Lebensdauer der elektronischen Anordnung ist deshalb ein Schutz durch eine Verkapselung erforderlich, da andernfalls die Leistung über den Anwendungszeitraum nachlässt. So kann sich beispielsweise durch eine Oxidation der Bestandteile etwa bei lichtemittierenden Anordnungen wie Elektrolumineszenz-Lampen (EL-Lampen) oder organischen Leuchtdioden (OLED) die Leuchtkraft, bei elektrophoretischen Displays (EP-Displays) der Kontrast oder bei Solarzellen die Effizienz innerhalb kürzester Zeit drastisch verringern.
  • Bei der anorganischen und/oder organischen (Opto-)Elektronik, insbesondere bei der organischen (Opto-)Elektronik, gibt es besonderen Bedarf für flexible Klebelösungen, die eine Permeationsbarriere für Permeanten, wie Sauerstoff und/oder Wasserdampf, darstellen. Daneben gibt es eine Vielzahl von weiteren Anforderungen für derartige (opto-)elektronische Anordnungen. Die flexiblen Klebelösungen sollen daher nicht nur eine gute Haftung zwischen zwei Substraten erzielen, sondern zusätzlich Eigenschaften wie hohe Scherfestigkeit und Schälfestigkeit, chemische Beständigkeit, Alterungsbeständigkeit, hohe Transparenz, einfache Prozessierbarkeit sowie hohe Flexibilität und Biegsamkeit erfüllen.
  • Ein nach dem Stand der Technik gängiger Ansatz ist deshalb, die elektronische Anordnung zwischen zwei für Wasserdampf und Sauerstoff undurchlässige Substrate zu legen. Anschließend erfolgt dann eine Versiegelung an den Rändern. Für unflexible Aufbauten werden Glas oder Metallsubstrate verwendet, die eine hohe Permeationsbarriere bieten, aber sehr anfällig für mechanische Belastungen sind. Ferner verursachen diese Substrate eine relativ große Dicke der gesamten Anordnung. Im Falle von Metallsubstraten besteht zudem keine Transparenz. Für flexible Anordnungen hingegen kommen Flächensubstrate, wie transparente oder nicht transparente Folien, zum Einsatz, die mehrlagig ausgeführt sein können. Hierbei können sowohl Kombinationen aus verschieden Polymeren, als auch anorganische oder organische Schichten verwendet werden. Der Einsatz solcher Flächensubstrate ermöglicht einen flexiblen, äußert dünnen Aufbau. Dabei sind für die verschiedenen Anwendungen unterschiedlichste Substrate, wie z. B. Folien, Gewebe, Vliese und Papiere oder Kombinationen daraus möglich.
  • Um eine möglichst gute Versiegelung zu erzielen werden spezielle Barriereklebemassen verwendet. Eine gute Klebemasse für die Versiegelung von (opto-)elektronischen Bauteilen weist eine geringe Permeabilität gegen Sauerstoff und insbesondere gegen Wasserdampf auf, hat eine ausreichende Haftung auf der Anordnung und kann gut auf diese auffließen. Eine geringe Haftung auf der Anordnung verringert die Barrierewirkung an der Grenzfläche, wodurch ein Eintritt von Sauerstoff und Wasserdampf unabhängig von den Eigenschaften der Klebmasse ermöglicht wird. Nur wenn der Kontakt zwischen Masse und Substrat durchgängig ist, sind die Masseeigenschaften der bestimmende Faktor für die Barrierewirkung der Klebemasse.
  • Zur Charakterisierung der Barrierewirkung werden üblicherweise die Sauerstofftransmissionsrate OTR (Oxygen Transmission Rate) sowie die Wasserdampftransmissionsrate WVTR (Water Vapor Transmission Rate) angegeben. Die jeweilige Rate gibt dabei den flächen- und zeitbezogenen Fluss von Sauerstoff bzw. Wasserdampf durch einen Film unter spezifischen Bedingungen von Temperatur und Partialdruck sowie ggf. weiterer Messbedingungen wie relativer Luftfeuchtigkeit an. Je geringer diese Werte sind, desto besser ist das jeweilige Material zur Kapselung geeignet. Die Angabe der Permeation basiert dabei nicht allein auf den Werten für WVTR oder OTR sondern beinhaltet immer auch eine Angabe zur mittleren Weglänge der Permeation, wie z. B. die Dicke des Materials, oder eine Normalisierung auf eine bestimmte Weglänge.
  • Die Permeabilität P ist ein Maß für die Durchlässigkeit eines Körpers für Gase und/oder Flüssigkeiten. Ein niedriger P-Wert kennzeichnet eine gute Barrierewirkung. Die Permeabilität P ist ein spezifischer Wert für ein definiertes Material und einen definierten Permeanten unter stationären Bedingungen bei bestimmter Permeationsweglänge, Partialdruck und Temperatur. Die Permeabilität P ist das Produkt aus Diffusions-Term D und Löslichkeits-Term S: P = D·S
  • Der Löslichkeitsterm S beschreibt vorliegend die Affinität der Barriereklebemasse zum Permeanten. Im Fall von Wasserdampf wird beispielsweise ein geringer Wert für S von hydrophoben Materialen erreicht. Der Diffusionsterm D ist ein Maß für die Beweglichkeit des Permeanten im Barrierematerial und ist direkt abhängig von Eigenschaften, wie der Molekülbeweglichkeit oder dem freien Volumen. Oft werden bei stark vernetzten oder hochkristallinen Materialen für D relativ niedrige Werte erreicht. Hochkristalline Materialien sind jedoch in der Regel weniger transparent und eine stärkere Vernetzung führt zu einer geringeren Flexibilität. Die Permeabilität P steigt üblicherweise mit einer Erhöhung der molekularen Beweglichkeit an, etwa auch wenn die Temperatur erhöht oder der Glasübergangspunkt überschritten wird.
  • Ansätze, um die Barrierewirkung einer Klebemasse zu erhöhen, müssen die beiden Parameter D und S insbesondere berücksichtigen, im Hinblick auf den Einfluss auf die Durchlässigkeit von Wasserdampf und Sauerstoff. Zusätzlich zu diesen chemischen Eigenschaften müssen auch Auswirkungen physikalischer Einflüsse auf die Permeabilität bedacht werden, insbesondere die mittlere Permeationsweglänge und Grenzflächeneigenschaften (Auffließverhalten der Klebemasse, Haftung). Die ideale Barriereklebemasse weist geringe D-Werte und S-Werte bei sehr guter Haftung auf dem Substrat auf.
  • Ein geringer Löslichkeits-Term S ist meist unzureichend, um gute Barriereeigenschaften zu erreichen. Ein klassisches Beispiel dafür sind insbesondere Siloxan-Elastomere. Die Materialien sind äußerst hydrophob (kleiner Löslichkeits-Term), weisen aber durch ihre frei drehbare Si-O Bindung (großer Diffusions-Term) eine vergleichsweise geringe Barrierewirkung gegen Wasserdampf und Sauerstoff auf. Für eine gute Barrierewirkung ist also eine gute Balance zwischen Löslichkeits-Term S und Diffusions-Term D notwendig.
  • Hierfür wurden bisher vor allem Flüssigklebstoffe und Adhäsive auf Basis von Epoxiden verwendet ( WO 98/21 287 A1 ; US 4,051,195 A ; US 4,552,604 A ). Diese haben durch eine starke Vernetzung einen geringen Diffusionsterm D. Ihr Haupteinsatzgebiet sind Randverklebungen starrer Anordnungen, aber auch mäßig flexible Anordnungen. Eine Aushärtung erfolgt thermisch oder mittels UV-Strahlung. Eine vollflächige Verklebung ist aufgrund des durch die Aushärtung auftreten Schrumpfes kaum möglich, da es beim Aushärten zu Spannungen zwischen Kleber und Substrat kommt, die wiederum zur Delaminierung führen können.
  • Der Einsatz dieser flüssigen Klebstoffe birgt eine Reihe von Nachteilen. So können niedermolekulare Bestandteile (VOC – volatile organic compound) die empfindlichen elektronischen Strukturen der Anordnung schädigen und den Umgang in der Produktion erschweren. Der Klebstoff muss aufwendig auf jeden einzelnen Bestandteil der Anordnung aufgebracht werden. Die Anschaffung von teuren Dispensern und Fixiereinrichtungen ist notwendig, um eine genaue Positionierung zu gewährleisten. Die Art der Auftragung verhindert zudem einen schnellen kontinuierlichen Prozess und auch durch den anschließend erforderlichen Laminationsschritt kann durch die geringe Viskosität das Erreichen einer definierten Schichtdicke und Verklebungsbreite in engen Grenzen erschwert sein.
  • Des Weiteren weisen solche hochvernetzten Klebstoffe nach dem Aushärten nur noch eine geringe Flexibilitat auf. Der Einsatz von thermisch-vernetzenden Systemen wird im niedrigen Temperaturbereich oder bei 2-Komponenten-Systemen durch die Topfzeit begrenzt, also die Verarbeitungszeit bis eine Vergelung stattgefunden hat. Im hohen Temperaturbereich und insbesondere bei langen Reaktionszeiten begrenzen wiederum die empfindlichen (opto-)elektronischen Strukturen die Verwendbarkeit derartiger Systeme – die maximal anwendbaren Temperaturen bei (opto-)elektronischen Strukturen liegen oft bei 60°C, da bereits ab dieser Temperatur eine Vorschädigung eintreten kann. Insbesondere flexible Anordnungen, die organische Elektronik enthalten und mit transparenten Polymerfolien oder Verbunden aus Polymerfolien und anorganischen Schichten gekapselt sind, setzen hier enge Grenzen. Dies gilt auch für Laminierschritte unter großem Druck. Um eine verbesserte Haltbarkeit zu erreichen, ist hier ein Verzicht auf einen temperaturbelastenden Schritt und eine Laminierung unter geringerem Druck von Vorteil.
  • Alternativ zu den thermisch härtbaren Flüssigklebstoffen werden mittlerweile vielfach auch strahlenhärtende Klebstoffe eingesetzt ( US 2004/0225025 A1 ). Die Verwendung von strahlenhärtenden Klebstoffen vermeidet eine lange andauernde Wärmebelastung der elektronischen Anordnung. Jedoch kommt es durch die Bestrahlung zu einer kurzfristigen punktuellen Erhitzung der Anordnung, da neben einer UV-Strahlung in der Regel auch ein sehr hoher Anteil an IR-Strahlung emittiert wird. Weitere oben genannte Nachteile von Flüssigklebstoffen wie VOC, Schrumpf, Delamination und geringe Flexibilität bleiben ebenfalls erhalten. Probleme können durch zusätzliche flüchtige Bestandteile oder Spaltprodukte aus den Photoinitiatoren oder Sensitizern entstehen. Zudem muss die Anordnung durchlässig für UV-Licht sein.
  • Da Bestandteile insbesondere organischer Elektronik und viele der eingesetzten Polymere häufig empfindlich gegen UV-Belastung sind, ist ein länger andauernder Außeneinsatz nicht ohne weitere zusätzliche Schutzmaßnahmen, etwa weitere Deckfolien möglich. Diese können bei UV-härtenden Klebesystemen erst nach der UV-Härtung aufgebracht werden, was die Komplexität der Fertigung und die Dicke der Anordnung zusätzlich erhöht.
  • Die US 2006/0100299 A1 offenbart ein UV-härtbares Haftklebeband zur Kapselung einer elektronischen Anordnung. Das Haftklebeband umfasst eine Klebemasse auf Basis einer Kombination eines Polymers mit einem Erweichungspunkt von größer 60°C, eines polymerisierbaren Epoxidharzes mit einem Erweichungspunkt von unter 30°C und einem Photoinitiator. Bei den Polymeren kann es sich um Polyurethan, Polyisobutylen, Polyacrylnitril, Polyvinylidenchlorid, Poly(meth)acrylat oder Polyester, insbesondere aber um ein Acrylat handeln. Des weiteren sind Klebharze, Weichmacher oder Füllstoffe enthalten.
  • Acrylatmassen haben eine sehr gute Beständigkeit gegenüber UV-Strahlung und verschiedenen Chemikalien, besitzen aber sehr unterschiedliche Klebkräfte auf verschiedenen Untergründen. Während die Klebkraft auf polaren Untergründen wie Glas oder Metall sehr hoch ist, ist die Klebkraft auf unpolaren Untergründen wie beispielsweise Polyethylen oder Polypropylen eher gering. Hier besteht die Gefahr der Diffusion an der Grenzfläche in besonderem Maße. Zudem sind diese Massen sehr polar, was eine Diffusion insbesondere von Wasserdampf, trotz nachträglicher Vernetzung, begünstigt. Durch den Einsatz polymerisierbarer Epoxidharze wird diese Tendenz weiter verstärkt.
  • Die in US 2006/0100299 genannte Ausführung als Haftklebemasse hat den Vorteil einer einfachen Applikation, leidet aber ebenfalls unter möglichen Spaltprodukten durch die enthaltenen Photoinitiatoren, einer zwangsläufigen UV-Durchlässigkeit des Aufbaus und einer Verringerung der Flexibilität nach der Aushärtung. Zudem ist durch den geringen Anteil an Epoxidharzen oder anderen Vernetzern, der für eine Erhaltung der Haftklebrigkeit und insbesondere der Kohäsion notwendig ist, eine nur sehr viel geringere Vernetzungsdichte als mit Flüssigklebern erreichbar.
  • Haftklebebänder benötigen in der Regel durch die relativ hochmolekularen Polymere im Gegensatz zu Flüssigklebstoffen für eine gute Benetzung und Haftung auf der Oberfläche eine gewisse Zeit, ausreichenden Druck und eine gute Balance zwischen viskosem Anteil und elastischen Anteil. Allgemein führt das nachträgliche Vernetzen der Klebemassen zu einem Schrumpf der Masse. Dies kann zu einer Verringerung der Haftung an der Grenzfläche führen und wiederum die Permeabilität erhöhen.
  • Die WO 2007/087281 A1 offenbart ein transparentes flexibles Haftklebeband auf Basis von Polyisobutylen (PIB) für elektronische Anwendungen, insbesondere OLED. Dabei wird Polyisobutylen mit einem Molekulargewicht von mehr als 500.000 g/mol und ein hydriertes cyclisches Harz verwendet. Optional ist der Einsatz eines photopolymerisierbaren Harzes und eines Photoinitiators möglich.
  • Klebemassen auf der Basis von Polyisobutylen weisen aufgrund ihrer geringen Polarität eine gute Barriere gegen Wasserdampf auf, haben aber selbst bei hohen Molekulargewichten eine relativ geringe Kohäsivität, weshalb sie bei erhöhten Temperaturen häufig eine geringe Scherfestigkeit aufweisen. Der Anteil an niedermolekularen Bestandteilen kann nicht beliebig reduziert werden, da sonst die Haftung deutlich verringert wird und die Grenzflächenpermeation zunimmt. Bei Einsatz eines hohen Anteils an funktionellen Harzen, der aufgrund der sehr geringen Kohäsion der Masse notwendig ist, wird die Polarität der Masse wieder erhöht und damit der Löslichkeits-Term vergrößert.
  • Demgegenüber zeigt eine Haftklebemasse mit ausgeprägter Vernetzung zwar gute Kohäsion, doch ist das Auffließverhalten beeinträchtigt. Die Haftklebemasse kann sich nur unzureichend an die Rauhigkeit einer Substratoberfläche anpassen, wodurch die Permeation an der Grenzfläche erhöht ist. Zudem kann eine Haftklebemasse mit ausgeprägter Vernetzung nur in geringerem Maße Verformungsenergie, wie sie unter Belastung auftritt, dissipieren. Durch beide Phänomene wird die Klebkraft reduziert. Eine geringfügig vernetzte Haftklebemasse kann dagegen zwar gut auf raue Oberflächen auffließen und Verformungsenergie dissipieren, so dass die Anforderungen an die Adhäsion erfüllt sein können, jedoch widersteht die Haftklebemasse auf Grund einer reduzierten Kohäsion nur unzureichend einer Belastung.
  • Aus dem Stand der Technik ist zudem eine Haftklebemasse ohne Barriereeigenschaften bekannt ( WO 03/065470 A1 ), die in einem elektronischen Aufbau als Transferklebemasse verwendet wird. Die Klebemasse enthält einen funktionellen Füllstoff, der mit Sauerstoff oder Wasserdampf innerhalb des Aufbaus reagiert. Damit ist eine einfache Applikation eines Scavengers innerhalb des Aufbaus möglich. Für die Versiegelung des Aufbaus nach Außen wird ein weiteres Adhäsiv mit geringer Durchlässigkeit verwendet.
  • Aus dem Stand der Technik ist eine Klebemasse auf Basis von Vinylaromatenblockcopolymeren beispielsweise aus der US 4,985,499 A1 bekannt. Diese Schrift beschreibt verschiedene vorteilhafte Zusammensetzungen der Klebemasse.
  • Ferner ist aus dem Stand der Technik die Barrierewirkung von Blockcopolymeren bekannt ( US 2002/0188053 A1 ). Hier werden Polymere auf dieser Basis für die Versiegelung von elektrophoretischen Displays eingesetzt, indem sie nach der Aufbringung mit einer Siegelschicht überzogen und so fixiert werden.
  • Aufgabe der vorliegenden Erfindung ist es ein Verfahren zur Kapselung einer elektronischen Anordnung gegen Permeanten, insbesondere Wasserdampf und Sauerstoff, anzugeben, dass einfach durchführbar ist und mit dem gleichzeitig eine gute Kapselung erzielt wird. Ferner soll die Lebensdauer von (opto-)elektronischen Anordnungen durch die Verwendung einer geeigneten, insbesondere flexiblen, Klebemasse erhöht werden.
  • Die vorliegende Erfindung löst das zuvor beschriebene Problem durch ein Verfahren gemäß Anspruch 1. Nebengeordnete Lösungen beschreiben die Patentansprüche 5 und 19. Bevorzugte Ausgestaltungen und Weiterbildungen sind Gegenstand der jeweiligen Unteransprüche.
  • Die vorliegende Erfindung beruht zunächst auf der Erkenntnis, dass es trotz der zuvor beschriebenen Nachteile dennoch möglich ist, eine Haftklebemasse zur Kapselung einer elektronischen Anordnung zu verwenden, bei der die zuvor bzgl. Haftklebemassen beschriebenen Nachteile nicht oder nur vermindert auftreten. Es hat sich nämlich gezeigt, dass eine Haftklebemasse auf Basis von Vinylaromatenblockcopolymeren zur Kapselung elektronischer Anordnungen besonders geeignet ist. Erfindungsgemäß wird entsprechend eine Haftklebemasse aus Basis von Vinylaromatenblockcopolymeren bereitgestellt und auf die zu kapselnden Bereiche der elektronischen Anordnung appliziert. Da es sich bei der Klebemasse um eine Haftklebemasse handelt, ist die Applikation besonders einfach, da keine Vorfixierung oder dgl. erfolgen muss. Je nach Ausgestaltung der Haftklebemasse ist auch keine nachfolgende Behandlung mehr erforderlich.
  • Im Bereich der Klebstoffe zeichnen sich Haftklebemassen insbesondere durch ihre permanente Klebrigkeit und Flexibilität aus. Ein Material, das permanente Haftklebrigkeit aufweist, muss zu jedem Zeitpunkt eine geeignete Kombination aus adhäsiven und kohäsiven Eigenschaften aufweisen. Diese Charakteristik unterscheidet die Haftklebemassen beispielsweise von reaktiven Klebstoffen, die im nicht ausreagierten Zustand kaum Kohäsion bieten. Für gute Haftungseigenschaften gilt es, Haftklebemassen so einzustellen, dass eine optimale Balance aus adhäsiven und kohäsiven Eigenschaften besteht.
  • Als Kapselung wird vorliegend nicht nur ein vollumfänglicher Einschluss mit der genannten Haftklebemasse bezeichnet sondern auch bereits eine bereichsweise Applikation der Haftklebemasse auf den zu kapselnden Bereichen der (opto-)elektronischen Anordnung, beispielsweise eine einseitige Überdeckung oder eine Umrahmung einer elektronischen Struktur.
  • Durch die Auswahl der Bestandteile der Haftklebemasse und die dadurch geringe Polarität resultierend aus einem unpolaren Block des Vinylaromatenblockcopolymeren und dem daraus resultierenden niedrigen Löslichkeits-Term (S) des Diffusionskoeffizienten wird ein niedriges Durchtrittvermögen von Permeanten wie Wasserdampf und Sauerstoff erreicht, insbesondere aber von Wasserdampf. Durch die Bildung von zumindest zwei Domänen innerhalb des Blockcopolymers erhält man zusätzlich eine sehr gute Kohäsion und gleichzeitig verbesserte Barriereeigenschaften. Durch weitere Komponenten, wie nachfolgend beschrieben, können je nach Anforderungen der (opto-)elektronischen Anordnung, etwa durch eine Vernetzungsreaktion die Eigenschaften vorteilhaft an die Anforderungen angepasst werden.
  • Vorteil der hier vorliegenden Erfindung ist also, im Vergleich zu anderen Haftklebemassen, die Kombination aus sehr guten Barriereeigenschaften gegenüber Sauerstoff und vor allem gegenüber Wasserdampf bei gleichzeitiger guter Grenzflächenhaftung auf unterschiedlichen Substraten, guten kohäsive Eigenschaften und, im Vergleich zu Flüssigklebstoffen, eine sehr hohe Flexibilität und eine einfache Applikation in der (opto-)elektronischen Anordnung und bei/in der Kapselung. Je nach Ausführung der Haftklebemasse bieten Klebemassen auf Basis von Vinylaromatenblockcopolymeren eine gute Beständigkeit gegenüber Chemikalien und Umwelteinflüssen. Des Weiteren liegen in bestimmten Ausführungen auch transparente Klebemassen vor, die in besonderer Weise für den Einsatz in (opto-)elektronischen Anordnungen Anwendung finden können, da eine Verminderung von einfallendem oder austretendem Licht sehr gering gehalten wird.
  • Die Haftklebemasse auf Basis von Vinylaromatenblockcopolymeren zeichnet sich also, neben guter Verarbeitbarkeit und Beschichtbarkeit, durch gute Produkteigenschaften in Bezug auf Adhäsion und Kohäsion aus sowie durch eine gute Barrierewirkung gegenüber Sauerstoff und eine sehr gute Barrierewirkung gegenüber Wasserdampf aus, insbesondere im Vergleich zu Haftklebemassen auf Basis von Acrylaten, Silikonen oder Vinylacetat. Eine derartige Haftklebemasse kann auf einfache Weise in eine elektronische Anordnung integriert werden, insbesondere auch in solche Anordnung, die hohe Flexibilität erfordert. Weitere besonders vorteilhafte Eigenschaften der Haftklebemasse sind ähnlich gute Haftung auf unterschiedlichen Substraten, hohe Scherfestigkeit und hohe Flexibilität. Durch eine sehr gute Haftung am Substrat wird zudem auch eine geringe Grenzflächenpermeation erzielt. Durch die Verwendung der hier beschriebenen Formulierungen für die Verkapselung von (opto-)elektronischen Strukturen werden vorteilhafte Anordnungen gewonnen, die die oben genannten Vorteile vereinen und den Verkapselungsprozess dadurch beschleunigen und vereinfachen.
  • Da in bestimmten Ausführungen der Haftklebemasse keine weiteren thermischen Prozessschritte oder Bestrahlung notwendig sind, kein Schrumpf durch eine Vernetzungsreaktion auftritt und die Haftklebemasse als bahnförmiges Material oder in einer der elektronischen Anordnung entsprechend angepassten Form vorliegt, kann die Masse einfach und schnell unter geringem Druck in den Verkapselungsprozess des (opto-)elektronischen Aufbaus integriert werden. Die üblicherweise mit den vermiedenen Verarbeitungsschritten einhergehenden Nachteile, wie thermische und mechanische Belastungen, können so minimiert werden. Eine Verkapselung durch Lamination von zumindest Teilen der (opto-)elektronischen Aufbauten mit einem flächigen Barrierematerial (z. B. Glas, insbesondere Dünnglas, metalloxidbeschichteten Folien, Metallfolien, Multilager-Substratmaterialien) ist mit sehr guter Barrierewirkung in einem einfachen Rolle-zu-Rolle Prozess möglich. Die Flexibilität des gesamten Aufbaus hängt, neben der Flexibilität der Haftklebemasse von weiteren Faktoren, wie Geometrie und Dicke der (opto-)elektronischen Aufbauten bzw. der flächigen Barrierematerialien ab. Die hohe Flexibilität der Haftklebemasse ermöglicht es aber sehr dünne, biegsame und flexible (opto-)elektronische Aufbauten zu realisieren. Unter dem benutzten Begriff ”biegsam” ist die Eigenschaft zu verstehen, dass der Krümmung eines gebogenen Gegenstands wie einer Trommel mit bestimmtem Radius, insbesondere mit einem Radius von 1 mm, ohne Beschädigung gefolgt wird.
  • In bevorzugter Ausgestaltung eines Verfahrens zur Kapselung einer elektronischen Anordnung gegen Permeanten kann die Haftklebemasse in Form eines Klebebandes bereitgestellt werden. Diese Darreichungsart erlaubt eine besonders einfache und gleichmäßige Applikation der Haftklebemasse.
  • Der allgemeine Ausdruck „Klebeband” umfasst dabei in einer Ausführungsform ein Trägermaterial, welches ein- oder beidseitig mit einer Haftklebemasse versehen ist. Das Trägermaterial umfasst alle flächigen Gebilde, beispielsweise in zwei Dimensionen ausgedehnte Folien oder Folienabschnitte, Bänder mit ausgedehnter Länge und begrenzter Breite, Bandabschnitte, Stanzlinge Mehrschichtanordnungen und dergleichen. Dabei sind für verschiedene Anwendungen unterschiedlichste Träger, wie z. B. Folien, Gewebe, Vliese und Papiere mit den Klebmassen kombinierbar. Des Weiteren umfasst der Ausdruck „Klebeband” auch so genannte „Transferklebebänder”, d. h. ein Klebeband ohne Träger. Bei einem Transferklebeband ist die Klebemasse vielmehr vor der Applikation zwischen flexiblen Linern, die mit einer Trennschicht versehen sind und/oder anti-adhäsive Eigenschaften aufweisen, aufgebracht. Zur Applikation wird regelmäßig zunächst ein Liner entfernt, die Klebemasse appliziert und dann der zweite Liner entfernt. Die Haftklebemasse kann so direkt zur Verbindung zweier Oberflächen in (opto-)elektronischen Anordnungen verwendet werden.
  • Als Trägermaterial eines Klebebandes werden vorliegend bevorzugt Polymerfolien, Folienverbunde oder mit organischen und/oder anorganischen Schichten versehene Folien oder Folienverbunde eingesetzt. Derartige Folien/Folienverbunde können aus allen gängigen zur Folienherstellung verwendeten Kunststoffen bestehen, beispielhaft aber nicht einschränkend erwähnt seien:
    Polyethylen, Polypropylen – insbesondere das durch mono- oder biaxiale Streckung erzeugte orientierte Polypropylen (OPP), Cyclische Olefin Copolymere (COC), Polyvinylchlorid (PVC), Polyester – insbesondere Polyethylenterephthalat (PET) und Poylethylennaphtalat (PEN), Ethylenvinylalkohol (EVOH), Polyvinylidenchlorid (PVDC), Polyvinylidenfluorid (PVDF), Polyacrylnitril (PAN), Polycarbonat (PC), Polyamid (PA), Polyethersulfon (PES) oder Polyimid (PI).
  • Der Träger kann zudem mit organischen oder anorganischen Beschichtungen oder Schichten kombiniert sein. Dies kann durch übliche Verfahren, wie z. B. Lackieren, Drucken, Bedampfen, Sputtern, Co-Extrusion oder Lamination geschehen. Beispielhaft, aber nicht einschränkend erwähnt seien hier etwa Oxide oder Nitride des Siliciums und des Aluminiums, Indium-Zinn-Oxid (ITO) oder Sol-Gel-Beschichtungen.
  • Besonders bevorzugt sind diese Folien, insbesondere die Polymerfolien, transparent und/oder mit einer Permeationsbarriere für Sauerstoff und Wasserdampf versehen, wobei die Permeationsbarriere die Anforderungen für den Verpackungsbereich übertrifft (WVTR < 10–1 g/(m2d); OTR < 10–1 cm3/(m2d bar)). Die Bestimmung der Permeabilität für Sauerstoff (OTR) und Wasserdampf (WVTR) erfolgt nach DIN 53380 Teil 3 bzw. ASTM F-1249. Die Sauerstoffdurchlässigkeit wird bei 23°C und einer relativen Feuchte von 50% gemessen. Die Wasserdampfdurchlässigkeit wird bei 37,5°C und einer relativen Feuchte von 90% bestimmt. Die Ergebnisse werden auf eine Foliendicke von 50 μm normiert.
  • Je nach Anforderungen der (opto-)elektronischen Anordnung können in einer bestimmten Ausführung der Haftklebemasse die elastischen und viskosen Eigenschaften, sowie die Barrierewirkung durch eine (nachträgliche) Vernetzungsreaktion variiert werden. Dies kann angepasst an die (opto-)elektronische Anordnung sowohl thermisch, als auch durch elektromagnetische Strahlung, bevorzugt UV-Strahlung stattfinden. Dabei bleibt aber die hohe Flexibilität der Haftklebemasse erhalten. Weiter bevorzugt erfolgt die Vernetzung, sofern erforderlich, vor der Applikation der Haftklebemasse auf der elektronischen Anordnung. Eine für die Vernetzung ggf. erforderliche Energiezufuhr, beispielsweise in Form von Wärme oder durch UV-Bestrahlung oder dgl., kann so die elektronischen Strukturen nicht beeinträchtigen.
  • Weiter bevorzugt kommt eine Haftklebemasse zum Einsatz, die in bestimmten Ausführungen im sichtbaren Licht des Spektrums (Wellenlängenbereich von etwa 400 nm–800 nm) transparent ist. Die gewünschte Transparenz lässt sich insbesondere durch die Verwendung farbloser Klebharze erzielen. Eine derartige Haftklebemasse eignet sich somit auch für einen vollflächigen Einsatz über einer (opto-)elektronischen Struktur. Eine vollflächige Verklebung bietet, bei einer etwa mittigen Anordnung der elektronischen Struktur gegenüber einer Randversiegelung den Vorteil, dass der Permeant durch gesamte Fläche diffundieren müsste, bevor er die Struktur erreicht. Der Permeationsweg ist somit deutlich erhöht. Die in dieser Ausführungsform verlängerten Permeationswege im Vergleich zur Randversiegelung etwa durch Flüssigklebstoffe wirken sich positiv auf die Gesamtbarriere aus, da der Permeationsweg umgekehrt proportional zur Durchlässigkeit ist.
  • „Transparenz” bedeutet dabei eine mittlere Transmission der Klebemasse im sichtbaren Bereich des Lichts von mindestens 75%, bevorzugt höher als 90%. Bei der Ausführung als Haftklebeband mit Träger hängt die die maximale Transmission des gesamten Aufbaus zudem von der Art des verwendeten Trägers und der Art des Aufbaus ab.
  • Die elektronischen Strukturen (opto-)elektronischer Anordnungen sind oftmals anfällig gegenüber UV-Strahlung. Als besonders vorteilhaft hat sich daher herausgestellt, wenn die Haftklebemasse zudem UV-blockend ausgebildet ist. Unter dem Begriff „UV-blockend” wird vorliegend ein mittlerer Transmissionsgrad von maximal 20%, vorzugsweise von maximal 10%, weiter bevorzugt von maximal 1% im entsprechenden Wellenlängenbereich bezeichnet. In bevorzugter Ausgestaltung ist die Haftklebemasse im Wellenlängenbereich von 320 nm bis 400 nm (UVA-Strahlung) UV-blockend ausgebildet, vorzugsweise im Wellenlängenbereich von 280 nm bis 400 nm (UVA- und UVB-Strahlung), weiter vorzugsweise im Wellenlängenbereich von 190 nm bis 400 nm (UVA-, UVB- und UVC-Strahlung).
  • Die UV-blockende Wirkung der Haftklebemasse kann insbesondere durch eine Zugabe von UV-Blockern oder geeigneten Füllstoffen zur Haftklebemasse erzielt werden. Als UV-Blocker eignen sich beispielsweise HALS (Hindert Armine Light Stabilizer) wie Tinuvin der Firma Ciba oder Benzimidazolderivaten. Als Füllstoff ist besonders Titandioxid geeignet, ganz besonders nanoskaliges Titandioxid, da hierdurch eine Transparenz im sichtbaren Bereich beibehalten werden kann.
  • In einer weiteren vorteilhaften Ausführung zeigt die Haftklebemasse eine sehr gute Beständigkeit gegen Witterungseinflüsse und UV-Licht. Diese Beständigkeit kann insbesondere durch Verwendung von hydrierten Elastomeren und/oder hydrierten Harzen erzielt werden.
  • Als Klebemassen finden bevorzugt solche auf Basis von Blockcopolymeren enthaltend Polymerblöcke überwiegend gebildet von Vinylaromaten (A-Blöcke), bevorzugt Styrol, und solche überwiegend gebildet durch Polymerisation von 1,3-Dienen (B-Blöcke), bevorzugt Butadien, Isopren oder einer Mischung aus beiden Monomeren, Verwendung. Diese B-Blöcke weisen üblicherweise eine geringe Polarität auf. Sowohl Homo- als auch Copolymerblöcke sind als B-Blöcke bevorzugt nutzbar.
  • Die aus den A- und B-Blöcken resultierenden Blockcopolymere können gleiche oder unterschiedliche B-Blöcke enthalten, die teilweise, selektiv oder vollständig hydriert sein können. Die Blockcopolymere können lineare A-B-A Strukturen aufweisen. Einsetzbar sind ebenfalls Blockcopolymere von radialer Gestalt sowie sternförmige und lineare Multiblockcopolymere. Als weitere Komponenten können A-B Zweiblockcopolymere vorhanden sein. Sämtliche der vorgenannten Polymere können alleine oder im Gemisch miteinander genutzt werden.
  • Anstelle der bevorzugten Polystyrolblöcke können als Vinylaromaten auch Polymerblöcke auf Basis anderer aromatenhaltiger Homo- und Copolymere (bevorzugt C-8 bis C-12 Aromaten) mit Glasübergangstemperaturen von über 75°C verwendet werden, wie z. B. α-methylstyrolhaltige Aromatenblöcke. Weiterhin können auch gleiche oder unterschiedliche A-Blöcke enthalten sein.
  • Verwendet werden können auch Blockcopolymere, die neben den oben beschriebenen Blöcken A und B zumindest einen weiteren Block enthalten, wie z. B. A-B-C-Blockcoplymere.
  • Denkbar, aber nicht Gegenstand der vorliegenden Erfindung ist auch die Verwendung der oben genannten B-Blöcke mit A-Blöcken von anderer chemischer Natur, die eine Glasübergangstemperatur oberhalb der Raumtemperatur zeigen, wie zum Beispiel Polymethylmethacrylat.
  • Kommerziell sind Vinylaromatenblockcopolymere zum Beispiel unter dem Namen Kraton der Fa. Kraton, (Kraton D 1101 und 1102 als Styrol-Butadien-Styrol-Blockcopolymere, Kraton D 1107 oder 1163 als Styrol-Isopren-Styrol-Blockcopolymere, oder Kraton G 1652 als hydriertes Styrol-Butadien-Styrol-Blockcopolymer), unter dem Namen Europrene der Fa. Polimeri Europa (Styrolblockcopolymere mit Isopren, Butadien oder deren Hydrierungsprodukten) oder unter dem Namen Septon der Fa. Kuraray (hydrierte Styrol-Isopren-styrol-Blockcopolymere) bekannt. A-B-C-Vinylaromatenblockcopolymere sind z. B. unter dem Namen SBM von der Fa. Arkema erhältlich.
  • In einer vorteilhaften Ausführungsform weisen die Blockcopolymere einen Polyvinylaromatanteil von 10 Gew.-% bis 35 Gew.-% auf.
  • In einer weiteren bevorzugten Ausgestaltung beträgt der Anteil der Vinylaromatblockcopolymere in Summe bezogen auf die gesamte Haftklebmasse mindestens 20 Gew.-%, vorzugsweise mindestens 30 Gew.-%, weiter bevorzugt mindestens 35 Gew.-%. Ein zu geringer Anteil an Vinylaromatenblockcopolymere hat zur Folge, dass die Kohäsion der Haftklebemasse relativ niedrig ist. Der maximale Anteil der Vinylaromatblockcopolymere in Summe bezogen auf die gesamte Haftklebmasse beträgt maximal 80 Gew.-%, bevorzugt maximal 65 Gew.-%, ganz besonders bevorzugt maximal 60 Gew.-%. Ein zu hoher Anteil an Vinylaromatenblockcopolymere hat wiederum zur Folge, dass die Haftklebemasse kaum noch haftklebrig ist.
  • In weiter bevorzugter Ausgestaltung weist die Haftklebemasse neben dem mindestens einen Vinylaromatenblockcopolymer mindestens ein Klebharz auf, um die Adhäsion in gewünschter Weise zu erhöhen. Das Klebharz sollte mit dem Elastomerblock der Blockcopolymere verträglich sein.
  • Als Klebrigmacher können in der Haftklebemasse zum Beispiel nicht hydrierte, partiell oder vollständig hydrierte Harze auf Basis von Kolophonium und Kolophoniumderivaten, hydrierte Polymerisate des Dicyclopentadiens, nicht hydrierte, partiell, selektiv oder vollständig hydrierte Kohlenwasserstoffharze auf Basis von C5-, C5/C9- oder C9-Monomerströmen, Polyterpenharze auf Basis von α-Pinen und/oder ss-Pinen und/oder δ-Limonen, hydrierte Polymerisate von bevorzugt reinen C8- und C9-Aromaten eingesetzt werden. Vorgenannte Klebharze können sowohl allein als auch im Gemisch eingesetzt werden. Dabei können sowohl bei Raumtemperatur feste als auch flüssige Harze zum Einsatz kommen. Um eine hohe Alterungs- und UV-Stabilität zu gewährleisten sind hydrierte Harze mit einem Hydrierungsgrad von mindestens 90%, vorzugsweise von mindestens 95%, bevorzugt.
  • Des Weiteren sind unpolare Harze mit einem DACP-Wert (diacetone alcohol cloud point) oberhalb von 30°C und einem MMAP-Wert (mixed methylcylohexane aniline point) von größer 50°C, insbesondere mit einem DACP-Wert oberhalb von 37°C und einem MMAP-Wert größer 60°C bevorzugt. Der DACP-Wert und der MMAP-Wert geben jeweils die Löslichkeit in einem bestimmten Lösemittel an. Durch die Auswahl dieser Bereiche wird eine besonders hohe Permeationsbarriere, insbesondere gegen Wasserdampf, erreicht.
  • Weiter bevorzugt sind Harze mit einer Erweichungstemperatur (Ring/Kugel) von mehr als 95°C, insbesondere mehr als 100°C. Durch diese Auswahl wird eine besonders hohe Permeationsbarriere, insbesondere gegen Sauerstoff, erreicht.
  • Als weitere Additive können typischerweise genutzt werden:
    • • Plastifizierungsmittel, wie zum Beispiel Weichmacheröle, oder niedermolekulare flüssige Polymere, wie zum Beispiel niedermolekulare Polybutene
    • • primäre Antioxidanzien, wie zum Beispiel sterisch gehinderte Phenole
    • • sekundäre Antioxidanzien, wie zum Beispiel Phosphite oder Thioether
    • • Prozessstabilisatoren, wie zum Beispiel C-Radikalfänger
    • • Lichtschutzmittel, wie zum Beispiel UV-Absorber oder sterisch gehinderte Amine Verarbeitungshilfsmittel
    • • Endblockverstärkerharze sowie
    • • gegebenenfalls weitere Polymere von bevorzugt elastomerer Natur; entsprechend nutzbare Elastomere beinhalten unter anderem solche auf Basis reiner Kohlenwasserstoffe, zum Beispiel ungesättigte Polydiene wie natürliches oder synthetisch erzeugtes Polyisopren oder Polybutadien, chemisch im wesentlichen gesättigte Elastomere wie zum Beispiel gesättigte Ethylen-Propylen-Copolymere, α-Olefincopolymere, Polyisobutylen, Butylkautschuk, Ethylen-Propylenkautschuk, sowie chemisch funktionalisierte Kohlenwasserstoffe wie zum Beispiel halogenhaltige, acrylathaltige, allyl- oder vinyletherhaltige Polyolefine.
  • In einer weiteren Ausführung werden die erfindungsgemäß eingesetzten Haftklebemassen bevorzugt vor oder ggf. auch nach dem Auffließen auf die Oberfläche vernetzt, wobei solche Vernetzungsgrade angestrebt werden, die weiterhin eine hohe Flexibilität und gute Haftung des Materials ermöglichen. Nach der Vernetzung weist die Haftklebemasse bevorzugt eine Reißdehnung von mindestens 20% auf. Eine derartige Reißdehnung ist besonders bevorzugt im Hinblick auf eine möglichst flexible Ausgestaltung der Haftklebemasse. Die Reißdehnung wird bestimmt bei einer Dehngeschwindigkeit von 300 mm/min und einer Temperatur von 23°C.
  • In einer bevorzugten Vorgehensweise wird die Haftklebemasse mit UV-Strahlung oder Elektronenstrahlen vernetzt. Eine ausführliche Beschreibung des Standes der Technik und die wichtigsten Verfahrensparameter bezüglich der Vernetzung ist dem Fachmann beispielsweise aus „Chemistry and Technology of UV and EB formulation for Coatings, Inks and Paints" (Vol. 1, 1991, SITA, London) bekannt. Zudem können auch andere Verfahren eingesetzt werden, die hochenergetische Bestrahlung ermöglichen.
  • Zur Verringerung der erforderlichen Strahlendosis können dem viskoelastischen Material Vernetzer und/oder Promotoren zur Vernetzung beigemischt werden, insbesondere durch UV-, Elektronenstrahlen- und/oder thermisch anregbare Vernetzer und/oder Promotoren. Geeignete Vernetzer für die Strahlenvernetzung sind Monomere oder Polymere die beispielsweise folgende funktionelle Gruppen beinhalten: Acrylat oder Methacrylat, Epoxid, Hydroxy, Carboxy, Vinyl, Vinylether, Oxetan, Thiol, Acetoacetat, Isocyanate, Allyl oder allgemein ungesättigte Verbindungen. Die eingesetzten Monomere oder Polymere können, je nach den Anforderungen an den Vernetzungsgrad di- oder multifunktionell sein.
  • In einer weiteren bevorzugten Auslegung werden die Haftklebemassen mit thermisch aktivierbaren Vernetzern vernetzt. Hierzu werden bevorzugt Peroxide, Säure- oder Säureanhydride, Metallchelate, bi- oder multifunktionelle Epoxide, bi- oder multifunktionelle Hydroxide sowie bi- oder multifunktionelle Isocyanate beigemischt, wie sie etwa für Säureanhydride in EP 1311559 B1 beschrieben werden.
  • Neben den monomeren Vernetzern mit den beschriebenen funktionellen Gruppen werden bevorzugt Vinylaromatenblockcopolymere eingesetzt, die mit diesen vernetzenden Gruppen funktionalisiert sind. Es werden vorteilhaft funktionalisierte Vinylaromatenblockcopolymere wie die Kraton FG-Serie (etwa Kraton FG 1901 oder Kraton FG 1924), Asahi Tuftec M 1913 bzw. Tuftec M 1943 oder Septon HG252 (SEEPS-OH) eingesetzt. Weitere bevorzugte Blockcopolymere sind zum Beispiel unter dem Namen Epofriend A 1005, A 1010 oder A 1020 der Firma Daicel erhältlich. Durch Zugabe geeigneter Vernetzungsagentien (zum Beispiel mehrwertige Isocyanate, Amine, Epoxide, Alkohole, Thiole, Phenole, Guanidine, Mercaptane Carbonsäuren bzw. Säureanhydride) können diese Blockcopolymere thermisch oder durch Strahlung vernetzt werden. Auch eine Kombination von säure- oder säureanhydridmodifizierten Vinylaromatenblockcopolymer (zum Beispiel Kraton FG-Serie) und einem epoxidierten Vinylaromatenblockcopolymer (zum Beispiel Daicel Epofriend-Serie) ist vorteilhaft nutzbar. Dadurch kann man eine Vernetzung ohne monomeren Vernetzer bewerkstelligen, wodurch auch bei unvollständiger Vernetzung keine monomeren Bestandteile übrig bleiben. Eine Mischung der funktionalisierten Monomere oder Polymere ist ebenfalls einsetzbar.
  • In einer Ausführungsform der vorliegenden Erfindung enthält die Haftklebemasse auch Füllstoffe, beispielhaft, aber nicht einschränkend erwähnt seien Oxide, Hydroxide, Carbonate, Nitride, Halogenide, Carbide oder gemischte Oxid-/Hydroxid-/Halogenidverbindungen des Aluminiums, Siliciums, Zirkoniums, Titans, Zinns, Zinks, Eisens oder der (Erd)alkalimetalle. Hierbei handelt es sich im Wesentlichen um Tonerden z. B. Aluminiumoxide, Boehmit, Bayerit, Gibbsit, Diaspor und ähnliche. Ganz besonders geeignet sind Schichtsilicate wie beispielsweise Bentonit, Montmorillonit, Hydrotalcit, Hectorit, Kaolinit, Boehmit, Glimmer, Vermiculit oder deren Mischungen. Aber auch Ruße oder weitere Modifikationen des Kohlenstoffs, etwa Kohlenstoffnanoröhrchen können verwendet werden.
  • Bevorzugt werden als Füllstoffe der Haftklebmasse nanoskalige und/oder transparente Füllstoffe verwendet. Als nanoskalig wird ein Füllstoff vorliegend bezeichnet, wenn er in mindestens einer Dimension eine maximale Ausdehnung von etwa 100 nm, bevorzugt von etwa 10 nm, aufweist. Besonders bevorzugt werden solche in der Masse transparente Füllstoffe mit plättchenförmiger Kristallitstruktur und einem hohen Aspektverhältnis bei homogener Verteilung verwendet. Die Füllstoffe mit plättchenartiger Kristallitstruktur und Aspektverhältnissen weit über 100 haben in der Regel nur eine Dicke von einigen nm, die Länge bzw. die Breite der Kristallite kann aber bis zu einigen μm betragen. Derartige Füllstoffe werden ebenfalls als Nanopartikel bezeichnet. Die partikuläre Ausgestaltung der Füllstoffe mit kleinen Abmessungen ist zudem besonders vorteilhaft für eine transparente Auslegung der Haftklebemasse.
  • Durch den Aufbau labyrinthartiger Strukturen mithilfe der zuvor beschriebenen Füllstoffe in der Klebstoffmatrix wird der Diffusionsweg von zum Beispiel Sauerstoff und Wasserdampf derartig verlängert, dass ihre Permeation durch die Klebstoffschicht hindurch vermindert wird. Zur besseren Dispergierbarkeit dieser Füllstoffe in der Bindemittelmatrix können diese Füllstoffe mit organischen Verbindungen oberflächlich modifiziert: werden. Der Einsatz derartiger Füllstoffe an sich ist beispielsweise aus der US 2007/0135552 A1 sowie der WO 02/026908 A1 bekannt.
  • In einer weiteren vorteilhaften Ausführung der vorliegenden Erfindung werden auch Füllstoffe, die mit Sauerstoff und/oder Wasserdampf in besonderer Weise Wechselwirken können, eingesetzt. In die (opto-)elektronische Anordnung eindringender Sauerstoff oder Wasserdampf wird dann an diesen Füllstoffen chemisch oder physikalisch gebunden. Diese Füllstoffe werden auch als „getter”, „scavenger”, „desiccants” oder „absorber” bezeichnet. Solche Füllstoffe umfassen beispielhaft, aber nicht einschränkend: oxidierbare Metalle, Halide, Salze, Silicate, Oxide, Hydroxide, Sulfate, Sulfite, Carbonate von Metallen und Übergangsmetallen, Perchlorate und aktivierten Kohlenstoff, einschließlich seiner Modifikationen. Beispiele sind Cobaltchlorid, Calciumchlorid, Calciumbromid, Lithiumchlorid, Zinkchlorid, Zinkbromid, Siliciumdioxid (Silica Gel), Aluminiumoxid (aktiviertes Aluminium), Calciumsulfat, Kupfersulfat, Natriumdithionit, Natriumcarbonat, Magnesiumcarbonat, Titandioxid, Bentonit, Montmorillonit, Diatomenerde, Zeolithe und Oxide von (Erd)Alkalimetallen, wie Bariumoxid, Calciumoxid, Eisenoxid und Magesiumoxid oder auch Kohlenstoffnanoröhrchen. Desweiteren können auch organische Absorber eingesetzt werden, beispielsweise Polyolefin-Copolymere, Polyamid-Copolymere, PET-Copolyester oder weitere auf Hybridpolymeren basierte Absorber, die meist in Kombination mit Katalysatoren wie beispielsweise Cobalt verwendet werden. Weitere organische Absorber sind etwa schwach vernetzte Polyacrylsäure, Ascorbate, Glucose, Gallussäure oder ungesättigte Fette und Öle.
  • Um eine möglichst gute Wirksamkeit der Füllstoffe hinsichtlich der Barrierewirkung zu erzielen sollte ihr Anteil nicht zu gering sein. Der Anteil beträgt vorzugsweise mindestens 5 Gew.-%, weiter bevorzugt mindestens 10 Gew.-% und ganz bevorzugt mindestens 15 Gew.-%. Typischerweise wird ein möglichst hoher Anteil von Füllstoffen eingesetzt, ohne dabei die Klebkräfte der Haftklebemasse zu stark herabzusetzen oder weitere Eigenschaften zu beeinträchtigen. Der Anteil beträgt daher in einer Auslegung maximal 95 Gew.-%, bevorzugt maximal 70 Gew.-%, weiter bevorzugt maximal 50 Gew.-%.
  • Des Weiteren ist eine möglichst feine Verteilung und möglichst hohe Oberfläche der Füllstoffe vorteilhaft. Dies ermöglicht einen höheren Wirkungsgrad und eine höhere Beladungskapazität und wird insbesondere mit nanoskaligen Füllstoffen erreicht.
  • Die Herstellung und Verarbeitung der Haftklebemasse kann aus Lösung, Dispersion sowie aus der Schmelze erfolgen. Bevorzugt erfolgt die Herstellung und Verarbeitung aus Lösung oder aus der Schmelze. Besonders bevorzugt ist die Fertigung der Klebmasse aus Lösung. Dabei werden die Bestandteile der Haftklebemasse in einem geeigneten Lösungsmittel, zum Beispiel Toluol oder Mischungen aus Benzin und Aceton, gelöst und mit allgemein bekannten Verfahren auf den Träger aufgebracht. Bei der Verarbeitung aus der Schmelze können dies Auftragsverfahren über eine Düse oder einen Kalander sein. Bei Verfahren aus der Lösung sind Beschichtungen mit Rakeln, Messern, Walzen oder Düsen bekannt, um nur einige zu nennen.
  • Die Haftklebemasse kann entweder zur vollflächigen Verklebung von (opto-)elektronischen Anordnungen verwendet werden oder nach entsprechender Konfektionierung können Stanzlinge, Rollen oder sonstige Formkörper aus der Haftklebemasse oder dem Haftklebeband hergestellt werden. Entsprechende Stanzlinge und Formkörper der Haftklebemasse/des Haftklebebandes werden dann vorzugsweise auf das zu verklebende Substrat aufgeklebt, etwa als Umrandungen oder Begrenzung einer (opto-)elektronischen Anordnung. Die Wahl der Form des Stanzlings oder des Formkörpers ist nicht eingeschränkt und wird abhängig von der Art der (opto-)elektronischen Anordnung gewählt. Die Möglichkeit der flächigen Laminierung ist, im Vergleich zu Flüssigklebstoffen durch die Erhöhung der Permeationsweglänge durch seitliches Eindringen der Permeanten von Vorteil für die Barriereeigenschaften der Masse, da die Permeationsweglänge sich umgekehrt proportional auf die Permeation auswirkt.
  • Sofern die Haftklebemasse in Form eines flächigen Gebildes mit einem Träger bereitgestellt wird, ist bevorzugt, dass die Dicke des Trägers bevorzugt im Bereich von etwa μm 1 bis etwa 350 μm liegt, weiter bevorzugt zwischen etwa 4 μm und etwa 250 μm und besonders bevorzugt zwischen etwa 12 μm und etwa 150 μm. Die optimale Dicke hängt von der (opto-)elektronischen Anordnung, der Endanwendung und der Art der Ausführung der Haftklebemasse ab.
  • Weitere Einzelheiten, Ziele, Merkmale und Vorteile der vorliegenden Erfindung werden nachfolgend anhand bevorzugter Ausführungsbeispiele näher erläutert. In der Zeichnung zeigt
  • 1 eine erste (opto-)elektronische Anordnung in schematischer Darstellung,
  • 2 eine zweite (opto-)elektronische Anordnung in schematischer Darstellung,
  • 3 eine dritte (opto-)elektronische Anordnung in schematischer Darstellung.
  • 1 zeigt eine erste Ausgestaltung einer (opto-)elektronischen Anordnung 1. Diese Anordnung 1 weist ein Substrat 2 auf, auf dem eine elektronische Struktur 3 angeordnet ist. Das Substrat 2 selbst ist als Barriere für Permeanten ausgebildet und bildet damit einen Teil der Kapselung der elektronischen Struktur 3. Oberhalb der elektronischen Struktur 3, vorliegend auch räumlich von dieser beabstandet, ist eine weitere als Barriere ausgebildete Abdeckung 4 angeordnet.
  • Um die elektronische Struktur 3 auch zur Seite hin zu kapseln und gleichzeitig die Abdeckung 4 mit der elektronischen Anordnung 1 im Übrigen zu verbinden, ist eine Haftklebemasse 5 umlaufend neben der elektronischen Struktur 3 auf dem Substrat 2 vorgesehen. Die Haftklebemasse 5 verbindet die Abdeckung 4 mit dem Substrat 2. Durch eine entsprechend dicke Ausgestaltung ermöglicht die Haftklebemasse 5 zudem die Beabstandung der Abdeckung 4 von der elektronischen Struktur 3.
  • Bei der Haftklebemasse 5 handelt es sich um eine solche auf Basis von Vinylaromatenblockcopolymeren wie sie vorstehend in allgemeiner Form beschrieben wurde und nachfolgend in Ausführungsbeispielen näher dargelegt ist. Die Haftklebemasse 5 übernimmt vorliegend nicht nur die Funktion des Verbindens des Substrats 2 mit der Abdeckung 4 sondern bildet zudem auch eine Barriereschicht für Permeanten bereit, um so die elektronische Struktur 2 auch von der Seite gegen Permeanten wie Wasserdampf und Sauerstoff zu kapseln.
  • Die Haftklebemasse 5 wird vorliegend zudem in Form eines Stanzlings aus einem doppelseitigen Klebebandes bereitgestellt. Ein derartiger Stanzling ermöglicht eine besonders einfache Applikation.
  • 2 zeigt eine alternative Ausgestaltung einer (opto-)elektronischen Anordnung 1. Gezeigt ist wiederum eine elektronische Struktur 3, die auf einem Substrat 2 angeordnet und durch das Substrat 2 von unten gekapselt ist. Oberhalb und seitlich von der elektronischen Struktur ist nun die Haftklebemasse 5 vollflächig angeordnet. Die elektronische Struktur 3 wird somit an diesen Stellen durch die Haftklebemasse 5 gekapselt. Auf die Haftklebemasse 5 ist sodann eine Abdeckung 4 aufgebracht. Diese Abdeckung 4 muss im Gegensatz zu der vorherigen Ausgestaltung nicht zwingend die hohen Barriereanforderungen erfüllen, da die Barriere bereits durch die Haftklebemasse bereitgestellt wird. Die Abdeckung 4 kann beispielsweise lediglich eine mechanische Schutzfunktion wahrnehmen, sie kann aber auch zusätzlich als Permeationsbarriere vorgesehen sein.
  • 3 zeigt eine weitere alternative Ausgestaltung einer (opto-)elektronischen Anordnung 1. Im Gegensatz zu den vorherigen Ausgestaltungen sind nun zwei Haftklebemassen 5a, b vorgesehen, die vorliegend identisch ausgebildet sind. Die erste Haftklebemasse 5a ist vollflächig auf dem Substrat 2 angeordnet. Auf der Haftklebemasse 5a ist dann die elektronische Struktur 3 vorgesehen, die durch die Haftklebemasse 5a fixiert wird. Der Verbund aus Haftklebemasse 5a und elektronischer Struktur 3 wird dann mit der weiteren Haftklebemasse 5b vollflächig überdeckt, so dass die elektronische Struktur 3 von allen Seiten durch die Haftklebemassen 5a, b gekapselt ist. Oberhalb der Haftklebemasse 5b ist dann wiederum die Abdeckung 4 vorgesehen.
  • In dieser Ausgestaltung müssen somit weder das Substrat 2 noch die Abdeckung 4 zwingend Barriereeigenschaften aufweisen. Sie können aber dennoch vorgesehen sein, um die Permeation von Permeanten zur elektronischen Struktur 3 weiter einzuschränken.
  • Insbesondere im Hinblick auf die 2, 3 wird darauf hingewiesen, dass es sich vorliegend um schematische Darstellungen handelt. Aus den Darstellungen ist nicht ersichtlich, dass die Haftklebemasse 5 jeweils mit einer homogenen Schichtdicke aufgetragen wird. Am Übergang zur elektronischen Struktur bildet sich daher keine scharfe Kante, wie es in der Darstellung scheint, sondern der Übergang ist fließend und es können vielmehr kleine un- oder gasgefüllte Bereiche verbleiben. Ggf. kann jedoch auch eine Anpassung an den Untergrund erfolgen, insbesondere dann, wenn die Applikation unter Vakuum durchgeführt wird. Zudem wird die Haftklebemasse lokal unterschiedlich stark komprimiert, so dass durch Fließprozesse ein gewisser Ausgleich der Höhendifferenz an den Kantenstrukturen erfolgen kann. Auch die gezeigten Dimensionen sind nicht maßstäblich, sondern dienen vielmehr nur einer besseren Darstellung. Insbesondere die elektronische Struktur selbst ist in der Regel relativ flach ausgebildet (oft weniger als 1 μm dick).
  • Die Applikation der Haftklebemasse 5 erfolgt in allen gezeigten Ausführungsbeispielen in Form eines Haftklebebandes. Dabei kann es sich grundsätzlich um ein doppelseitiges Haftklebeband mit einem Träger oder um ein Transferklebeband handeln. Vorliegend ist eine Ausgestaltung als Transferklebeband gewählt.
  • Die Dicke der Haftklebemasse, die entweder als Transferklebeband oder auf einem flächigen Gebilde beschichtet vorliegt, beträgt bevorzugt zwischen etwa 1 μm und etwa 150 μm, weiter bevorzugt zwischen etwa 5 μm und etwa 75 μm und besonders bevorzugt zwischen etwa 12 μm und 50 μm. In den bevorzugten Dickenbereichen liegt ein guter Kompromiss zwischen einer geringen Massendicke und dem daraus folgenden niedrigen Permeationsquerschnitt, der die Permeation verringert, und einem genügend dicken Massefilm zur Herstellung einer ausreichend haftenden Verbindung vor. Die optimale Dicke hängt vom (opto-)elektronischen Aufbau, der Endanwendung, der Art der Ausführung der Haftklebemasse und gegebenenfalls dem flächigen Substrat ab.
  • Beispiele
  • Sofern nicht anders angegeben, sind alle Mengenangaben in den nachfolgenden Beispielen Gewichtsprozente bzw. Gewichtsteile bezogen auf die Gesamtzusammensetzung.
  • Prüfmethoden
  • Klebkraft
  • Die Bestimmung der Klebkraft wurde wie folgt durchgeführt: Als definierter Haftgrund wurde eine Stahlfläche, eine Polyethylenterephthalat-(PET) und eine Polyethylen-Platte (PE) eingesetzt. Das zu untersuchende verklebbare Flächenelement wurde auf eine Breite von 20 mm und eine Länge von etwa 25 cm zugeschnitten, mit einem Handhabungsabschnitt versehen und unmittelbar danach fünfmal mit einer Stahlrolle von 4 kg bei einem Vorschub von 10 m/min auf den jeweils gewählten Haftgrund aufgedrückt. Unmittelbar im Anschluss daran wurde das zuvor verklebte Flächenelement in einem Winkel von 180° bei Raumtemperatur und mit 300 mm/min vom Haftgrund mit einem Zugprüfungsgerät (Firma Zwick) abgezogen und die hierfür benötigte Kraft gemessen. Der Messwert (in N/cm) ergab sich als Mittelwert aus drei Einzelmessungen.
  • Shear Adhesion Failure Temperature (SAFT)
  • Die Bestimmung der SAFT wurde wie folgt durchgeführt: Als definierter Haftgrund wurde eine polierte Stahlfläche eingesetzt. Das zu untersuchende verklebbare Flächenelement wurde auf eine Breite von 10 mm und eine Länge von etwa 5 cm zugeschnitten und unmittelbar danach dreimal mit einer Stahlrolle von 2 kg bei einem Vorschub von 10 m/min auf den jeweils gewählten Haftgrund mit einer Fläche von 10 × 13 mm aufgedrückt. Unmittelbar im Anschluss daran wurde das zuvor verklebte Flächenelement in einem Winkel von 180° mit 0,5 N belastet und eine Temperaturrampe von 9°C/min gefahren. Dabei wurde die Temperatur gemessen, bei der die Probe eine Rutschstrecke von 1 mm zurückgelegt hat. Der Messwert (in °C) ergibt sich als Mittelwert aus zwei Einzelmessungen.
  • Transmission
  • Die Transmission der Klebemasse wurde über das VIS-Spektrum bestimmt. Die Aufnahmen des VIS-Spektrums wurden an einem UVIKON 923 der Firma Kontron durchgeführt. Der Wellenlängenbereich des gemessenen Spektrums umfasst alle Frequenzen zwischen 800 nm und 400 nm bei einer Auflösung von 1 nm. Dazu wurde die Klebemasse auf einen PET-Träger aufgebracht und vor der Messung wurde eine Leerkanalmessung des Trägers als Referenz über den gesamten Wellenlängenbereich durchgeführt. Für die Angabe des Ergebnisses wurden die Transmissionsmessungen im angegebenen Bereich gemittelt.
  • Permeation
  • Die Bestimmung der Permeabilität für Sauerstoff (OTR) und Wasserdampf (WVTR) erfolgte nach DIN 53380 Teil 3 bzw. ASTM F-1249. Die Haftklebemasse wurde dazu mit einer Schichtdicke von 50 μm auf eine permeable Membran aufgebracht. Für die Sauerstoffdurchlässigkeit wurde bei 23°C und einer relativen Feuchte von 50% gemessen. Die Wasserdampfdurchlässigkeit wurde bei 37,5°C und einer relativen Feuchte von 90% bestimmt.
  • Biegetest
  • Für die Bestimmung der Flexibilität wurde die Klebemasse in einer Schichtdicke von 50 μm zwischen zwei 23 μm PET-Trägern beschichtet und auf einen Biegeradius von 1 mm bei einer Biegung von 180° geprüft. Bestanden ist der Test, falls es nicht zum Bruch oder Ablösen der Schicht kommt.
  • Lebensdauertest
  • Als ein Maß für die Bestimmung der Lebensdauer eines (opto-)elektronischen Aufbaus wurde ein Calciumtest herangezogen. Dazu wird unter Stickstoffatmosphäre eine 20 × 20 mm2 große, dünne Calciumschicht auf eine Glasplatte abgeschieden. Die Dicke der Calciumschicht liegt bei etwa 100 nm. Für die Verkapselung der Calciumschicht wird ein Klebeband mit einer PET-Barrierefolie als Trägermaterial verwendet (WVTR = 8 × 10–2 g/m2·d und OTR = 6 × 10–2 cm3/m2·d·bar, entsprechend nach ASTM F-1249 und DIN 53380 Teil 3 und oben genannten Bedingungen). Das Klebeband wird mit einem allseitigen Rand von 5 mm über dem Calciumspiegel appliziert, in dem es direkt auf der Glasplatte haftet.
  • Der Test basiert auf der Reaktion von Calcium mit Wasserdampf und Sauerstoff, wie sie beispielsweise von A.G. Erlat et. al. in „47th Annual Technical Conference Proceedings-Society of Vacuum Coaters", 2004, Seiten 654–659, und von M. E. Gross et al. in „46th Annual Technical Conference Proceedings-Society of Vacuum Coaters", 2003, Seiten 89–92, beschrieben sind. Dabei wird die Lichttransmission der Calciumschicht überwacht, welche durch die Umwandlung in Calciumhydroxid und Calciumoxid zunimmt. Das Erreichen von 90% der Transmission des Aufbaus ohne Calciumschicht wird als Ende der Lebensdauer bezeichnet. Als Messbedingungen werden 23°C und 50% relative Luftfeuchte gewählt. Die Muster wurden mit einer Schichtdicke der Haftklebemasse von 25 μm vollflächig und blasenfrei verklebt.
  • Herstellung der Muster
  • Die Haftklebemassen in Beispiel 1 bis 4 wurden aus Lösung hergestellt. Dazu wurden die einzelnen Bestandteile in Toluol gelöst (Feststoffanteil 40%) und auf eine unbehandelte PET-Folie beschichtet und bei 120°C 15 Minuten lang getrocknet, so dass eine Klebmasseschicht mit einem Flächengewicht von 50 g/m2 entstand. Für den Permeationstest wurden Muster in gleicher Weise erstellt, jedoch erfolgte die Beschichtung nicht auf eine PET-Folie sondern auf ein mit 1,5 g/m2 silikonisiertes Trennpapier, so dass nach dem Transfer auf die permeable Membran eine Messung an der puren Haftklebemasse vorgenommen werden konnte. Beispiel 1
    100 Teile Vector 4113 SIS mit 15% Blockpolystyrolgehalt der Firma Dexco Das SIS enthielt ca. 20% Zweiblockgehalt.
    100 Teile Escorez 5600 Hydriertes KW-Harz (Kohlenwasserstoffharz) mit einem Erweichungspunkt von 100°C der Firma Exxon
    25 Teile Ondina G 17 Weißöl aus 66% parafinischen und 34% naphtenischen Anteilen der Firma Shell
    Beisiel 2
    100 Teile Kraton G 1657 SEES mit 13% Blockpolystyrolgehalt der Firma Kraton Das SEES enthielt ca. 36% Zweiblockgehalt.
    100 Teile Escorez 5600 Hydriertes KW-Harz mit einem Erweichungspunkt von 100°C der Firma Exxon
    25 Teile Ondina G 17 Weißöl aus parafinischen und naphtenischen Anteilen der Firma Shell
    Beispiel 3
    100 Teile Tuftec P 1500 SBBS mit 30% Blockpolystyrolgehalt der Firma Asahi Das SBBS enthielt ca. 68% Zweiblockgehalt.
    100 Teile Escorez 5600 Hydriertes KW-Harz mit einem Erweichungspunkt von 100°C der Firma Exxon
    25 Teile Ondina G 17 Weißöl aus parafinischen und naphtenischen Anteilen der Firma Shell
    Beispiel 4
    70 Teile Tuftec P 1500 SBBS mit 30% Blockpolystyrolgehalt der Firma Asahi Das SBBS enthielt ca. 68% Zweiblockgehalt.
    30 Teile Kraton G 1657 SEES mit 13% Blockpolystyrolgehalt der Firma Kraton Das SEES enthielt ca. 36% Zweiblockgehalt.
    100 Teile Escorez 5600 Hydriertes KW-Harz mit einem Erweichungspunkt von 100°C der Firma Exxon
    25 Teile Ondina G 17 Weißöl aus parafinischen und naphtenischen Anteilen der Firma Shell
  • Vergleichsbeispiel V1
  • Es wurde ein Acrylat mit der Zusammensetzung 78% EHA, 19% Stearylacrylat und 3% Acrylsäure in Aceton und Benzin polymerisiert und aus der Lösung auf einen unbehandelten PET-Träger (bzw. für die Permeationsmessungen auf ein mit 1,5 g/m2 silikonisiertes Trennpapier) beschichtet, bei 120°C für 15 min getrocknet und mit 0,2% Aluminiumchelat bezogen auf den Anteil Acrylat vernetzt. Die Dicke der Klebeschicht beträgt 50 μm.
  • Vergleichsbeispiel V2
  • Eine Mischung aus 60% Levamelt 456 (Stylen-Vinylacetat) und 40% Foral 85 werden in Aceton gelöst und aus der Lösung auf einen unbehandelten PET-Träger (bzw. für die Permeationsmessungen auf ein mit 1,5 g/m2 silikonisiertes Trennpapier) beschichtet und bei 120°C für 15 min getrocknet. Die Dicke der Klebeschicht beträgt 50 μm.
  • Vergleichsbeispiel V3
  • Die kommerziell erhältliche Silikonhaftklebemasse Silgrip PSA 529 von GE Bayer Silikons wird mit Benzoylperoxid abgemischt und aus der Lösung auf einen unbehandelten PET-Träger (bzw. für die Permeationsmessungen auf ein mit 1,5 g/m2 silikonisiertes Trennpapier) beschichtet und bei 120°C für 15 min getrocknet und vernetzt.
  • Die Dicke der Klebeschicht beträgt 50 μm.
  • Vergleichsbeispiel V4
  • Ein kommerziell erhältliches UV-härtendes Epoxid von Epo-Tek OG142 wurde auf eine PET-Folie in einer Dicke von 50 μm ausgestrichen und mit 160 W/cm mit einer Mitteldruck – Quecksilberdampflampe bei einer Bahngeschwindigkeit von 10 m/min ausgehärtet. Für die Bestimmung der Permeation wurde das Muster auf silikonisiertes Trennpapier beschichtet und abgezogen.
  • Ergebnisse:
  • Zur klebtechnischen Beurteilung der oben genannten Beispiele wurden zunächst die Klebkraft, der SAFT-Test, Tack und der Test auf Flexibilität durchgeführt.
    Klebkraft [N/cm] Stahl/PET/PE SAFT [°C] Biegetest
    Beispiel 1 10,7/9,5/7,4 120 bestanden
    Beispiel 2 4,2/3,9/3,6 110 bestanden
    Beispiel 3 7,3/6,2/5,7 98 bestanden
    Beispiel 4 6,5/6,3/5,7 105 bestanden
    V1 9,5/5,5/4,2 145 bestanden
    V2 5,5/3,5/0,9 75 bestanden
    V3 5,5/5,7/3,9 87 bestanden
    V4 - - nicht bestanden
    Tabelle 1
  • Wie zu erkennen ist, konnten in den Beispielen 1 bis 4 hohe und auf allen Untergründen ähnliche hohe Klebkräfte und gute Beständigkeiten bei erhöhten Temperaturen erreicht werden, die mit Haftklebemassen basierend auf einer anderen chemischen Struktur (V1 bis V3) mindestens vergleichbar oder besser sind. Der Vergleich zu V4 zeigt die hohe Flexibilität der Haftklebemassen gegenüber hochvernetzenden Epoxiden.
  • Die Ergebnisse der Permeations- und Transmissionsmessungen sind in Tabelle 2 zu finden.
    WVTR g/(m2·Tag) OTR g/m2·Tag·bar) Transmission [%]
    Beispiel 1 42 4.230 89
    Beispiel 2 89 7.280 88
    Beispiel 3 33 8.500 91
    Beispiel 4 53 6.900 87
    V1 320 40.250 90
    V2 > 1.000 62.000 92
    V3 > 1.000 75.000 93
    V4 27 35 93
    Tabelle 2
  • Wie zu erkennen ist, ist die Permeabilität der Haftklebemassen aus Beispiel 1 bis Beispiel 4 im Vergleich zu V1 bis V3 sehr viel geringer und die Transmission im sichtbaren Bereich des Lichts ähnlich. Die Wasserdampfpermeabilität des vernetzten Epoxides und der Blockcopolymere ist ähnlich, die Sauerstoffdurchlässigkeit liegt bei den Blockcopolymeren höher. Die Transmission liegt für alle Beispiele in einem ähnlichen Bereich. Ergebnisse des Lebensdauertests:
    Lebensdauer [h]
    Beispiel 3 320
    V2 22
    V3 12
    Tabelle 3
  • Die Lebensdauertests zeigen im Vergleich zu anderen Haftklebemassen deutlich die sehr viel bessere Barrierewirkung und die daraus resultierende Verlängerung der Lebensdauer des Messaufbaus.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - WO 98/21287 A^1 [0014]
    • - US 4051195 A [0014]
    • - US 4552604 A [0014]
    • - US 2004/0225025 A1 [0017]
    • - US 2006/0100299 A1 [0019]
    • - US 2006/0100299 [0021]
    • - WO 2007/087281 A1 [0023]
    • - WO 03/065470 A1 [0026]
    • - US 4985499 A1 [0027]
    • - US 2002/0188053 A1 [0028]
    • - EP 1311559 B1 [0065]
    • - US 2007/0135552 A1 [0069]
    • - WO 02/026908 A1 [0069]
  • Zitierte Nicht-Patentliteratur
    • - DIN 53380 Teil 3 [0042]
    • - ASTM F-1249 [0042]
    • - „Chemistry and Technology of UV and EB formulation for Coatings, Inks and Paints” (Vol. 1, 1991, SITA, London) [0063]
    • - DIN 53380 Teil 3 [0094]
    • - ASTM F-1249 [0094]
    • - ASTM F-1249 [0096]
    • - DIN 53380 Teil 3 [0096]
    • - A.G. Erlat et. al. in „47th Annual Technical Conference Proceedings-Society of Vacuum Coaters”, 2004, Seiten 654–659 [0097]
    • - M. E. Gross et al. in „46th Annual Technical Conference Proceedings-Society of Vacuum Coaters”, 2003, Seiten 89–92 [0097]

Claims (21)

  1. Verfahren zur Kapselung einer elektronischen Anordnung gegen Permeanten, bei dem eine Haftklebmasse auf Basis von Vinylaromatenblockcopolymeren bereitgestellt wird und bei dem die Haftklebemasse auf und/oder um die zu kapselnden Bereiche der elektronischen Anordnung appliziert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Haftklebemasse in Form eines Klebebandes bereitgestellt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Haftklebemasse nach der Applikation auf der elektronischen Anordnung vernetzt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Applikation der Haftklebemasse ohne anschließendes Aushärten erfolgt.
  5. Verwendung einer Haftklebmasse zur Kapselung einer elektronischen Anordnung gegen Permeanten, insbesondere in einem Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Haftklebemasse auf Vinylaromatenblockcopolymeren basiert.
  6. Verwendung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Haftklebemasse Polymerblöcke gebildet aus Vinylaromaten, insbesondere Styrol, enthält, und dass die Haftklebemasse Polymerblöcke gebildet durch Polymerisation von 1,3-Dienen, insbesondere Butadien und/oder Isopren, und/oder spezifisch oder vollständig hydrierte Polymerblöcke enthält.
  7. Verwendung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Blockcopolymere einen Polyvinylaromatenanteil von 10 Gew.-% bis 35 Gew.-% aufweisen.
  8. Verwendung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Haftklebemasse einen Anteil der Vinylaromatenblockcopolymere von mindestens 20 Gew.-%, vorzugsweise von mindestens 30 Gew.-%, weiter bevorzugt von mindestens 35 Gew.-%, aufweist und/oder dass die Haftklebemasse einen Anteil der Vinylaromatenblockcopolymere von maximal 80 Gew.-%, vorzugsweise von maximal 65 Gew.-%, weiter bevorzugt von maximal 60 Gew.-%, aufweist
  9. Verwendung nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die Haftklebemasse einen Harz oder ein Harzgemisch enthält, vorzugsweise hydrierte Harze mit einem Hydrierungsgrad von mindestens 90%, weiter bevorzugt von mindestens 95%.
  10. Verwendung nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass die Haftklebemasse zumindest ein Harz enthält, das einen DACP-Wert von mehr als 30°C und einen MMAP-Wert von mehr als 50°C aufweist, vorzugsweise einen DACP-Wert von mehr als 37°C und einen MMAP-Wert von mehr als 60°C, und/oder dass die Haftklebemasse zumindest ein Harz enthält, das eine Erweichungstemperatur von mehr als 95°C, insbesondere von mehr als 100°C aufweist.
  11. Verwendung nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, dass die Haftklebemasse ein oder mehrere Additive enthält, vorzugsweise ausgewählt aus der Gruppe bestehend aus: Plastifizierungsmitteln, primären Antioxidanzien, sekundären Antioxidanzien, Prozessstabilisatoren, Lichtschutzmitteln, Verarbeitungshilfsmittel, Endblockverstärkerharzen, Polymeren, insbesondere elastomerer Natur.
  12. Verwendung nach einem der Ansprüche 5 bis 11, dadurch gekennzeichnet, dass die Haftklebemasse einen oder mehrere Füllstoffe enthält, vorzugsweise nanoskalige Füllstoffe, transparente Füllstoffe und/oder Getter- und/oder Scavenger-Füllstoffe.
  13. Verwendung nach Anspruch 12, dadurch gekennzeichnet, dass die Füllstoffe in mindestens einer Dimension nanoskalig ausgebildet sind
  14. Verwendung nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass die Haftklebemasse einen Anteil der Füllstoffe von mindestens 5 Gew.-%, vorzugsweise von mindestens 10 Gew.-%, weiter bevorzugt von mindestens 15 Gew.-%, aufweist und/oder dass die Haftklebemasse einen Anteil der Füllstoffe von maximal 95 Gew.-%, vorzugsweise von maximal 70 Gew.-%, weiter bevorzugt von maximal 50 Gew.-%, aufweist.
  15. Verwendung nach einem der Ansprüche 5 bis 14, dadurch gekennzeichnet, dass die Haftklebemasse transparent ausgebildet ist, vorzugsweise, dass die Haftklebemasse im Wellenlängenbereich von 400 nm bis 800 nm einem mittleren Transmissionsgrad von mindestens 75%, weiter bevorzugt von mindestens 90%, aufweist.
  16. Verwendung nach einem der Ansprüche 5 bis 15, dadurch gekennzeichnet, dass die Haftklebemasse UV-blockend im Wellenlängenbereich von 320 nm bis 400 nm ausgebildet ist, vorzugsweise im Wellenlängenbereich von 280 nm bis 400 nm, weiter vorzugsweise im Wellenlängenbereich von 190 nm bis 400 nm, wobei als UV-blockend ein mittlerer Transmissionsgrad von maximal 20%, vorzugsweise von maximal 10%, weiter bevorzugt von maximal 1% bezeichnet wird.
  17. Verwendung nach einem der Ansprüche 5 bis 16, dadurch gekennzeichnet, dass die Haftklebemasse, insbesondere nach einer Vernetzung, eine Reißdehnung von mindestens 20% aufweist.
  18. Verwendung nach einem der Ansprüche 5 bis 17, dadurch gekennzeichnet, dass die Haftklebemasse eine WVTR kleiner 100 g/m2·d, vorzugsweise kleiner 40 g/m2·d aufweist und/oder dass die Haftklebemasse eine OTR kleiner 10000 g/m2·d·bar, vorzugsweise kleiner 5000 g/m2·d·bar, aufweist
  19. Verwendung nach einem der Ansprüche 5 bis 18, dadurch gekennzeichnet, dass die Haftklebemasse als Klebeband, insbesondere als trägerfreies Klebeband, ausgebildet ist.
  20. Verwendung nach einem der Ansprüche 5 bis 19, dadurch gekennzeichnet, dass die Schichtdicke der Haftklebemasse in dem Klebeband mindestens 1 μm, vorzugsweise mindestens 5 μm, weiter bevorzugt mindestens 12 μm, beträgt und/oder dass die Schichtdicke der Haftklebemasse in dem Klebeband maximal 150 μm, vorzugsweise maximal 75 μm, weiter bevorzugt maximal 50 μm, beträgt.
  21. Elektronische Anordnung mit einer elektronischen Struktur, insbesondere einer organischen elektronischen Struktur, und einer Haftklebmasse, wobei die elektronische Struktur zumindest teilweise durch die Haftklebmasse gekapselt ist, dadurch gekennzeichnet, dass die Haftklebmasse gemäß einem der Ansprüche 5 bis 20 ausgebildet ist.
DE102008047964A 2008-09-18 2008-09-18 Verfahren zur Kapselung einer elektronischen Anordnung Withdrawn DE102008047964A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE102008047964A DE102008047964A1 (de) 2008-09-18 2008-09-18 Verfahren zur Kapselung einer elektronischen Anordnung
EP09168770.7A EP2166593B1 (de) 2008-09-18 2009-08-27 Verfahren zur Kapselung einer elektronischen Anordnung
US12/549,767 US9627646B2 (en) 2008-09-18 2009-08-28 Method for encapsulating an electronic arrangement
CA2678273A CA2678273A1 (en) 2008-09-18 2009-09-09 Method for encapsulating an electronic arrangement
TW098131177A TWI521038B (zh) 2008-09-18 2009-09-16 封裝電子元件之方法
JP2009215102A JP2010074165A (ja) 2008-09-18 2009-09-17 電子的装置のカプセル化方法
KR1020090088015A KR101696201B1 (ko) 2008-09-18 2009-09-17 전자 장치의 갭슐화 방법
CN200910175912.1A CN101677072B (zh) 2008-09-18 2009-09-18 封装电子装置的方法
JP2015086431A JP6228566B2 (ja) 2008-09-18 2015-04-21 電子的装置のカプセル化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008047964A DE102008047964A1 (de) 2008-09-18 2008-09-18 Verfahren zur Kapselung einer elektronischen Anordnung

Publications (1)

Publication Number Publication Date
DE102008047964A1 true DE102008047964A1 (de) 2010-03-25

Family

ID=41363192

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102008047964A Withdrawn DE102008047964A1 (de) 2008-09-18 2008-09-18 Verfahren zur Kapselung einer elektronischen Anordnung

Country Status (8)

Country Link
US (1) US9627646B2 (de)
EP (1) EP2166593B1 (de)
JP (2) JP2010074165A (de)
KR (1) KR101696201B1 (de)
CN (1) CN101677072B (de)
CA (1) CA2678273A1 (de)
DE (1) DE102008047964A1 (de)
TW (1) TWI521038B (de)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009018518A1 (de) 2009-04-24 2010-10-28 Tesa Se Transparente Barrierelaminate
DE102009036970A1 (de) 2009-08-12 2011-02-17 Tesa Se Verfahren zur Kapselung einer elektronischen Anordnung
WO2011018356A1 (de) 2009-08-12 2011-02-17 Tesa Se Verfahren zur kapselung einer elektronischen anordnung
WO2012019909A1 (de) 2010-08-13 2012-02-16 Tesa Se Verfahren zur kapselung einer elektronischen anordnung
DE102010043871A1 (de) 2010-11-12 2012-05-16 Tesa Se Klebmasse und Verfahren zur Kapselung einer elektronischen Anordnung
DE102010043866A1 (de) 2010-11-12 2012-05-16 Tesa Se Klebmasse und Verfahren zur Kapselung einer elektronischen Anordnung
WO2012076262A1 (de) 2010-12-10 2012-06-14 Tesa Se Klebmasse und verfahren zur kapselung einer elektronischen anordnung
WO2013020767A1 (de) 2011-08-10 2013-02-14 Tesa Se Elektrisch leitfähige haftklebemasse und haftklebeband
DE102011085034A1 (de) * 2011-10-21 2013-04-25 Tesa Se Klebemasse insbesondere zur Kapselung einer elektronischen Anordnung
DE102011085038A1 (de) * 2011-10-21 2013-04-25 Tesa Se Verfahren zur Kapselung einer elektronischen Anordnung
DE102012206273A1 (de) 2012-04-17 2013-10-17 Tesa Se Vernetzbare Klebmasse mit Hart- und Weichblöcken als Permeantenbarriere
DE102012211335A1 (de) 2012-06-29 2014-01-02 Tesa Se Klebeband für die Kapselung einer organischen elektronischen Anordnung
DE102012224319A1 (de) 2012-12-21 2014-06-26 Tesa Se Verfahren zum Entfernen von Permeaten aus Flächengebilden
DE102012224310A1 (de) 2012-12-21 2014-06-26 Tesa Se Gettermaterial enthaltendes Klebeband
WO2014095385A1 (de) 2012-12-21 2014-06-26 Tesa Se Verfahren zum entfernen von permeaten aus flächengebilden und klebeband dafür
DE102013202473A1 (de) 2013-02-15 2014-08-21 Tesa Se Verfahren zum Entfernen von Permeaten aus Flächengebilden
DE102014200948A1 (de) 2014-01-20 2015-07-23 Tesa Se Verfahren zum Entfernen von Permeaten aus Flächengebilden
DE102014207074A1 (de) 2014-04-11 2015-10-15 Tesa Se Klebeband für die Kapselung einer organischen elektronischen Anordnung
WO2015162013A1 (de) 2014-04-25 2015-10-29 Tesa Se Dünnglasverbund und verfahren zum lagern einer dünnglasfolie
DE102014207837A1 (de) 2014-04-25 2015-10-29 Tesa Se Dünnglasverbund und Verfahren zur Lagerung von Dünnglas
WO2016066437A1 (de) 2014-10-29 2016-05-06 Tesa Se Klebemassen mit multifunktionellen siloxanwasserfängern
DE102015202415A1 (de) * 2015-02-11 2016-08-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Klebstoff, Verfahren zur berührungslosen Temperaturmessung des Klebstoffs und Verfahren zur verbesserten Verbindung zweier Bauteile mit Klebstoff
US9593264B2 (en) 2011-08-10 2017-03-14 Tesa Se Electrically conductive heat-activated adhesive compound
DE102015222027A1 (de) 2015-11-09 2017-05-11 Tesa Se Barriereklebemasse mit polymerem Gettermaterial
DE102016207540A1 (de) 2016-05-02 2017-11-02 Tesa Se Wasserdampfsperrende Klebemasse mit hochfunktionalisiertem Poly(meth)acrylat
DE102016213840A1 (de) 2016-07-27 2018-02-01 Tesa Se Klebeband zur Verkapselung elektronischer Aufbauten
WO2018019632A1 (de) 2016-07-28 2018-02-01 Tesa Se Oled kompatible klebemassen mit cyclischen azasilanwasserfängern
DE102017219310A1 (de) 2017-10-27 2019-05-02 Tesa Se Plasmarandverkapselung von Klebebändern
WO2019223953A1 (de) 2018-05-24 2019-11-28 Tesa Se Kombination einer transparenten vollflächigen verkapselung mit einer (intransparenten) randverkapselung mit hohem gettergehalt
US10626305B2 (en) 2014-10-29 2020-04-21 Tesa Se OLED-compatible adhesive masses having silane water scavengers
US10808153B2 (en) 2016-05-02 2020-10-20 Tesa Se Curable adhesive compound and reactive adhesive tapes based thereon
DE102020207783A1 (de) 2020-06-23 2021-12-23 Tesa Se Leitfähiger doppelseitiger Haftklebestreifen
US11390783B2 (en) 2014-10-29 2022-07-19 Tesa Se Adhesives comprising activatable getter materials

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008060113A1 (de) * 2008-12-03 2010-07-29 Tesa Se Verfahren zur Kapselung einer elektronischen Anordnung
US8652354B2 (en) * 2009-09-10 2014-02-18 Sumitomo Chemical Co. Ltd. Organic additives for improved lifetimes in organic and solution processible electronic devices
US9660218B2 (en) * 2009-09-15 2017-05-23 Industrial Technology Research Institute Package of environmental sensitive element
TWI488740B (zh) * 2012-01-06 2015-06-21 Lg Chemical Ltd 包封用膜
KR101408603B1 (ko) * 2012-08-02 2014-06-17 주식회사 엘지화학 접착 필름 및 이를 이용한 유기전자장치의 봉지 방법
DE102012219877A1 (de) * 2012-08-24 2014-02-27 Tesa Se Haftklebemasse insbesondere zur Kapselung einer elektronischen Anordnung
EP2907657A4 (de) 2012-09-28 2016-06-22 Zeon Corp Zusammengesetzes gassperrlaminat und verfahren zur herstellung davon sowie kompositelektrode
KR102068957B1 (ko) * 2012-11-28 2020-01-22 엘지디스플레이 주식회사 감광성 유기물질의 절연층을 포함하는 표시장치용 기판 및 그 제조방법
KR101449182B1 (ko) * 2012-12-21 2014-10-10 현대자동차주식회사 글라스 일체형 솔라루프 구조
JP5435520B1 (ja) * 2013-03-29 2014-03-05 古河電気工業株式会社 有機電子デバイス用素子封止用樹脂組成物、有機電子デバイス用素子封止用樹脂シート、有機エレクトロルミネッセンス素子、及び画像表示装置
KR101762778B1 (ko) 2014-03-04 2017-07-28 엘지이노텍 주식회사 무선 충전 및 통신 기판 그리고 무선 충전 및 통신 장치
US10103037B2 (en) * 2014-05-09 2018-10-16 Intel Corporation Flexible microelectronic systems and methods of fabricating the same
JP6376870B2 (ja) * 2014-07-11 2018-08-22 綜研化学株式会社 粘着性水蒸気バリア性積層体および画像表示装置
WO2016153297A1 (ko) * 2015-03-24 2016-09-29 주식회사 엘지화학 접착제 조성물
FR3041972B1 (fr) * 2015-10-05 2019-07-05 Arkema France Adhesif comprenant des copolymeres a blocs, pour l'encapsulation de dispositifs electroniques flexibles, ameliorant la protection contre la permeabilite aux gaz
DE102015220072A1 (de) * 2015-10-15 2017-04-20 Tesa Se Selbstklebeartikel und dessen Verwendung zur Verklebung auf gestrichener Raufasertapete
CN105225972B (zh) * 2015-10-22 2017-09-26 长电科技(滁州)有限公司 一种半导体封装结构的制作方法
KR102549995B1 (ko) * 2017-05-05 2023-06-29 쓰리엠 이노베이티브 프로퍼티즈 컴파니 중합체 필름 및 그러한 필름을 포함하는 디스플레이 디바이스
US9960389B1 (en) 2017-05-05 2018-05-01 3M Innovative Properties Company Polymeric films and display devices containing such films
KR102520986B1 (ko) * 2017-08-30 2023-04-12 니폰 제온 가부시키가이샤 적층체 및 그 제조 방법
DE102018204463A1 (de) * 2018-03-23 2019-09-26 Tesa Se Witterungsbeständige Klebemasse mit gutem Auffließvermögen und darauf basierende Klebebänder
JP7420070B2 (ja) * 2018-05-22 2024-01-23 日本ゼオン株式会社 接着性樹脂の製造方法
US11912114B2 (en) * 2019-06-25 2024-02-27 Shenzhen Guangyi Tech Co., Ltd. Electrochromic sunroof based on all solid-state flexible thin film electrochromic device and methods to fabricate the same
JP7165315B2 (ja) 2020-04-08 2022-11-04 Jfeスチール株式会社 アルミニウム合金板と鋼板の摩擦撹拌接合方法
JP7473408B2 (ja) 2020-06-17 2024-04-23 日東電工株式会社 封止用樹脂シート
KR102263568B1 (ko) * 2021-02-15 2021-06-11 한국표준과학연구원 양자 저항 표준을 위한 캡슐화된 구조체
CN112987436A (zh) * 2021-03-29 2021-06-18 维沃移动通信有限公司 壳体及其制备方法和电子设备

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051195A (en) 1975-12-15 1977-09-27 Celanese Polymer Specialties Company Polyepoxide-polyacrylate ester compositions
US4125665A (en) * 1977-08-29 1978-11-14 Johnson & Johnson Container sealing tape
US4552604A (en) 1977-02-02 1985-11-12 Ciba Geigy Corporation Bonding method employing film adhesives
US4985499A (en) 1988-02-22 1991-01-15 Kuraray Company Ltd. Pressure sensitive adhesive composition
WO1998021287A1 (en) 1996-11-12 1998-05-22 Minnesota Mining And Manufacturing Company Thermosettable pressure sensitive adhesive
WO2000039189A1 (en) * 1998-12-23 2000-07-06 3M Innovative Properties Company Electronic circuit device comprising an epoxy-modified aromatic vinyl-conjugated diene block copolymer
WO2002026908A1 (de) 2000-09-28 2002-04-04 Henkel Kommanditgesellschaft Auf Aktien Klebstoffe mit barriereeigenschaften
US20020188053A1 (en) 2001-06-04 2002-12-12 Sipix Imaging, Inc. Composition and process for the sealing of microcups in roll-to-roll display manufacturing
WO2003065470A1 (en) 2002-01-31 2003-08-07 3M Innovative Properties Company Encapsulation of organic electronic devices using adsorbent loaded adhesives
US20040225025A1 (en) 2001-08-03 2004-11-11 Sullivan Michael G. Curable compositions for display devices
US20060100299A1 (en) 2002-07-24 2006-05-11 Ranjit Malik Transformable pressure sensitive adhesive tape and use thereof in display screens
EP1311559B1 (de) 2000-06-01 2006-08-02 Kraton Polymers Research B.V. Funktionalisierte blockcopolymere enthaltende zusammensetzungen, die mit aluminiumacetylacetonaten vernetzt sind
US20070135552A1 (en) 2005-12-09 2007-06-14 General Atomics Gas barrier
WO2007087281A1 (en) 2006-01-24 2007-08-02 3M Innovative Properties Company Adhesive encapsulating composition film and organic electroluminescence device
EP1975217A2 (de) * 2007-03-29 2008-10-01 Clariant International Ltd. Flammgeschützte Klebe- und Dichtmassen

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676202A (en) * 1969-10-07 1972-07-11 Johnson & Johnson Pressure-sensitive adhesive tape
US4010140A (en) 1974-10-02 1977-03-01 The Goodyear Tire & Rubber Company Age resistant resin compositions and admixtures useful as adhesives
US4024312A (en) * 1976-06-23 1977-05-17 Johnson & Johnson Pressure-sensitive adhesive tape having extensible and elastic backing composed of a block copolymer
JPH01225656A (ja) 1988-03-07 1989-09-08 Japan Synthetic Rubber Co Ltd 熱可塑性重合体組成物
US5304419A (en) * 1990-07-06 1994-04-19 Alpha Fry Ltd Moisture and particle getter for enclosures
US6114261A (en) * 1996-04-15 2000-09-05 Ato Findley, Inc. Nonwoven absorbent article containing an emollient resistant polybutylene-based hot melt adhesive
US5705571A (en) * 1996-05-17 1998-01-06 Taiwan Synthetic Rubber Corporation Process for selective hydrogenation of conjugated diene polymer
JP2000080339A (ja) 1998-05-20 2000-03-21 Kanegafuchi Chem Ind Co Ltd 粘着剤組成物
JP2000219860A (ja) 1999-01-29 2000-08-08 Kuraray Co Ltd 接着剤組成物
US6657000B1 (en) * 1999-06-25 2003-12-02 Kraton Polymers U.S. Llc Hot melt pressure sensitive positioning adhesive (III)
DE10123291A1 (de) * 2001-05-12 2002-11-28 Tesa Ag Klebefolienstreifen
JP2003209421A (ja) 2002-01-17 2003-07-25 Dainippon Printing Co Ltd 透明アンテナを有するrfidタグ、及びその製造方法
JP4255250B2 (ja) * 2002-06-12 2009-04-15 大日本印刷株式会社 エレクトロルミネッセント素子
JP2004022277A (ja) 2002-06-14 2004-01-22 Dainippon Printing Co Ltd 有機el素子の封止方法
JP2004241364A (ja) * 2002-12-13 2004-08-26 Fuji Photo Film Co Ltd 有機電界発光素子及びその製造方法
WO2005021670A2 (de) * 2003-08-22 2005-03-10 Tesa Ag Zumindest zweischichtige klebstofffolie
WO2005033035A1 (ja) * 2003-10-02 2005-04-14 Kaneka Corporation ガスバリア性に優れた、ホットメルト粘着性を有した樹脂組成物からなる複層ガラス封止材
JP4173437B2 (ja) * 2003-12-17 2008-10-29 日東電工株式会社 電子部品搬送用ボトムカバーテープ及び電子部品搬送体
JP2005235467A (ja) * 2004-02-18 2005-09-02 Fuji Photo Film Co Ltd 有機el素子
US7238732B2 (en) 2004-02-18 2007-07-03 Eastman Chemical Company Radiation-curable adhesive compositions
EP1743928A1 (de) * 2004-03-26 2007-01-17 Kaneka Corporation Dichtstoffzusammensetzung
JP2005306946A (ja) * 2004-04-20 2005-11-04 Nichiban Co Ltd 太陽電池等用シール材
DE102004031190A1 (de) 2004-06-28 2006-01-19 Tesa Ag Hitzeaktivierbares Klebeband für die Verklebung von elektronischen Bauteilen und Leiterbahnen
DE102004031189A1 (de) 2004-06-28 2006-01-19 Tesa Ag Hitzeaktivierbares und vernetzbares Klebeband für die Verklebung von elektronischen Bauteilen und Leiterbahnen
DE102004031188A1 (de) 2004-06-28 2006-01-19 Tesa Ag Hitzeaktivierbares Klebeband für die Verklebung von elektronischen Bauteilen und Leiterbahnen
WO2006075383A1 (ja) 2005-01-14 2006-07-20 Nichiban Company Limited 表面保護シート
JP2006228519A (ja) * 2005-02-16 2006-08-31 Canon Inc 有機エレクトロルミネッセンス素子及びその製造方法
US20060205877A1 (en) 2005-03-11 2006-09-14 Kraton Polymers U.S. Llc Adhesive compositions comprising mixtures of block copolymers
EP1900771A4 (de) * 2005-06-07 2009-03-25 Kaneka Corp Harzzusammensetzung
JP4872263B2 (ja) * 2005-08-03 2012-02-08 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子の製造方法
US7645507B2 (en) 2005-10-24 2010-01-12 Kraton Polymers U.S. Llc Protective films and pressure sensitive adhesives
JP2007297503A (ja) 2006-04-28 2007-11-15 Shin Etsu Polymer Co Ltd 接着剤組成物及びこれを用いて得られる複合部材
DE102006023936A1 (de) 2006-05-19 2007-11-22 Tesa Ag Maskierung von Fensterflanschen mit einem Klebeband mit einer Selbstklebemasse auf Basis vernetzter Vinylaromatenblockcopolymere
EP2071002A4 (de) * 2006-06-21 2009-11-18 Hitachi Kasei Polymer Co Ltd Thermisch leitende thermoplastische haftzusammensetzung
JP5365891B2 (ja) 2006-10-13 2013-12-11 日本ゼオン株式会社 発光素子用樹脂組成物、発光素子用積層体、発光素子
JP2008169331A (ja) * 2007-01-12 2008-07-24 Inoac Corp 粘着性樹脂組成物及びそれを用いた粘着性板材
JP5008536B2 (ja) 2007-11-28 2012-08-22 信越化学工業株式会社 接着剤組成物ならびにそれを用いたカバーレイフィルムおよび接着シート
JP2009149829A (ja) 2007-11-28 2009-07-09 Shin Etsu Chem Co Ltd 難燃性接着剤組成物ならびにそれを用いたカバーレイフィルムおよび接着シート

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051195A (en) 1975-12-15 1977-09-27 Celanese Polymer Specialties Company Polyepoxide-polyacrylate ester compositions
US4552604A (en) 1977-02-02 1985-11-12 Ciba Geigy Corporation Bonding method employing film adhesives
US4125665A (en) * 1977-08-29 1978-11-14 Johnson & Johnson Container sealing tape
US4985499A (en) 1988-02-22 1991-01-15 Kuraray Company Ltd. Pressure sensitive adhesive composition
WO1998021287A1 (en) 1996-11-12 1998-05-22 Minnesota Mining And Manufacturing Company Thermosettable pressure sensitive adhesive
WO2000039189A1 (en) * 1998-12-23 2000-07-06 3M Innovative Properties Company Electronic circuit device comprising an epoxy-modified aromatic vinyl-conjugated diene block copolymer
EP1311559B1 (de) 2000-06-01 2006-08-02 Kraton Polymers Research B.V. Funktionalisierte blockcopolymere enthaltende zusammensetzungen, die mit aluminiumacetylacetonaten vernetzt sind
WO2002026908A1 (de) 2000-09-28 2002-04-04 Henkel Kommanditgesellschaft Auf Aktien Klebstoffe mit barriereeigenschaften
US20020188053A1 (en) 2001-06-04 2002-12-12 Sipix Imaging, Inc. Composition and process for the sealing of microcups in roll-to-roll display manufacturing
US20040225025A1 (en) 2001-08-03 2004-11-11 Sullivan Michael G. Curable compositions for display devices
WO2003065470A1 (en) 2002-01-31 2003-08-07 3M Innovative Properties Company Encapsulation of organic electronic devices using adsorbent loaded adhesives
US20060100299A1 (en) 2002-07-24 2006-05-11 Ranjit Malik Transformable pressure sensitive adhesive tape and use thereof in display screens
US20070135552A1 (en) 2005-12-09 2007-06-14 General Atomics Gas barrier
WO2007087281A1 (en) 2006-01-24 2007-08-02 3M Innovative Properties Company Adhesive encapsulating composition film and organic electroluminescence device
EP1975217A2 (de) * 2007-03-29 2008-10-01 Clariant International Ltd. Flammgeschützte Klebe- und Dichtmassen

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Chemistry and Technology of UV and EB formulation for Coatings, Inks and Paints" (Vol. 1, 1991, SITA, London)
A.G. Erlat et. al. in "47th Annual Technical Conference Proceedings-Society of Vacuum Coaters", 2004, Seiten 654-659
ASTM F-1249
DIN 53380 Teil 3
M. E. Gross et al. in "46th Annual Technical Conference Proceedings-Society of Vacuum Coaters", 2003, Seiten 89-92

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010121905A1 (de) 2009-04-24 2010-10-28 Tesa Se Transparente barrierelaminate
DE102009018518A1 (de) 2009-04-24 2010-10-28 Tesa Se Transparente Barrierelaminate
US8557084B2 (en) 2009-08-12 2013-10-15 Tesa Se Method of encapsulating an electronic arrangement
DE102009036970A1 (de) 2009-08-12 2011-02-17 Tesa Se Verfahren zur Kapselung einer elektronischen Anordnung
WO2011018356A1 (de) 2009-08-12 2011-02-17 Tesa Se Verfahren zur kapselung einer elektronischen anordnung
WO2011018358A1 (de) 2009-08-12 2011-02-17 Tesa Se Verfahren zur kapselung einer elektronischen anordnung
DE102009036968A1 (de) 2009-08-12 2011-02-17 Tesa Se Verfahren zur Kapselung einer elektronischen Anordnung
US8771459B2 (en) 2009-08-12 2014-07-08 Tesa Se Method of encapsulating an electronic arrangement
WO2012019909A1 (de) 2010-08-13 2012-02-16 Tesa Se Verfahren zur kapselung einer elektronischen anordnung
DE102010043866A1 (de) 2010-11-12 2012-05-16 Tesa Se Klebmasse und Verfahren zur Kapselung einer elektronischen Anordnung
WO2012062587A1 (de) 2010-11-12 2012-05-18 Tesa Se Klebmasse und verfahren zur kapselung einer elektronischen anordnung
WO2012062586A1 (de) 2010-11-12 2012-05-18 Tesa Se Klebmasse und verfahren zur kapselung einer elektronischen anordnung
DE102010043871A1 (de) 2010-11-12 2012-05-16 Tesa Se Klebmasse und Verfahren zur Kapselung einer elektronischen Anordnung
WO2012076262A1 (de) 2010-12-10 2012-06-14 Tesa Se Klebmasse und verfahren zur kapselung einer elektronischen anordnung
DE102010062823A1 (de) 2010-12-10 2012-06-21 Tesa Se Klebmasse und Verfahren zur Kapselung einer elektronischen Anordnung
US9230829B2 (en) 2010-12-10 2016-01-05 Tesa Se Adhesive compound and method for encapsulating an electronic arrangement
US9399723B2 (en) 2011-08-10 2016-07-26 Tesa Se Electrically conductive adhesive compound and adhesive tape
WO2013020767A1 (de) 2011-08-10 2013-02-14 Tesa Se Elektrisch leitfähige haftklebemasse und haftklebeband
DE102011080729A1 (de) 2011-08-10 2013-02-14 Tesa Se Elektrisch leitfähige Haftklebemasse und Haftklebeband
US9593264B2 (en) 2011-08-10 2017-03-14 Tesa Se Electrically conductive heat-activated adhesive compound
DE102011085038A1 (de) * 2011-10-21 2013-04-25 Tesa Se Verfahren zur Kapselung einer elektronischen Anordnung
DE102011085034A1 (de) * 2011-10-21 2013-04-25 Tesa Se Klebemasse insbesondere zur Kapselung einer elektronischen Anordnung
DE102012206273A1 (de) 2012-04-17 2013-10-17 Tesa Se Vernetzbare Klebmasse mit Hart- und Weichblöcken als Permeantenbarriere
US9487684B2 (en) 2012-04-17 2016-11-08 Tesa Se Cross-linkable adhesive compound with hard and soft blocks as a permeant barrier
WO2014001005A1 (de) 2012-06-29 2014-01-03 Tesa Se Klebeband für die kapselung einer organischen elektronischen anordnung
DE102012211335A1 (de) 2012-06-29 2014-01-02 Tesa Se Klebeband für die Kapselung einer organischen elektronischen Anordnung
US9543549B2 (en) 2012-06-29 2017-01-10 Tesa Se Adhesive tape for encapsulating an organic electronic arrangement
US10323163B2 (en) 2012-12-21 2019-06-18 Tesa Se Adhesive tape containing getter material
US9969908B2 (en) 2012-12-21 2018-05-15 Tesa Se Method for removing permeates from flat structures, and corresponding adhesive tape
DE102012224319A1 (de) 2012-12-21 2014-06-26 Tesa Se Verfahren zum Entfernen von Permeaten aus Flächengebilden
WO2014095385A1 (de) 2012-12-21 2014-06-26 Tesa Se Verfahren zum entfernen von permeaten aus flächengebilden und klebeband dafür
DE102012224310A1 (de) 2012-12-21 2014-06-26 Tesa Se Gettermaterial enthaltendes Klebeband
DE102013202473A1 (de) 2013-02-15 2014-08-21 Tesa Se Verfahren zum Entfernen von Permeaten aus Flächengebilden
DE102014200948A1 (de) 2014-01-20 2015-07-23 Tesa Se Verfahren zum Entfernen von Permeaten aus Flächengebilden
US10011742B2 (en) 2014-04-11 2018-07-03 Tesa Se Adhesive tape for encapsulating an organic electronic arrangement
DE102014207074A1 (de) 2014-04-11 2015-10-15 Tesa Se Klebeband für die Kapselung einer organischen elektronischen Anordnung
US10618837B2 (en) 2014-04-25 2020-04-14 Tesa Se Thin glass composite and method for storing a thin glass film
WO2015162012A1 (de) 2014-04-25 2015-10-29 Tesa Se Dünnglasverbund und verfahren zur lagerung von dünnglas
DE102014207792A1 (de) 2014-04-25 2015-10-29 Tesa Se Dünnglasverbund und Verfahren zum Lagern einer Dünnglasfolie
WO2015162013A1 (de) 2014-04-25 2015-10-29 Tesa Se Dünnglasverbund und verfahren zum lagern einer dünnglasfolie
DE102014207837A1 (de) 2014-04-25 2015-10-29 Tesa Se Dünnglasverbund und Verfahren zur Lagerung von Dünnglas
US11390783B2 (en) 2014-10-29 2022-07-19 Tesa Se Adhesives comprising activatable getter materials
US10626305B2 (en) 2014-10-29 2020-04-21 Tesa Se OLED-compatible adhesive masses having silane water scavengers
US10280344B2 (en) 2014-10-29 2019-05-07 Tesa Se Adhesive compounds comprising multi-functional siloxane water scavengers
WO2016066437A1 (de) 2014-10-29 2016-05-06 Tesa Se Klebemassen mit multifunktionellen siloxanwasserfängern
DE102015202415A1 (de) * 2015-02-11 2016-08-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Klebstoff, Verfahren zur berührungslosen Temperaturmessung des Klebstoffs und Verfahren zur verbesserten Verbindung zweier Bauteile mit Klebstoff
DE102015202415B4 (de) * 2015-02-11 2021-02-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Klebstoff, Bauteil, Verfahren zur berührungslosen Temperaturmessung des Klebstoffs, Verfahren zur verbesserten Verbindung zweier Bauteile mit dem Klebstoff und Verwendung des Klebstoffs
US10633563B2 (en) 2015-11-09 2020-04-28 Tesa Se Barrier adhesive mass with polymer getter material
WO2017080813A1 (de) 2015-11-09 2017-05-18 Tesa Se Barriereklebemasse mit polymerem gettermaterial
DE102015222027A1 (de) 2015-11-09 2017-05-11 Tesa Se Barriereklebemasse mit polymerem Gettermaterial
WO2017190878A1 (de) 2016-05-02 2017-11-09 Tesa Se Wasserdampfsperrende klebemasse mit hochfunktionalisiertem poly(meth)acrylat
US10808153B2 (en) 2016-05-02 2020-10-20 Tesa Se Curable adhesive compound and reactive adhesive tapes based thereon
US11447669B2 (en) 2016-05-02 2022-09-20 Tesa Se Water vapor-blocking adhesive compound having highly functionalized poly(meth)acrylate
DE102016207540A1 (de) 2016-05-02 2017-11-02 Tesa Se Wasserdampfsperrende Klebemasse mit hochfunktionalisiertem Poly(meth)acrylat
WO2018019631A1 (de) 2016-07-27 2018-02-01 Tesa Se Klebeband zur verkapselung elektronischer aufbauten
DE102016213840A1 (de) 2016-07-27 2018-02-01 Tesa Se Klebeband zur Verkapselung elektronischer Aufbauten
US11242469B2 (en) 2016-07-27 2022-02-08 Tesa Se Adhesive tape for encapsulating electronic constructions
DE102016213911A1 (de) 2016-07-28 2018-02-01 Tesa Se OLED kompatible Klebemassen mit cyclischen Azasilanwasserfängern
WO2018019632A1 (de) 2016-07-28 2018-02-01 Tesa Se Oled kompatible klebemassen mit cyclischen azasilanwasserfängern
WO2019081148A1 (de) 2017-10-27 2019-05-02 Tesa Se Plasmarandverkapselung von klebebändern
DE102017219310A1 (de) 2017-10-27 2019-05-02 Tesa Se Plasmarandverkapselung von Klebebändern
WO2019223953A1 (de) 2018-05-24 2019-11-28 Tesa Se Kombination einer transparenten vollflächigen verkapselung mit einer (intransparenten) randverkapselung mit hohem gettergehalt
DE102020207783A1 (de) 2020-06-23 2021-12-23 Tesa Se Leitfähiger doppelseitiger Haftklebestreifen
WO2021259599A1 (de) 2020-06-23 2021-12-30 Tesa Se Leitfähiger doppelseitiger haftklebestreifen

Also Published As

Publication number Publication date
US9627646B2 (en) 2017-04-18
CN101677072A (zh) 2010-03-24
CN101677072B (zh) 2014-05-21
KR101696201B1 (ko) 2017-01-13
CA2678273A1 (en) 2010-03-18
JP2010074165A (ja) 2010-04-02
JP2015181111A (ja) 2015-10-15
TWI521038B (zh) 2016-02-11
EP2166593A1 (de) 2010-03-24
TW201024389A (en) 2010-07-01
US20100068514A1 (en) 2010-03-18
KR20100032835A (ko) 2010-03-26
EP2166593B1 (de) 2019-04-03
JP6228566B2 (ja) 2017-11-08

Similar Documents

Publication Publication Date Title
EP2166593B1 (de) Verfahren zur Kapselung einer elektronischen Anordnung
EP2279537B1 (de) Verfahren zur kapselung einer elektronischen anordnung
EP2465150B1 (de) Verfahren zur kapselung einer elektronischen anordnung
EP2465149B1 (de) Verfahren zur kapselung einer elektronischen anordnung
EP2638118B1 (de) Klebmasse und verfahren zur kapselung einer elektronischen anordnung
EP2200105B1 (de) Verfahren zur Verkapselung einer elektronischen Anordnung
EP2649642B1 (de) Klebmasse und verfahren zur kapselung einer elektronischen anordnung
EP2768918B1 (de) Klebemasse insbesondere zur kapselung einer elektronischen anordnung
EP2838968B1 (de) Vernetzbare klebmasse mit hart- und weichblöcken als permeantenbarriere
DE102010043871A1 (de) Klebmasse und Verfahren zur Kapselung einer elektronischen Anordnung
DE102012219877A1 (de) Haftklebemasse insbesondere zur Kapselung einer elektronischen Anordnung
WO2017001126A1 (de) Klebemasse insbesondere zur kapselung einer elektronischen anordnung
EP3212728A1 (de) Klebemassen mit multifunktionellen siloxanwasserfängern
DE102015222027A1 (de) Barriereklebemasse mit polymerem Gettermaterial
WO2019162035A1 (de) Zusammensetzung zur erzeugung einer klebemasse insbesondere zur kapselung einer elektronischen anordnung
WO2013056952A1 (de) Verfahren zur kapselung einer elektronischen anordnung

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
R012 Request for examination validly filed
R081 Change of applicant/patentee

Owner name: TESA SE, DE

Free format text: FORMER OWNER: TESA SE, 20253 HAMBURG, DE

R120 Application withdrawn or ip right abandoned