DE19510802A1 - Light coupling method with integrated beam shaping for light from waveguide - Google Patents

Light coupling method with integrated beam shaping for light from waveguide

Info

Publication number
DE19510802A1
DE19510802A1 DE1995110802 DE19510802A DE19510802A1 DE 19510802 A1 DE19510802 A1 DE 19510802A1 DE 1995110802 DE1995110802 DE 1995110802 DE 19510802 A DE19510802 A DE 19510802A DE 19510802 A1 DE19510802 A1 DE 19510802A1
Authority
DE
Germany
Prior art keywords
grating
decoupling
beam shaping
cladding
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1995110802
Other languages
German (de)
Inventor
Peter Kipfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Friedrich Alexander Univeritaet Erlangen Nuernberg FAU
Original Assignee
Friedrich Alexander Univeritaet Erlangen Nuernberg FAU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Friedrich Alexander Univeritaet Erlangen Nuernberg FAU filed Critical Friedrich Alexander Univeritaet Erlangen Nuernberg FAU
Priority to DE1995110802 priority Critical patent/DE19510802A1/en
Publication of DE19510802A1 publication Critical patent/DE19510802A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating

Abstract

The method allows light to be coupled out, from planar waveguides and semiconductor diode lasers, with and without a tapered amplifier, using a decoupling grating in the cladding of the waveguide. The method also provides integral beam shaping. The beam shaping is achieved by variation of the cladding thickness or the refractive index in the cladding or in the grating grooves along the decoupling grating. Preferably, the cladding thickness tapers at the location of the decoupling grating. Deviations from the tapered wedge shape of the beam may also be permitted. The beam shaping may be supported by modulation of the grating e.g. the grating depth, duty cycle, grating profile.

Description

Stand der TechnikState of the art

Die Lichtauskopplung aus planaren monomodigen Wellenleitern mittels Auskoppelgitter [1, 2], Verjüngung des Cores [3], Aufsetzen eines Prismas [4], Kantenemission und die Strahlformung mit tiefenmodulierten Auskoppelgittern [5] ist seit langem bekannt.The decoupling of light from planar monomode waveguides by means of Coupling grating [1, 2], tapering of the core [3], fitting a prism [4], edge emission and beam shaping with depth modulated Coupling grids [5] have been known for a long time.

Der Nachteil aller bisherigen Methoden liegt darin, daß einerseits Strahlformung nur mit externen Optiken möglich ist, z. B. astigmatische Linsen bei kantenemittierenden Laserdioden. Andererseits ergeben sich bei der Strahlformung durch Modulation der Gitterparameter (Gittertiefe, Tastverhältnis) hohe technologische Anforderungen an die Herstellungsmethoden der Auskoppelgitter.The disadvantage of all previous methods is that on the one hand Beam shaping is only possible with external optics, e.g. B. astigmatic Lenses in edge emitting laser diodes. On the other hand, with beam shaping by modulating the lattice parameters (lattice depth, Duty cycle) high technological demands on the Manufacturing methods of the decoupling grid.

Die in diesem neuen Verfahren vorgeschlagene Kombination von Auskoppelgitter und Claddingdicken- bzw. Brechzahlvariation ist noch nicht bekannt gemacht worden. Diese Erfindung dient dem Zweck, Lichtauskopplung und Strahlformung (z. B. gaußförmiges Strahlprofil) mit einem geringen technologischen Aufwand zu realisieren. The combination of proposed in this new process Coupling grating and cladding thickness or refractive index variation is not yet been made known. This invention serves the purpose Coupling of light and beam shaping (e.g. Gaussian beam profile) to realize a low technological effort.  

AusführungsbeispieleEmbodiments

Der im folgenden oft verwendete Begriff Auskoppelgrad α ist definiert als die relative Abnahme der Amplitude A des Lichts im Wellenleiter über dem Auskoppelort x:The term decoupling degree α, which is often used in the following, is defined as the relative decrease in the amplitude A of the light in the waveguide over the Decoupling location x:

dA(x)/dx = - α A(x).dA (x) / dx = - α A (x).

Bei konstantem (= unmoduliert) Auskoppelgrad α erhält man als Strahlprofil längs des Auskoppelgitters eine exponentiell abfallende Amplitude.With a constant (= unmodulated) decoupling degree α, the beam profile is obtained an exponentially decreasing amplitude along the decoupling grid.

Zur Strahlformung muß der Auskoppelgrad α längs des Auskoppelortes x moduliert werden, d. h. der Auskoppelgrad α ist nicht mehr konstant, α wird eine Funktion des Auskoppelortes x.For beam shaping, the degree of decoupling α must be along the decoupling point x be modulated, d. H. the degree of decoupling α is no longer constant, α becomes a function of the decoupling location x.

α → α(x).α → α (x).

Im Fall der Claddingdickenvariation (siehe Skizze 1) geschieht die Modulation des Auskoppelgrades durch die Abstandsänderung des Auskoppelgitters zum Core (Kern des Wellenleiters). Da das Auskoppelgitter in die Claddingschicht integriert ist, ergibt sich logischerweise eine Claddingdickenvariation. Die Claddingdicke im Auskoppelbereich nimmt hierbei keilförmig ab. Mit den Keilparametern wie Anfangskeildicke (Anfangsdicke des Claddings), Keilwinkel und Endkeildicke bzw. Auskoppellänge hat man drei Designfreiheitsgrade, die zur Strahlformung mittels Modulation des Auskoppelgrades genützt werden können. Die Modulation des Auskoppelgrades kann hierbei durch eine leichte Modulation der Gitterparameter (Ätztiefe, Tastverhältnis, Profilform) bzw. durch leichte Abweichung von der Keilform unterstützt werden.In the case of the cladding thickness variation (see sketch 1), the modulation takes place the degree of decoupling by changing the distance of the decoupling grid to Core. Because the decoupling grid in the cladding layer is integrated, there is logically a variation in cladding thickness. The The cladding thickness in the decoupling area decreases in a wedge shape. With the Wedge parameters such as initial wedge thickness (initial thickness of the cladding), The wedge angle and end wedge thickness or coupling length are three Design degrees of freedom, which are used for beam shaping by modulating the Decoupling degrees can be used. The modulation of the Decoupling levels can be achieved by slightly modulating the Grid parameters (etching depth, duty cycle, profile shape) or by slight Deviation from the wedge shape are supported.

Bei dem Verfahren der Strahlformung mittels Brechzahlvariation in der Claddingschicht längs des Auskoppelgitters (siehe Skizze 2) wird die Modulation des Auskoppelgrades dadurch erreicht, daß der Auskoppelgrad vom Brechzahlverhältnis Cladding zum Core abhängt. Ein geringer Brechungsindex im Cladding bedingt einen kleinen Auskoppelgrad und umgekehrt.In the process of beam shaping using a refractive index variation in the The cladding layer along the decoupling grid (see sketch 2) becomes the Modulation of the degree of coupling out achieved in that the degree of coupling out depends on the refractive index ratio of cladding to the core. A little Refractive index in cladding requires a small degree of coupling out and vice versa.

Bei dem Verfahren der Strahlformung mittels Brechzahlvariation in den Gittergräben längs der Auskoppelgitter (siehe Skizze 3) wird die Modulation des Auskoppeigrades dadurch erreicht, daß der Auskoppelgrad eine Funktion der Gittermodulation ist. Die Gittermodulation wird hierbei nicht durch geometrische Größen wie Gittertiefe, Tastverhältnis oder Profilform gesteuert, sondern durch die Wahl des Füllmaterials in den Gittergräben. Eine hohe Brechzahldifferenz zwischen Gittersteg und -graben ist einer hohen Modulation gleichzusetzen und bedingt einen hohen Auskoppelgrad und umgekehrt. In the process of beam shaping by means of refractive index variation in the Lattice trenches along the coupling grating (see sketch 3) is the modulation the Auskoppeigrad achieved in that the Auskoppelgrad a function the grid modulation is. The grid modulation is not affected by this Geometric sizes such as grid depth, duty cycle or profile shape controlled, but by the choice of the filling material in the trenches. A high difference in refractive index between the grating web and trench is one high modulation and requires a high degree of coupling and vice versa.  

Literaturliste:Literature list:

[1] M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott: Appl. Phys. Letters 16, 523 (1970).
[2] T. Tamir: "Beam and waveguide couplers" in Integrated Optics, 2nd ed., T. Tamir, ed., Vol. 7 of Topics in Applied Physics (Springer Verlag Berlin Heidelberg New York, 1982) pp. 83-137.
[3] P. K. Tien, R. J. Martin: Appl. Phys. Letters 18, 398 (1974).
[4] L. V. Iogansen: Sov. Phys.-Tech. Phys. 7, 295 (1962).
[5] K. A. Bates, L. Li, R. L. Roncone, J. J. Burke: Appl. Optics 32, 12 (1993)
[1] ML Dakss, L. Kuhn, PF Heidrich, BA Scott: Appl. Phys. Letters 16, 523 (1970).
[2] T. Tamir: "Beam and waveguide couplers" in Integrated Optics, 2nd ed., T. Tamir, ed., Vol. 7 of Topics in Applied Physics (Springer Verlag Berlin Heidelberg New York, 1982) pp. 83-137.
[3] PK Tien, RJ Martin: Appl. Phys. Letters 18, 398 (1974).
[4] LV Iogansen: Sov. Phys.-Tech. Phys. 7, 295 (1962).
[5] KA Bates, L. Li, RL Roncone, JJ Burke: Appl. Optics 32, 12 (1993)

Claims (4)

1. Verfahren zur Lichtauskopplung und Strahlformung aus planaren Wellenleitern und Halbleiterdiodenlasern mit und ohne getaperten Leistungsverstärker mit Hilfe eines Auskoppelgitters im Cladding (Mantel des Wellenleiters) dadurch gekennzeichnet, daß die Strahlformung durch eine Claddingdicken- bzw. Brechzahlvariation im Cladding oder in den Gittergräben längs des Auskoppelgitters bewerkstelligt wird.1. A method for decoupling light and beam shaping from planar waveguides and semiconductor diode lasers with and without tapered power amplifier using a decoupling grating in cladding (cladding of the waveguide), characterized in that the beam shaping by a cladding thickness or refractive index variation in cladding or in the trenches along the decoupling grating is accomplished. 2. Verfahren nach 1., dadurch gekennzeichnet, daß die Claddingdicke am Ort des Auskoppelgitters keilförmig abnimmt.2. The method according to 1., characterized in that the Cladding thickness decreases in a wedge shape at the location of the decoupling grid. 3. Verfahren nach 1. und 2., dadurch gekennzeichnet, daß auch Abweichungen von der Keilform zur Strahlformung zugelassen werden.3. The method according to 1. and 2., characterized in that also Deviations from the wedge shape for beam shaping are permitted. 4. Verfahren nach 1. bis 3., dadurch gekennzeichnet, daß die Strahlformung durch Modulation des Auskoppelgitters (Gittertiefe, Tastverhältnis, Gitterprofil) unterstützt werden kann.4. The method according to 1. to 3., characterized in that the Beam shaping by modulating the decoupling grating (grating depth, Duty cycle, grid profile) can be supported.
DE1995110802 1995-03-24 1995-03-24 Light coupling method with integrated beam shaping for light from waveguide Withdrawn DE19510802A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1995110802 DE19510802A1 (en) 1995-03-24 1995-03-24 Light coupling method with integrated beam shaping for light from waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1995110802 DE19510802A1 (en) 1995-03-24 1995-03-24 Light coupling method with integrated beam shaping for light from waveguide

Publications (1)

Publication Number Publication Date
DE19510802A1 true DE19510802A1 (en) 1996-09-26

Family

ID=7757624

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1995110802 Withdrawn DE19510802A1 (en) 1995-03-24 1995-03-24 Light coupling method with integrated beam shaping for light from waveguide

Country Status (1)

Country Link
DE (1) DE19510802A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079915A2 (en) * 2000-04-18 2001-10-25 University Of Manitoba Diffraction grating in the whispering gallery mount
WO2002077700A2 (en) * 2001-03-22 2002-10-03 Infinite Photonics, Inc. Controlling passive facet reflections
EP1402289A1 (en) * 2001-05-17 2004-03-31 Optronx, Inc. Anisotropic etching of optical components
EP1402564A2 (en) * 2001-05-17 2004-03-31 Optronx, Inc. Integrated optical/electronic circuits and associated methods of simultaneous generation thereof
US7194016B2 (en) 2002-03-22 2007-03-20 The Research Foundation Of The University Of Central Florida Laser-to-fiber coupling

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079915A2 (en) * 2000-04-18 2001-10-25 University Of Manitoba Diffraction grating in the whispering gallery mount
WO2001079915A3 (en) * 2000-04-18 2002-08-08 Univ Manitoba Diffraction grating in the whispering gallery mount
WO2002077700A2 (en) * 2001-03-22 2002-10-03 Infinite Photonics, Inc. Controlling passive facet reflections
WO2002077700A3 (en) * 2001-03-22 2003-03-20 Infinite Photonics Inc Controlling passive facet reflections
EP1402289A1 (en) * 2001-05-17 2004-03-31 Optronx, Inc. Anisotropic etching of optical components
EP1402564A2 (en) * 2001-05-17 2004-03-31 Optronx, Inc. Integrated optical/electronic circuits and associated methods of simultaneous generation thereof
EP1402564A4 (en) * 2001-05-17 2005-06-29 Optronx Inc Integrated optical/electronic circuits and associated methods of simultaneous generation thereof
EP1402289A4 (en) * 2001-05-17 2005-12-07 Optronx Inc Anisotropic etching of optical components
US7194016B2 (en) 2002-03-22 2007-03-20 The Research Foundation Of The University Of Central Florida Laser-to-fiber coupling

Similar Documents

Publication Publication Date Title
EP0629297B1 (en) Integrated optical component
DE69815219T2 (en) Device for the excitation of an optical fiber laser
EP0498170B1 (en) Integrated optical component for coupling waveguides of different dimensions
DE102004010907B4 (en) Optical device with microlens arrangement, and method for its preparation
DE69838840T2 (en) Active optical waveguide with asymetric polarization, its method of preparation and its use.
DE2345273A1 (en) PROCESS FOR CONNECTING LIGHT GUIDES AND DEVICE FOR CARRYING OUT THE PROCESS
DE2549842A1 (en) CONNECTING FITTINGS FOR FIBER OPERATING FIBERS
DE2436908A1 (en) LIGHT BEAM COUPLING DEVICE FOR SEMICONDUCTOR LASER
DE19829692A1 (en) Passive fiber optic alignment device and associated method
EP0012190A1 (en) Branching device for monomode light-wave guides and method of manufacturing it
EP0155379B1 (en) Arrangement for coupling a light wave guide to a semiconductor laser and method for manufacturing such an arrangement
EP0076373A2 (en) Planar waveguide technology frequency analyzer and method for the construction of a planar geodetic lens on or in a substrate
DE19510802A1 (en) Light coupling method with integrated beam shaping for light from waveguide
EP0220455A1 (en) Arrangement for coupling a laser diode to a monomode waveguide
DE19626130A1 (en) Optical semiconductor component with a deep ribbed waveguide
DE69738279T2 (en) Vertical positioning of an optoelectronic component on a carrier with respect to an optical conductor integrated on this carrier
WO1998000894A2 (en) Optical semiconductor component with deep ridged waveguide
EP0660143A2 (en) Coupling apparatus between an optical fibre and optical waveguide
EP0740802A1 (en) Process for producing an integrated optical component
EP0495202A2 (en) Device to change an optical wave with a small waist diameter into a wave with a bigger waist diameter
DE2205728C3 (en) Optical component consisting of a multilayer semiconductor body
DE3431605A1 (en) OPTICAL SHAFT GUIDE
DE4208278A1 (en) Integrated optical component eg modulator or switch - provides polymer optical conductor running on polymer material filling positioning slanted trench at connection with glass fibre
EP0359967A3 (en) External optical resonator for a semiconductor laser
DE2358881C2 (en) Process for the production of coupling optics on an optical waveguide

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee