DE10308467A1 - Verfahren zur Signalton-/Alarmsignaldetektion und Telefonalarmsignaldetektor - Google Patents

Verfahren zur Signalton-/Alarmsignaldetektion und Telefonalarmsignaldetektor

Info

Publication number
DE10308467A1
DE10308467A1 DE10308467A DE10308467A DE10308467A1 DE 10308467 A1 DE10308467 A1 DE 10308467A1 DE 10308467 A DE10308467 A DE 10308467A DE 10308467 A DE10308467 A DE 10308467A DE 10308467 A1 DE10308467 A1 DE 10308467A1
Authority
DE
Germany
Prior art keywords
signal
tone
resonator
frequency
cas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE10308467A
Other languages
English (en)
Other versions
DE10308467B4 (de
Inventor
Julian Lee
Gary Louie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VTech Telecommunications Ltd
Original Assignee
VTech Telecommunications Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VTech Telecommunications Ltd filed Critical VTech Telecommunications Ltd
Publication of DE10308467A1 publication Critical patent/DE10308467A1/de
Application granted granted Critical
Publication of DE10308467B4 publication Critical patent/DE10308467B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/57Arrangements for indicating or recording the number of the calling subscriber at the called subscriber's set
    • H04M1/573Line monitoring circuits for detecting caller identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/04Recording calls, or communications in printed, perforated or other permanent form
    • H04M15/06Recording class or number of calling, i.e. A-party or called party, i.e. B-party

Abstract

Die Erfindung bezieht sich auf ein Verfahren zur Detektion eines vorgegebenen Signaltons innerhalb eines auf einem Kommunikationskanal übertragenen Signals, auf ein Verfahren zur Detektion eines Teilnehmerendgerät-Alarmsignals, das aus einem oder mehreren, auf einer Telefonleitung empfangenen Signaltönen besteht, durch ein Telefon während des Vorhandenseins einer Sprach- oder andereren hörbaren Kommunikation auf der Telefonleitung und auf einen entsprechenden Telefonalarmsignaldetektor. DOLLAR A Erfindungsgemäß wird der Energiepegel des Kommunikationskanals bei der Frequenz des Signaltons und bei einer oder mehreren Frequenzen gemessen, die ganzzahligen Bruchteilen der Signaltonfrequenz entsprechen. Diese subharmonischen Energien werden dann zur Bestimmung ausgewertet, ob der Signalton vorhanden ist. Ein dergestalt arbeitender Telefonalarmsignaldetektor kann dazu einen auf die Frequenz des Signaltons abgestimmten Signaltonresonator (220, 230), einen oder mehrere subharmonische Resonatoren (226, 228, 236, 238), die auf jeweils eine subharmonische Frequenz abgestimmt sind, und einen Komparator (240) umfassen, der die Ausgangssignale der Resonatoren auswertet und das Vorhandensein des Signaltons nur dann anzeigt, wenn das Signaltonresonator-Ausgangssignal einen ersten Schwellwert übersteigt, der von den Ausgangssignalen des oder der subharmonischen Resonatoren abgeleitet ist. DOLLAR A Verwendung z. B. für Schnurlostelefonsysteme.

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Detektion eines vorgegebenen Signaltons innerhalb eines über einen Kommunikationskanal übertragenen Signals, auf ein Verfahren zur Detektion eines Teilnehmerendgerät-Alarmsignals, das aus einem oder mehreren Signaltönen besteht, die von einem Telefon über eine Telefonleitung während Sprach- oder anderer Audiokommunikationsvorgänge auf der Telefonleitung empfangen werden, und auf einen Telefonalarmsignaldetektor zur Detektion der Anwesenheit eines Signaltons auf einem Kommunikationskanal. Derartige Signaltöne werden beispielsweise im Zusammenhang mit Anruferidentifikationsdiensten über eine Sprachkommunikationsverbindung übertragen.
  • In jüngerer Zeit werden zahlreiche fortgeschrittene Telekommunikationsfunktionen für Telefonnutzer im häuslichen und geschäftlichen Bereich leicht verfügbar. Eine solche Funktion, die sehr populär geworden ist, ist die Anruferidentifikation, oft als "Anrufer-ID" oder "CID" bezeichnet. Herkömmliche Anrufer-ID-Systeme beinhalten typischerweise eine Übertragung von Daten, welche die Telefonnummer des Anrufers und/oder dessen Namen identifizieren oder der Telefonnummer bzw. dem Namen entsprechen, von einer Vermittlungsstelle der Telefongesellschaft zu einem CID-fähigen Telefonapparat oder einer CID-Box des angerufenen Teilnehmers. Diese Daten werden über die Telefonleitung während einer "stillen" Zeitspanne übertragen, die auf den ersten Rufton des Telefonapparates des angerufenen Teilnehmers folgt. Der angerufene Teilnehmer ist dadurch in der Lage, die Identität des Anrufers festzustellen, bevor er auf den eingehenden Anruf antwortet. Außerdem können, wenn der angerufene Teilnehmer nicht verfügbar ist oder sich dazu entscheidet, auf den eingehenden Anruf nicht zu antworten, empfangene Anrufe lokal in einem Speicher des CID-fähigen Telefonapparates oder der CID-Box gespeichert werden, um sie später für den Nutzer verfügbar zu machen. Derartige herkömmliche Anrufer-ID-Dienste arbeiten nur, wenn das Telefon des angerufenen Teilnehmers aufgelegt ist, d. h. wenn der angerufene Teilnehmer nicht schon ein Telefongespräch führt.
  • Diese herkömmliche Anrufer-ID-Technik wurde des weiteren durch die Implementierung eines als Typ II bekannten Anrufer-ID-Systems verbessert. Das CID-System vom Typ II erweitert die Funktionalität des herkömmlichen CID-Systems durch Kombinieren der herkömmlichen Anrufer-ID-Technik mit einem "Anklopfen"-Dienst. Der Anklopfen-Dienst arbeitet während eines aktiven Telefongesprächs dergestalt, dass er dem angerufenen Teilnehmer ein hörbares Signal gibt, um anzuzeigen, dass ein zweiter Teilnehmer einen Anruf zum Telefon des angerufenen Teilnehmers versucht. Der angerufene Teilnehmer kann auf das Wahrnehmen eines Signaltons hin entscheiden, ob er den ersten Anruf auf "Warten" legt und eine Verbindung mit dem zweiten Anrufer aufbaut. Nach beendetem Gespräch mit dem zweiten Anrufer kann der Angerufene wieder die Verbindung mit dem ersten Anrufer aufnehmen und das Gespräch fortsetzen.
  • Im Gegensatz zum herkömmlichen CID-System arbeitet das CID- System vom Typ II auch dann, wenn der Angerufene bereits ein Telefongespräch führt und ein Anruf von einem zweiten Teilnehmer empfangen wird. Das System meldet zuerst dem Nutzer den eingehenden Anruf durch Übertragen eines hörbaren "Anklopfen"-Tons und fährt dann mit der Übertragung von CID-Daten vom Typ II zum angerufenen Teilnehmer fort, wodurch der zweite Anrufer identifiziert wird. Wie beim traditionellen Anrufer-ID-System wird die Information über den neuen Anrufenden auf dem CID-fähigen Telefonapparat bzw. der CID-Box vom Typ II angezeigt. Der Nutzer ist dadurch in der Lage die relative Bedeutung eines neu empfangenen Anrufs festzustellen und zu entscheiden, ob er den Anruf, den er momentan führt, durch Umschalten zum zweiten Anruf unterbrechen will.
  • Für die Implementierung der CID-Technik vom Typ II sind verschiedene Standards entwickelt worden, wie die Spezifikation BellCore GR-3004 und die Spezifikation BT 202. Solche Standards legen fest, dass der CID-Betrieb vom Typ II durch die Übertragung eines spezifischen Signals über die Telefonleitung während des Telefongesprächs ausgelöst wird. Dieses Signal wird als Teilnehmerendgerät-Alarmsignal (CAS) bezeichnet. Gemäß der BellCore-Spezifikation ist das CAS ein Zweitonsignal bestehend aus einem 2130 Hz-Ton und einem 2750 Hz-Ton, die häufig als CAS-Ton A bzw. CAS-Ton B bezeichnet werden. Wenn das CAS durch das CID-fähige Teilnehmerendgerät vorn Typ II (CPE), z. B. ein Schnurlostelefon, detektiert wird, beginnt das CPE eine kurze digitale Kommunikationsverbindung mit der Zentrale zum Bestätigen des Empfangs und der Erkennung des CAS durch das CPE. Umgekehrt veranlasst die Zentrale eine Übertragung der modulierten digitalen CID-Daten, die dann vom CPE des Angerufenen empfangen und auf einer Anzeige an dessen CID-fähigem Telefonapparat bzw. CID-Box vom Typ II angezeigt werden.
  • Um eine Unterbrechung des Telefongesprächs des Nutzers durch ein störendes Rauschbündel zu vermeiden, wenn der digitale Kommunikationsvorgang durchgeführt wird, nimmt das CPE eine Stummschaltung des Nutzeraudiosignals vor, sobald das CAS detektiert wird. Die CID- Daten werden dann während der Stummschaltungsperiode in einem kurzen Bündel digitaler Daten übertragen, wonach der Anrufer sein gegenwärtiges Gespräch ohne merkliche Unterbrechung fortsetzen kann. Wenn die übertragenen CAS-Töne durch das CPE nicht detektiert werden, weil der Telefonapparat des Anrufers nicht Typ-II-fähig ist, sendet das CPE nicht das benötigte Quittierungssignal, und das System überträgt die CID-Information nicht an den Nutzer. Dieses CPE- Quittierungsmerkmal bewahrt die Nutzer von CPEs ohne CPE- Funktionalität vom Typ II davor, jedes Mal, wenn ein Anklopfsignal empfangen wird, einem lauten Bündel an digitalem Rauschen unterworfen zu werden, während die CID-Daten unnötigerweise übertragen werden. Es kann aber auch sein, dass ein CID-fähiges CPE vom Typ II dennoch versagt, ein gültiges CAS zu detektieren, wodurch dem Nutzer die CID- Funktionalität vom Typ II vorenthalten wird. Außerdem wird, wenn das CPE CAS-Töne detektiert, während tatsächlich kein CAS durch die Zentrale gesendet wurde, d. h. im Fall einer falschen CAS-Detektion, das Telefongespräch des Nutzers unnötigerweise unterbrochen, während das CPE eine Stummschaltung des Audiosignals vornimmt, um einen digitalen Kommunikationsvorgang mit der Zentrale zu versuchen. Daher ist die zuverlässige Detektion von CAS-Tönen, die von der Zentrale gesendet und teilnehmerseitig empfangen werden, und die zuverlässige Unterdrückung falscher CAS-Töne für eine effektive Implementierung der CID-Technik vom Typ II entscheidend.
  • Diese CAS-Detektionsaufgabe ist oftmals deshalb besonders schwierig, weil das CAS über den gleichen Kanal übertragen wird, auf dem die Audio-Telefonkommunikation erfolgt, und zwar gleichzeitig mit dieser und innerhalb der gleichen begrenzten Frequenzbandbreite, die von modernen Telefonnetzwerken unterstützt wird. Von dem CPE können verschiedene Techniken verwendet werden, um Zweitonfrequenzen, wie ein GAS, zu detektieren, einschließlich analogen Bandpassfiltern gefolgt von einem Spitzenwertdetektor oder PLL und digitale Techniken, die digitales Filtern oder diskrete Fourier-Transformation (DTF) verwenden. Es sind außerdem einige Techniken bekannt, die speziell dazu vorgesehen sind, die Zuverlässigkeit der CAS-Detektion zu verbessern. Solche Techniken beinhalten häufig die Maßnahme, strengere Standards für das detektierte CAS-Signal festzulegen, die erfüllt werden müssen, bevor das CAS als authentisch angesehen wird. Diese Techniken umfassen das Festlegen enger Kriterien für Eigenschaften wie die Signaldauer, die Signalpegeldifferenz zwischen den Tönen im Zweiton-CAS, die erlaubte Frequenz jedes CAS-Tons und den Signalpegel jedes Tons bezüglich der restlichen Sprachbandfrequenzen oder eines Teils hiervon. Je enger derartige Kriterien jedoch gemacht werden, um so eher gelingt es dem System nicht mehr, einen authentischen CAS-Ton zu identifizieren, und zwar wegen unkontrollierbaren Schwankungen im CAS- Signalverlauf sowie von Rauschen und Störungen innerhalb des Kommunikationskanals. Derartige Ausfälle bei der Detektion des CID-CAS vom Typ II sind höchst unerwünscht.
  • In der Patentschrift US 6.122.353 ist eine Technik zur Verbesserung der Zuverlässigkeit der CAS-Detektion beschrieben, bei der eine Stummschaltung oder Unterbrechung des Audiosignals des CPE vom Übertragungskanal vorgenommen wird, sobald ein mögliches CAS detektiert wird. Das CPE fährt dann mit einer Überwachung des CAS auf der Telefonleitung für seine restliche Dauer fort, während die Nahend- Audioeingabe stummgeschaltet bleibt. Wenn das Ausgangssignal des CAS-Detektionsmechanismus weiterhin die Anwesenheit eines CAS anzeigt, selbst in Abwesenheit des Nahend-Audiosignals, das durch Unterbrechen entfernt wurde, handelt es sich beim ankommenden Signal höchstwahrscheinlich um ein authentisches CAS, das von der Zentrale gesendet und teilnehmerseitig empfangen wurde, und nicht um einen Störeffekt des Audiosignals, der beim Nahend-Telefon erzeugt wird. Diese Technik ist jedoch nicht in der Lage, Unterbrechungen zu eliminieren, die durch falsche CAS-Detektionen verursacht werden, da das Nahend-Audiosignal weiterhin stummgeschaltet werden muss. Sie verringert lediglich die Unterbrechung, d. h. die Dauer der fälschlichen Stummschaltungsperiode, die durch die falschen CAS-Detektionen verursacht werden, welche von Nahend-Sprachsignalen herrühren, während sie nicht in der Lage ist, falsche CAS-Detektionen zu eliminieren, die durch Sprachsignale verursacht werden, welche vom Anrufer kommen.
  • Ein weiteres Verfahren zur Verbesserung der Zuverlässigkeit der CAS- Detektion beinhaltet eine Messung der Energie des CAS und einen Vergleich dieser Energie mit der auf dem Sprachbandkanal insgesamt vorhandenen Energie. Wenn ein gültiges CAS vorhanden ist, geht dies sehr wahrscheinlich mit einem signifikanten Energieunterschied zwischen dem CAS-Energiepegel und dem Energiepegel des restlichen Kanals einher. Wenn festgestellt wird, dass die Energie über den Sprachbandkanal hinweg im wesentlichen gleich groß wie die gemessene CAS- Energie ist bzw. dieser innerhalb einer gewissen Toleranz entspricht, wird das CAS als ein mögliches Nebenprodukt eines komplexen Audiosignals auf der Telefonleitung zurückgewiesen. Diese Technik kann jedoch leider oftmals nicht zwischen gültigen, aber sprachgestörten CAS-Tönen und Signalen mit höheren Energiepegeln bei den CAS- Tonfrequenzen statt insgesamt sehr hohen Audioenergiepegeln über den Sprachbandkanal hinweg unterscheiden, was in gelegentlichen Ausfällen resultiert, die CID-Daten vom Typ II richtig zu liefern.
  • In der Patentschrift US 5.519.774 ist eine weitere Technik offenbart, bei der ausgewählte Abtastbandbreiten speziell vom oberen Teil des Sprachbandes im Frequenzbereich zwischen 2000 Hz und 3000 Hz herangezogen werden, wo die Energie typischer Sprachsignale normalerweise gering ist. Die gemessenen Energien werden dann durch eine experimentell abgeleitete Gewichtungsfunktion unter Verwendung eines komplexen adaptiven Algorithmus gewichtet und mit den Energiepegeln verglichen, die bei den CAS-Frequenzen gemessen werden, um festzustellen, ob ein detektiertes CAS gültig ist. Diese Technik benötigt jedoch eine iterative experimentelle Prozedur und Vorabwissen über falsche CAS-Detektionen, um den komplexen adaptiven Algorithmus zu optimieren, der diese Technik implementiert, und ein gutes Leistungsvermögen zu erhalten. Der hohe Grad an Komplexität dieser Technik hat außerdem entsprechende Kosten, Abmessungen und einen relativ hohen Energieverbrauch für Produkte zur Folge, die diese Technik implementieren.
  • Der Erfindung liegt als technisches Problem die Bereitstellung eines Verfahrens zur Detektion eines vorgegebenen Signaltons, eines Verfahrens zur Detektion eines Teilnehmerendgerät-Alarmsignals und eines Telefonalarmsignaldetektors der eingangs genannten Art zugrunde, mit denen durch eine vergleichsweise einfache und kostengünstige Technik eine zuverlässige Detektion von CAS-Signalen ermöglicht wird.
  • Die Erfindung löst dieses Problem durch die Bereitstellung eines Signalton-Detektionsverfahrens mit den Merkmalen des Anspruchs 1, eines Alarmsignal-Detektionsverfahrens mit den Merkmalen des Anspruchs 10 und eines Telefonalarmsignaldetektors mit den Merkmalen des Anspruchs 14.
  • Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
  • Vorteilhafte Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend beschrieben. Hierbei zeigen:
  • Fig. 1 eine graphische Darstellung des Zusammenhangs zwischen einer Grundfrequenz und zugehöriger zweiter und dritter subharmonischer Frequenzen,
  • Fig. 2 ein Blockschaltbild eines CAS-Detektors,
  • Fig. 3 ein Flussdiagramm eines Verfahrens zur Detektion eines gültigen CAS-Tons und
  • Fig. 4 eine graphische Darstellung relativer Frequenzantworten von verschiedenen Resonatoren, die im Detektor von Fig. 2 verwendet werden.
  • Sprache besteht oft aus komplexen Tönen, die signifikante harmonische Anteile enthalten. Während es für die Stimme einer Person sehr schwierig ist, gleichzeitig z. B. den 2130 Hz- und den 2750 Hz-Ton direkt zu erzeugen, welche das CAS unter der Typ-II-CID-Spezifikation BellCore bilden können, ist es für Sprache sehr viel wahrscheinlicher, dass sie Signale bei Subharmonischen der beiden CAS-Frequenzen enthält. Solche subharmonischen Signale enthalten normalerweise Energie bei CAS-Tonfrequenzen, so dass sie relativ leicht fehlerhaft als ein CAS detektiert werden können. Durch spezielles Untersuchen der Subharmonischen eines detektierten Tons statt anderer Teile der Kanalbandbreite können daher falsche Detektionen des interessierenden Tons häufig zuverlässig vermieden werden, ohne den Detektor gegenüber den interessierenden, gültigen Tonsignalen merklich zu desensibilisieren.
  • Eine subharmonische Frequenz ist ein ganzzahliger Bruchteil der zugehörigen Grundfrequenz. Dieser Zusammenhang zwischen Grundfrequenz und zugehörigen subharmonischen Frequenzen ist in der Grafik von Fig. 1 dargestellt, wobei beispielhaft zwei Subharmonische eines Grundtons 100 wiedergegeben sind. Die Frequenz einer zweiten Subharmonischen 110 ist gleich der halben Grundfrequenz 100, und die Frequenz einer dritten Subharmonischen 120 ist gleich einem Drittel der Grundfrequenz 100. Im Fall des CAS-Tons A gemäß BellCore-Standard beträgt folglich die Frequenz der zweiten Subharmonischen 2130 Hz/2 = 1065 Hz, und die dritte Subharmonische weist eine Frequenz von 2130 Hz/3 = 710 Hz auf. Analog betragen die Frequenzen der zweiten und dritten Subharmonischen des CAS-Tons B gemäß BellCore-Standard 1375 Hz bzw. 916,7 Hz.
  • Es kann von Vorteil sein, bei der Ermittlung der Authentizität eines Tonsignals, wie eines CAS, Subharmonische zu betrachten, da die meisten hörbaren Schallsignale außer Rauschen weitgehend aus Energieanteilen bei deren Grundfrequenzen und ganzzahligen Vielfachen der jeweiligen Grundfrequenz bestehen. Schall mit Grundfrequenzen bei Subharmonischen der CAS-Töne ist folglich Schall, dessen Harmonische mit großer Wahrscheinlichkeit bei gleichen Frequenzen wie die CAS-Töne liegen. Wenn bei den subharmonischen Frequenzen des CAS-Tons Signale mit hohem harmonischem Anteil und hoher Energie vorhanden sind, können die Harmonischen dieser Signale CAS-Tönen ähnlich erscheinen. Da typische Sprachkommunikationen Signale mit hohem harmonischem Anteil im Bereich dieser spezifischen subharmonischen Frequenzen enthalten, können ihre zugehörigen harmonischen Signale leicht in einer falschen CAS-Detektion und einer nachfolgenden Unterbrechung des Kommunikationsvorgangs auf der Telefonleitung führen, da das CPE fehlerhafterweise versucht, einen digitalen Kommunikationsvorgang mit der Zentrale zu beginnen.
  • Da das CAS aus reinen Tönen bei den Frequenzen des CAS A und des CAS B besteht, enthält das CAS selbst normalerweise keinen signifikanten Energiegehalt bei subharmonischen Frequenzen. Außerdem haben die Harmonischen eines Signals normalerweise einen niedrigeren Pegel als das Grundfrequenzsignal, so dass harmonische Energieanteile bei CAS-Frequenzen, die von subharmonischen Signalen herrühren, üblicherweise energetisch niedriger als die subharmonischen Signale selbst sind.
  • Ein CAS-Detektor, wie er im Blockschaltbild von Fig. 2 veranschaulicht ist, nutz diese Eigenschaften dazu, falsche CAS-Signale zurückzuweisen. Er kann beispielsweise in Software durch einen Mikroprozessor, einen digitalen Signalprozessor oder einen anwendungsspezifischen integrierten Schaltkreis implementiert sein. Solche Einheiten sind üblicherweise innerhalb einer Basiseinheit eines Schnurlostelefonsystems zu finden. Im Beispiel von Fig. 2 wird das digitalisierte Audioeingangssignal von einer Telefonleitung auf einer Leitung 210 zugeführt. Speziell wird es einer Mehrzahl von Goertzel-Resonatoren 220, 222, 224, 226, 228, 230, 232, 234, 236 und 238 zugeleitet.
  • Die Goertzel-Resonatoren 220 bis 238 dienen dazu, den Energiepegel bei einer spezifischen, abgestimmten Frequenz zu messen. Speziell entspricht das Ausgangssignal des jeweiligen Goertzel-Resonators dem Quadrat der Höhe der abgestimmten Frequenzkomponente der diskreten Fourier-Transformierten des Eingangssignals. In einem Ausführungsbeispiel sind die Resonatoren mit einer Rahmengröße von 200 Abtastungen (N = 200) und einer Abtastfrequenz von 8 kHz implementiert. Es versteht sich jedoch, dass die Energiepegel bei bestimmten Frequenzen alternativ durch eine Vielzahl anderer Techniken gemessen werden können, sowohl mit analogen als auch mit digitalen Techniken, wobei optional Goertzel-Resonatoren oder andere Resonatoren unterschiedlicher Auslegung verwendet werden können.
  • Das Ausgangssignal jedes Resonators 220 bis 238 wird einem Komparatorblock 240 zugeführt. Dieser vergleicht die Werte der Resonatorausgangssignale miteinander und/oder mit verschiedenen vorgebbaren Werten, um zu erkennen, ob ein gültiges CAS empfangen wurde, was dann auf einer Ausgangsleitung 250 signalisiert wird.
  • Das Flussdiagramm von Fig. 3 veranschaulicht ein vorteilhaftes Beispiel für den Betrieb des Detektors von Fig. 2. In einem ersten Schritt 400 werden die Signalenergien beim CAS-Ton A und beim CAS-Ton B sowie bei den Subharmonischen der beiden CAS-Töne A und B durch die Resonatoren 220 bis 238 gemessen. Speziell sind hierzu der Resonator 220 auf den CAS-Ton A, der Resonator 226 auf die zweite Subharmonische des CAS-Tons A, der Resonator 228 auf die dritte Subharmonische des CAS-Tons A, der Resonator 230 auf den CAS-Ton B, der Resonator 236 auf die zweite Subharmonische des CAS-Tons B und der Resonator 238 auf die dritte Subharmonische des CAS-Tons B abgestimmt.
  • Da jedoch Resonatoren typischerweise auf einen Bereich von Frequenzen um die gewünschte, zu messende Frequenz herum ansprechen, liefert ein einzelner Resonator möglicherweise nicht ausreichend Information zu exakten Bestimmung, dass ein Ton bei einer bestimmten CAS-Tonfrequenz detektiert wurde. Es kann daher wünschenswert sein, zusätzliche Resonatoren als Sicherheitsbandresonatoren zu verwenden, um die zu messende Frequenz zu triangulieren und eine genauere Antwort zu erhalten. Im Beispiel von Fig. 2 sind der Sicherheitsband(GB)- Resonator 222 auf eine Frequenz leicht unterhalb derjenigen des CAS- Tons A, der Sicherheitsbandresonator 224 auf eine Frequenz leicht oberhalb derjenigen des CAS-Tons A, der Sicherheitsbandresonator 232 auf eine Frequenz leicht unterhalb derjenigen des CAS-Tons B und der Sicherheitsbandresonator 234 auf eine Frequenz leicht oberhalb derjenigen des CAS-Tons B abgestimmt.
  • Fig. 4 veranschaulicht die Frequenzantworten der verschiedenen Resonatoren 220 bis 238. Eine Antwort 520 gehört zum Resonator 220 und ist zur Frequenz des CAS-Tons A zentriert. Zu den Sicherheitsbandresonatoren 222 und 224 gehören Frequenzantworten 522 und 524, die bei Frequenzen etwas unterhalb bzw. etwas oberhalb der Frequenz des CAS-Tons A liegen. Zum Resonator 226 gehört eine Frequenzantwort 526, die bei der zweiten Subharmonischen des CAS-Tons A zentriert ist. Eine Frequenzantwort 528 des Resonators 228 ist bei der dritten Subharmonischen des CAS-Tons A zentriert. In gleicher Weise gehören zu den Resonatoren 230 bis 238 jeweils Frequenzantworten 530 bis 538, die bei verschiedenen, mit dem CAS-Ton B verknüpften Frequenzen zentriert sind. So ist die Frequenzantwort 530 zur Frequenz des CAS- Tons B zentriert, während die untere Sicherheitsbandresonatorantwort 532 und die obere Sicherheitsbandresonatorantwort 534 bei Frequenzen leicht unterhalb bzw. leicht oberhalb derjenigen der Antwort 530 liegen. Die Resonatorfrequenzantworten 536 und 538 sind bei der zweiten Subharmonischen bzw. der dritten Subharmonischen des CAS-Tons B zentriert. Da solche Resonatoren, wie erwähnt und veranschaulicht, typischerweise auf einen gewissen Bereich von Frequenzen antworten, der bei derjenigen Frequenz zentriert ist, auf die der Resonator abgestimmt ist, versteht es sich, dass die Abstimmfrequenzen der Resonatoren etwas von ihren theoretischen Werten abweichen können, ohne dass dies wesentlichen Einfluss auf die Betriebsweise der veranschaulichten Vorrichtung hat. In Fig. 4 sind mit dem CAS-Ton A verknüpfte Resonatorfrequenzen schraffiert und mit dem CAS-Ton B verknüpfte Resonatorfrequenzen unschraffiert wiedergegeben.
  • Wieder bezugnehmend auf Fig. 3 werden die verschiedenen, im Schritt 400 bestimmten Energien in Schritten 410 bis 490 verglichen, um die Gültigkeit der detektierten Töne festzustellen. Im Schritt 410 vergleicht hierbei der Komparator 240 die gesamte, von allen Resonatoren detektierte Energie mit einem vorgegebenen Maximalwert und einem vorgegebenen Minimalwert. Wenn der Gesamtenergiewert nicht in den Bereich zwischen dem Maximal- und dem Minimalwert fällt, stellt der Komparator 240 in einem Schritt 420 fest, dass es sich bei den detektierten Tönen nicht um ein gültiges CAS-Signal handelt.
  • Wenn der detektierte Gesamtenergiepegel innerhalb des gültigen Bereichs für ein CAS liegt, fährt der Detektor damit fort, festzustellen, ob die bei der Frequenz des CAS-Tons A vorhandene Energie für ein CAS indikativ ist. In einem Schritt 430 wird die vom oberen Sicherheitsbandresonator 224 für den CAS-Ton A detektierte Energie mit derjenigen verglichen, die vom Resonator 220 für den CAS-Ton A detektiert wird. Wenn der Energiepegel dieses Sicherheitsbandresonators einen vorgebbaren Bruchteil, z. B. ein Viertel, des Energiepegels vom Resonator für den CAS-Ton A übersteigt, wird der Ton nicht als ein gültiges CAS betrachtet, d. h. die von demjenigen Resonator, der auf den CAS- Ton A abgestimmt ist, gemessene Energie geht sehr wahrscheinlich auf ein Breitbandsignal und nicht auf einen reinen CAS-Ton zurück. Im Ausführungsbeispiel von Fig. 2 wird der Ton in einen Schritt 420 von Fig. 3 zurückgewiesen, wenn der Komparator 240 feststellt, dass die Energie des Resonators 224 nicht kleiner als ein Viertel der Energie des Resonators 220 für den CAS-Ton A im Schritt 430 ist. In analoger Weise wird in einem Schritt 440 die untere Sicherheitsbandenergie des Resonators 222 mit der vom Resonator 220 für den CAS-Ton A gemessenen Energie verglichen. Wenn die Energie des Resonators 222 nicht kleiner als ein Viertel der Energie des Resonators 220 ist, wird der Ton wiederum gemäß Schritt 420 zurückgewiesen.
  • Zusätzlich zur Untersuchung mit Hilfe der Sicherheitsbandresonatoren zwecks Feststellung, ob ein Ton bei der Frequenz des CAS-Tons A vorhanden ist, werden auch die Subharmonischen des CAS-Tons A untersucht. Die bei der zweiten Subharmonischen des CAS-Tons A vorhandene Energie, die vom Resonator 226 bestimmt wird, wird mit der Energie des Resonators 220 für den CAS-Ton A durch den Komparator 240 in einem Schritt 450 von Fig. 3 verglichen. Wenn die subharmonische Energie die Energie für den CAS-Ton A übersteigt, wird der Ton wiederum gemäß Schritt 420 zurückgewiesen. Schließlich wird in einem Schritt 460 die bei der dritten Subharmonischen des CAS-Tons A vorhandene Energie, die vom Resonator 228 gemessen wird, mit der Energie des Resonators 220 für den CAS-Ton A verglichen. Wenn die Energie der dritten Subharmonischen die Energie des CAS-Tons A übersteigt, wird wiederum der Ton gemäß Schritt 420 zurückgewiesen. Andernfalls wird geschlossen, dass der Detektor einen gültigen CAS-Ton A detektiert hat.
  • Ein gleichartiger Detektions- und Verifikationsprozess, wie oben für den CAS-Ton A erläutert, wird auch für den CAS-Ton B durchgeführt. Die vom oberen Sicherheitsbandresonator 234 detektierte Energie wird in einem Schritt 475 von Fig. 3 mit der Energie des Resonators 230 für den CAS-Ton B verglichen. Wenn die Sicherheitsbandenergie ein Viertel der Energie für den CAS-Ton B übersteigt, wird der Ton wiederum gemäß Schritt 420 zurückgewiesen. In gleicher Weise wird in einem Schritt 480 die untere Sicherheitsbandenergie des Resonators 232 mit der Energie des Resonators 230 für den CAS-Ton B verglichen. Wenn die untere Sicherheitsbandenergie ein Viertel der Energie für den CAS-Ton B übersteigt, wird der Ton wiederum gemäß Schritt 420 zurückgewiesen. Die bei der zweiten Subharmonischen des CAS-Tons B vorhandene Energie wird mit der Energie für den CAS-Ton B in einem Schritt 485 verglichen. Wenn die Energie der zweiten Subharmonischen die Energie für den CAS-Ton B übersteigt, wird der Ton gemäß Schritt 420 zurückgewiesen. Schließlich wird in einem Schritt 490 die bei der dritten Subharmonischen des CAS-Tons B vorhandene Energie mit der Energie für den CAS-Ton B verglichen. Wenn die Energie der dritten Subharmonischen die Energie für den CAS-Ton B übersteigt, wird der Ton wiederum gemäß Schritt 420 zurückgewiesen.
  • Abschließend stellt der Detektor in einem Schritt 470 fest, ob sowohl vom CAS-Ton A als auch vom CAS-Ton B ermittelt wurde, dass sie gültig sind. Wenn dem so ist, wird daraus in einem Schritt 495 geschlossen, dass eine gültige CAS-Detektion vorliegt, und die weitere CID- Kommunikation vom Typ II kann zwischen dem CPE und der heimischen Station laufen.
  • In weiteren Ausführungsbeispielen können die verschiedenen Schwellwerte, die bei den Vergleichsvorgängen für die Energie in der CAS-Töne verwendet werden, um variable Beträge je nach Bedarf skaliert sein. Um beispielweise die Wahrscheinlichkeit für eine falsche Detektion eines CAS weiter zu reduzieren, kann vorgesehen sein, dass der Detektor verlangt, dass die Energiepegel des jeweiligen CAS-Tons die Energiepegel der betreffenden Subharmonischen um einen gewünschten Betrag übersteigen, z. B. um 6 dB, um daraus in den Vergleichsschritten 450, 460, 485 und 495 zu schließen, dass der CAS-Ton gültig ist. In einem derartigen Ausführungsbeispiel wird dann, wenn der bei der Frequenz des CAS-Tons A detektierte Pegel -30 dBm und der gemessene Pegel der dritten subharmonischen Frequenz des CAS-Tons A -35 dBm betragen, das Detektionsergebnis zurückgewiesen, d. h. nicht auf einen gültigen CAS-Ton A geschlossen, da die dritte Subharmonische um weniger als 6 dB unter der Grundfrequenz des Tons liegt. Die Implementierung eines solch erhöhten Schwellwertes hilft, sicherzustellen, dass nicht fälschlicherweise ein CAS detektiert wird, selbst wenn auch bei einer Mehrzahl von CAS-Subharmonischen Signale mit hohem Anteil an Harmonischen vorhanden sind.

Claims (19)

1. Verfahren zur Detektion eines vorgegebenen Signaltons innerhalb eines über einen Kommunikationskanal übertragenen Signals, gekennzeichnet durch folgende Schritte:
- Durchführen einer ersten Messung der Energie des Signals auf dem Kommunikationskanal bei der Frequenz des vorgegebenen Signaltons,
- Durchführen einer zweiten Messung der Energie des Signals auf dem Kommunikationskanal bei einer Frequenz, die einem ganzzahligen Bruchteil der Frequenz des vorgegebenen Signaltons entspricht, und
- Feststellen, dass der Signalton vorhanden ist, nur wenn das Ergebnis der ersten Messung einen ersten Schwellwert übersteigt, wobei der erste Schwellwert vom Resultat der zweiten Messung abgeleitet wird.
2. Verfahren nach Anspruch 1, weiter dadurch gekennzeichnet, dass der erste Schwellwert ungefähr sechs Dezibel größer als das Ergebnis der zweiten Messung gewählt wird.
3. Verfahren nach Anspruch 1 oder 2, weiter dadurch gekennzeichnet, dass
der Schritt zur Durchführung der ersten Messung als Teilschritte das Zuführen des Signals auf dem Kommunikationskanal zu einem ersten Resonator, der auf die Frequenz des vorgegebenen Signaltons abgestimmt ist, und das Messen des Ausgangssignals des ersten Resonators umfasst und
der Schritt zur Durchführung der zweiten Messung als Teilschritte das Zuführen des Signals auf dem Kommunikationskanal zu einem zweiten Resonator, der auf einen ganzzahligen Bruchteil der Frequenz des Signaltons abgestimmt ist, und das Messen des Ausgangssignals des zweiten Resonators umfasst.
4. Verfahren nach einem der Ansprüche 1 bis 3, weiter gekennzeichnet durch einen Schritt zur Durchführung einer oder mehrerer Sicherheitsbandmessungen der Energie des vom Kommunikationskanal transportierten Signals bei einer oder mehreren Sicherheitsbandfrequenzen, wobei der Schritt des Feststellens, dass der Signalton vorhanden ist, als weiteren Teilschritt die Feststellung umfasst, dass das oder die Ergebnisse der einen oder mehreren Sicherheitsbandmessungen einen zweiten Schwellwert nicht übersteigen, der vom Ergebnis der ersten Messung abgeleitet wird.
5. Verfahren nach Anspruch 4, weiter dadurch gekennzeichnet, dass der zweite Schwellwert gleich etwa einem Viertel des Ergebnisses der ersten Messung ist.
6. Verfahren nach einem der Ansprüche 1 bis 5, weiter dadurch gekennzeichnet, dass der Schritt zur Feststellung, dass der Signalton vorhanden ist, als einen Teilschritt die Feststellung umfasst, dass das Ergebnis der ersten Messung einen dritten Schwellwert übersteigt, der als indikativ für einen minimalen akzeptablen Energiepegel für einen gültigen Signalton vorgegeben wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, weiter dadurch gekennzeichnet, dass der Schritt zur Feststellung, dass der Signalton vorhanden ist, als einen Teilschritt die Feststellung umfasst, dass das Ergebnis der ersten Messung einen vierten Schwellwert nicht übersteigt, der als indikativ für einen maximalen akzeptablen Energiepegel für einen gültigen Signalton vorgegeben wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, weiter gekennzeichnet durch einen Schritt zur Durchführung einer oder mehrerer weiterer Messungen der Energie des Signals auf dem Kommunikationskanal bei einer oder mehreren Frequenzen, die gleich einem ganzzahligen Bruchteil der Frequenz des vorgegebenen Signaltons sind, wobei der Schritt zur Feststellung, dass der Signalton vorhanden ist, als einen Teilschritt die Feststellung umfasst, dass das Ergebnis der ersten Messung einen oder mehrere weitere Schwellwerte übersteigt, die von dem oder den Ergebnissen der einen oder mehreren weiteren Messungen abgeleitet werden.
9. Verfahren nach Anspruch 8, weiter dadurch gekennzeichnet, dass der Schritt zur Durchführung der einen oder mehreren weiteren Messungen als Teilschritte das Zuführen des Signals auf dem Kommunikationskanal zu einer oder mehreren weiteren Resonatoren, von denen jeder auf eine Frequenz abgestimmt ist, die gleich einem ganzzahligen Bruchteil der Frequenz des vorgegebenen Signaltons ist, und des Messens des Ausgangssignals jedes weiteren Resonators umfasst.
10. Verfahren zur Detektion eines Teilnehmerendgerät-Alarmsignals, das aus einem oder mehreren, auf einer Telefonleitung empfangenen Signaltönen besteht, durch ein Telefon während des Vorliegens einer Sprach- oder anderen hörbaren Kommunikation auf der Telefonleitung, gekennzeichnet durch folgende Schritte:
- Messen der auf der Telefonleitung vorhandenen Signalenergien bei der oder den Frequenzen des einen oder der mehreren Signaltöne,
- Messen der bei einer oder mehreren subharmonischen Frequenzen des jeweiligen Signaltons vorhandenen Signalenergien und
- Feststellen, dass das Alarmsignal vorhanden ist, nur wenn die Energie jeder Signaltonfrequenz einen Schwellwert überschreitet, der für jeden Signalton von den bei einer oder mehreren subharmonischen Frequenzen gemessenen Energien abgeleitet wird.
11. Verfahren nach Anspruch 10, weiter gekennzeichnet durch einen Schritt zum Messen der bei einer oder mehreren Sicherheitsbandfrequenzen für den jeweiligen Signalton vorhandenen Signalenergien, wobei der Schritt des Feststellens, dass das Alarmsignal vorhanden ist, als einen Teilschritt die Feststellung umfasst, dass die Energie des jeweiligen Signaltons einen Schwellwert übersteigt, der von den Energien der mit diesem Signalton verknüpften Sicherheitsbandfrequenzen abgeleitet wird.
12. Verfahren nach Anspruch 10 oder 11, weiter dadurch gekennzeichnet, dass der Schritt des Feststellens, dass das Alarmsignal vorhanden ist, als einen Teilschritt die Feststellung umfasst, dass die Energie des jeweiligen Signaltons einen vorgebbaren minimalen Signalton-Energiepegel übersteigt.
13. Verfahren nach einem der Ansprüche 10 bis 12, weiter dadurch gekennzeichnet, dass der Schritt des Feststellens, dass das Alarmsignal vorhanden ist, als einen Teilschritt die Feststellung umfasst, dass die Energie des jeweiligen Signaltons einen vorgebbaren maximalen Signalton-Energiepegel nicht übersteigt.
14. Telefonalarmsignaldetektor zur Detektion der Anwesenheit eines Signaltons auf einem Kommunikationskanal, gekennzeichnet durch folgende Elemente:
einen auf die Frequenz des Signaltons abgestimmten Signaltonresonator (220, 230),
einen oder mehrere Resonatoren (226, 228, 236, 238) für subharmonische Frequenzen, wobei der jeweilige subharmonische Resonator auf eine Frequenz abgestimmt ist, die einem ganzzahligen Bruchteil der Signaltonfrequenz entspricht, und
einen Komparator (240), dem Eingangssignale zuführbar sind, die von den Ausgangssignalen des jeweiligen Signaltonresonators und des jeweiligen subharmonischen Resonators abgeleitet sind, wobei das Ausgangssignal des Komparators für das Vorhandensein des Signaltons indikativ ist, wenn als eine notwendige Bedingung das Ausgangssignal des jeweiligen Signaltonresonators einen ersten Schwellwert übersteigt, der von dem oder den Ausgangssignalen des oder der zugehörigen subharmonischen Resonatoren abgeleitet ist.
15. Telefonalarmsignaldetektor nach Anspruch 14, weiter gekennzeichnet durch eine oder mehrere Sicherheitsbandresonatoren (222, 224, 232, 234), die jeweils auf eine Frequenz abgestimmt sind, die geringfügig größer oder kleiner als die zugehörige Signaltonfrequenz ist, wobei der Komparator von den Sicherheitsbandresonator-Ausgangssignalen abgeleitete Eingangssignale empfängt und das Ausgangssignal des Komparators für das Vorhandenseins des Signaltons indikativ ist, wenn als eine notwendige Bedingung das betreffende Signaltonresonator-Ausgangssignal den ersten und einen zweiten Schwellwert übersteigt, wobei der zweite Schwellwert von dem oder den Sicherheitsbandresonator- Ausgangssignalen abgeleitet ist.
16. Telefonalarmsignaldetektor nach Anspruch 14 oder 15, weiter dadurch gekennzeichnet, dass der Komparator als weiteres Eingangssignal ein zu einem vorgebbaren minimalen Signaltonpegel gehöriges Signal empfängt und das Komparatorausgangssignal für das Vorhandensein des Signaltons indikativ ist, wenn als eine notwendige Bedingung das zugehörige Signaltonresonator-Ausgangssignal den ersten Schwellwert und den vorgegebenen minimalen Signaltonpegel übersteigt.
17. Telefonalarmsignaldetektor nach Anspruch 16, weiter dadurch gekennzeichnet, dass der Komparator als weiteres Eingangssignal ein zu einem vorgebbaren maximalen Signaltonpegel gehöriges Signal empfängt und das Komparatorausgangssignal für das Vorhandensein des Signaltons indikativ ist, wenn als eine notwendige Bedingung das betreffende Signaltonresonator-Ausgangssignal den ersten Schwellwert und den vorgebbaren minimalen Signaltonpegel übersteigt und der vorgebbare maximale Signaltonpegel das Signaltonresonator-Ausgangssignal übersteigt.
18. Telefonalarmsignaldetektor nach einem der Ansprüche 14 bis 17, weiter dadurch gekennzeichnet, dass der erste Schwellwert etwa sechs Dezibel größer als das größte Ausgangssignal des oder der subharmonischen Resonatoren ist.
19. Telefonalarmsignaldetektor nach einem der Ansprüche 15 bis 18, weiter dadurch gekennzeichnet, dass der zweite Schwellwert etwa das Vierfache des Pegels des größten Sicherheitsbandresonator- Ausgangssignals beträgt.
DE10308467A 2002-02-21 2003-02-21 Verfahren zur Signalton-/Alarmsignaldetektion und Telefonalarmsignaldetektor Expired - Fee Related DE10308467B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/079969 2002-02-21
US10/079,969 US6940966B2 (en) 2002-02-21 2002-02-21 Method and apparatus for detection of a telephone CPE alerting signal

Publications (2)

Publication Number Publication Date
DE10308467A1 true DE10308467A1 (de) 2003-09-04
DE10308467B4 DE10308467B4 (de) 2012-05-31

Family

ID=22153957

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10308467A Expired - Fee Related DE10308467B4 (de) 2002-02-21 2003-02-21 Verfahren zur Signalton-/Alarmsignaldetektion und Telefonalarmsignaldetektor

Country Status (4)

Country Link
US (1) US6940966B2 (de)
CA (1) CA2419215C (de)
DE (1) DE10308467B4 (de)
GB (1) GB2385742B (de)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7146524B2 (en) 2001-08-03 2006-12-05 Isilon Systems, Inc. Systems and methods for providing a distributed file system incorporating a virtual hot spare
US7685126B2 (en) * 2001-08-03 2010-03-23 Isilon Systems, Inc. System and methods for providing a distributed file system utilizing metadata to track information about data stored throughout the system
US20030223560A1 (en) * 2002-05-29 2003-12-04 Stauf Ent., Inc. Caller ID printing device
US7937421B2 (en) * 2002-11-14 2011-05-03 Emc Corporation Systems and methods for restriping files in a distributed file system
US8238350B2 (en) 2004-10-29 2012-08-07 Emc Corporation Message batching with checkpoints systems and methods
US8055711B2 (en) 2004-10-29 2011-11-08 Emc Corporation Non-blocking commit protocol systems and methods
US8051425B2 (en) 2004-10-29 2011-11-01 Emc Corporation Distributed system with asynchronous execution systems and methods
US20070071214A1 (en) * 2005-09-16 2007-03-29 Ching-Hsun Chen Method for detecting a cpe alert signal of a telecommunication system by utilizing an energy ratio
US7797283B2 (en) 2005-10-21 2010-09-14 Isilon Systems, Inc. Systems and methods for maintaining distributed data
US7788303B2 (en) 2005-10-21 2010-08-31 Isilon Systems, Inc. Systems and methods for distributed system scanning
US7551572B2 (en) 2005-10-21 2009-06-23 Isilon Systems, Inc. Systems and methods for providing variable protection
US7386675B2 (en) 2005-10-21 2008-06-10 Isilon Systems, Inc. Systems and methods for using excitement values to predict future access to resources
US7346720B2 (en) * 2005-10-21 2008-03-18 Isilon Systems, Inc. Systems and methods for managing concurrent access requests to a shared resource
US7917474B2 (en) 2005-10-21 2011-03-29 Isilon Systems, Inc. Systems and methods for accessing and updating distributed data
US7848261B2 (en) 2006-02-17 2010-12-07 Isilon Systems, Inc. Systems and methods for providing a quiescing protocol
US7756898B2 (en) 2006-03-31 2010-07-13 Isilon Systems, Inc. Systems and methods for notifying listeners of events
US8539056B2 (en) 2006-08-02 2013-09-17 Emc Corporation Systems and methods for configuring multiple network interfaces
US7680842B2 (en) 2006-08-18 2010-03-16 Isilon Systems, Inc. Systems and methods for a snapshot of data
US7953704B2 (en) 2006-08-18 2011-05-31 Emc Corporation Systems and methods for a snapshot of data
US7680836B2 (en) 2006-08-18 2010-03-16 Isilon Systems, Inc. Systems and methods for a snapshot of data
US7882071B2 (en) 2006-08-18 2011-02-01 Isilon Systems, Inc. Systems and methods for a snapshot of data
US7899800B2 (en) 2006-08-18 2011-03-01 Isilon Systems, Inc. Systems and methods for providing nonlinear journaling
US7590652B2 (en) 2006-08-18 2009-09-15 Isilon Systems, Inc. Systems and methods of reverse lookup
US7676691B2 (en) 2006-08-18 2010-03-09 Isilon Systems, Inc. Systems and methods for providing nonlinear journaling
US7752402B2 (en) 2006-08-18 2010-07-06 Isilon Systems, Inc. Systems and methods for allowing incremental journaling
US7822932B2 (en) 2006-08-18 2010-10-26 Isilon Systems, Inc. Systems and methods for providing nonlinear journaling
US8286029B2 (en) 2006-12-21 2012-10-09 Emc Corporation Systems and methods for managing unavailable storage devices
US7593938B2 (en) 2006-12-22 2009-09-22 Isilon Systems, Inc. Systems and methods of directory entry encodings
US7509448B2 (en) 2007-01-05 2009-03-24 Isilon Systems, Inc. Systems and methods for managing semantic locks
US7779048B2 (en) 2007-04-13 2010-08-17 Isilon Systems, Inc. Systems and methods of providing possible value ranges
US7900015B2 (en) 2007-04-13 2011-03-01 Isilon Systems, Inc. Systems and methods of quota accounting
US8966080B2 (en) 2007-04-13 2015-02-24 Emc Corporation Systems and methods of managing resource utilization on a threaded computer system
US7882068B2 (en) 2007-08-21 2011-02-01 Isilon Systems, Inc. Systems and methods for adaptive copy on write
US7966289B2 (en) 2007-08-21 2011-06-21 Emc Corporation Systems and methods for reading objects in a file system
US7949692B2 (en) 2007-08-21 2011-05-24 Emc Corporation Systems and methods for portals into snapshot data
US7953709B2 (en) 2008-03-27 2011-05-31 Emc Corporation Systems and methods for a read only mode for a portion of a storage system
US7949636B2 (en) 2008-03-27 2011-05-24 Emc Corporation Systems and methods for a read only mode for a portion of a storage system
US7984324B2 (en) 2008-03-27 2011-07-19 Emc Corporation Systems and methods for managing stalled storage devices
US7870345B2 (en) 2008-03-27 2011-01-11 Isilon Systems, Inc. Systems and methods for managing stalled storage devices
US9208797B2 (en) * 2008-04-18 2015-12-08 General Motors Llc Tone detection for signals sent through a vocoder
US11120820B2 (en) * 2018-12-05 2021-09-14 International Business Machines Corporation Detection of signal tone in audio signal

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132291A (ja) * 1989-10-18 1991-06-05 Fujitsu Ltd Pb信号検出方式
SE9202065L (sv) * 1992-07-03 1994-01-04 Ericsson Telefon Ab L M Sätt att förbättra mottagarens känslighet och talimmuniteten vid DTMF-mottagning
US5519774A (en) * 1992-12-08 1996-05-21 Bell Communications Research, Inc. Method and system for detecting at a selected station an alerting signal in the presence of speech
US5649002A (en) * 1994-12-13 1997-07-15 Colonial Data Technologies Corp. Method and apparatus for detecting a telephone CPE alerting signal
US5896560A (en) * 1996-04-12 1999-04-20 Transcrypt International/E. F. Johnson Company Transmit control system using in-band tone signalling
US5809133A (en) * 1996-05-24 1998-09-15 Advanced Micro Devices, Inc. DTMF detector system and method which performs frequency domain energy calculations with improved performance
US6269160B1 (en) * 1998-04-20 2001-07-31 Advanced Micro Devices, Inc. Communications device including an improved CPE alerting signal (CAS) detection system

Also Published As

Publication number Publication date
GB2385742A (en) 2003-08-27
GB2385742B (en) 2005-01-12
CA2419215C (en) 2007-10-16
US20030156709A1 (en) 2003-08-21
DE10308467B4 (de) 2012-05-31
CA2419215A1 (en) 2003-08-21
GB0303931D0 (en) 2003-03-26
US6940966B2 (en) 2005-09-06

Similar Documents

Publication Publication Date Title
DE10308467B4 (de) Verfahren zur Signalton-/Alarmsignaldetektion und Telefonalarmsignaldetektor
DE69532186T2 (de) Verfahren zur Fernsprechtonverbesserung durch Teilnehmerwahl
DE102005029287B4 (de) Verfahren zum Unterbinden einer Vermittlung von unerwünschten Telefonanrufen
DE69926851T2 (de) Verfahren und Vorrichtung zur Sprachaktivitätsdetektion
DE69724408T2 (de) Zweitonmehrfrequenzdetektionssystem und -verfahren mit statischer und dynamischer schwellwertbestimmung
DE69637235T2 (de) Tonsignaldetektor mit verbesserter Leistung in Gegenwart von Gesprächen
DE69433587T2 (de) Vorrichtung zur Detektion von Abschaltsignalisierung
DE19939102C1 (de) Verfahren und Anordnung zum Erkennen von Sprache
DE3914841A1 (de) Digitaler tonsignalempfaenger
DE69735635T2 (de) Verfahren und vorrichtung zur erkennung einer faksimileübertragung
WO2005091608A1 (de) Verfahren und vorrichtung zur qualitätsbeurteilung eines audiosignals und vorrichtung und verfahren zum erhalten eines qualitätsbeurteilungsergebnisses
DE69918635T2 (de) Vorrichtung und Verfahren zur Sprachverarbeitung
EP3337188A1 (de) Verfahren zum betrieb eines hörgerätes
DE69730351T2 (de) Disable-tondetektor für einen netzwerkechokompensator
EP3337187A1 (de) Verfahren zum betrieb eines hörgerätes
DE69531525T2 (de) Tonerkennung mit Minimierung falscher Identifikation
EP1076989B1 (de) Ermittlung der dienstgüte von telekommunikationsdiensten
DE60101257T2 (de) Verfahren und plattform zur sprachqualitätsauswertung in fernsprechkommunikationen
DE102009035796B4 (de) Benachrichtigung über Audio-Ausfall bei einer Telekonferenzverbindung
EP1634277B1 (de) Extrahierung von testsignalabschnitten zur qualitätsmessung eines audiosignals
DE60307737T2 (de) Benachrichtigung für anklopfende Anrufe
DE69433659T2 (de) Vorrichtung und Verfahren zur Echo-Dämpfung
DE69827761T2 (de) Erstparteisignalisierung für Anruferidentifizierung eines wartenden Anrufes
WO2008006905A2 (de) Verfahren und system zur reduzierung des empfangs unerwünschter nachrichten
EP0916206B1 (de) Verfahren und anordnung zum beurteilen der qualität eines übertragenen sprachsignals

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final

Effective date: 20120901

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee