DE19607151C1 - Regeneration of nitrogen oxide storage catalyst - Google Patents

Regeneration of nitrogen oxide storage catalyst

Info

Publication number
DE19607151C1
DE19607151C1 DE1996107151 DE19607151A DE19607151C1 DE 19607151 C1 DE19607151 C1 DE 19607151C1 DE 1996107151 DE1996107151 DE 1996107151 DE 19607151 A DE19607151 A DE 19607151A DE 19607151 C1 DE19607151 C1 DE 19607151C1
Authority
DE
Germany
Prior art keywords
nox
catalytic converter
storage catalytic
regeneration
nox storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE1996107151
Other languages
German (de)
Inventor
Willibald Dipl Ing Dr Schuerz
Erwin Dipl Ing Dr Achleitner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE1996107151 priority Critical patent/DE19607151C1/en
Priority to EP97914147A priority patent/EP0822856A1/en
Priority to PCT/DE1997/000278 priority patent/WO1997031704A1/en
Application granted granted Critical
Publication of DE19607151C1 publication Critical patent/DE19607151C1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • F02D41/1465Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0806NOx storage amount, i.e. amount of NOx stored on NOx trap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0811NOx storage efficiency

Abstract

Nitrogen oxides storage catalyst (4) is regenerated in accordance with the operational state of the catalyst (4). During regeneration, the mixture supplied to the internal combustion engine corresponds to a stoichiometry ratio less than one (rich), ahead of the catalyst. The operational state corresponds to at least a limiting quantity of NOx compounds issuing from the catalyst. The quantity of NOx is evaluated from a characteristic diagram, which is a function of the loading and rotary speed of the engine.

Description

Die Erfindung betrifft ein Verfahren zur Regeneration eines NOx-Speicherkatalysators gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a method for the regeneration of a NOx storage catalyst according to the preamble of the claim 1.

NOx-Speicherkatalysatoren werden verwendet, um bei Motorkon­ zepten mit magerer Verbrennung die geforderten Abgasgrenzwer­ te einhalten zu können. Die NOx-Speicherkatalysatoren absor­ bieren die bei magerer Verbrennung erzeugten NOx-Verbin­ dungen. Da jedoch die Speicherkapazität eines NOx-Speicher­ katalysators begrenzt ist, ist es notwendig eine bedarfsge­ rechte Regeneration des Speicherkatalysators durchzuführen. Dies erfolgt durch kurzzeitiges Betreiben des Motors mit ei­ nem fetten Gemisch, wodurch die gespeicherten NOx-Verbin­ dungen im Katalysator abgebaut werden.NOx storage catalytic converters are used to with lean combustion the required exhaust gas limits to be able to comply. The NOx storage catalytic converters absor beers of the NOx connection generated during lean combustion fertilize. However, since the storage capacity of a NOx storage catalyst is limited, it is necessary a needs right regeneration of the storage catalytic converter. This is done by briefly operating the engine with egg a rich mixture, which saves the stored NOx connection in the catalytic converter.

Aus der EP 0 597 106 A1 ist bereits ein Verfahren zur Regene­ ration eines NOx-Speicherkatalysators bekannt, bei dem die vom Speicherkatalysator absorbierte Menge an NOx-Verbindungen in Abhängigkeit von der angesaugten Luft und der Motorlast berechnet wird. Bei Überschreiten einer vorgegebenen Grenz­ menge von im NOx-Speicherkatalysator gespeicherten NOx-Ver­ bindungen wird der Brennkraftmaschine ein fettes Gemisch zur Regeneration des Speicherkatalysators zugeführt. Auf diese Weise ist jedoch ein zuverlässiges Einhalten der Abgasgrenz­ werte nicht gewährleistet.A method for raining is already known from EP 0 597 106 A1 ration of a NOx storage catalyst, in which the Amount of NOx compounds absorbed by the storage catalytic converter depending on the intake air and the engine load is calculated. When a predetermined limit is exceeded amount of NOx Ver stored in the NOx storage catalytic converter bindings, the internal combustion engine becomes a rich mixture Regeneration of the storage catalyst supplied. To this However, reliable compliance with the exhaust gas limit is advisable values not guaranteed.

DE 195 11 548 A1 beschreibt ein Verfahren zur Regeneration eines NOx-Speicherkatalysators, bei dem die Regenerationspha­ se gestartet wird, wenn die vom NOx-Speicherkatalysator aus­ gegebene Menge an NOx-Verbindungen über einen vorgegebenen Grenzwert liegt. Die NOx-Verbindungen werden mit einem Sensor im Abgasstrom nach dem NOx-Speicherkatalysator gemessen. Bei der Regenerationsphase wird der Brennkraftmaschine ein Kraft­ stoffgemisch zugeführt, das einer Luftzahl < 1 vor dem NOx- Speicherkatalysator entspricht.DE 195 11 548 A1 describes a method for regeneration a NOx storage catalyst, in which the regeneration phase se is started when the from the NOx storage catalyst given amount of NOx compounds over a given Limit is. The NOx connections are made with a sensor measured in the exhaust gas stream after the NOx storage catalytic converter. At During the regeneration phase, the internal combustion engine becomes a force substance mixture supplied that has an air ratio <1 before the NOx Storage catalytic converter corresponds.

Die Aufgabe der Erfindung beruht darin, ein Verfahren zur Re­ generation eines NOx-Speicherkatalysators zur Verfügung zu stellen, das eine sichere Einhaltung der Abgasgrenzwerte ge­ währleistet und eine verbesserte, bedarfsgerechte Regenerati­ on des NOx-Speicherkatalysators ermöglicht. The object of the invention is to provide a method for re generation of a NOx storage catalytic converter ensure safe compliance with the exhaust gas limit values guarantees and an improved, needs-based regeneration on the NOx storage catalyst.  

Die Aufgabe der Erfindung wird durch die Merkmale des An­ spruchs 1 gelöst. Ein wesentlicher Vorteil der Erfindung be­ ruht darin, daß die Regeneration des NOx-Speicherkatalysators in Abhängigkeit vom NOx-Ausstoß gestartet wird. Auf diese Weise ist eine sichere Einhaltung der Abgasgrenzwerte gewähr­ leistet.The object of the invention is characterized by the features of the spell 1 solved. A major advantage of the invention be rests in the regeneration of the NOx storage catalyst is started depending on the NOx emissions. To this In this way, safe compliance with the exhaust gas limit values is guaranteed accomplishes.

Vorteilhafte Ausbildungen und Verbesserungen der Erfindung sind in den Unteransprüchen angegeben.Advantageous developments and improvements of the invention are specified in the subclaims.

Die Erfindung wird anhand der Figuren näher erläutert; es zeigen:The invention is illustrated by the figures; it demonstrate:

Fig. 1 eine schematische Anordnung einer Brennkraftmaschine mit einem NOx-Speicherkatalysator, Fig. 1 shows a schematic arrangement of an internal combustion engine having an NOx storage catalytic converter,

Fig. 2 eine schematische Darstellung des erfindungsgemäßen Verfahrens, Fig. 2 is a schematic representation of the method according to the invention,

Fig. 3 ein Verfahren zur Bestimmung des NOx-Ausstoßes und Fig. 3 shows a method for determining the NOx emissions and

Fig. 4 ein Verfahren zur Bestimmung der Beladung des Spei­ cherkatalysators. Fig. 4 shows a method for determining the loading of the storage catalyst.

Fig. 1 zeigt eine Anordnung, bei der das erfindungsgemäße Verfahren angewendet wird. Eine Brennkraftmaschine 2 ist mit einem Ansaugtrakt 1 und einem Abgastrakt 3 verbunden. Im An­ saugtrakt 1 ist ein Temperaturfühler 9 und eine Lastmeßein­ richtung 11, beispielsweise ein Luftmassenmesser oder ein Druckmesser, angeordnet. Die Brennkraftmaschine 2 umfaßt eine Einspritzanlage mit einer Ventilanordnung und einen Kühl­ kreislauf. Der Abgastrakt 3 führt zu einem NOx-Speicher­ katalysator 4, an dem ein Temperatursensor 13 angeschlossen ist. Der NOx-Speicherkatalysator 4 wird im folgenden kurz als Speicherkatalysator 4 bezeichnet. Weiterhin ist ein Steuerge­ rät 5 mit einem Speicher 6 dargestellt, wobei das Steuergerät 5 über eine Lastmeßleitung 12 mit der Lastmeßeinrichtung 11, über eine Temperaturmeßleitung 10 mit dem Temperaturfühler 9, über eine Daten- und Steuerleitung 8 mit der Brennkraftma­ schine 2 und über eine Meßleitung 7 mit dem Temperatursensor 13 verbunden ist. Zudem ist eine Lambdasonde 14 in den Ab­ gastrakt 3 vor dem Speicherkatalysator 4 eingebracht und über eine zweite Meßleitung 15 mit dem Steuergerät 5 verbunden. Fig. 1 shows an arrangement in which the inventive method is applied. An internal combustion engine 2 is connected to an intake tract 1 and an exhaust tract 3 . In the suction tract 1 , a temperature sensor 9 and a Lastmeßein device 11 , for example an air mass meter or a pressure meter, is arranged. The internal combustion engine 2 comprises an injection system with a valve arrangement and a cooling circuit. The exhaust tract 3 leads to a NOx storage catalyst 4 , to which a temperature sensor 13 is connected. The NOx storage catalytic converter 4 is referred to as storage catalytic converter 4 in the following. Furthermore, a Steuerge advises 5 with a memory 6 , the control device 5 via a load measuring line 12 with the load measuring device 11 , via a temperature measuring line 10 with the temperature sensor 9 , via a data and control line 8 with the internal combustion engine 2 and via a measuring line 7 is connected to the temperature sensor 13 . In addition, a lambda probe 14 is introduced into the gas tract 3 in front of the storage catalytic converter 4 and connected to the control unit 5 via a second measuring line 15 .

Fig. 2 zeigt schematisch ein Verfahren zur Bestimmung der NOx-Rohemission NR. Das Steuergerät 5 überprüft bei Programm­ punkt 20 vorzugsweise eine oder mehrere Startbedingungen, be­ vor weitere Berechnungen erfolgen. Dabei wird zuerst über­ prüft, ob sich die Brennkraftmaschine im Betriebszustand "Start" befindet. Ist dies der Fall, so wird keine weitere Berechnung durchgeführt, sondern abgewartet, bis die Brenn­ kraftmaschine 2 den Betriebszustand "Start" verlassen hat. Weiterhin wird überprüft, ob eine Nachstartsteuerung der Brennkraftmaschine 2 vorliegt. Ist dies der Fall, wird mit weiteren Berechnungen so lange gewartet, bis die Nachstart­ steuerung beendet ist. Zudem wird noch überprüft, ob die Ka­ talysatortemperatur KT größer als ein vorgegebener Mindest­ wert ist. Ist dies der Fall, so wird noch überprüft, ob die Luftzahl im Abgas vor dem Katalysator einen Wert größer als 1 aufweist. Sind die genannten Bedingungen erfüllt, so wird nach Programmpunkt 21 verzweigt. In einer einfachen Ausfüh­ rung kann auch auf die bei Programmpunkt 20 abgefragten Be­ dingungen verzichtet werden. Fig. 2 schematically shows a method for determining the NOx raw emission NR. The control unit 5 preferably checks one or more starting conditions at program point 20 before further calculations are carried out. It is first checked via whether the internal combustion engine is in the “start” operating state. If this is the case, no further calculation is carried out, but is waited until the internal combustion engine 2 has left the “start” operating state. It is also checked whether there is a post-start control of the internal combustion engine 2 . If this is the case, further calculations are waited until the post-start control has ended. In addition, it is checked whether the catalytic converter temperature KT is greater than a predetermined minimum value. If this is the case, then it is checked whether the air ratio in the exhaust gas upstream of the catalytic converter has a value greater than 1. If the conditions mentioned are met, the program branches to program item 21 . In a simple embodiment, the conditions queried at program item 20 can also be dispensed with.

Bei Programmpunkt 21 wird die Berechnung der NOx-Rohemission NR oder der korrigierten NOx-Rohemission NRK durchgeführt. Dies wird anhand eines Unterprogrammes, das in Fig. 3 darge­ stellt ist, ausgeführt.At program point 21 , the calculation of the raw NOx emission NR or the corrected raw NOx emission NRK is carried out. This is carried out using a subroutine, which is shown in FIG. 3.

Nach Programmpunkt 21 folgt bei Programmpunkt 22 die Abfrage, ob die NOx-Emission NA, die den Speicherkatalysator 4 ver­ läßt, größer als ein vorgegebener Grenzwert NE ist. Ist dies der Fall, so wird nach Programmpunkt 23 verzweigt. Die NOx- Emission NA wird nach folgender Formel berechnet:After program point 21 , the program point 22 is followed by a query as to whether the NOx emission NA that leaves the storage catalytic converter 4 is greater than a predetermined limit value NE. If this is the case, the program branches to program item 23 . The NOx emission NA is calculated using the following formula:

NA (n) = NRK (n) · TA · (1-KEK(n)) · (1-NO),
wobei NRK die korrigierte Rohemission, TA das vorgegebene Zeitintervall zwischen den Zeitpunkten n und n+1, KEK den korrigierten Speicherwirkungsgrad, und NO einen Korrekturfak­ tor darstellt, der den Anteil der NOx-Emissionen berücksich­ tigt, der durch den Speicherkatalysator 4 chemisch reduziert wird. In einer einfachen Ausbildung der Erfindung wird an­ stelle der korrigierten NOx-Rohemission NRK die NOx-Roh­ emission NR verwendet werden.
NA (n) = NRK (n) TA (1-KEK (n)) (1-NO),
where NRK is the corrected raw emission, TA is the predetermined time interval between the times n and n + 1, KEK is the corrected storage efficiency, and NO is a correction factor that takes into account the proportion of NOx emissions that is chemically reduced by the storage catalytic converter 4 . In a simple embodiment of the invention, the NOx raw emission NR will be used instead of the corrected raw NOx emission NRK.

Nach Berechnung der NOx-Emission NA(n) erfolgt die Abfrage, ob die NOx-Emission NA(n) den Grenzwert NG überschreitet. Ist dies nicht der Fall, so wird nach Programmpunkt 20 zurückver­ zweigt. Überschreitet jedoch die NOx-Emission NA(n) den Grenzwert NG, so wird bei Programmpunkt 23 die Regeneration des Speicherkatalysators 4 eingeleitet, in der der Brenn­ kraftmaschine 2 ein Kraftstoff/Luftgemisch zugeführt wird, das im Abgastrakt 3 vor dem Speicherkatalysator 4 zu einer Luftzahl kleiner als 1 führt. Anschließend wird zu Programm­ punkt 20 zurückverzweigt.After calculating the NOx emission NA (n), the question is asked whether the NOx emission NA (n) exceeds the limit value NG. If this is not the case, the program branches back to program item 20 . However, if the NOx emission NA (n) exceeds the limit value NG, the regeneration of the storage catalytic converter 4 is initiated at program point 23 , in which the internal combustion engine 2 is supplied with a fuel / air mixture which, in the exhaust tract 3 in front of the storage catalytic converter 4, results in an air ratio leads less than 1. The program then branches back to point 20 .

Fig. 3 zeigt einzelne Schritte des Programmpunktes 21 zur Berechnung der NOx-Rohemission NR. Bei Programmpunkt 30 er­ folgt die Abfrage, ob die im Abgastrakt 3 vor dem Speicherka­ talysator 4 gemessene Luftzahl λ größer als ein vorgegebener Startwert LS, beispielsweise 1,0 ist. Ist dies nicht der Fall, so wird nach Programmpunkt 20 zurückverzweigt. Ergibt jedoch die Abfrage bei Programmpunkt 30, daß die Luftzahl λ größer als der vorgegebene Startwert LS ist, so wird bei Pro­ grammpunkt 31 aus einem last- und drehzahlabhängigen ersten Kennfeld die NOx-Rohemissionsmasse NR ausgelesen. Das erste Kennfeld ist im Speicher 6 abgelegt. In einer einfachen Aus­ führung der Erfindung kann nach der Abarbeitung des Programm­ punktes 31 zu Programmpunkt 22 zurückverzweigt werden. Eine Verbesserung des erfindungsgemäßen Verfahrens wird jedoch da­ durch erreicht, daß mindestens einer der Programmschritte 32, 33, 34 oder 35 durchgeführt wird. Fig. 3 shows the individual steps of the program point 21 for calculating the NOx raw emission NR. At program point 30 the query follows whether the air ratio λ measured in the exhaust tract 3 in front of the storage catalyst 4 is greater than a predetermined starting value LS, for example 1.0. If this is not the case, the program branches back to program item 20 . If, however, the query at program point 30 shows that the air ratio λ is greater than the predetermined starting value LS, then the NOx raw emission mass NR is read out from a load and speed-dependent first map at program point 31 . The first map is stored in memory 6 . In a simple implementation of the invention can be branched back to program point 22 after processing the program point 31 . However, an improvement of the method according to the invention is achieved by carrying out at least one of program steps 32 , 33 , 34 or 35 .

Bei Programmpunkt 32 wird ein Zündwinkelkorrekturfaktor KZ für eine Korrektur der NOx-Rohemissionsmasse NR, unter Be­ rücksichtigung des Parameters Zündwinkel berechnet. Dazu wird zuerst aus dem Speicher 6 aus einem zweiten Kennfeld, das in Abhängigkeit von der Last und der Drehzahl einen Sollzündwin­ kel ZS enthält, entsprechend der Last und der Drehzahl der Brennkraftmaschine 2 der vorgegebene Sollzündwinkel ausgele­ sen und der aktuelle Zündwinkel ZG wird gemessen. Zudem wird aus einem dritten Kennfeld in Abhängigkeit von der Last und der Drehzahl der Brennkraftmaschine 2 ein Korrekturfaktor KF aus dem Speicher 6 ausgelesen. Anschließend wird der Zündwin­ kelkorrekturfaktor KZ nach folgender Formel berechnet:At program point 32 , an ignition angle correction factor KZ is calculated for a correction of the raw NOx emission mass NR, taking into account the parameter ignition angle. For this purpose, the predetermined target ignition angle is read out first from the memory 6 from a second map, which contains a target ignition angle ZS as a function of the load and the speed, and the predetermined target ignition angle is read out in accordance with the load and the speed of the internal combustion engine 2, and the current ignition angle ZG is measured. In addition, a correction factor KF is read out of the memory 6 from a third map as a function of the load and the speed of the internal combustion engine 2 . The ignition angle correction factor KZ is then calculated using the following formula:

KZ = 1+KF · (ZG - ZS)KZ = 1 + KF · (ZG - ZS)

Anschließend wird nach Programmpunkt 36 oder nach Programm­ punkt 33 verzweigt.The program then branches to program point 36 or to program point 33 .

Bei Programmpunkt 33 wird ein Luftzahlkorrekturfaktor KL für eine Korrektur der NOx-Rohemission NR ermittelt, bei dem die Luftzahl λ berücksichtigt wird. Dazu wird aus einem vierten Kennfeld in Abhängigkeit von der Last und der Drehzahl eine entsprechend der Last und der Drehzahl der Brennkraftmaschine 2 vorgegeben Solluftzahl LS ausgelesen. Zudem wird die tat­ sächliche Luftzahl LG gemessen. Anschließend wird eine Diffe­ renzluftzahl LD nach folgender Formel berechnet:At program point 33 , an air ratio correction factor KL is determined for a correction of the raw NOx emission NR, in which the air ratio λ is taken into account. For this purpose, a target air number LS predefined in accordance with the load and the speed of the internal combustion engine 2 is read out from a fourth map as a function of the load and the speed. In addition, the actual air ratio LG is measured. A differential air ratio LD is then calculated using the following formula:

LD = LS - LGLD = LS - LG

Anhand der Differenzluftzahl LD und der Motorlast ML wird aus einem fünften Kennfeld im Speicher 6 ein Luftzahlkorrektur­ faktor KL ausgelesen.On the basis of the differential air ratio LD and the engine load ML, an air ratio correction factor KL is read from a fifth map in the memory 6 .

Anschließend wird entweder nach Programmpunkt 36 oder nach Programmpunkt 34 verzweigt.The program then branches to either item 36 or item 34 .

Bei Programmpunkt 34 wird ein Temperaturkorrekturfaktor FT berechnet, bei dem die Kühlwassertemperatur TL und die An­ sauglufttemperatur TA berücksichtigt werden. Anhand der Kühl­ wassertemperatur TL und der Ansauglufttemperatur TA wird aus einem sechsten Kennfeld, das im Speicher 6 abgelegt ist, ein Temperaturkorrekturfaktor FT ausgelesen. Anschließend wird nach Programmpunkt 36 oder nach Programmpunkt 35 verzweigt.At program point 34 , a temperature correction factor FT is calculated, taking into account the cooling water temperature TL and the intake air temperature TA. Based on the cooling water temperature TL and the intake air temperature TA, a temperature correction factor FT is read from a sixth map, which is stored in the memory 6 . The program then branches to program point 36 or to program point 35 .

Bei Programmpunkt 35 wird ein Korrekturfaktor für die Ventil­ überschneidung für eine Korrektur der NOx-Rohemission NR un­ ter Berücksichtigung der Ventilüberschneidung bei der Ein­ spritzung berechnet. Dazu wird aus einem siebten Kennfeld, das im Speicher 6 abgelegt ist, ein Sollwert VS in Abhängig­ keit von der Last und der Drehzahl für die Ventilüberschnei­ dung ausgelesen und die Differenz zu einem gemessenen Wert VG für die Ventilüberschneidung berechnet. Aus der Differenz VD = VS - VG wird aus einem achten Kennfeld in Abhängigkeit von der Motorlast ML und der Differenz VD der Ventilüberschnei­ dung eine Korrekturfaktor KV für die Ventilüberschneidung ausgelesen. Anschließend wird nach Programmpunkt 36 ver­ zweigt.At program point 35 , a correction factor for the valve overlap is calculated for a correction of the raw NOx emission NR taking into account the valve overlap during the injection. For this purpose, a setpoint VS depending on the load and the speed for the valve overlap is read from a seventh map, which is stored in the memory 6 , and the difference to a measured value VG for the valve overlap is calculated. From the difference VD = VS - VG, a correction factor KV for the valve overlap is read out from an eighth map depending on the engine load ML and the difference VD of the valve overlap. Then branched ver after program item 36 .

Bei Programmpunkt 36 wird die Korrektur der NOx-Rohemission NR durchgeführt. In Abhängigkeit von den durchgeführten Pro­ grammpunkten 32-35 werden die darin berechneten Korrektur­ faktoren berücksichtigt.At program point 36 , the correction of the raw NOx emission NR is carried out. Depending on the program points 32-35 carried out, the correction factors calculated therein are taken into account.

Werden alle in Fig. 3 dargestellten Programmpunkte durchge­ führt, so ergibt sich für die korrigierte NOx-Rohemission NRK folgender Wert:If all of the program points shown in FIG. 3 are carried out, the following value results for the corrected raw NOx emission NRK:

NRK = NR · KZ · KL · FT · KV.NRK = NR · KZ · KL · FT · KV.

Ein Fachmann wird bei der Berechnung der korrigierten NOx- Rohemission NRK die Anzahl der zu berücksichtigenden Korrek­ turfaktoren entsprechend den Gegebenheiten wählen, so daß in einfachen Verfahren die NOx-Rohemission z. B. nur mit Tempera­ turkorrekturfaktor KT korrigiert wird, so daß sich für die korrigierte NOx-Rohemission NRK folgende Berechnung ergibt:A person skilled in the art will calculate the corrected NOx Crude NRK emission the number of corrections to be considered Select door factors according to the circumstances, so that in simple process the NOx raw emission z. B. only with tempera correction factor KT is corrected so that for the  corrected raw NOx emission NRK results in the following calculation:

NRK = NR · KT.NRK = NR · KT.

Nach der Berechnung der korrigierten NOx-Rohemission NRK wird nach Programmpunkt 22 zurückverzweigt.After calculating the corrected raw NOx emission NRK, the program branches back to item 22 .

In Fig. 4 ist schematisch die Berechnung des Beladungszu­ standes des Speicherkatalysators 4 dargestellt, der vorzugs­ weise als Startbedingung für eine Regenerationsphase für den Speicherkatalysator 4 verwendet wird. Bei Programmpunkt 40 berechnet das Steuergerät 5 den Speicherwirkungsgrad KE des Speicherkatalysators 4. Der Speicherwirkungsgrad KE wird in Abhängigkeit von der angesaugten Luftmasse LM und dem Bela­ dungsgrad KB des Speicherkatalysators aus einem neunten Kenn­ feld im Speicher 6 ausgelesen. Der Beladungsgrad KB des Spei­ cherkatalysators berechnet sich aus der aktuellen Beladung KA bezogen auf die Speicherkapazität KS des Speicherkatalysators 4 durch folgende Formel: KB = KA/KS.In FIG. 4, the calculation of the Beladungszu schematically level of the storage catalytic converter 4 is shown, which is preferential used as a start condition for a regeneration phase of the storage catalytic converter 4. At program point 40 , control unit 5 calculates the storage efficiency KE of storage catalytic converter 4 . The storage efficiency KE is read out from a ninth characteristic field in the storage 6 as a function of the air mass LM drawn in and the loading loading KB of the storage catalytic converter. The degree of loading KB of the storage catalytic converter is calculated from the current loading KA based on the storage capacity KS of the storage catalytic converter 4 using the following formula: KB = KA / KS.

Die Speicherkapazität KS wird aus einem zehnten Kennfeld im Speicher 6 ausgelesen, das von der Katalysatortemperatur KT und der bereits erfolgten Anzahl von Regenerationsphasen SZ abhängt. Die Regenerationsphasen, bei denen dem Speicherkata­ lysators 4 fettes Gemisch zugeführt wird, um die NOx-Spei­ cherung abzubauen, werden vom Steuergerät 5 gezählt und im Speicher 6 als Regenerationszahl abgelegt.The storage capacity KS is read from a tenth map in the memory 6 , which depends on the catalyst temperature KT and the number of regeneration phases SZ that have already taken place. The regeneration phases in which the storage catalyst 4 rich mixture is supplied to reduce the NOx storage, are counted by the control unit 5 and stored in the memory 6 as a regeneration number.

Der Speicherwirkungsgrad KE wird vorzugsweise in Abhängigkeit von der Katalysatortemperatur KT und in Abhängigkeit von den bereits erfolgten Ladezyklen SZ korrigiert, wobei aus einem elften Kennfeld, das von den bereits erfolgten Ladezyklen SZ und der Katalysatortemperatur KT abhängt, ein Korrekturwert KS ausgelesen und der Speicherwirkungsgrad KE damit multipli­ ziert wird:The storage efficiency KE is preferably dependent on the catalyst temperature KT and depending on the Corrected charging cycles SZ, whereby from one eleventh map, which is based on the charging cycles SZ and the catalyst temperature KT depends, a correction value KS read out and the storage efficiency KE multiply is decorated:

KEK = KE · KS,KEK = KE · KS,

wobei KEK den korrigierten Speicherwirkungsgrad darstellt. where KEK represents the corrected storage efficiency.  

Anschließend wird bei Programmpunkt 41 die aktuelle Beladung KA des Speicherkatalysators 4 nach folgender Formel berech­ net:The current load KA of the storage catalytic converter 4 is then calculated at program point 41 using the following formula:

KA (n) = KA (n + NRK (n) · TA · KEK (n) · 1(1-NO),KA (n) = KA (n + NRK (n) · TA · KEK (n) · 1 (1-NO),

wobei mit KA (n) die Beladung zum Zeitpunkt n, mit KA (n-1) die Beladung zu dem Zeitpunkt n-1, mit NRK die korrigierte NOx-Rohemission, mit TA der Zeitabstand zwischen zwei Berech­ nungszeitpunkten n und n-1, mit KEK der korrigierte Speicher­ wirkungsgrad und mit NO ein Korrekturfaktor bezeichnet ist, der den Anteil der NOx-Emissionen, die durch den Speicherka­ talysator 4 chemisch reduziert werden, berücksichtigt.where with KA (n) the loading at time n, with KA (n-1) the loading at time n-1, with NRK the corrected raw NOx emission, with TA the time interval between two calculation times n and n-1, KEK is the corrected storage efficiency and NO is a correction factor that takes into account the proportion of NOx emissions that are chemically reduced by the storage catalyst 4 .

Anschließend erfolgt bei Programmpunkt 42 die Abfrage, ob die aktuelle Beladung KA größer als eine vorgegebene Mindestbela­ dung KAM ist. Ist dies der Fall, so wird bei Programmpunkt 43 eine Regenerationsphase für den NOx-Speicherkatalysator 4 ge­ startet. Ist dies nicht der Fall, so wird nach Programmpunkt 40 zurückverzweigt. Nach Durchführung der Regenerationsphase wird von Programmpunkt 43 nach Programmpunkt 40 zurückver­ zweigt.Subsequently, at program point 42, the query is made as to whether the current load KA is greater than a predetermined minimum load KAM. If this is the case, a regeneration phase for the NOx storage catalytic converter 4 is started at program point 43 . If this is not the case, the program branches back to program item 40 . After carrying out the regeneration phase, program point 43 branches back to program point 40 .

Eine vorteilhafte Weiterbildung der Erfindung beruht darin, eine Beladungsermittlung des Speicherkatalysators 4 während einer Regenerationsphase durchzuführen, um die Regenerati­ onsphase rechtzeitig abzubrechen. Während der Regenerati­ onsphase wird die Beladung des Speicherkatalysators 4 um ei­ nen Wert KD dekrementiert und die Regenerationsphase wird be­ endet, wenn die Katalysatorbeladung KA unter einen vorgegebe­ nen Schwellwert fällt. Das Dekrement wird aus einem zwölften Kennfeld ausgelesen, das von der Ansaugluftmasse LM und der vor dem Speicherkatalysator 4 im Abgastrakt 3 gemessenen Luftzahl LG abhängt. Die aktuelle Katalysatorbeladung wird in festgelegten Zeitabständen wie folgt berechnet:An advantageous development of the invention is based on carrying out a load determination of the storage catalytic converter 4 during a regeneration phase in order to terminate the regeneration phase in good time. During the regeneration phase, the loading of the storage catalytic converter 4 is decremented by a value KD and the regeneration phase is ended when the catalytic converter loading KA falls below a predetermined threshold value. The decrement is read from a twelfth characteristic diagram, which depends on the intake air mass LM and the air ratio LG measured in front of the storage catalytic converter 4 in the exhaust tract 3 . The current catalyst loading is calculated at specified time intervals as follows:

KA (n) = KA (n-1) - KD,KA (n) = KA (n-1) - KD,

wobei KD das aus dem Kennfeld ausgelesene Dekrement, KA (n) die Beladung zum Zeitpunkt n und KA(n-1) die Beladung zum Zeitpunkt n-1 darstellt.where KD is the decrement read from the map, KA (n) the loading at time n and KA (n-1) the loading at Represents time n-1.

In dem Speicher 6 ist ein Speicherfeld vorgesehen, in dem die Anzahl der bisher abgelaufenen Regenerationsphasen gezählt und nichtflüchtig als Regenerationszahl abgespeichert werden. Um jedoch den Austausch eines Speicherkatalysators 4 zu be­ rücksichtigen, ist im Speicher 6 ein Bit vorgesehen, das mit Null oder Eins belegt werden kann, wobei bei einer Belegung mit Null die Regenerationszahl auf Null festgelegt wird und die Regenerationsphasen von Null ausgehend wieder hochgezählt werden.A memory field is provided in the memory 6 , in which the number of regeneration phases that have elapsed so far are counted and stored as a non-volatile regeneration number. However, in order to take into account the replacement of a storage catalytic converter 4 , a bit is provided in the memory 6 , which can be assigned zero or one, with a zero setting the regeneration number being set to zero and the regeneration phases starting from zero being counted up again.

Eine genauere Zählung der Regenerationsphasen wird dadurch erreicht, daß auch die Regenerationsphasen mitgezählt werden, die durch ein fettes Kraftstoffgemisch bei Instationärbe­ trieb, d. h. z. B. bei Beschleunigung, durchgeführt werden.This enables a more precise count of the regeneration phases ensures that the regeneration phases are also counted, caused by a rich fuel mixture at unsteady colors drove, d. H. e.g. B. with acceleration.

Die Regenerationsphasen werden beispielsweise mit der Lam­ dasonde 14 im Abgastrakt 3 vor dem Speicherkatalysator 4 de­ tektiert (λ<1) und von dem Steuergerät 5 gezählt und als Re­ generationszahl im Speicher 6 abgespeichert.The regeneration phases are detected, for example, with the lam probe 14 in the exhaust tract 3 in front of the storage catalytic converter 4 (λ <1) and counted by the control device 5 and stored in the storage 6 as a regeneration number.

Claims (5)

1. Verfahren zur Regeneration eines NOx-Speicherkatalysators (4), bei dem abhängig von einem Betriebszustand des NOx- Speicherkatalysators (4) eine Regenerationsphase gestartet wird, bei, der ein Kraftstoffgemisch der Brennkraftmaschine zugeführt wird, das einer Luftzahl kleiner als 1 vor dem NOx- Speicherkatalysator (4) entspricht, wobei der Betriebszustand mindestens einer Grenzmenge von NOx-Verbindungen entspricht, die vom NOx-Speicherkatalysator (4) ausgegeben wird, dadurch gekennzeichnet, daß die vom NOx-Speicherkatalysator (4) abgegebene Menge an NOx-Verbindungen aus mindestens einem Kennfeld ermittelt wird, das von der Last und/oder der Drehzahl der Brennkraft­ maschine (1) abhängt.1. A method for the regeneration of a NOx storage catalytic converter ( 4 ), in which a regeneration phase is started depending on an operating state of the NOx storage catalytic converter ( 4 ), in which a fuel mixture is supplied to the internal combustion engine which has an air ratio less than 1 in front of the NOx - Storage catalytic converter ( 4 ), the operating state corresponding to at least a limit amount of NOx compounds, which is output by the NOx storage catalytic converter ( 4 ), characterized in that the amount of NOx compounds emitted by the NOx storage catalytic converter ( 4 ) consists of at least a map is determined, which depends on the load and / or the speed of the internal combustion engine ( 1 ). 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Betriebszustand mindestens einer Grenzspeicherung von NOx-Verbindungen im NOx-Speicherkatalysator (4) entspricht.2. The method according to claim 1, characterized in that the operating state corresponds to at least one limit storage of NOx compounds in the NOx storage catalyst ( 4 ). 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die abgegebene Menge an NOx-Verbindungen in Abhängigkeit vom Zündwinkel und oder von der Luftzahl und/oder von der Kühlwassertemperatur und/oder von der Ansauglufttemperatur und/oder von einer Ventilüberschneidung korrigiert wird.3. The method according to claim 1, characterized, that the amount of NOx compounds released depends on from the ignition angle and or from the air ratio and / or from the Cooling water temperature and / or the intake air temperature and / or is corrected by a valve overlap. 4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß als Wert für die Grenzspeicherung der Beladungszustand des NOx-Speicherkatalysators (4) in Abhängigkeit vom Spei­ cherwirkungsgrad des NOx-Speicherkatalysators (4) berechnet wird, wobei der Speicherwirkungsgrad abhängig von der Anzahl der bereits durchgeführten Regenerationsphasen korrigiert wird.4. The method according to claim 2, characterized in that is calculated in dependence on the SpeI cherwirkungsgrad of the NOx storage catalytic converter (4) as the value for the boundary storing the loading state of the NOx storage catalytic converter (4), wherein the memory efficiency of the already carried out depending on the number Regeneration phases is corrected. 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Beladungszustand des NOx-Speicherkatalysators (4) während der Regenerationsphase überprüft wird und die Regene­ rationsphase unterbrochen wird, wenn der Beladungszustand un­ ter eine vorgegebene Mindestbeladung fällt.5. The method according to claim 1, characterized in that the loading state of the NOx storage catalyst ( 4 ) is checked during the regeneration phase and the regeneration phase is interrupted when the loading state falls below a predetermined minimum load.
DE1996107151 1996-02-26 1996-02-26 Regeneration of nitrogen oxide storage catalyst Expired - Fee Related DE19607151C1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE1996107151 DE19607151C1 (en) 1996-02-26 1996-02-26 Regeneration of nitrogen oxide storage catalyst
EP97914147A EP0822856A1 (en) 1996-02-26 1997-02-13 PROCESS FOR REGENERATING AN NOx STORAGE CATALYTIC CONVERTER
PCT/DE1997/000278 WO1997031704A1 (en) 1996-02-26 1997-02-13 PROCESS FOR REGENERATING AN NOx STORAGE CATALYTIC CONVERTER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1996107151 DE19607151C1 (en) 1996-02-26 1996-02-26 Regeneration of nitrogen oxide storage catalyst

Publications (1)

Publication Number Publication Date
DE19607151C1 true DE19607151C1 (en) 1997-07-10

Family

ID=7786452

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1996107151 Expired - Fee Related DE19607151C1 (en) 1996-02-26 1996-02-26 Regeneration of nitrogen oxide storage catalyst

Country Status (3)

Country Link
EP (1) EP0822856A1 (en)
DE (1) DE19607151C1 (en)
WO (1) WO1997031704A1 (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867604A1 (en) * 1997-03-27 1998-09-30 Ford Global Technologies, Inc. Method and apparatus for maintaining catalyst efficiency of a nox trap
WO1998045586A1 (en) * 1997-04-09 1998-10-15 Emitec Gesellschaft Für Emissionstechnologie Mbh PROCESS AND DEVICE FOR MONITORING A NOx ACCUMULATOR
FR2768181A1 (en) * 1997-09-11 1999-03-12 Bosch Gmbh Robert INTERNAL COMBUSTION ENGINE IN PARTICULAR FOR A MOTOR VEHICLE
DE19741079A1 (en) * 1997-09-18 1999-04-01 Ford Global Tech Inc Process for the regeneration of a nitrogen oxide trap in the exhaust system of an internal combustion engine
WO1999030021A1 (en) * 1997-12-04 1999-06-17 Daimler-Benz Aktiengesellschaft Method for running a diesel engine
FR2772428A1 (en) * 1997-12-12 1999-06-18 Renault PURGE CONTROL PROCESS OF A CATALYTIC POT FOR TREATMENT OF EXHAUST GASES FROM AN INTERNAL COMBUSTION ENGINE
WO1999035386A1 (en) * 1998-01-09 1999-07-15 Ford Global Technologies, Inc. Method for regenerating a nitrogen oxide trap in the exhaust system of an internal combustion engine
DE19801815A1 (en) * 1998-01-19 1999-07-22 Volkswagen Ag Lean-burn i.c. engine exhaust gas cleaning process
EP0997617A1 (en) * 1998-10-28 2000-05-03 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Regeneration method of a nitrogen oxides trap in the exhaust system of a combustion engine and device for carrying out this method
EP0997626A1 (en) * 1998-10-28 2000-05-03 Renault Method to control the purging of nitrogen oxides from an exhaust gas catalytic converter of an internal combustion engine
WO2000028200A1 (en) * 1998-11-06 2000-05-18 Siemens Aktiengesellschaft METHOD FOR DETERMINING THE NOx CRUDE EMISSION OF AN INTERNAL COMBUSTION ENGINE OPERATED WITH AN EXCESS OF AIR
WO2000028201A1 (en) * 1998-11-09 2000-05-18 Siemens Aktiengesellschaft METHOD FOR ADAPTING THE NOx CONCENTRATION OF AN INTERNAL COMBUSTION ENGINE OPERATED WITH AN EXCESS OF AIR
US6148612A (en) * 1997-10-13 2000-11-21 Denso Corporation Engine exhaust gas control system having NOx catalyst
DE19932301A1 (en) * 1999-07-10 2001-01-11 Volkswagen Ag Method for regulating a regeneration of a storage catalytic converter arranged in an exhaust gas duct of an internal combustion engine
WO2001004478A1 (en) * 1999-07-10 2001-01-18 Volkswagen Aktiengesellschaft Method for regulating a work mode of an internal combustion engine
WO2001006105A1 (en) * 1999-07-19 2001-01-25 Volkswagen Aktiengesellschaft Method of regulating the operational mode of an internal combustion engine
EP1118756A2 (en) 2000-01-19 2001-07-25 Volkswagen AG Method and apparatus for controlling the regeneration of an NOx-adsorption catalyst
US6308697B1 (en) 2000-03-17 2001-10-30 Ford Global Technologies, Inc. Method for improved air-fuel ratio control in engines
US6308515B1 (en) 2000-03-17 2001-10-30 Ford Global Technologies, Inc. Method and apparatus for accessing ability of lean NOx trap to store exhaust gas constituent
US6327847B1 (en) 2000-03-17 2001-12-11 Ford Global Technologies, Inc. Method for improved performance of a vehicle
WO2002020967A1 (en) * 2000-09-04 2002-03-14 Robert Bosch Gmbh Method for determining nox mass flow from characteristics map data with a variable air inlet and engine temperature
DE19926305C2 (en) * 1999-06-09 2002-03-21 Siemens Ag Method for controlling the operation of a NOx storage catalytic converter
US6360530B1 (en) 2000-03-17 2002-03-26 Ford Global Technologies, Inc. Method and apparatus for measuring lean-burn engine emissions
US6453666B1 (en) 2001-06-19 2002-09-24 Ford Global Technologies, Inc. Method and system for reducing vehicle tailpipe emissions when operating lean
US6463733B1 (en) 2001-06-19 2002-10-15 Ford Global Technologies, Inc. Method and system for optimizing open-loop fill and purge times for an emission control device
US6467259B1 (en) 2001-06-19 2002-10-22 Ford Global Technologies, Inc. Method and system for operating dual-exhaust engine
US6487853B1 (en) 2001-06-19 2002-12-03 Ford Global Technologies. Inc. Method and system for reducing lean-burn vehicle emissions using a downstream reductant sensor
US6490860B1 (en) 2001-06-19 2002-12-10 Ford Global Technologies, Inc. Open-loop method and system for controlling the storage and release cycles of an emission control device
US6502387B1 (en) 2001-06-19 2003-01-07 Ford Global Technologies, Inc. Method and system for controlling storage and release of exhaust gas constituents in an emission control device
EP1134368A3 (en) * 2000-03-17 2003-02-12 Ford Global Technologies, Inc. Method and system for reducing NOx tailpipe emissions of a lean-burn internation combustion engine
EP1134376A3 (en) * 2000-03-17 2003-03-26 Ford Global Technologies, Inc. Method for improved performance of an engine emission control system
US6539706B2 (en) 2001-06-19 2003-04-01 Ford Global Technologies, Inc. Method and system for preconditioning an emission control device for operation about stoichiometry
US6546718B2 (en) 2001-06-19 2003-04-15 Ford Global Technologies, Inc. Method and system for reducing vehicle emissions using a sensor downstream of an emission control device
US6553754B2 (en) 2001-06-19 2003-04-29 Ford Global Technologies, Inc. Method and system for controlling an emission control device based on depletion of device storage capacity
US6604504B2 (en) 2001-06-19 2003-08-12 Ford Global Technologies, Llc Method and system for transitioning between lean and stoichiometric operation of a lean-burn engine
US6615577B2 (en) 2001-06-19 2003-09-09 Ford Global Technologies, Llc Method and system for controlling a regeneration cycle of an emission control device
US6650991B2 (en) 2001-06-19 2003-11-18 Ford Global Technologies, Llc Closed-loop method and system for purging a vehicle emission control
US6691020B2 (en) 2001-06-19 2004-02-10 Ford Global Technologies, Llc Method and system for optimizing purge of exhaust gas constituent stored in an emission control device
US6691507B1 (en) 2000-10-16 2004-02-17 Ford Global Technologies, Llc Closed-loop temperature control for an emission control device
US6694244B2 (en) 2001-06-19 2004-02-17 Ford Global Technologies, Llc Method for quantifying oxygen stored in a vehicle emission control device
US6715462B2 (en) 2002-06-04 2004-04-06 Ford Global Technologies, Llc Method to control fuel vapor purging
US6725830B2 (en) 2002-06-04 2004-04-27 Ford Global Technologies, Llc Method for split ignition timing for idle speed control of an engine
US6735938B2 (en) 2002-06-04 2004-05-18 Ford Global Technologies, Llc Method to control transitions between modes of operation of an engine
US6736120B2 (en) 2002-06-04 2004-05-18 Ford Global Technologies, Llc Method and system of adaptive learning for engine exhaust gas sensors
US6736121B2 (en) 2002-06-04 2004-05-18 Ford Global Technologies, Llc Method for air-fuel ratio sensor diagnosis
US6745747B2 (en) 2002-06-04 2004-06-08 Ford Global Technologies, Llc Method for air-fuel ratio control of a lean burn engine
US6758185B2 (en) 2002-06-04 2004-07-06 Ford Global Technologies, Llc Method to improve fuel economy in lean burn engines with variable-displacement-like characteristics
US6769398B2 (en) 2002-06-04 2004-08-03 Ford Global Technologies, Llc Idle speed control for lean burn engine with variable-displacement-like characteristic
US6810659B1 (en) 2000-03-17 2004-11-02 Ford Global Technologies, Llc Method for determining emission control system operability
US6843051B1 (en) 2000-03-17 2005-01-18 Ford Global Technologies, Llc Method and apparatus for controlling lean-burn engine to purge trap of stored NOx
DE10216260B4 (en) * 2002-04-12 2005-04-21 Siemens Ag Method for operating an internal combustion engine
EP1529941A2 (en) * 2003-11-06 2005-05-11 Toyota Jidosha Kabushiki Kaisha NOx generation quantity estimation method for internal combustion engine
FR2873404A1 (en) * 2004-07-20 2006-01-27 Peugeot Citroen Automobiles Sa DEVICE FOR DETERMINING THE NOx MASS STOCKETED IN A NOx TRAP AND SYSTEM FOR SUPERVISING THE REGENERATION OF A NOx TRAP COMPRISING SUCH A DEVICE
DE102004013604B4 (en) * 2003-03-25 2008-07-03 Mitsubishi Fuso Truck And Bus Corp. Method of estimating a NOx absorption amount
US20120124967A1 (en) * 2010-11-23 2012-05-24 Eaton Corporation Adaptive Control Strategy
EP2574763A1 (en) * 2011-09-30 2013-04-03 Volvo Car Corporation NOx emission estimation method and arrangement

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19800665C1 (en) * 1998-01-10 1999-07-01 Degussa Method for operating a nitrogen oxide storage catalytic converter
US9631565B2 (en) * 2015-09-15 2017-04-25 Hyundai Motor Company Control method for improving nitrogen oxide purification performance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597106A1 (en) * 1991-10-14 1994-05-18 Toyota Jidosha Kabushiki Kaisha Exhaust and purification device for internal combustion engine
DE19511548A1 (en) * 1995-03-29 1996-06-13 Daimler Benz Ag Nitrous oxide reduction system in vehicle engine exhaust

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2605586B2 (en) * 1992-07-24 1997-04-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
EP0625633B1 (en) * 1992-12-03 2000-03-15 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning apparatus for internal combustion engines
WO1994017291A1 (en) * 1993-01-19 1994-08-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning device for an internal combustion engine
JP2605579B2 (en) * 1993-05-31 1997-04-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597106A1 (en) * 1991-10-14 1994-05-18 Toyota Jidosha Kabushiki Kaisha Exhaust and purification device for internal combustion engine
DE19511548A1 (en) * 1995-03-29 1996-06-13 Daimler Benz Ag Nitrous oxide reduction system in vehicle engine exhaust

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867604A1 (en) * 1997-03-27 1998-09-30 Ford Global Technologies, Inc. Method and apparatus for maintaining catalyst efficiency of a nox trap
US5894725A (en) * 1997-03-27 1999-04-20 Ford Global Technologies, Inc. Method and apparatus for maintaining catalyst efficiency of a NOx trap
WO1998045586A1 (en) * 1997-04-09 1998-10-15 Emitec Gesellschaft Für Emissionstechnologie Mbh PROCESS AND DEVICE FOR MONITORING A NOx ACCUMULATOR
EP1164268A3 (en) * 1997-04-09 2004-12-29 Emitec Gesellschaft für Emissionstechnologie mbH Arrangement for monitoring a NOx-trap
FR2768181A1 (en) * 1997-09-11 1999-03-12 Bosch Gmbh Robert INTERNAL COMBUSTION ENGINE IN PARTICULAR FOR A MOTOR VEHICLE
DE19741079C2 (en) * 1997-09-18 2001-10-18 Ford Global Tech Inc Process for the regeneration of a nitrogen oxide trap in the exhaust system of an internal combustion engine
DE19741079A1 (en) * 1997-09-18 1999-04-01 Ford Global Tech Inc Process for the regeneration of a nitrogen oxide trap in the exhaust system of an internal combustion engine
EP0908613A3 (en) * 1997-10-13 2008-03-26 Denso Corporation Engine exhaust gas control system having NOx catalyst
US6148612A (en) * 1997-10-13 2000-11-21 Denso Corporation Engine exhaust gas control system having NOx catalyst
US6209316B1 (en) 1997-12-04 2001-04-03 Daimlerchrysler Ag Method for running a diesel engine
WO1999030021A1 (en) * 1997-12-04 1999-06-17 Daimler-Benz Aktiengesellschaft Method for running a diesel engine
FR2772428A1 (en) * 1997-12-12 1999-06-18 Renault PURGE CONTROL PROCESS OF A CATALYTIC POT FOR TREATMENT OF EXHAUST GASES FROM AN INTERNAL COMBUSTION ENGINE
WO1999031368A1 (en) * 1997-12-12 1999-06-24 Renault Method for controlling the purge of a catalyst container treating an internal combustion engine exhaust gases
WO1999035386A1 (en) * 1998-01-09 1999-07-15 Ford Global Technologies, Inc. Method for regenerating a nitrogen oxide trap in the exhaust system of an internal combustion engine
EP0940570A1 (en) * 1998-01-09 1999-09-08 Ford Global Technologies, Inc. Method for regenerating a nitrogen oxide trap in the exhaust system of an internal combustion engine taking into account the exhaust gas mass flow
DE19801815A1 (en) * 1998-01-19 1999-07-22 Volkswagen Ag Lean-burn i.c. engine exhaust gas cleaning process
FR2785331A1 (en) * 1998-10-28 2000-05-05 Renault METHOD FOR CONTROLLING THE PURGE OF NITROGEN OXIDES FROM A CATALYTIC EXHAUST TREATMENT POT OF AN INTERNAL COMBUSTION ENGINE
EP0997626A1 (en) * 1998-10-28 2000-05-03 Renault Method to control the purging of nitrogen oxides from an exhaust gas catalytic converter of an internal combustion engine
EP0997617A1 (en) * 1998-10-28 2000-05-03 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Regeneration method of a nitrogen oxides trap in the exhaust system of a combustion engine and device for carrying out this method
WO2000028200A1 (en) * 1998-11-06 2000-05-18 Siemens Aktiengesellschaft METHOD FOR DETERMINING THE NOx CRUDE EMISSION OF AN INTERNAL COMBUSTION ENGINE OPERATED WITH AN EXCESS OF AIR
DE19851319C2 (en) * 1998-11-06 2003-03-20 Siemens Ag Method for determining the raw NOx emission of an internal combustion engine that can be operated with excess air
WO2000028201A1 (en) * 1998-11-09 2000-05-18 Siemens Aktiengesellschaft METHOD FOR ADAPTING THE NOx CONCENTRATION OF AN INTERNAL COMBUSTION ENGINE OPERATED WITH AN EXCESS OF AIR
DE19926305C2 (en) * 1999-06-09 2002-03-21 Siemens Ag Method for controlling the operation of a NOx storage catalytic converter
WO2001004478A1 (en) * 1999-07-10 2001-01-18 Volkswagen Aktiengesellschaft Method for regulating a work mode of an internal combustion engine
DE19932301A1 (en) * 1999-07-10 2001-01-11 Volkswagen Ag Method for regulating a regeneration of a storage catalytic converter arranged in an exhaust gas duct of an internal combustion engine
WO2001006105A1 (en) * 1999-07-19 2001-01-25 Volkswagen Aktiengesellschaft Method of regulating the operational mode of an internal combustion engine
EP1118756A2 (en) 2000-01-19 2001-07-25 Volkswagen AG Method and apparatus for controlling the regeneration of an NOx-adsorption catalyst
EP1118756A3 (en) * 2000-01-19 2003-07-09 Volkswagen AG Method and apparatus for controlling the regeneration of an NOx-adsorption catalyst
EP1134368A3 (en) * 2000-03-17 2003-02-12 Ford Global Technologies, Inc. Method and system for reducing NOx tailpipe emissions of a lean-burn internation combustion engine
US6327847B1 (en) 2000-03-17 2001-12-11 Ford Global Technologies, Inc. Method for improved performance of a vehicle
US6308697B1 (en) 2000-03-17 2001-10-30 Ford Global Technologies, Inc. Method for improved air-fuel ratio control in engines
US6990799B2 (en) 2000-03-17 2006-01-31 Ford Global Technologies, Llc Method of determining emission control system operability
US6843051B1 (en) 2000-03-17 2005-01-18 Ford Global Technologies, Llc Method and apparatus for controlling lean-burn engine to purge trap of stored NOx
US6308515B1 (en) 2000-03-17 2001-10-30 Ford Global Technologies, Inc. Method and apparatus for accessing ability of lean NOx trap to store exhaust gas constituent
US6810659B1 (en) 2000-03-17 2004-11-02 Ford Global Technologies, Llc Method for determining emission control system operability
US6360530B1 (en) 2000-03-17 2002-03-26 Ford Global Technologies, Inc. Method and apparatus for measuring lean-burn engine emissions
EP1134376A3 (en) * 2000-03-17 2003-03-26 Ford Global Technologies, Inc. Method for improved performance of an engine emission control system
WO2002020967A1 (en) * 2000-09-04 2002-03-14 Robert Bosch Gmbh Method for determining nox mass flow from characteristics map data with a variable air inlet and engine temperature
US6691507B1 (en) 2000-10-16 2004-02-17 Ford Global Technologies, Llc Closed-loop temperature control for an emission control device
US6553754B2 (en) 2001-06-19 2003-04-29 Ford Global Technologies, Inc. Method and system for controlling an emission control device based on depletion of device storage capacity
US6453666B1 (en) 2001-06-19 2002-09-24 Ford Global Technologies, Inc. Method and system for reducing vehicle tailpipe emissions when operating lean
US6546718B2 (en) 2001-06-19 2003-04-15 Ford Global Technologies, Inc. Method and system for reducing vehicle emissions using a sensor downstream of an emission control device
US6604504B2 (en) 2001-06-19 2003-08-12 Ford Global Technologies, Llc Method and system for transitioning between lean and stoichiometric operation of a lean-burn engine
US6615577B2 (en) 2001-06-19 2003-09-09 Ford Global Technologies, Llc Method and system for controlling a regeneration cycle of an emission control device
US6650991B2 (en) 2001-06-19 2003-11-18 Ford Global Technologies, Llc Closed-loop method and system for purging a vehicle emission control
US6691020B2 (en) 2001-06-19 2004-02-10 Ford Global Technologies, Llc Method and system for optimizing purge of exhaust gas constituent stored in an emission control device
US6539706B2 (en) 2001-06-19 2003-04-01 Ford Global Technologies, Inc. Method and system for preconditioning an emission control device for operation about stoichiometry
US6694244B2 (en) 2001-06-19 2004-02-17 Ford Global Technologies, Llc Method for quantifying oxygen stored in a vehicle emission control device
US6502387B1 (en) 2001-06-19 2003-01-07 Ford Global Technologies, Inc. Method and system for controlling storage and release of exhaust gas constituents in an emission control device
DE10225599B4 (en) * 2001-06-19 2008-12-04 Ford Global Technologies, LLC (n.d.Ges.d. Staates Delaware), Dearborn Method and control device for preconditioning of an emission-limiting device for operation under stoichiometric conditions
US6463733B1 (en) 2001-06-19 2002-10-15 Ford Global Technologies, Inc. Method and system for optimizing open-loop fill and purge times for an emission control device
DE10224599B4 (en) * 2001-06-19 2008-01-10 Ford Global Technologies, LLC (n.d.Ges.d. Staates Delaware), Dearborn Method and arrangement for treating the exhaust gases of a motor vehicle
US6467259B1 (en) 2001-06-19 2002-10-22 Ford Global Technologies, Inc. Method and system for operating dual-exhaust engine
US6490860B1 (en) 2001-06-19 2002-12-10 Ford Global Technologies, Inc. Open-loop method and system for controlling the storage and release cycles of an emission control device
US6487853B1 (en) 2001-06-19 2002-12-03 Ford Global Technologies. Inc. Method and system for reducing lean-burn vehicle emissions using a downstream reductant sensor
DE10216260B4 (en) * 2002-04-12 2005-04-21 Siemens Ag Method for operating an internal combustion engine
US6715462B2 (en) 2002-06-04 2004-04-06 Ford Global Technologies, Llc Method to control fuel vapor purging
US6736120B2 (en) 2002-06-04 2004-05-18 Ford Global Technologies, Llc Method and system of adaptive learning for engine exhaust gas sensors
US6758185B2 (en) 2002-06-04 2004-07-06 Ford Global Technologies, Llc Method to improve fuel economy in lean burn engines with variable-displacement-like characteristics
US6745747B2 (en) 2002-06-04 2004-06-08 Ford Global Technologies, Llc Method for air-fuel ratio control of a lean burn engine
US6769398B2 (en) 2002-06-04 2004-08-03 Ford Global Technologies, Llc Idle speed control for lean burn engine with variable-displacement-like characteristic
US6725830B2 (en) 2002-06-04 2004-04-27 Ford Global Technologies, Llc Method for split ignition timing for idle speed control of an engine
US6736121B2 (en) 2002-06-04 2004-05-18 Ford Global Technologies, Llc Method for air-fuel ratio sensor diagnosis
US6735938B2 (en) 2002-06-04 2004-05-18 Ford Global Technologies, Llc Method to control transitions between modes of operation of an engine
DE102004013604B4 (en) * 2003-03-25 2008-07-03 Mitsubishi Fuso Truck And Bus Corp. Method of estimating a NOx absorption amount
EP1529941A3 (en) * 2003-11-06 2010-08-04 Toyota Jidosha Kabushiki Kaisha NOx generation quantity estimation method for internal combustion engine
EP1529941A2 (en) * 2003-11-06 2005-05-11 Toyota Jidosha Kabushiki Kaisha NOx generation quantity estimation method for internal combustion engine
US7204079B2 (en) 2004-07-20 2007-04-17 Peugeot Citroen Automobiles Sa Device for determining the mass of NOx stored in a NOx trap, and a system for supervising the regeneration of a NOx trap including such a device
EP1621749A1 (en) * 2004-07-20 2006-02-01 Peugeot Citroen Automobiles SA Device for determining the mass of particles in a NOx trap and a system for supervising the regeneration of the NOx trap comprising such a device
FR2873404A1 (en) * 2004-07-20 2006-01-27 Peugeot Citroen Automobiles Sa DEVICE FOR DETERMINING THE NOx MASS STOCKETED IN A NOx TRAP AND SYSTEM FOR SUPERVISING THE REGENERATION OF A NOx TRAP COMPRISING SUCH A DEVICE
US20120124967A1 (en) * 2010-11-23 2012-05-24 Eaton Corporation Adaptive Control Strategy
US8701390B2 (en) * 2010-11-23 2014-04-22 International Engine Intellectual Property Company, Llc Adaptive control strategy
EP2574763A1 (en) * 2011-09-30 2013-04-03 Volvo Car Corporation NOx emission estimation method and arrangement
CN103032140A (en) * 2011-09-30 2013-04-10 沃尔沃汽车公司 NOx emission estimation method and arrangement

Also Published As

Publication number Publication date
EP0822856A1 (en) 1998-02-11
WO1997031704A1 (en) 1997-09-04

Similar Documents

Publication Publication Date Title
DE19607151C1 (en) Regeneration of nitrogen oxide storage catalyst
DE19705335C1 (en) Process for the regeneration of a storage catalytic converter
DE69816438T2 (en) EXHAUST GAS PURIFICATION DEVICE FOR AN INTERNAL COMBUSTION ENGINE
DE19816276C2 (en) Method and device for operating an internal combustion engine
EP1090220B1 (en) METHOD FOR REGENERATING AN NOx STORAGE CATALYST FOR AN INTERNAL COMBUSTION ENGINE
EP1307639B1 (en) Method and controller for operating a nitrogen oxide (nox) storage catalyst
DE3423144C2 (en) Method for controlling the supply of fuel to an internal combustion engine during acceleration
DE3410403C2 (en) Method for controlling the amount of fuel supplied to an internal combustion engine after a fuel cut-off has ended
DE3024933A1 (en) METHOD FOR REGULATING THE AIR / FUEL RATIO FOR INTERNAL COMBUSTION ENGINES
EP1193376B1 (en) Control of an NOx-storage catalyst
WO2000028200A1 (en) METHOD FOR DETERMINING THE NOx CRUDE EMISSION OF AN INTERNAL COMBUSTION ENGINE OPERATED WITH AN EXCESS OF AIR
DE10134978C2 (en) Engine control method with estimation of nitrogen oxide emissions
DE102015213892B4 (en) Method for LNT control with an adaptive cruise control
DE3330700C2 (en)
DE10361286B4 (en) Process for the regeneration of a nitrogen oxide storage catalyst
EP1416130B1 (en) Method to control the exhaust gas treating of a direct injection Otto engine and of a lean-burn engine
DE2850534A1 (en) Control microprocessor for ignition and fuel injection in IC engine - depends on count processes performed by input-output unit to reduce number of bits needed
DE19933712A1 (en) Method for controlling an operating mode of an internal combustion engine
DE3525895C2 (en)
DE10223981A1 (en) Method and system for reducing exhaust gases from a vehicle using a sensor located downstream of an exhaust gas control device
DE10023060B4 (en) Method for determining the state of aging and for carrying out the NOx regeneration of a NOx storage catalytic converter
DE19926305C2 (en) Method for controlling the operation of a NOx storage catalytic converter
DE19648427C2 (en) Process for regulating the temperature of a catalytic converter
DE10313216B4 (en) Method for operating a nitrogen oxide (NOx) storage catalytic converter arranged in the exhaust region of an internal combustion engine
EP1325218B1 (en) Method and device for diagnosing the storing properties of a nox storage catalyst

Legal Events

Date Code Title Description
8100 Publication of the examined application without publication of unexamined application
D1 Grant (no unexamined application published) patent law 81
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20140902