DE19629690C2 - Process for the production of sintered alpha-AL¶2¶0¶3¶ bodies and their use - Google Patents

Process for the production of sintered alpha-AL¶2¶0¶3¶ bodies and their use

Info

Publication number
DE19629690C2
DE19629690C2 DE1996129690 DE19629690A DE19629690C2 DE 19629690 C2 DE19629690 C2 DE 19629690C2 DE 1996129690 DE1996129690 DE 1996129690 DE 19629690 A DE19629690 A DE 19629690A DE 19629690 C2 DE19629690 C2 DE 19629690C2
Authority
DE
Germany
Prior art keywords
sintering
slip
solids content
weight
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE1996129690
Other languages
German (de)
Other versions
DE19629690A1 (en
Inventor
Paul Dipl Chem Dr Moeltgen
Pirmin Wilhelm
Martin Luette
Josef Dipl Ing Dr Schmoll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imerys Fused Minerals Laufenburg GmbH
Original Assignee
Korund Laufenburg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korund Laufenburg GmbH filed Critical Korund Laufenburg GmbH
Priority to DE1996129690 priority Critical patent/DE19629690C2/en
Publication of DE19629690A1 publication Critical patent/DE19629690A1/en
Application granted granted Critical
Publication of DE19629690C2 publication Critical patent/DE19629690C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • C09K3/1418Abrasive particles per se obtained by division of a mass agglomerated by sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/1115Minute sintered entities, e.g. sintered abrasive grains or shaped particles such as platelets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung gesinterter, mikrokristalliner Körper auf Basis von α-Al2O3 sowie deren Verwendung.The present invention relates to a method for producing sintered, microcrystalline bodies based on α-Al 2 O 3 and the use thereof.

Eine bevorzugte Anwendung von α-Al2O3-Sinterkörpern ist deren Einsatz als Schleifmittel. Neben geschmolzenen Korundschleifmitteln sind solche aus gesin­ tertem Material schon seit mehr als 50 Jahren bekannt.A preferred application of α-Al 2 O 3 sintered bodies is their use as an abrasive. In addition to molten corundum abrasives, those made of sintered material have been known for more than 50 years.

In der US-A 3 909 991 werden polykristalline α-Al2O3-Körper beschrieben, deren Kristallitgröße im Submicron-Bereich liegt und deren Dichte über 95% der theo­ retischen Dichte beträgt. Die Herstellung erfolgt durch Heißpressen aus einer Mischung aus Ruß und granulierten α-Al2O3-Körpern, die nach der US-A 3 079 243 durch Zerkleinern kaltgepreßter α-Al2O3-Formkörper gewonnen werden.US Pat. No. 3,909,991 describes polycrystalline α-Al 2 O 3 bodies whose crystallite size is in the submicron range and whose density is above 95% of the theoretical density. The production takes place by hot pressing from a mixture of carbon black and granulated α-Al 2 O 3 bodies, which are obtained according to US Pat. No. 3,079,243 by crushing cold-pressed α-Al 2 O 3 shaped bodies.

In der neueren Zeit wurden ähnliche gesinterte Schleifmittel auf α-Al2O3-Basis be­ kannt, die aufgrund ihrer mikrokristallinen Struktur Vorteile gegenüber den be­ kannten Korundschleifmitteln aufweisen. So wird in der EP-B 0 152 768 ein Schleifmittel offenbart, das über die Sol-Gel-Technik bei Sintertemperaturen von ca. 1.400°C hergestellt wird. Als Sinterhilfe werden Kristallisationskeime zuge­ setzt. Ähnliche Verfahren und Stoffe gehen aus der EP-A 0 024 099, DE-A 32 19 607, US-A 4 518 397, US-A 4 574 003, US-A 4 623 364, EP-A 0 168 606, EP-A 0 200 487, EP-A 0 228 856, EP-A 0 209 084 und der EP-A 0 263 810 hervor.More recently, similar sintered abrasives based on α-Al 2 O 3 have been known, which have advantages over the known corundum abrasives due to their microcrystalline structure. For example, EP-B 0 152 768 discloses an abrasive which is produced using the sol-gel technique at sintering temperatures of approximately 1,400 ° C. Crystallization nuclei are added as a sintering aid. Similar processes and substances are known from EP-A 0 024 099, DE-A 32 19 607, US-A 4 518 397, US-A 4 574 003, US-A 4 623 364, EP-A 0 168 606, EP -A 0 200 487, EP-A 0 228 856, EP-A 0 209 084 and EP-A 0 263 810.

Allen letztgenannten Verfahren ist gemeinsam, daß sie über ein Sol-Gel-Verfahren mit feinstdispersem Aluminiumoxidmonohydrat des Typs Böhmit durchgeführt werden. Die verhältnismäßig teuren Rohstoffe, die über die Hydrolyse von Aluminium-organischen Verbindungen gewonnen werden, und die energieaufwen­ dige Verfahrenstechnik lassen die Kosten des Sol-Gel-Korundes auf ein Vielfaches der herkömmlichen Korunde ansteigen. Ein weiterer Nachteil dieser Verfahren ist, daß die kolloidalen Lösungen meist mit relativ großen Mengen leicht flüchtiger anorganischer Säuren stabilisiert sind, was verfahrens- und umwelttechnische Probleme mit sich bringt. All of the latter methods have in common that they have a sol-gel method with finely dispersed aluminum oxide monohydrate of the boehmite type become. The relatively expensive raw materials that are involved in the hydrolysis of Aluminum-organic compounds are obtained, and the energy expenditure process engineering, the costs of sol-gel corundum are many times over of conventional corundum. Another disadvantage of these methods is that the colloidal solutions are usually more volatile with relatively large amounts inorganic acids are stabilized, which is procedural and environmental Brings problems.  

In der DE-C 36 04 848 wird ein Verfahren beschrieben, eine Dispersion aus tonerdehaltigen Rohstoffen, kieselsäurehaltigen Verbindungen und weiteren Zu­ sätzen (z. B. Verbindungen der Metalle Co, Ni, Mg, Cr, Zr, Zn, Si oder Ti) zu einem sinterfähigen Schlicker zu vermahlen, aus dem durch stufenweises Trocknen und Sintern bei Temperaturen bis 1.700°C ein Schleifmittel hergestellt werden kann, dessen Korundprimärkristallite einen Durchmesser von weniger als 5 µm haben. Das so erhaltene Produkt hat mit einer Kristallitgröße kleiner 5 µm noch nicht die Feinstruktur eines Stoffes, der über die Sol-Gel-Methode mit entsprechenden Sinteradditiven hergestellt wird.DE-C 36 04 848 describes a method of dispersing alumina-containing raw materials, silicic acid-containing compounds and other additives add (e.g. compounds of the metals Co, Ni, Mg, Cr, Zr, Zn, Si or Ti) to grind a sinterable slurry, from which by gradual drying and sintering at temperatures up to 1,700 ° C can, whose primary corundum crystallites have a diameter of less than 5 microns to have. The product obtained in this way has a crystallite size of less than 5 μm not yet the fine structure of a substance using the sol-gel method corresponding sintering additives is produced.

Darüber hinaus müssen nach den in der DE-C 36 04 848 offenbarten Verfahren kieselsäurehaltige Verbindungen zugegeben werden, die als Sinterhilfe fungieren. Bei der Sinterung entsteht daraus durch Reaktion mit dem Aluminiumoxid Mullit. Es ist bekannt, das durch die Anwesenheit silikatischer Phasen die Leistungsstärke eines Schleifkorns herabgesetzt wird.In addition, the method disclosed in DE-C 36 04 848 silicic acid compounds are added, which act as a sintering aid. During sintering, mullite is formed from this by reaction with the aluminum oxide. It is known that due to the presence of silicate phases the performance of an abrasive grain is reduced.

Zahlreiche schleiftechnische Untersuchungen an Sinterkorunden in den letzten Jahren haben gezeigt, daß die Schleifleistung umgekehrt proportional zur Größe der Primärkristalle ist. Das heißt, je feiner das Gefüge ist, umso höher ist in der Regel die Schleifleistung.Numerous grinding tests on sintered corundums in recent years Years have shown that grinding performance is inversely proportional to size is the primary crystals. That is, the finer the structure, the higher the Rule grinding performance.

Die EP-A 0 524 436 offenbart ein Verfahren, wobei statt der teuren Böhmite andere preiswerte Vorstufen des Aluminiumoxids (z. B. Hydrargillit) eingesetzt werden. Durch Vermahlen und anschließende Desagglomeration werden Suspen­ sionen mit einem Feststoffgehalt zwischen 10 und 40 Gew.-% erhalten, die analog zu den Sol-Gel-Verfahren weiterverarbeitet werden können. Auch bei diesem Ver­ fahren muß mit sehr viel Energieaufwand das restliche Wasser entfernt werden. Mit Ausnahme des teuren Rohstoffes weist das in der EP-A 0 524 436 be­ schriebene Verfahren alle verfahrenstechnischen Nachteile der Sol-Gel-Methode auf.EP-A 0 524 436 discloses a method whereby instead of the expensive boehmite other inexpensive precursors of aluminum oxide (e.g. hydrargillite) are used become. By grinding and subsequent deagglomeration Suspen Sions with a solids content between 10 and 40 wt .-% obtained, the analog can be further processed into the sol-gel process. Even with this ver the remaining water has to be removed with a lot of energy. With the exception of the expensive raw material, this is demonstrated in EP-A 0 524 436 Process described all procedural disadvantages of the sol-gel method on.

Im Vergleich zu den Sol-Gel-Verfahren haben jedoch alle bisher bekannten Alter­ nativ-Verfahren zur Herstellung mikrokristalliner Sinterkorunde, die von preiswer­ ten Rohstoffen ausgehen, den Nachteil, daß nach der Sinterung deutlich gröbere Strukturen vorliegen als bei den über die Sol-Gel-Verfahren gewonnenen Pro­ dukten. Die Grunde dafür sind offensichtlich. Die Sol-Gel-Verfahren gehen von besonders feinteiligen Ausgangsstoffen aus, die unter Zugabe von Sinterhilfen ver­ fahrensbedingt bei sehr niedrigen Temperaturen dichtgesintert werden können. Da­ durch wird das Kristallwachstum unterdrückt. Die Alternativ-Verfahren benötigen grundsätzlich höhere Sintertemperaturen, die zu einem verstärkten Kristall­ wachstum führen. Darüber hinaus wird durch die bei der Sinterung stattfindenden Phasenumwandlungen zum α-Al2O3 ein homogenes und unkontrolliertes Kristall­ wachstum initiiert. Die Leistungsstärke der über die Alternativ-Verfahren ge­ wonnenen Sinterkorunde liegt somit deutlich unter denen der Sol-Gel-Korunde.Compared to the sol-gel process, however, all previously known alternative processes for the production of microcrystalline sintered corundum, which are based on inexpensive raw materials, have the disadvantage that after sintering there are significantly coarser structures than in the case of the sol-gel processes. Processed products. The reasons for this are obvious. The sol-gel processes are based on particularly finely divided starting materials that can be densely sintered with the addition of sintering aids due to the process at very low temperatures. As a result, crystal growth is suppressed. The alternative processes generally require higher sintering temperatures, which lead to increased crystal growth. In addition, a homogeneous and uncontrolled crystal growth is initiated by the phase conversions to α-Al 2 O 3 which take place during the sintering. The performance of the sintered corundum obtained via the alternative process is therefore significantly lower than that of the sol-gel corundum.

In der EP-A 0 402 G86 wird ein Verfahren aufgezeigt, mikrokristallinen Korund über die elektrophoretische Abscheidung aus einer α-Al2O3-haltigen organischen Suspension zu gewinnen. Es gelingt so, einen relativ dichten Grünkörper zu er­ halten, der allerdings - trotz der dichten und homogenen Packung - erst bei Temperaturen von 1.600°C dichtgesintert werden kann, so daß es auch hier wieder zu einem verstärkten Kristallwachstum kommt. Das Gefüge eines über die elektro­ phoretische Abscheidung gewonnen Sinterkorundes ist deutlich gröber als das der über das Sol-Gel-Verfahren hergestellten Sinterkotunde. Entsprechend geringer ist auch die Leistungsstärke der über die Elektrophorese gewonnenen Sinterkorunde.EP-A 0 402 G86 shows a process for extracting microcrystalline corundum from an α-Al 2 O 3 -containing organic suspension by electrophoretic deposition. It is thus possible to maintain a relatively dense green body, which - despite the dense and homogeneous packing - can only be densely sintered at temperatures of 1,600 ° C, so that there is increased crystal growth again. The structure of a sintered corundum obtained by means of electrophoretic deposition is significantly coarser than that of the sintered layer produced using the sol-gel process. The performance of the sintered corundum obtained by electrophoresis is correspondingly lower.

Aufgabe dieser Erfindung ist es somit, ein Verfahren zur Herstellung eines mikrokristallinen α-Al2O3-Sinterkörpers aufzuzeigen, welches die beschriebenen Nachteile des Standes der Technik nicht aufweist, und deren Verwendung anzugeben.It is therefore the object of this invention to provide a method for producing a microcrystalline α-Al 2 O 3 sintered body which does not have the disadvantages of the prior art described, and to indicate the use thereof.

Überraschend wurde gefunden, daß diese Anforderungen erfüllt werden durch ein Verfahren zur Herstellung gesinterter, mikrokristalliner Körper auf Basis von α- Al2O3, dadurch gekennzeichnet, daß als Ausgangsstoff ein α-Al2O3-Pulver mit einer mittleren Korngröße ≦ 3 µm zu einem Schlicker mit einer Partikelgröße < 1 µm vermahlen oder desagglomeriert wird, der Schlicker mit Hilfe eines Wirbelschicht-Sprühgranulators zu Grünkörper mit einer Dichte ≧ 40% der theoretischen Dichte und einer Restfeuchte von ≦ 6 Gew.-% granuliert und anschließend einer Schocksinterung bei Temperaturen im Bereich von 1300 bis 1550°C unterzogen wird.Surprisingly, it was found that these requirements are met by a process for producing sintered, microcrystalline bodies based on α-Al 2 O 3 , characterized in that an α-Al 2 O 3 powder with an average grain size ≦ 3 µm is used as the starting material is ground or deagglomerated into a slurry with a particle size of <1 µm, the slurry is granulated with the aid of a fluidized bed spray granulator into green bodies with a density ≧ 40% of the theoretical density and a residual moisture content of ≦ 6% by weight and then a shock sintering at temperatures in the range from 1300 to 1550 ° C.

Der erste Verfahrensschritt besteht aus einer Naßvermahlung oder einer Desagglo­ merierung eines bereits möglichst feinteiligen α-Al2O3-Pulvers. Ziel der Naßver­ mahlung oder Desagglomerierung ist es, eine noch feinere, sehr homogene α- Al2O3-Suspension mit einer extrem feinen Kornverteilungskurve zu erhalten. Die Naßvermahlung und Desagglomerierung wird vorteilhaft im wäßrigen Medium durchgeführt. Im zweiten Schritt wird anschließend die bei der Mahlung oder Des­ agglomerierung erhaltene wäßrige Suspension in einem Wirbelschichtgranulator zu kugelförmigen Granulaten mit einem Durchmesser zwischen 1 und 10 mm granuliert.The first process step consists of wet grinding or disagglomeration of an α-Al 2 O 3 powder that is already as finely divided as possible. The aim of wet grinding or deagglomeration is to obtain an even finer, very homogeneous α-Al 2 O 3 suspension with an extremely fine particle size distribution curve. The wet grinding and deagglomeration is advantageously carried out in an aqueous medium. In the second step, the aqueous suspension obtained during grinding or de-agglomeration is granulated in a fluidized bed granulator into spherical granules with a diameter between 1 and 10 mm.

Die DE-A 35 07 376 beschreibt ein Verfahren und eine Vorrichtung zur Herstel­ lung von Granulaten mit enger Kornverteilung, bei denen das zu granulierende Produkt in flüssiger Form in ein Wirbelbett eingesprüht und dort auf entspre­ chende Keime aufgetragen wird. Die Granulatgröße wird durch die Stärke des Sichtgasstromes eines Zick-Zack-Sichters eingestellt. Ähnliche Verfahren bzw. Weiterentwicklungen der sogenannten Wirbelschicht-Sprühgranulation werden in der DE-A 38 08 277 und der DE-A 43 04 405 beschrieben.DE-A 35 07 376 describes a method and an apparatus for the manufacture development of granules with a narrow particle size distribution, in which the granulate to be granulated Product in liquid form sprayed into a fluidized bed and there on correspond germs are applied. The granule size is determined by the strength of the Visible gas flow of a zigzag classifier set. Similar procedures or Further developments of the so-called fluidized bed spray granulation are in DE-A 38 08 277 and DE-A 43 04 405.

Im dritten Schritt werden die Granulate einer Schocksinterung unterzogen.In the third step, the granules are subjected to shock sintering.

Die Granulate können vor oder nach der Sinterung auf die gewünschte Kornform und -größe zerkleinert werden. Die Aufbereitung und Klassifizierung zur fertigen Schleifkörnung erfolgt nach den üblichen Methoden.The granules can be cut to the desired grain shape before or after sintering size and size. The preparation and classification for the finished Abrasive grains are made using the usual methods.

Nach dem erfindungsgemäßen Verfahren können überraschenderweise, ausgehend von kostengünstigen Rohstoffen, Sinterkorunde gewonnen werden, die in ihren Eigenschaften vergleichbar mit den Sol-Gel-Korunden sind. Da die Kristallitgröße im gesinterten Endprodukt wesentlich von der mittleren Korngröße und der Kornverteilung im Ausgangsmaterial abhängt, ist es zweckmäßig, möglichst feinteilige α-Al2O3-Typen einzusetzen, die dann auf die gewünschte Korngröße vermahlen bzw. desagglomeriert werden.Surprisingly, sintered corundum can be obtained from the method according to the invention, starting from inexpensive raw materials, and its properties are comparable to that of sol-gel corundum. Since the crystallite size in the sintered end product essentially depends on the average grain size and the grain distribution in the starting material, it is expedient to use α-Al 2 O 3 types which are as finely divided as possible and which are then ground or deagglomerated to the desired grain size.

Bevorzugt werden die Feststoffe auf eine mittlere Teilchengröße von kleiner als 1 µm, besonders bevorzugt kleiner als 0,4 µm, herabgemahlen und/oder desagglomeriert, um die gewünschte Ausgangskorngröße zu erhalten bzw. vorliegende Agglomerate in Einzelkristallite zu zerteilen. Die Vermahlung bzw. Desagglomeration wird vorzugsweise naß in Vibrationsmühlen, Attritoren oder Kugelmühlen durchgeführt. Die Mahldauer hängt von der Ausgangskorngröße und dem eingesetzten Mühlentyp ab. Obwohl es naheliegend sein sollte, ein möglichst feinteiliges Ausgangsmaterial zu wählen, sprechen vielfach wirtschaftliche Überle­ gungen dagegen; denn die superfeinen α-Aluminiumoxide sind häufig so teuer, daß einer der wesentlichen Vorteile des erfindungsgemäßen Verfahrens, nämlich der Einsatz eines kostengünstigen Rohstoffes, verloren geht. Beim erfindungsge­ mäßen Verfahren können hingegen vorteilhaft auch gröbere α-Al2O3-Aus­ gangspulver eingesetzt werden.The solids are preferably ground down and / or deagglomerated to an average particle size of less than 1 μm, particularly preferably less than 0.4 μm, in order to obtain the desired starting grain size or to break up the agglomerates present into individual crystallites. The grinding or deagglomeration is preferably carried out wet in vibration mills, attritors or ball mills. The grinding time depends on the starting grain size and the type of mill used. Although it should be obvious to choose a starting material that is as fine as possible, economic considerations often speak against it; because the superfine α-aluminum oxides are often so expensive that one of the essential advantages of the process according to the invention, namely the use of an inexpensive raw material, is lost. In the method according to the invention, however, coarser α-Al 2 O 3 starting powder can advantageously also be used.

Da die Schleifleistung sich umgekehrt proportional zur Primärkristallgröße im Schleifkorn verhält, kann es vorteilhaft sein, das Ausgangsmaterial mit zusätzlichen Komponenten, Sinterhilfen und/oder Kristallwachstumsinhibitoren zu versetzen. Geeignete zusätzliche Komponenten, Sinterhilfen und Kristallwachs­ tumsinhibitoren sind die Oxide der Elemente Mg, Co, Ni, Zn, Hf, Ti, Zr, Cu, Li, Sr, Ba, K, Nb, Si, B und/oder Seltene Erden.Since the grinding power is inversely proportional to the primary crystal size in Abrasive grain behaves, it may be advantageous to use the starting material additional components, sintering aids and / or crystal growth inhibitors offset. Suitable additional components, sintering aids and crystal wax inhibitors are the oxides of the elements Mg, Co, Ni, Zn, Hf, Ti, Zr, Cu, Li, Sr, Ba, K, Nb, Si, B and / or rare earths.

Die Flüssigkeitsmenge bei der Vermahlung wird vorzugsweise so gewählt, daß die entstehende Suspension einen Feststoffgehalt von 15 bis 80 Gew.-%, bevorzugt 30 bis 70 Gew.-%, aufweist. Als Lösungsmittel wird vorzugsweise Wasser eingesetzt. Gegen andere Lösungsmittel wie z. B. Alkohole, Aceton, die ebenfalls eingesetzt werden können, sprechen vor allem ökologische Überlegungen.The amount of liquid during grinding is preferably chosen so that the resulting suspension has a solids content of 15 to 80% by weight, preferably 30 up to 70% by weight. Water is preferably used as the solvent. Against other solvents such as. B. alcohols, acetone, which are also used ecological considerations speak above all.

Da besonders bevorzugt ein Sinterkörper mit einer mittleren Primärkristallgröße unter 0,4 µm angestrebt wird und bei richtiger Wahl der Sintertemperatur im Falle des erfindungsgemäßen Verfahrens das Kristallwachstum unterdrückt werden kann, reicht es häufig aus, die Mahlung solange fortzusetzen, bis die mittlere Korngröße in der Suspension unter 0,4 µm fliegt.Since a sintered body with an average primary crystal size is particularly preferred less than 0.4 µm is desired and if the sintering temperature is selected correctly In the case of the method according to the invention, crystal growth can be suppressed , it is often sufficient to continue grinding until the middle one Grain size in the suspension flies below 0.4 µm.

Vorteilhaft können Suspensionen, deren Feststoffpartikel eine bimodale Korn­ verteilungskurve aufweisen, eingesetzt werden.Suspensions whose solid particles have a bimodal grain can be advantageous have distribution curve, are used.

Die besten Ergebnisse können mit Schlicker erzielt werden, deren bimodale Korngrößenverteilung ein Maximum im Bereich zwischen 0,1 und 0,3 µm und ein weiteres Maximum im Bereich zwischen 0,2 und 1,0 µm aufweisen. Die Korngrößenverteilung wird mit Hilfe einer Laser-Dispersion-Methode (Microtrac Type MIC 2, Micromeritics) in einer wäßrigen Lösung und Na4P2O7 als Dispergierhilfe gemessen.The best results can be achieved with slip whose bimodal grain size distribution has a maximum in the range between 0.1 and 0.3 µm and a further maximum in the range between 0.2 and 1.0 µm. The particle size distribution is measured using a laser dispersion method (Microtrac Type MIC 2, Micromeritics) in an aqueous solution and Na 4 P 2 O 7 as a dispersing aid.

Die Suspension kann sterisch oder elektrostatisch durch anorganische oder organische Verbindungen stabilisiert werden. Im Falle der sterischen Stabilisierung können sämtliche bekannten Dispergierhilfen eingesetzt werden. Als solche eignen sich besonders Polyacrylsäuren, Polyglykolsäuren, Polymethacrylsäuren, organi­ sche Basen wie Triethylamin oder Carbonsäuren wie Essigsäure oder Propion­ säure. Bevorzugt enthält die Suspension zwischen 0,5 und 5 Gew.-% entspre­ chender organischer Stabilisatoren. Im Falle der elektrostatischen Stabilisierung können vorteilhaft flüchtige anorganische Säuren wie Salpetersäure oder Salzsäure sowie Ammoniak als Base eingesetzt werden.The suspension can be steric or electrostatic by inorganic or organic compounds are stabilized. In the case of steric stabilization all known dispersing aids can be used. Suitable as such especially polyacrylic acids, polyglycolic acids, polymethacrylic acids, organi  bases such as triethylamine or carboxylic acids such as acetic acid or propion acid. The suspension preferably contains between 0.5 and 5% by weight organic stabilizers. In the case of electrostatic stabilization can advantageously volatile inorganic acids such as nitric acid or hydrochloric acid and ammonia can be used as the base.

Die Stabilisierung der Suspension erfolgt entweder schon während oder nach der Vermahlung mit Hilfe eines Dispergators, wodurch eine schnelle und gleichmäßige Verteilung des Stabilisators gewährleistet ist. Bevorzugt vor, aber auch während oder nach der Vermahlung bzw. Stabilisierung können der Suspension Sinteradditive und Bindemittel zugesetzt werden. Als Sinteradditive kommen sämtliche für Al2O3 bekannten Sinterhilfen bzw. deren Vorstufen in Frage.The suspension is stabilized either during or after grinding with the aid of a disperser, which ensures that the stabilizer is distributed quickly and evenly. Sintering additives and binders can preferably be added to the suspension before, but also during or after grinding or stabilization. All sintering aids known for Al 2 O 3 or their precursors are suitable as sintering additives.

Bevorzugt enthält die erfindungsgemäße Suspension 0,5 bis 10 Gew.-% eines oder mehrerer Bindemittel aus der Gruppe Alginate, Dextrin, Glykole, Gummiarabicum, Ligninsulfonat, Methylcellulose, Polyvinylacetat, Polyvinylalkohol, Polyvinylpyrro­ lidon, Stärke und Zucker, bezogen auf den Feststoffgehalt der Suspension. Ebenso vorteilhaft kann die Suspension 0,5 bis 10 Gew.-% eines oder mehrere Bindemittel aus der Gruppe Böhmit-Sol, Kieselsol und Wasserglas enthalten.The suspension according to the invention preferably contains 0.5 to 10% by weight of one or several binders from the group alginates, dextrin, glycols, gum arabic, Lignin sulfonate, methyl cellulose, polyvinyl acetate, polyvinyl alcohol, polyvinyl pyrro lidon, starch and sugar, based on the solids content of the suspension. As well The suspension can advantageously be 0.5 to 10% by weight of one or more binders from the group boehmite sol, silica sol and water glass.

Die Trocknung der Suspension und Verdichtung des Feststoffes erfolgt in einem Schritt in einem Wirbelschichtgranulator. Die Granulation wird vorzugsweise an Luft durchgeführt und kann in einer Wirbelbettapparatur angefahren werden, die bereits Startgranulat enthält. Es ist jedoch auch möglich, die Granulation in einer leeren Apparatur zu starten, wobei die Wirbelbettgranulation als Sprühtrocknung beginnt und in situ Keime erzeugt werden.The suspension is dried and the solid is compacted in one Step in a fluidized bed granulator. The granulation is preferably on Air is carried out and can be started in a fluidized bed apparatus that already contains starting granules. However, it is also possible to do the granulation in one empty apparatus to start, the fluidized bed granulation as spray drying begins and germs are generated in situ.

Die zu granulierende Suspension wird durch Sprühdüsen in das Wirbelbett einge­ bracht. Besonders vorteilhaft ist die Verwendung von Zweistoffdüsen. Als Zer­ stäubungsgas kann jedes unter den Arbeitsbedingungen inerte Gas verwendet wer­ den. Die Menge an Zerstäubergas kann innerhalb eines größeren Bereiches variiert werden und richtet sich im allgemeinen nach den Apparate-Dimensionen und nach der Art und Menge des einzusprühenden Produktes. Die Temperatur des Zerstäu­ bergas-Stromes bzw. die Lufteintrittstemperatur ist ebenfalls innerhalb eines grö­ ßeren Bereiches variabel. Im allgemeinen arbeitet man bei Temperaturen zwischen 20 und 350°C. Auch die Sichtgas-Temperaturen sind in einem größeren Bereich variabel. Auch hier arbeitet man bevorzugt in einem Bereich zwischen 20 und 350°C. Die Menge und Geschwindigkeit des Sichtgases richtet sich nach der Dichte und der gewünschten Korngröße des Granulats.The suspension to be granulated is sprayed into the fluidized bed brings. The use of two-component nozzles is particularly advantageous. As Zer Dust gas can be any gas that is inert under the working conditions the. The amount of atomizing gas can vary within a wide range are and generally depends on the dimensions of the apparatus and the type and quantity of the product to be sprayed. The temperature of the atomization Bergas current or the air inlet temperature is also within a gr variable range. Generally one works at temperatures between 20 and 350 ° C. The sight gas temperatures are also in a larger range variable. Here, too, it is preferred to work in a range between 20 and  350 ° C. The amount and speed of the sight gas depends on the Density and the desired grain size of the granulate.

Die Korngröße wird primär durch Gasstrom und Geschwindigkeit des Sichtergases gesteuert. Mit dem in der DE-A 35 07 376 beschriebenem Zick-Zack-Sichter ist es möglich, gezielt ein enges Kornband im Korngrößenbereich zwischen 0,01 und 10 mm mit einer Bandbreite ≦ 1 mm einzustellen. Das fertige Granulat kann direkt - oder nach einem Kalzinier-Zwischenschritt bei Temperaturen zwischen 300 und 600°C - gesintert werden.The grain size is primarily determined by the gas flow and velocity of the classifying gas controlled. With the zigzag sifter described in DE-A 35 07 376 it is possible, a narrow grain band in the grain size range between 0.01 and 10 mm with a bandwidth of ≦ 1 mm. The finished granulate can be used directly - or after an intermediate calcining step at temperatures between 300 and 600 ° C - to be sintered.

Die Sinterung erfolgt bei Temperaturen zwischen 1300°C und 1550°C. Damit liegt die notwendige Sintertemperatur zwar deutlich unter den sonst für das Sintern von konventioneller α-Al202-Keramik üblichen Temperaturen von ca. 1600°C, ist aber gleichzeitig immer noch wesentlich höher, als die beim Sol-Gel-Prozeß erfor­ derliche Temperatur, die vorzugsweise unter 1300°C liegt. Um so überraschender ist es, daß es bei dem erfindungsgemäßen Verfahren gelingt, das Kristallwachstum nahezu vollständig zu unterdrücken. Dazu muß neben der Feinteiligkeit und sehr engen Kornverteilung des Ausgangspulvers und der hohen Dichte des Grünkörpers als weitere Voraussetzung ein sehr schnelles Erreichen der notwendigen Sinter­ temperatur gewährleistet sein. Das heißt, daß der Grünkörper möglichst schnell in die heißeste Zone des Sinterofens gelangen sollte. Durch diese Schocksinterung gelingt es, den Sinterprozess abzuschließen, bevor das Kristallwachstum einsetzt. Gleichzeitig wird der Sinterprozess durch die gute Vorverdichtung beschleunigt. Die homogene Kornverteilung und die Feinheit des Ausgangsstoffes begünstigt ein gleichmäßiges Dichtsintern, wobei ein Zusammenwachsen der Primärkristalle zu größeren Kristalliten vermieden werden kann.Sintering takes place at temperatures between 1300 ° C and 1550 ° C. Thus, the necessary sintering temperature is significantly lower than the usual temperatures for the sintering of conventional α-Al 2 0 2 ceramics of approx. 1600 ° C, but at the same time it is still significantly higher than that required for the sol-gel process Temperature, which is preferably below 1300 ° C. It is all the more surprising that the process according to the invention succeeds in almost completely suppressing crystal growth. In addition to the fine particle size and very narrow particle size distribution of the starting powder and the high density of the green body, a further requirement is that the required sintering temperature be reached very quickly. This means that the green body should get into the hottest zone of the sintering furnace as quickly as possible. This shock sintering enables the sintering process to be completed before crystal growth begins. At the same time, the good pre-compression speeds up the sintering process. The homogeneous grain distribution and the fineness of the starting material favors a uniform dense sintering, whereby a coalescence of the primary crystals into larger crystallites can be avoided.

Für die Sinterung eignen sich sämtliche Ofentypen bzw. Sintetverfahren, die ein schlagartiges Aufheizen des Grünkörpers ermöglichen. Vorteilhaft können direkt oder indirekt beheizte Drehrohröfen, Pendelöfen, Durchschuböfen, Wirbelschicht­ sinteröfen oder Mikrowellensinteröfen eingesetzt werden. Vorteilhaft erfolgt die Schocksinterung so, daß der Grünkörper in ≦ 60 Sekunden, bevorzugt ≦ 10 Sekunden, besonders bevorzugt ≦ 3 Sekunden, auf die erforderliche Sinter­ temperatur gebracht wird. Die Haltezeit bei der Sinterung beträgt ≦ 60 Minuten, bevorzugt ≦ 30 Minuten, besonders bevorzugt ≦ 15 Minuten. All types of furnaces or sinting processes are suitable for sintering allow sudden heating of the green body. Can be beneficial directly or indirectly heated rotary kilns, pendulum furnaces, push-through furnaces, fluidized beds sintering ovens or microwave sintering ovens are used. This is advantageous Shock sintering so that the green body in ≦ 60 seconds, preferably ≦ 10 Seconds, particularly preferably ≦ 3 seconds, on the required sintering temperature is brought. The holding time during sintering is ≦ 60 minutes, preferably ≦ 30 minutes, particularly preferably ≦ 15 minutes.  

Die Zerkleinerung der Granulate zur gewünschten Körnung erfolgt aus energeti­ schen Gründen vorteilhaft direkt nach der Granulation. Je nach Einsatzzweck kann es jedoch auch vorteilhaft sein, daß nach dem Kalzinierschritt oder nach der Sinte­ rung die Zerkleinerung der Granulate durchgeführt wird, um besonders scharfe Schneidkanten zu erhalten.The granules are crushed to the desired grain size from energeti reasons immediately after granulation. Depending on the application however, it may also be advantageous that after the calcining step or after the sine The crushing of the granules is carried out to make them particularly sharp Get cutting edges.

Gegenüber der Elektrophorese hat das erfindungsgemäße Verfahren den Vorteil, daß bei vergleichbaren Korngrößen der Ausgangsstoffe feinere Kristallitgefüge im gesinterten Endprodukt erhalten werden können.The method according to the invention has the advantage over electrophoresis that that with comparable grain sizes of the starting materials finer crystallite structure in sintered end product can be obtained.

Da die Feinheit des Kristallitgefüges in direkter Relation zur Leistungsstärke des Schleifkorns steht, kann nach dem erfindungsgemäßen Verfahren ein Schleifkorn mit einer höheren Abtragsleistung zur Verfügung gestellt werden. Ein weiterer Vorteil aus ökologischer Sicht besteht darin, daß in wäßrigem Medium gearbeitet werden kann und eine Umweltbelastung durch organische Lösungsmittel vermieden wird.Since the fineness of the crystallite structure is directly related to the performance of the Abrasive grain stands, can be an abrasive grain according to the inventive method with a higher stock removal rate. Another An advantage from an ecological point of view is that it works in an aqueous medium and environmental pollution from organic solvents is avoided.

Gegenüber den Sol-Gel-Verfahren ergeben sich ebenfalls - neben dem ökonomischen Vorteil durch den Einsatz von preiswerten Rohstoffen - nicht zu unterschätzende ökologische Vorteile. So werden beim Sol-Gel-Verfahren zur Stabilisierung der Suspension relativ große Mengen an leicht flüchtigen Säuren eingesetzt, die während des Trocknens und vor allem während des Kalzinierens verdampft werden müssen. Bei den Säuren handelt es sich vorzugsweise um Salpeter- oder Salzsäure.Compared to the sol-gel process, there are also - in addition to the economic advantage through the use of inexpensive raw materials - not too underestimated environmental benefits. So in the sol-gel process Stabilization of the suspension of relatively large amounts of volatile acids used during drying and especially during calcining need to be evaporated. The acids are preferably Nitric or hydrochloric acid.

Dabei treten Umweltbelastungen auf, die trotz aufwendiger Technik noch nicht vollständig vermieden werden können. Ein weiterer Vorteil gegenüber den Sol-Gel-Verfahren besteht in der Einfachheit des erfindungsgemäßen Verfahrens, wodurch die Fertigung im kontinuierlichen Produktionsbetrieb erleichtert wird, was letztendlich wieder wirtschaftliche Vorteile mit sich bringt.There are environmental impacts that, despite the complex technology, are not yet can be completely avoided. Another advantage over the Sol-gel method consists in the simplicity of the method according to the invention, whereby the production in the continuous production operation is facilitated, what ultimately brings economic benefits again.

Nach dem erfindungsgemäßen Verfahren gelingt die Herstellung von hochdichten gesinterten, mikrokristallinen Körpern mit einer hohen Härte, deren Kristallitgröße zwischen 0,1 und 10 µm einstellbar ist. Aufgrund dieser Eigenschaften eignen sich diese Sinterkörper hervorragend als Schleifmittel, wobei hier die Kristallitgrößen zwischen 0,1 bis 3 µm betragen. The process according to the invention enables high-density to be produced sintered, microcrystalline bodies with a high hardness, their crystallite size is adjustable between 0.1 and 10 µm. Because of these properties are suitable these sintered bodies are excellent as abrasives, with the crystallite sizes here be between 0.1 and 3 µm.  

Gegenstand dieser Erfindung ist somit auch die Verwendung der erfindungsgemäß hergestellten gesinterten mikrokristallinen Körper als Schleifmittel und für die Herstellung von Schleif- und Schneidwerkzeugen.This invention therefore also relates to the use of the invention produced sintered microcrystalline body as an abrasive and for the Manufacture of grinding and cutting tools.

Da die Schleifeigenschaften wesentlich von der Kristallitstruktur des jeweiligen Schleifkorns abhängen, gelingt es nach dem erfindungsgemäßen Verfahren für die verschiedensten Anwendungszwecke Schleifkörnungen mit einem für die jeweilige Anwendung optimalen Kristallitgefüge bereitzustellen.Because the grinding properties differ significantly from the crystallite structure of each Depend on abrasive grain, it succeeds in the inventive method for the Various applications with one grit for the To provide optimal crystallite structure for each application.

Im folgenden wird die Erfindung beispielhaft erläutert, ohne daß darin eine Einschränkung zu sehen ist. In the following the invention will be explained by way of example without one Restriction can be seen.  

Beispielexample

α-Aluminiumoxid mit einer mittleren Korngröße (d50) von 1,5 µm wurde in einer Rührwerkskugelmühle (Typ PMC 25 TEX, Fa. Drais) auf eine mittlere Korngröße (d50) von 320 nm in wäßrigem Medium vermahlen. Die entstehende Slurry mit einem Feststoffgehalt von 30 Gew.-% und einem d90 von 630 nm wurde mit einer 10%igen wäßrigen Suspension eines Polyvinyl­ alkohols als Binder (Mowiol 8/88, Hoechst AG, Deutschland) vermischt, so daß der Anteil des Binders ca. 4 Gew.-% betrug, bezogen auf den Feststoffgehalt der Slurry.α-Alumina with an average grain size (d 50 ) of 1.5 μm was ground in an agitator ball mill (type PMC 25 TEX, Drais) to an average grain size (d 50 ) of 320 nm in an aqueous medium. The resulting slurry with a solids content of 30 wt .-% and ad 90 of 630 nm was mixed with a 10% aqueous suspension of a polyvinyl alcohol as a binder (Mowiol 8/88, Hoechst AG, Germany), so that the proportion of Binder was approximately 4% by weight, based on the solids content of the slurry.

Anschließend wurde die Suspension in einem Wirbelschicht- Sprühgranulator (AGT 400, Fa. Glatt Deutschland) bei einer Lufteintrittstemperatur von 320°C, einer Schichttemperatur von 75°C und einer Sprührate von 2,4 kg/min zu Grünkörpern mit einer Dichte von ≧ 40% der theoretischen Dichte verarbei­ tet. Zur Keimbildung wurde eine feine Granulatfraktion mit einer mittleren Granulatgröße zwischen 0,5 und 1 mm, die bei einer vorangegangenen Wirbelschicht-Sprühgranulation über eine in-situ-Keimbildung gewonnen worden war, eingesetzt.The suspension was then placed in a fluidized bed Spray granulator (AGT 400, Glatt Germany) at one Air inlet temperature of 320 ° C, a layer temperature of 75 ° C and a spray rate of 2.4 kg / min to green bodies with a density of ≧ 40% of the theoretical density tet. A fine granulate fraction was used to nucleate an average granule size between 0.5 and 1 mm, which at a previous fluidized bed spray granulation in situ nucleation was used.

Die Abtrennung des gewünschten Granulats erfolgte über einen Zick-Zack-Sichter. 60 Gew.-% des so gewonnenen Granulats hatten einen Durchmesser zwischen 3 und 5 mm, ca. 30 Gew.-% der Granulate hatten eine Durchmesser zwischen 1 und 3 mm und ca. 10 Gew.-% der Granulate hatten einen Durchmesser von < 5 mm. Die Restfeuchte der Granulate lag unter 1%.The desired granules were separated off using a Zigzag sifter. 60% by weight of the granules obtained in this way had a diameter between 3 and 5 mm, approx. 30% by weight the granules had a diameter between 1 and 3 mm approx. 10% by weight of the granules had a diameter of <5 mm. The residual moisture of the granules was less than 1%.

Die Granulate wurden zerkleinert und anschließend bei 1480°C in einem beheizten Drehrohr reiner Schocksinterung bei Temperaturen von 1300 bis 1550°C unterzogen.The granules were crushed and then at 1480 ° C shock sintering in a heated rotary tube Subjected to temperatures from 1300 to 1550 ° C.

Das erhaltene Produkt hat eine Vickershärte (HV 0,2) von 20,1 GPa und eine mittlere Primärkristallitgröße von 0,38 µm. Die Dichte liegt bei 98,7% der theoretischen Dichte. The product obtained has a Vickers hardness (HV 0.2) of 20.1 GPa and an average primary crystallite size of 0.38 µm. The Density is 98.7% of the theoretical density.  

Schleiftest (Schleifband) Grinding test (grinding belt)

Claims (16)

1. Verfahren zur Herstellung gesinterter, mikrokristalliner Körper auf Basis von α-Al2O3, dadurch gekenn­ zeichnet, daß als Ausgangsstoff ein α-Al2O3-Pul­ ver mit einer mittleren Korngröße ≦ 3 µm zu einem Schlic­ ker mit einer Partikelgröße < 1 µm vermahlen oder desagg­ lomeriert wird, der Schlicker mit Hilfe eines Wirbel­ schicht-Sprühgranulators zu Grünkörpern mit einer Dichte von ≧ 40% der theoretischen Dichte und einer Restfeuchte von ≦ 6 Gew.-% granuliert und anschließend einer Schock­ sinterung bei Temperaturen im Bereich von 1300 bis 1550°C unterzogen wird.1. Process for the production of sintered, microcrystalline bodies based on α-Al 2 O 3 , characterized in that an α-Al 2 O 3 powder with a mean grain size ≦ 3 µm is used as the starting material to form a slick with a particle size <1 µm is ground or desagg lomerated, the slip is granulated with the help of a fluidized bed spray granulator to form green bodies with a density of ≧ 40% of the theoretical density and a residual moisture content of ≦ 6% by weight and then shock sintering at temperatures in the range from 1300 to 1550 ° C. 2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß Grünkörper mit einer Dichte von ≧ 50% der theoretischen Dichte eingesetzt werden.2. The method according to claim 1, characterized in that Green bodies with a density of ≧ 50% of the theoretical Density can be used. 3. Verfahren gemäß einem oder mehreren der Ansprüche 1 und 2, dadurch gekennzeichnet, daß Grünkörper mit einer Restfeuchte von ≦ 1 Gew.-% eingesetzt werden.3. The method according to one or more of claims 1 and 2, characterized in that green body with a Residual moisture of ≦ 1 wt .-% can be used. 4. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Grünkörper bei der Schocksinterung in ≦ 60 Sekunden, bevorzugt ≦ 10 Sekunden, besonders bevorzugt in ≦ 3 Sekunden, auf die erforderli­ che Sintertemperatur gebracht werden. 4. The method according to one or more of claims 1 to 3, characterized in that the green body in the Shock sintering in ≦ 60 seconds, preferably ≦ 10 seconds, particularly preferred in ≦ 3 seconds, to the required be brought to the sintering temperature.   5. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß ein Schlicker mit weite­ ren Komponenten, Sinteradditiven und/oder Kristallwachs­ tumsinhibitoren, bevorzugt Oxiden aus der Gruppe der Elemente Mg, Zn, Ni, Co, Hf, Zr, Si, Ti, Cu, Sr, Ba, K, Nb, B und/oder Seltene Erden, eingesetzt wird.5. The method according to one or more of claims 1 to 4, characterized in that a slip with wide ren components, sinter additives and / or crystal wax inhibitors, preferably oxides from the group of Elements Mg, Zn, Ni, Co, Hf, Zr, Si, Ti, Cu, Sr, Ba, K, Nb, B and / or rare earths is used. 6. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß ein Schlicker mit einer mittleren Teilchengröße ≦ 0,4 µm eingesetzt wird.6. The method according to one or more of claims 1 to 5, characterized in that a slip with a average particle size ≦ 0.4 µm is used. 7. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Teilchen im Schlicker eine bimodale Verteilungskurve aufweisen.7. The method according to one or more of claims 1 to 6, characterized in that the particles in the slip have a bimodal distribution curve. 8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, daß eine bimodale Verteilungskurve mit dem ersten Maximum im Bereich zwischen 0,1 und 0,3 µm, bevorzugt 0,1 und 0,2 µm, und dem zweiten Maximum im Bereich zwischen 0,2 und 1,0 µm, bevorzugt 0,3 und 0,7 µm, vorliegt.8. The method according to claim 7, characterized in that a bimodal distribution curve with the first maximum in Range between 0.1 and 0.3 microns, preferably 0.1 and 0.2 µm, and the second maximum in the range between 0.2 and 1.0 µm, preferably 0.3 and 0.7 µm, is present. 9. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, daß bei 20 bis 70 Gew.-%, bevorzugt 30 bis 50 Gew.-% des Feststoffgehaltes des Schlickers eine Teilchengröße zwischen 0,1 und 0,3 µm und bei 80 bis 30 Gew.-%, bevor­, zugt 70 bis 50 Gew.-%, des Feststoffgehalts des Schlic­ kers eine Teilchengröße zwischen 0,3 und 1,0 µm verwen­ det wird.9. The method according to claim 8, characterized in that at 20 to 70 wt .-%, preferably 30 to 50 wt .-% of Solids content of the slip a particle size between 0.1 and 0.3 µm and at 80 to 30% by weight before, adds 70 to 50 wt .-%, the solids content of the Schlic kers use a particle size between 0.3 and 1.0 microns det. 10. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß ein Schlicker mit einem Feststoffgehalt, gerechnet als α-Al2O3, von 5 bis 80 Gew.-%, bevorzugt 15 bis 50 Gew.-%, und mit 0,5 bis 5 Gew.-% anorganischen oder organischen Stabilisato­ ren, bezogen auf den Feststoffgehalt, als Dispergierhil­ fen verwendet wird.10. The method according to one or more of claims 1 to 9, characterized in that a slip with a solids content, calculated as α-Al 2 O 3 , of 5 to 80 wt .-%, preferably 15 to 50 wt .-%, and with 0.5 to 5% by weight of inorganic or organic stabilizers, based on the solids content, is used as dispersion aid. 11. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß eine Suspension verwen­ det wird, die 0,5 bis 10 Gew.-% eines oder mehrerer Bindemittel aus der Gruppe Methylcellulose, Dextrin, Zucker, Stärke, Alginate, Glykole, Polyvinylpyrrolidon, Ligninsulfonat, Gummiarabicum, Polyvinylalkohol und Polyvinylacetat, bezogen auf den Feststoffgehalt der Suspension, enthält.11. The method according to one or more of claims 1 to 10, characterized in that a suspension is used det, the 0.5 to 10 wt .-% of one or more Binders from the group methyl cellulose, dextrin, Sugar, starch, alginates, glycols, polyvinylpyrrolidone, Lignin sulfonate, gum arabic, polyvinyl alcohol and Polyvinyl acetate, based on the solids content of the Suspension. 12. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß eine Suspension verwen­ det wird, die 0,5 bis 10 Gew.-% eines oder mehrerer Bindemittel aus der Gruppe Wasserglas, Kieselsol und Böhmit-Sol enthält.12. The method according to one or more of claims 1 to 11, characterized in that a suspension is used det, the 0.5 to 10 wt .-% of one or more Binder from the group of water glass, silica sol and Boehmite sol contains. 13. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß ein Sprühgranulat mit einer Restfeuchte von ≦ 6 Gew.-%, bevorzugt ≦ 1 Gew.-%, bezogen auf den Feststoffgehalt, eingesetzt wird.13. The method according to one or more of claims 1 to 12, characterized in that a spray granulate with a residual moisture content of ≦ 6% by weight, preferably ≦ 1% by weight, based on the solids content, is used. 14. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Granulate vor dem Sintern bei Temperaturen zwischen 300 und 600°C kalzi­ niert werden.14. The method according to one or more of claims 1 to 13, characterized in that the granules before Sintering at temperatures between 300 and 600 ° C kalzi be kidneyed. 15. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß das Granulat vor dem Sintern auf die gewünschte Kornform zerkleinert wird.15. The method according to one or more of claims 1 to 14, characterized in that the granules before Sintering is crushed to the desired grain shape. 16. Verwendung der nach dem Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 15 hergestellten mikro­ kristallinen Körper als Schleifmittel und/oder für die Herstellung von Schleif- und Schneidwerkzeugen.16. Use of the method according to one or  several of claims 1 to 15 produced micro crystalline body as an abrasive and / or for the Manufacture of grinding and cutting tools.
DE1996129690 1996-07-23 1996-07-23 Process for the production of sintered alpha-AL¶2¶0¶3¶ bodies and their use Expired - Fee Related DE19629690C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1996129690 DE19629690C2 (en) 1996-07-23 1996-07-23 Process for the production of sintered alpha-AL¶2¶0¶3¶ bodies and their use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1996129690 DE19629690C2 (en) 1996-07-23 1996-07-23 Process for the production of sintered alpha-AL¶2¶0¶3¶ bodies and their use

Publications (2)

Publication Number Publication Date
DE19629690A1 DE19629690A1 (en) 1998-01-29
DE19629690C2 true DE19629690C2 (en) 1999-08-05

Family

ID=7800596

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1996129690 Expired - Fee Related DE19629690C2 (en) 1996-07-23 1996-07-23 Process for the production of sintered alpha-AL¶2¶0¶3¶ bodies and their use

Country Status (1)

Country Link
DE (1) DE19629690C2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10019184A1 (en) * 2000-04-17 2001-10-25 Treibacher Schleifmittel Gmbh Production of sintered microcrystalline molded body used as an abrasive body comprises mixing alpha-alumina with a binder and a solvent to form a mixture, extruding the mixture to an extrudate, processing to molded bodies, and sintering
EP3384980A1 (en) 2017-04-06 2018-10-10 SASOL Germany GmbH Process for production of attrition stable granulated material
CN111574205B (en) * 2020-06-01 2021-02-12 江苏晶鑫新材料股份有限公司 Production line for preparing sintered corundum

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079243A (en) * 1959-10-19 1963-02-26 Norton Co Abrasive grain
US3909991A (en) * 1970-09-22 1975-10-07 Norton Co Process for making sintered abrasive grains
EP0024099A1 (en) * 1979-06-29 1981-02-25 Minnesota Mining And Manufacturing Company Non-fused aluminium oxide-based abrasive mineral, a process for its production and abrasive products comprising the said abrasive mineral
DE3219607A1 (en) * 1981-05-27 1982-12-23 Kennecott Corp., 06904 Stamford, Conn. SINTERED ABRASIVE AND METHOD FOR THE PRODUCTION THEREOF
US4518397A (en) * 1979-06-29 1985-05-21 Minnesota Mining And Manufacturing Company Articles containing non-fused aluminum oxide-based abrasive mineral
EP0168606A2 (en) * 1984-06-14 1986-01-22 Norton Company Process for producing alumina bodies
US4574003A (en) * 1984-05-03 1986-03-04 Minnesota Mining And Manufacturing Co. Process for improved densification of sol-gel produced alumina-based ceramics
DE3507376A1 (en) * 1985-03-02 1986-09-04 Bayer Ag, 5090 Leverkusen Process and apparatus for producing granular materials
EP0200487A2 (en) * 1985-04-30 1986-11-05 Minnesota Mining And Manufacturing Company Process for durable sol-gel produced alumina-based ceramic abrasive grain and abrasive products
US4623364A (en) * 1984-03-23 1986-11-18 Norton Company Abrasive material and method for preparing the same
EP0209084A1 (en) * 1985-07-15 1987-01-21 Hermes Schleifmittel GmbH &amp; Co. Process for preparing ceramic polycrystalline abrasives
EP0228856A2 (en) * 1985-12-30 1987-07-15 Minnesota Mining And Manufacturing Company Abrasive grits formed of ceramic containing oxides of aluminum, and yttrium, method of making and using the same and products made therewith
EP0263810A2 (en) * 1986-10-03 1988-04-13 Treibacher Chemische Werke Aktiengesellschaft Sintered abrasive material based on alpha-alumina
DE3808277A1 (en) * 1988-03-12 1989-09-21 Bayer Ag METHOD AND DEVICE FOR SPIRAL LAYER SPRAY GRANULATION
EP0402686A1 (en) * 1989-06-10 1990-12-19 H.C. Starck GmbH & Co. KG Process for manufacturing alpha-Al2O3 microcrystalline sintered bodies and their use
EP0524436A1 (en) * 1991-06-21 1993-01-27 H.C. Starck GmbH & Co. KG Process for the preparation of alpha aluminiumoxide based sintered material specially useful for an abrasive agent
EP0152768B1 (en) * 1984-01-19 1993-06-09 Norton Company Abrasive grits or ceramic bodies and preparation thereof
DE4304405A1 (en) * 1993-02-15 1994-08-18 Bayer Ag Process for continuous fluidized bed agglomeration

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079243A (en) * 1959-10-19 1963-02-26 Norton Co Abrasive grain
US3909991A (en) * 1970-09-22 1975-10-07 Norton Co Process for making sintered abrasive grains
EP0024099A1 (en) * 1979-06-29 1981-02-25 Minnesota Mining And Manufacturing Company Non-fused aluminium oxide-based abrasive mineral, a process for its production and abrasive products comprising the said abrasive mineral
US4518397A (en) * 1979-06-29 1985-05-21 Minnesota Mining And Manufacturing Company Articles containing non-fused aluminum oxide-based abrasive mineral
DE3219607A1 (en) * 1981-05-27 1982-12-23 Kennecott Corp., 06904 Stamford, Conn. SINTERED ABRASIVE AND METHOD FOR THE PRODUCTION THEREOF
EP0152768B1 (en) * 1984-01-19 1993-06-09 Norton Company Abrasive grits or ceramic bodies and preparation thereof
US4623364A (en) * 1984-03-23 1986-11-18 Norton Company Abrasive material and method for preparing the same
US4574003A (en) * 1984-05-03 1986-03-04 Minnesota Mining And Manufacturing Co. Process for improved densification of sol-gel produced alumina-based ceramics
EP0168606A2 (en) * 1984-06-14 1986-01-22 Norton Company Process for producing alumina bodies
DE3507376A1 (en) * 1985-03-02 1986-09-04 Bayer Ag, 5090 Leverkusen Process and apparatus for producing granular materials
EP0200487A2 (en) * 1985-04-30 1986-11-05 Minnesota Mining And Manufacturing Company Process for durable sol-gel produced alumina-based ceramic abrasive grain and abrasive products
EP0209084A1 (en) * 1985-07-15 1987-01-21 Hermes Schleifmittel GmbH &amp; Co. Process for preparing ceramic polycrystalline abrasives
EP0228856A2 (en) * 1985-12-30 1987-07-15 Minnesota Mining And Manufacturing Company Abrasive grits formed of ceramic containing oxides of aluminum, and yttrium, method of making and using the same and products made therewith
EP0263810A2 (en) * 1986-10-03 1988-04-13 Treibacher Chemische Werke Aktiengesellschaft Sintered abrasive material based on alpha-alumina
DE3808277A1 (en) * 1988-03-12 1989-09-21 Bayer Ag METHOD AND DEVICE FOR SPIRAL LAYER SPRAY GRANULATION
EP0402686A1 (en) * 1989-06-10 1990-12-19 H.C. Starck GmbH & Co. KG Process for manufacturing alpha-Al2O3 microcrystalline sintered bodies and their use
EP0524436A1 (en) * 1991-06-21 1993-01-27 H.C. Starck GmbH & Co. KG Process for the preparation of alpha aluminiumoxide based sintered material specially useful for an abrasive agent
DE4304405A1 (en) * 1993-02-15 1994-08-18 Bayer Ag Process for continuous fluidized bed agglomeration

Also Published As

Publication number Publication date
DE19629690A1 (en) 1998-01-29

Similar Documents

Publication Publication Date Title
EP0725045B1 (en) Process for the preparation of sintered alpha-alumina bodies and use thereof
EP0248788B1 (en) Microcrystalline abrasive agent and process for its preparation
AT389884B (en) METHOD FOR PRODUCING A Sintered Abrasive Material Based On Alpha-Al2o3
EP1274665B1 (en) MICROCRYSTALLINE ALPHA Al2O3 SHAPED BODY, METHOD FOR THE PRODUCTION AND USE THEREOF
DE102005033392B4 (en) Nanocrystalline sintered bodies based on alpha alumina, process for their preparation and their use
EP0524436B1 (en) Process for the preparation of alpha aluminiumoxide based sintered material specially useful for an abrasive agent
EP0876309B1 (en) Moulded spherical ceramic body, production process and use
DD297387A5 (en) SINTERING MATERIAL BASED ON ALPHA ALUMINUM OXIDE, METHOD FOR THE PRODUCTION THEREOF AND ITS USE
EP0368837A1 (en) Sintered microcrystalline ceramic material
WO2000069790A2 (en) Method of producing aluminum oxides and products obtained on the basis thereof
WO2007124905A2 (en) Abrasive grain based on melted spherical corundum
DE3633030A1 (en) ALUMINUM OXIDE-TITANIUM DIOXIDE COMPOSITE POWDER AND METHOD FOR THE PRODUCTION THEREOF
EP0209084A1 (en) Process for preparing ceramic polycrystalline abrasives
AT394850B (en) Sintered, microcrystalline ceramic material
EP0571865B1 (en) Sintered composite abrasive grains, method of preparation and use thereof
AT394857B (en) ABRASIVE GRAIN BASED ON SINTED ALUMINUM OXIDE AND METAL CONTAINERS AND METHOD FOR THE PRODUCTION THEREOF
DE4113476A1 (en) POLYCRYSTALLINE, SINED GRINDING CORES BASED ON ALPHA-AL (DOWN ARROW) 2 (DOWN ARROW) O (DOWN ARROW) 3 (DOWN ARROW), METHOD FOR THEIR PRODUCTION AND THEIR USE
EP0402686B1 (en) Process for manufacturing alpha-al2o3 microcrystalline sintered bodies and their use
DE19629690C2 (en) Process for the production of sintered alpha-AL¶2¶0¶3¶ bodies and their use
EP0394500B1 (en) Process for the production of sintered alpha-alumina bodies
EP0797554B1 (en) Method of preparing a sintered material containing aluminium oxide
DE4414570A1 (en) Mfr. of alpha-aluminium oxide sintered microcrystalline bodies
EP1218310A1 (en) A1 2?O 3?/SiC NANOCOMPOSITE ABRASIVE GRAINS, METHOD FOR PRODUCING THEM AND THEIR USE
AT392466B (en) Sintered, microcrystalline ceramic material

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee