DE19640825A1 - Encoder arrangement for applying inaudible data signal - Google Patents

Encoder arrangement for applying inaudible data signal

Info

Publication number
DE19640825A1
DE19640825A1 DE19640825A DE19640825A DE19640825A1 DE 19640825 A1 DE19640825 A1 DE 19640825A1 DE 19640825 A DE19640825 A DE 19640825A DE 19640825 A DE19640825 A DE 19640825A DE 19640825 A1 DE19640825 A1 DE 19640825A1
Authority
DE
Germany
Prior art keywords
signal
audio signal
audio
data
data signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19640825A
Other languages
German (de)
Other versions
DE19640825C2 (en
Inventor
Albert Dipl Ing Heuberger
Heinz Dr Ing Gerhaeuser
Rainer Dipl Ing Perthold
Ernst Dr Ing Eberlein
Roland Dr Ing Plankenbuehler
Hartmut Dipl Ing Schott
Christian Dipl Ing Neubauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to DE19640825A priority Critical patent/DE19640825C2/en
Priority to EP97902223A priority patent/EP0875107B1/en
Priority to US09/142,325 priority patent/US6584138B1/en
Priority to DE59700389T priority patent/DE59700389D1/en
Priority to AT97902223T priority patent/ATE184140T1/en
Priority to PCT/EP1997/000338 priority patent/WO1997033391A1/en
Publication of DE19640825A1 publication Critical patent/DE19640825A1/en
Application granted granted Critical
Publication of DE19640825C2 publication Critical patent/DE19640825C2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/28Arrangements for simultaneous broadcast of plural pieces of information
    • H04H20/30Arrangements for simultaneous broadcast of plural pieces of information by a single channel
    • H04H20/31Arrangements for simultaneous broadcast of plural pieces of information by a single channel using in-band signals, e.g. subsonic or cue signal

Abstract

The encoder converts an audio signal into a spectral range and determines the masking threshold for the audio signal. The audio signal is converted into the spectral range using Fast Fourier Transformation (100). A pseudonoise signal (106) and a data signal (104) is generated. The data signal and the pseudonoise signal are multiplied to produce a frequency spread data signal. The frequency spread data signal is weighted with the masking threshold and the audio signal and weighted data signal is weighted.

Description

Die vorliegende Erfindung bezieht sich auf einen Codierer zur Einbringung eines nicht hörbaren Datensignals in ein Audiosignal, und auf einen Decodierer zum decodieren eines nicht hörbar in einem Audiosignal enthaltenen Datensignals.The present invention relates to an encoder for introducing an inaudible data signal into a Audio signal, and to a decoder for decoding a inaudible data signal contained in an audio signal.

Die Übertragung von nicht hörbaren Datensignalen in einem Audiosignal findet beispielsweise Anwendung bei der Reich­ weitenforschung für den Rundfunk. Die Reichweitenforschung dient dazu, die Zuhörerverteilung einzelner Radiostationen zuverlässig zu ermitteln. Im Stand der Technik sind unter­ schiedliche Verfahren bekannt, um die Zuhörerverteilung ein­ zelner Radiostationen zu ermitteln.The transmission of inaudible data signals in one Audio signal is used, for example, by the Reich wide-ranging research for broadcasting. The range research serves the distribution of listeners of individual radio stations to reliably determine. In the prior art are below different methods known to the audience distribution to determine individual radio stations.

Ein erstes Verfahren arbeitet derart, daß mittels eines Mi­ krophons, das von einem Hörer getragen wird, die Umgebungs­ geräusche aufgezeichnet und mittels eines Referenzempfängers verglichen. Aus dem Vergleich läßt sich dann die Empfangs­ frequenz des Rundfunkempfängers ermitteln.A first method works in such a way that by means of a Mi microphone, which is carried by a handset, the surrounding noises recorded and using a reference receiver compared. The reception can then be obtained from the comparison determine the frequency of the radio receiver.

Bei einem zweiten Verfahren werden die Umgebungsgeräusche in komprimierter Form mit der Information der genauen Uhrzeit in einem Speicher aufgezeichnet werden und anschließend an eine Zentrale übertragen werden. Dort werden die Daten von leistungsfähigen Rechnern mit Programmbeispielen verglichen, die während einer vorbestimmten Zeitdauer, beispielsweise eines Tages, aufgezeichnet wurden. Auf diese Art kann der gehörte Sender ermittelt werden. In a second method, the ambient noise in compressed form with the information of the exact time be recorded in a memory and then on a control center can be transferred. There the data from powerful computers compared with sample programs, which during a predetermined period of time, for example one day. In this way, the heard station can be determined.  

Die oben beschriebenen Verfahren weisen die nachfolgenden Nachteile auf.The methods described above have the following Disadvantages.

Das zuerst beschriebene System ist nicht anwendbar bei einem Mehrbandempfang, Mehrnormenempfang oder Mehrmedienempfang, da es nur auf die Übertragung von frequenzmodulierten Sig­ nalen beschränkt ist. Eine zusätzliche lokale Abstrahlung anderer Medien über freie FM-Kanäle ist aufgrund der Viel­ falt der Programmquellen nur in Einzelfällen durchführbar. Ferner wird gemäß diesem Verfahren die gleiche Empfangsstär­ ke benötigt, wie sie der Empfänger der Hörers aufweist. Bei einer guten Empfangsanlage oder z. B. im Auto ist diese Be­ dingung nicht zu realisieren. Ein weiterer Nachteil besteht in der Reaktionszeit zum Abstimmen des Referenzempfängers und der Korrelation, da diese mit dem Programmangebot an­ wächst und im Bereich von Minuten liegt. Der Stromverbrauch eines solchen Verfahrens ist durch die verwendeten Komponen­ ten, den Empfänger, die Signalverarbeitung, usw., erheblich. Der Empfänger kann des weiteren nicht beliebig sparsam aus­ gestaltet werden, da durch den Stromverbrauch des Referenz­ empfängers unmittelbar die Großsignalfestigkeit bestimmt ist. Wiederum ein weiterer Nachteil besteht darin, daß durch das Vergleichsprinzip lediglich die Frequenz des empfangenen Signals bestimmt werden kann, wobei die Frequenzbelegung je­ doch vom augenblicklichen Standort abhängt. Somit ist es notwendig, eine Information hinsichtlich des Standorts des Hörers zu erhalten, beispielsweise über die aktuellen Sen­ dertabellen.The system described first is not applicable to one Multi-band reception, multi-standard reception or multi-media reception, since it only relies on the transmission of frequency-modulated Sig nalen is limited. An additional local radiation other media over free FM channels is due to the amount fold of the program sources can only be carried out in individual cases. Furthermore, the same reception strength is obtained according to this method ke required as the receiver of the listener has. At a good reception system or e.g. B. in the car is this Be condition not to be realized. Another disadvantage is in the response time to tune the reference receiver and the correlation, as this depends on the range of programs grows and is in the range of minutes. The electricity consumption Such a process is due to the components used ten, the receiver, the signal processing, etc., considerably. Furthermore, the receiver cannot be economical be designed because of the power consumption of the reference receiver immediately determines the large signal strength is. Another disadvantage is that the comparison principle only the frequency of the received Signal can be determined, the frequency assignment depending depends on the current location. So it is necessary to provide information regarding the location of the To receive listeners, for example about the current Sen dertables.

Das zweite, oben beschriebene Verfahren weist den Nachteil eines erheblichen Speicherbedarfs auf, da sich bei einer Aufzeichnung über 24 Stunden eine Nettodatenmenge von ca. 150 MB ergibt. Selbst bei einer guten Komprimierung um z. B. den Faktor 10 fallen täglich ca. 15 MB an Daten an. Somit sind die zu verwendenden Speicher groß und damit teuer und haben auch eine hohe Stromaufnahme. Weiter ist die Er­ mittlung der Referenzprogramme schwierig, da sie dezentral landesweit erfolgen muß. Wiederum ein weiteres Problem be­ steht in der Problematik des Datenschutzes, da die Audioin­ formationen unmittelbar aus der Umgebung der Testperson ge­ sammelt und zu einer zentralen Auswertung transportiert wer­ den.The second method described above has the disadvantage a considerable memory requirement, since a Recording over 24 hours a net amount of data of approx. 150 MB results. Even with good compression around z. B. the factor 10 is about 15 MB of data per day. Consequently the memories to be used are large and therefore expensive and also have a high power consumption. He is further It is difficult to identify the reference programs because they are decentralized nationwide. Yet another problem  stands in the problem of data protection, since the audioin formations directly from the environment of the test person collects and transports to a central evaluation the.

Um die oben beschriebenen Probleme zu vermeiden wurden im Stand der Technik bereits mehrere Verfahren vorgeschlagen, bei denen ein Kennungssignal eines Senders in der Form eines Datensignals in das zu übertragende Audiosignal eingebracht wird. Das zu übertragende Datensignal ist in diesem Fall für den Zuhörer nicht hörbar.To avoid the problems described above, the Several methods have already been proposed in the prior art, where an identification signal of a transmitter in the form of a Data signal introduced into the audio signal to be transmitted becomes. In this case, the data signal to be transmitted is for the listener is not audible.

Solche Verfahren sind beispielsweise in der WO 94/11989, GB 2260246 A, GB 2292506 A und in der WO 95/04430 beschrie­ ben. Der Nachteil dieser Verfahren besteht darin, daß nicht sichergestellt werden kann, daß das Datensignal zu jedem Zeitpunkt der Übertragung des Audiosignals für den Zuhörer nicht hörbar ist.Such methods are described, for example, in WO 94/11989, GB 2260246 A, GB 2292506 A and in WO 95/04430 ben. The disadvantage of this method is that it does not can be ensured that the data signal to each Time of transmission of the audio signal to the listener is not audible.

Die US-A-5,450,490 beschreibt eine Vorrichtung und ein Ver­ fahren zum Einschließen von Codes in Audiosignale und zum Decodieren derselben. Dieses System verwendet unterschied­ liche Symbole, die mittels verschränkter Frequenzlinien co­ diert werden. Um sicherzustellen, daß die übertragenen Da­ tensignale zu jeder Zeit nicht hörbar sind, wird hinsicht­ lich der einzelnen Frequenzen, aus denen sich die zu über­ tragenden Symbole zusammensetzen, eine Maskierungsbeurtei­ lung durchgeführt. Der Nachteil dieses Verfahren besteht darin, daß die Erzeugung von zu übertragenden Signalen sehr aufwendig ist.US-A-5,450,490 describes an apparatus and a ver drive to include codes in audio signals and to Decode them. This system uses difference Liche symbols that co be dated. To ensure that the transferred Da attention signals are not audible at all times Lich the individual frequencies that make up the over symbols, a masking appraisal performed. The disadvantage of this method is in that the generation of signals to be transmitted is very is complex.

Ausgehend von diesem Stand der Technik liegt der vorliegen­ den Erfindung die Aufgabe zugrunde, einen Codierer und einen Decodierer zum Einbringen und Herausziehen eines nicht hör­ bar in einem Audiosignal enthaltenen Datensignals zu schaf­ fen, bei dem sichergestellt ist, daß das zu übertragende Da­ tensignal vom menschlichen Ohr nicht wahrgenommen wird, ge­ genüber Interferenzerscheinungen unanfällig ist und eine gu­ te Kanalausnutzung bildet, wobei das Datensignal sicher und einfach decodiert werden kann.Based on this state of the art, this is the case the invention has the object of an encoder and a Decoder for inserting and extracting a not hearing to create a data signal contained in an audio signal fen, which ensures that the Da to be transmitted is not perceived by the human ear, ge is susceptible to interference and a gu  te channel utilization forms, the data signal safe and can be easily decoded.

Diese Aufgabe wird durch einen Codierer gemäß Anspruch 1 und durch einen Decodierer gemäß Anspruch 15 gelöst.This object is achieved by an encoder according to claim 1 and solved by a decoder according to claim 15.

Die vorliegende Erfindung schafft einen Codierer zum Ein­ bringen eines nicht hörbaren Datensignals in ein Audiosi­ gnal, derThe present invention provides a coder for on bring an inaudible data signal into an audiosi gnal, the

  • - das Audiosignal in den Spektralbereich umwandelt;- converts the audio signal into the spectral range;
  • - die Maskierungsschwelle des Audiosignals bestimmt;- determines the masking threshold of the audio signal;
  • - ein Pseudorauschsignal bereitstellt;- provides a pseudo noise signal;
  • - ein Datensignal bereitstellt;- provides a data signal;
  • - das Pseudorauschsignal mit dem Datensignal multipliziert, um ein frequenzmäßig gespreiztes Datensignal zu schaffen;- multiplies the pseudo noise signal by the data signal, to create a frequency spread data signal;
  • - das gespreizte Datensignal mit der Maskierungsschwelle ge­ wichtet; und- The spread data signal with the masking threshold ge weights; and
  • - das Audiosignal und das gewichtete Datensignal gewichtet.- Weighted the audio signal and the weighted data signal.

Die vorliegende Erfindung schafft einen Decodierer zum Her­ ausziehen eines nicht hörbar in einem Audiosignal enthal­ tenen Datensignals, derThe present invention provides a decoder take off one inaudible in an audio signal data signal, the

  • - das Audiosignal abtastet;- samples the audio signal;
  • - das abgetastete Audiosignal nicht-rekursiv filtert; und- filters the sampled audio signal non-recursively; and
  • - das gefilterte Audiosignal mit einem Schwellenwert ver­ gleicht, um das Datensignal wiederzugewinnen.- Ver the filtered audio signal with a threshold equals to recover the data signal.

Ein Vorteil des erfindungsgemäßen Codierers und Decodierers besteht darin, daß Informationen in ein Audiosignal einge­ bracht werden, ohne daß sie vom menschlichen Ohr wahrgenom­ men werden, aber von einem Detektor sicher decodiert werden. Ein weiterer Vorteil der vorliegenden Erfindung besteht dar­ in, daß die Spread-Spektrum-Modulation verwendet wird, bei der die Information bzw. das Datensignal in das gesamte Übertragungsband gespreizt wird, wodurch die Anfälligkeit gegenüber Interferenzerscheinungen und die Mehrwegausbrei­ tung reduziert wird. Gleichzeitig ergibt sich eine gute Ka­ nalausnutzung.An advantage of the encoder and decoder according to the invention  is that information is inserted into an audio signal be brought without being perceived by the human ear However, they can be safely decoded by a detector. Another advantage of the present invention is in that the spread spectrum modulation is used at which the information or the data signal in the whole Transmission band is spread, increasing the vulnerability against interference and the reusable spread tion is reduced. At the same time there is a good Ka exploitation.

Gemäß der vorliegenden Erfindung wird die Nichthörbarkeit dadurch erreicht, daß das Audiosignal, welches beispiels­ weise ein Musiksignal ist, dem das Datensignal bzw. die In­ formationen beigefügt werden sollen, einer Psychoakustikbe­ rechnung unterzogen wird. Aus dieser wird die Maskierungs­ schwelle ermittelt und das Spread-Spektrum-Signal wird mit dieser gewichtet. Dies stellt sicher, daß zu keinem Zeit­ punkt mehr Energie zur Datenübertragung verwendet wird, als psychoakustisch zulässig ist.According to the present invention, the inaudibility thereby achieved that the audio signal, which for example is a music signal to which the data signal or the In formations are to be attached to a psychoacoustic label is subjected to invoice. This becomes the masking threshold is determined and the spread spectrum signal is included this weighted. This ensures that at no time point more energy is used for data transmission than is permitted psychoacoustically.

Gemäß einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung verwendet der Decodierer ein nicht-rekursives Fil­ ter (Matched-Filter). Der Vorteil besteht darin, daß dieses Filter zur Korrelation und Rekonstruktion verwendet werden kann, so daß sich das Verfahren zum Decodieren besonders einfach gestaltet, was im Hinblick auf eine spätere Hard­ warerealisierung vorteilhaft ist. Ein erfindungsgemäßer De­ codierer kann beispielsweise in der Form einer Armbanduhr vorgesehen sein, der leicht von Testpersonen getragen werden kann.According to a preferred embodiment of the present Invention, the decoder uses a non-recursive fil ter (matched filter). The advantage is that this Filters for correlation and reconstruction can be used can, so that the method for decoding is particularly simply designed what with a view to a later hard Realization is advantageous. A De according to the invention The encoder can be in the form of a wristwatch, for example be provided, which can easily be carried by test persons can.

Bevorzugte Weiterbildungen der erfindungsgemäßen Verfahren sind in den Unteransprüchen definiert.Preferred developments of the method according to the invention are defined in the subclaims.

Nachfolgend werden anhand der beiliegenden Zeichnungen be­ vorzugte Ausführungsbeispiele der vorliegenden Erfindung näher erläutert. Es zeigen: Below will be with reference to the accompanying drawings preferred embodiments of the present invention explained in more detail. Show it:  

Fig. 1 ein Ausführungsbeispiel eines erfindungsgemäßen Co­ dierers; Fig. 1 shows an embodiment of a co dierers according to the invention;

Fig. 2 eine Darstellung des Übertragungsrahmens, der zur Übertragung des Nutzsignals verwendet wird; Fig. 2 is an illustration of the transmission frame used to transmit the useful signal;

Fig. 3 ein Blockdiagramm des in Fig. 1 dargestellten Quellencodierungsblocks; Figure 3 is a block diagram of the source coding block shown in Figure 1;

Fig. 4 ein Ausführungsbeispiel eines erfindungsgemäßen De­ codierers Fig. 4 shows an embodiment of an encoder according to the invention

Fig. 5 ein Blockdiagramm des in Fig. 4 dargestellten Da­ tendekodierers; Fig. 5 is a block diagram of the data decoder shown in Fig. 4;

Fig. 6 ein Ausführungsbeispiel eines Systems zur Bestim­ mung der Zuhörerverteilung einer Radiostation, das die erfindungsgemäßen Verfahren zum Codieren und Decodieren verwendet; Fig. 6 shows an embodiment of a system for determining the listener distribution of a radio station, which uses the inventive method for coding and decoding;

Fig. 7 ein Ausführungsbeispiel eines Systems zur Bestim­ mung der Zuhörerverteilung einer Radiostation, das die erfindungsgemäßen Verfahren zum Codieren und Decodieren verwendet; Fig. 7 shows an embodiment of a system for determining the listener distribution of a radio station, which uses the inventive method for coding and decoding;

Fig. 8 ein Ausführungsbeispiel eines Systems zum Kenn­ zeichnen von Audiosignalen mit einer eindeutigen Kennummer zur Identifizierung von Tonträgern; und Fig. 8 shows an embodiment of a system for identifying audio signals with an unequivocal identification number for identifying sound recordings; and

Fig. 9 ein Ausführungsbeispiel eines Systems zur Fernsteuerung von Audiogeräten, das die erfindungsgemäßen Verfahren zum Codieren und Decodieren verwendet. Fig. 9 shows an embodiment of a system for remote control of audio devices, which uses the inventive method for coding and decoding.

Nachfolgend wird anhand der Fig. 1 ein Ausführungsbeispiel eines Codierers näher beschrieben. Es wird darauf hingewie­ sen, daß die in Fig. 1 dargestellte Schaltung lediglich ein bevorzugtes Ausführungsbeispiel darstellt, und die vorlie­ gende Erfindung nicht darauf beschränkt ist.An exemplary embodiment of an encoder is described in more detail below with reference to FIG. 1. It is pointed out that the circuit shown in Fig. 1 is only a preferred embodiment, and the vorlie invention is not limited thereto.

Die in Fig. 1 dargestellte Codierschaltung besteht aus einem Transformationsblock 100, einem Psychoakustikblock 102, einem Datensignalgenerator 104, einem Quellencodierungsblock 105, einem Pseudo-Noise-Signalgenerator 106, einem BPSK-Ba­ sisbandmodulator 108 (BPSK = Binary Phase Shift Keying = bi­ näre Phasenverschiebungstastung), einem BPSK-Modulator 110, einer Einrichtung zum Gewichten von zwei Signalen 112, einem Rücktransformationsblock 114 und einer Superpositions- bzw. Überlagerungseinrichtung 116. Bei dem in Fig. 1 dargestellten Ausführungsbeispiel sind der BPSK-Basisbandmodulator 108, der BPSK-Modulator 110 und die Einrichtung zum Gewichten von zwei Signalen 112 jeweils durch einen Multiplizierer ge­ bildet. Ferner ist ein weiterer Transformationsblock 118 vorgesehen, der das Ausgangssignal s(l) des BPSK-Modulators 110 in den Spektralbereich transformiert.The encoding circuit shown in Fig. 1 consists of a transformation block 100, a Psychoacoustic block 102, a data signal generator 104, a source encoder block 105, a pseudo-noise signal generator 106, a BPSK-Ba sisbandmodulator 108 (BPSK = Binary Phase Shift Keying bi ary Phase Shift Keying ), a BPSK modulator 110 , a device for weighting two signals 112 , a reverse transformation block 114 and a superposition or superimposition device 116 . In the embodiment shown in FIG. 1, the BPSK baseband modulator 108 , the BPSK modulator 110 and the device for weighting two signals 112 are each formed by a multiplier. A further transformation block 118 is also provided, which transforms the output signal s (l) of the BPSK modulator 110 into the spectral range.

Der Transformationsblock 100 ist mit einem Eingang EIN der Schaltung verbunden. Der Ausgang des Transformationsblock 100 ist mit dem Psychoakustikblock 102 verbunden. Der Ein­ gang der Schaltung ist ferner mit einem Eingang der Superpo­ sitionseinrichtung 116 verbunden.Transformation block 100 is connected to an input ON of the circuit. The output of transformation block 100 is connected to psychoacoustic block 102 . The input of the circuit is also connected to an input of the superpo sitionseinrichtung 116 .

Der Ausgang des Pseudo-Noise-Signalgenerators 106 ist mit einem Eingang des BPSK-Basisbandmodulators 108 verbunden und der Ausgang des Datensignalgenerators 104 mit dem Eingang des Quellencodierungsblocks 105 verbunden, dessen Ausgang wiederum mit dem anderen Eingang des BPSK-Basisbandmodula­ tors 108 verbunden ist. Der Ausgang des BPSK-Basisbandmodu­ lators 108 ist mit einem Eingang des BPSK-Modulators 110 verbunden, dessen anderer Eingang mit einem Signalgenerator (nicht dargestellt) verbunden ist, der ein cosinusförmiges Signal an den anderen Eingang des BPSK-Modulators 110 an­ legt. Der Ausgang des BPSK-Modulators 110 ist mit dem wei­ teren Transformationsblock 118 verbunden, dessen Ausgang mit der Gewichtungseinrichtung 112 verbunden ist.The output of the pseudo-noise signal generator 106 is connected to an input of the BPSK baseband modulator 108 and the output of the data signal generator 104 is connected to the input of the source coding block 105 , the output of which is in turn connected to the other input of the BPSK baseband modulator 108 . The output of the BPSK baseband modulator 108 is connected to an input of the BPSK modulator 110 , the other input of which is connected to a signal generator (not shown) which applies a cosine signal to the other input of the BPSK modulator 110 . The output of the BPSK modulator 110 is connected to the further transformation block 118 , the output of which is connected to the weighting device 112 .

Der Ausgang des Psychoakustikblocks 102 ist ebenfalls mit der Gewichtungseinrichtung 112 verbunden. Der Ausgang der Gewichtungseinrichtung 112 ist mit einem Eingang des Rück­ transformationsblocks 114 verbunden. Der Ausgang des Rück­ transformationsblocks 114 ist mit einem weiteren Eingang der Superpositionseinrichtung 116 verbunden, wobei der Ausgang der Superpositionseinrichtung 116 mit einem Ausgang AUS der Schaltung verbunden ist.The output of the psychoacoustic block 102 is also connected to the weighting device 112 . The output of the weighting device 112 is connected to an input of the reverse transformation block 114 . The output of the inverse transform block 114 is connected to a further input of the superposition unit 116, the output of the superposition device 116 is connected to an output OUT of the circuit.

Nachfolgend wird anhand der Fig. 1 ein bevorzugtes Ausfüh­ rungsbeispiel des erfindungsgemäßen Codierverfahrens näher beschrieben.A preferred embodiment of the coding method according to the invention is described in more detail below with reference to FIG. 1.

Zunächst wird am Eingang "EIN" ein Musiksignal n(k) einge­ speist, das beispielsweise als digitales PCM-Musiksignal vorliegt (PCM = Pulsed Code Modulation). Im Transformations­ block 100 wird das Musiksignal zunächst einer Fensterung mit Hanningfenster unterzogen und anschließend mittels einer schnellen Fourier-Transformation (FFT = fast fourier trans­ formation) mit einer Länge von 1024 mit 50% Überlappung (Overlap) in den Spektralbereich umgewandelt. Danach liegt das Spektrum N(ω) des Musiksignals n(k) mit 512 Frequenz­ linien vor, das als Eingangssignal für die Psychoakustik 102 verwendet wird. Das Spektrum des Musiksignals wird gleich­ zeitig an die Superpositionseinrichtung 116 angelegt, wie dies durch den Pfeil 120 verdeutlicht ist.First, a music signal n (k) is fed in at the input "ON", which is present, for example, as a digital PCM music signal (PCM = Pulsed Code Modulation). In the transformation block 100 , the music signal is first subjected to a windowing with a Hanning window and then converted into the spectral range by means of a fast Fourier transformation (FFT = fast fourier transformation) with a length of 1024 with 50% overlap. Then there is the spectrum N (ω) of the music signal n (k) with 512 frequency lines, which is used as an input signal for the psychoacoustics 102 . The spectrum of the music signal is simultaneously applied to the superposition device 116 , as is shown by the arrow 120 .

Im Psychoakustikblock 102 wird das Spektrum N(ω) in kriti­ sche Bänder (critical bands) aufgeteilt. Diese Bänder haben eine Breite von 1/3 bark, was abhängig von Abtastfrequenz (im vorliegenden Beispiel beträgt diese z. B. 44,1 kHz oder 48 kHz) eine Bandanzahl von ca. 60 kritischen Bändern er­ gibt. Die Zuordnung der Frequenzen f(Hz) in Bänder z(bark) orientiert sich an der Bandeinteilung, die das menschliche Ohr beim Hörvorgang vornimmt und ist beispielsweise im Stan­ dard ISO/IEC 11172-3 tabellarisch notiert. In diesen kriti­ schen Bändern wird die Bandenergie durch Summation des Real­ teils und des Imaginärteils des Spektrums N(ω) gemäß der nachfolgenden Gleichung bestimmt:In psychoacoustic block 102 , the spectrum N (ω) is divided into critical bands. These bands have a width of 1/3 bark, which, depending on the sampling frequency (in the present example this is 44.1 kHz or 48 kHz, for example) gives a band number of approximately 60 critical bands. The assignment of the frequencies f (Hz) in bands z (bark) is based on the band division that the human ear makes during the hearing process and is listed in a table, for example, in standard ISO / IEC 11172-3. In these critical bands, the band energy is determined by summing the real part and the imaginary part of the spectrum N (ω) according to the following equation:

Ei = Re (N(ωi))² + Im (N(ωi))²E i = Re (N (ω i )) ² + Im (N (ω i )) ²

Diese Energieverteilung wird nun einer Spreizung unterwor­ fen. Hierfür wird für jedes Band die sogenannte Spreizungs­ funktion berechnet, wobei die Berechnung dem Standard ISO/IEC 11172-3 (1993) folgt. Anschließend werden die 60 er­ haltenen Spreizungsverläufe mit den Bandenergien gefaltet und man erhält den Verlauf der Erregung. Aus dieser läßt sich unter Berücksichtigung des Verdeckungsmaßes die Mas­ kierungsschwelle W(z) für nichttonale Audiosignale mit einem Stützpunkt pro kritischem Band z berechnen.This energy distribution is now subject to a spread fen. The so-called spreading is used for each band function calculated, the calculation being the standard ISO / IEC 11172-3 (1993) follows. Then the 60s holding spread curves folded with the band energies and you get the course of excitement. From this leaves the mas marking threshold W (z) for non-tonal audio signals with a Calculate the base point per critical band z.

Für tonale Audiosignale ist die Maskierungsschwelle W(z) er­ heblich niedriger anzusetzen. Daher wird mit Hilfe einer Si­ gnalprädiktion ein Maß für die Tonalität für jede Frequenz­ linie bestimmt. Die Prädiktion bestimmt aus den beiden zu­ rückliegenden FFTs für jede Linie eine prädizierten Vektor durch Addition der Phasen- und Betragsdifferenz zum Vektor der letzten FFT-Linie. Anschließend wird ein Fehlervektor durch Differenzbildung von prädiziertem Vektor und tatsäch­ lich aus der FFT erhaltenen Vektor gebildet.For tonal audio signals, the masking threshold is W (z) er to be set much lower. Therefore, with the help of a Si Signal prediction is a measure of the tonality for each frequency line determined. The prediction determines from the two past FFTs for each line have a predicted vector by adding the phase and magnitude difference to the vector the last FFT line. Then an error vector by forming the difference between the predicted vector and the actual Lich obtained from the FFT vector.

Durch linienweise Betragsbildung des Fehlervektors berechnet sich ein Maß für die Unvorhersagbarkeit des Signals (engl. Abk. cw = chaos measure) für jedes ω. Aus dem "cw"-Wert, der Werte zwischen 0 - "sehr tonal" - und 1 - "nicht tonal" - an­ nehmen kann, wird das Verdeckungsmaß, das bei der Be­ rechnung der Maskierungsschwelle zu berücksichtigen ist, ausgerechnet.Calculated by line-by-line magnification of the error vector a measure of the unpredictability of the signal. Abbr. Cw = chaos measure) for each ω. From the "cw" value, the values between 0 - "very tonal" - and 1 - "not tonal" - on can take, the degree of concealment, which is the Be calculation of the masking threshold must be taken into account, of all places.

Alternativ kann die Berechnung der Maskierungsschwelle auch anders erfolgen. Die aus der FFT erhaltenen Spektrallinien werden in kritische Bänder zusammengefaßt. Diese Bänder ha­ ben eine Breite von 1/3 bark, was abhängig von Abtastfre­ quenz (im vorliegenden Beispiel beträgt diese z. B. 44,1 kHz oder 48 kHz) eine Bandanzahl von ca. 60 kritischen Bändern ergibt. Die Zuordnung der Frequenzen f(Hz) in Bänder z(bark) orientiert sich an der Bandeinteilung, die das menschliche Ohr beim Hörvorgang vornimmt und ist beispielsweise im Stan­ dard ISO/IEC 11172-3 tabellarisch notiert. In diesen kriti­ schen Bändern wird die Bandenergie durch Summation des Real­ teils und des Imaginärteils des Spektrums N(ω) gemäß der nachfolgenden Gleichung bestimmt:Alternatively, the masking threshold can also be calculated done differently. The spectral lines obtained from the FFT are summarized in critical bands. These tapes ha ben a width of 1/3 bar, which depends on scanning fre  frequency (in the present example, this is, for example, 44.1 kHz or 48 kHz) a band number of approx. 60 critical bands results. The assignment of the frequencies f (Hz) in bands z (bark) is based on the band division that the human Ear during the hearing process and is, for example, in the Stan dard ISO / IEC 11172-3 listed in a table. In these critics bands, the band energy is obtained by summing the real part and the imaginary part of the spectrum N (ω) according to the following equation:

Ei = Re (N(ωi))² + Im (N(ωi))²E i = Re (N (ω i )) ² + Im (N (ω i )) ²

Es sei nun angenommen, daß in dem gesamten Band nur tonale Signale vorliegen. In diesem Fall (worst case) ergibt sich die Maskierungsschwelle um einen festen Betrag unter der Energieverteilung des Musiksignals. Als maximales Ver­ deckungsmaß können z. B. -18 dB angenommen werden. Der Vorteil dieses Verfahrens besteht darin, daß die Berechnung seht einfach ist, da weder Faltungen noch Prädiktionen vorgenom­ men werden müssen. Der Nachteil ist, daß u. U. Energiereser­ ven, die das Musiksignal an Verdeckung liefert nicht genutzt werden. Hat man jedoch eine ausreichende Verarbeitungsver­ stärkung (processing-gain) bereitgestellt, stört dieser Nachteil nicht.It is now assumed that in the entire volume only tonal Signals are present. In this case (worst case) it follows the masking threshold by a fixed amount below the Energy distribution of the music signal. As the maximum ver coverage can z. B. -18 dB can be assumed. The advantage this procedure consists in seeing the calculation is simple since neither folds nor predictions are made need to be. The disadvantage is that u. U. energy readers ven, which delivers the music signal to concealment not used will. However, you have sufficient processing ver provided reinforcement (processing gain), this interferes Disadvantage not.

W(z) wird in nun in W(ω) umgerechnet, wobei diese Umrech­ nung gemäß dem Standard ISO/IEC 11172-3 erfolgt. Der Verlauf der Maskierungsschwelle W(. .) liegt somit am Ausgang des Blocks 102 an, und zeigt an, bis zu welchem Energiepegel an dem Signal an einer Stelle ω Energie zugeführt werden darf, damit diese Änderung unhörbar bleibt.W (z) is now converted into W (ω), this conversion being carried out in accordance with the ISO / IEC 11172-3 standard. The course of the masking threshold W (...) Is thus present at the output of block 102 , and indicates up to which energy level at the signal ω may be supplied with energy so that this change remains inaudible.

Der Datensignalgenerator 104 (DSG) stellt das Nutzdatensig­ nal x(n) zur Verfügung, das im Regelfall zyklisch wiederholt wird, um jederzeit eine Decodierung in einem Decoder zu er­ möglichen. Das Datensignal hat eine Bandbreite von bei­ spielsweise 50 Hz. Die Daten am Ausgang des DSG 104 liegen als Binärsignal vor und haben eine niedrige Bitrate 1/Tx im Bereich von 1-100 Bit/s. Das Spektrum dieses Signals muß im Vergleich zum Spektrum des Signals, das von dem PN-Signalge­ nerator 106 mit ωx abgegeben wird, sehr schmalbandig sein.The data signal generator 104 (DSG) provides the useful data signal x (n), which is generally repeated cyclically in order to enable decoding in a decoder at any time. The data signal has a bandwidth of 50 Hz, for example. The data at the output of the DSG 104 are in the form of a binary signal and have a low bit rate 1 / T x in the range from 1-100 bit / s. The spectrum of this signal must be very narrow-band compared to the spectrum of the signal which is output by the PN signal generator 106 with ω x .

Die Nutzdatensignale x(n) bestehen bei dem in Fig. 1 be­ schriebenen Ausführungsbeispiel aus Worten mit einer Länge von 11 Bit. Diese Datenworte sind in einem Rahmen (Frame) eingebaut, der eine Länge zwischen 26 und 29 Bit hat. In Fig. 2 ist der Aufbau eines solchen Übertragungsrahmens näher dar­ gestellt. Der Übertragungsrahmen 200 umfaßt vier Abschnitte 202, 204, 206, 208. Der erste Abschnitt ist ein Synchronwort 202, das aus sieben Bits (Bits 0 bis 6) besteht und bei dem in Fig. 2 dargestellten Beispiel durch die Bitfolge 1111110 gebildet ist. Der zweite Abschnitt 202 dient dem Fehler­ schutz und besteht aus vier Bits (Bits 7 bis 10). Der dritte Abschnitt 206 enthält das Datenwort, das eine Länge von 11 Bits hat (Bits 11 bis 21). Der vierte Abschnitt 208 enthält eine Überprüfungssumme (Checksumme) aus vier Bits (Bits 22 bis 25).In the exemplary embodiment described in FIG. 1, the useful data signals x (n) consist of words with a length of 11 bits. These data words are built into a frame that has a length between 26 and 29 bits. In Fig. 2, the structure of such a transmission frame is presented in more detail. The transmission frame 200 comprises four sections 202 , 204 , 206 , 208 . The first section is a synchronous word 202 , which consists of seven bits (bits 0 to 6) and, in the example shown in FIG. 2, is formed by the bit sequence 1111110. The second section 202 is used for error protection and consists of four bits (bits 7 to 10). The third section 206 contains the data word, which is 11 bits long (bits 11 to 21). The fourth section 208 contains a checksum (checksum) of four bits (bits 22 to 25).

Der Fehlerschutz (Abschnitt 204 in Fig. 2) wird durch einen nichtsystematischen (15,11)-Hammingcode realisiert. Mit die­ sem Blockcode lassen sich alle 1-Bit-Fehler korrigieren. Bei Mehr-Bit-Fehlern wird das erhaltene Datenwort als falsch verworfen. Der Vorteil dieses Codes besteht darin, daß er ohne großen Rechneraufwand durch einfache Matrixmultiplika­ tion realisierbar ist und damit auch hinsichtlich des Deko­ dierverfahrens geeignet ist.The error protection (section 204 in FIG. 2) is implemented by a non-systematic (15, 11) hamming code. With this block code, all 1-bit errors can be corrected. In the case of multi-bit errors, the data word received is rejected as incorrect. The advantage of this code is that it can be implemented by simple matrix multiplication without great computer complexity and is therefore also suitable with regard to the decoding method.

Da der Übertragungskanal bitorientiert arbeitet muß der Übertragungsrahmen mit einem HDLC-Protokoll übertragen werden (HDLC = high-level data link control = hochstufige Datenverbindungssteuerung). Diese Protokoll ist derart modi­ fiziert, daß nicht nur nach sechs aufeinanderfolgenden "1"-Bits eine "0" eingefügt wird, sondern auch nach sechs "0"-Bits eine "1". Diese Modifikation ist erforderlich, um Pha­ sendrehungen, die auf dem Kanal auftreten können, zu erken­ nen und zu korrigieren. Since the transmission channel works bit-oriented, the Transfer frame with an HDLC protocol (HDLC = high-level data link control = high-level Data connection control). This protocol is of such modes not only after six consecutive "1" bits a "0" is inserted, but also after six "0" bits a "1". This modification is required to Pha to detect transmission rotations that can occur on the channel and correct.  

Der Übertragungsrahmen 200 wird durch den Quellencodierungs­ block 105 (Fig. 1) aufgebaut. In Fig. 3 ist der Quellenco­ dierungsblock 105 im Detail dargestellt.The transmission frame 200 is constructed by the source coding block 105 ( FIG. 1). In Fig. 3 the Quellenco dierungsblock 105 is shown in detail.

Dem Quellencodierungsblock 105 werden von dem Datensignalge­ nerator 104 die Datensignale bereitgestellt. Am Eingang 302 des Blocks 105 liegen die Daten als Datenworte mit 11 Bit Länge vor, wie dies in Fig. 3 dargestellt ist. Der Übertra­ gungsrahmen wird nun derart aufgebaut, daß zunächst der Feh­ lerschutz in einem ersten Block 304 durch den (15,11)-Hammingcode realisiert wird. Der Rahmen hat nun eine Länge von 15 Bits. Anschließend wird in einem zweiten Block 306 die Überprüfungssumme dem Rahmen zugefügt. Die Länge ist danach 19 Bits. Im Block 318 erfolgt die erforderliche Codierung des Übertragungsrahmens durch einen HDLC-Codierer, was zu einer Länge des Rahmens von 19 bis 22 Bits führt. Das am Ausgang des Block 308 vorliegende Binärsignal wird nun in ein antipodisches Signal umgewandelt. Dies kann z. B. mit der Zuordnung 0 → 1 und 1 → -1 erfolgen. Um den Rahmen zu vervollständigen wird diesem im Block 310 das Synchronwort zugefügt. Am Ausgang 312 des Quellencodierungsblocks 105 liegt der Übertragungsrahmen mit einer Länge von 26 bis 29 Bits an, der dem BPSK-Basisbandmodulator 108 zugeführt wird.The source coding block 105 is provided by the data signal generator 104 with the data signals. At input 302 of block 105 , the data are present as data words with an 11-bit length, as shown in FIG. 3. The transmission frame is now constructed in such a way that the error protection is first implemented in a first block 304 by the (15, 11) Hamming code. The frame is now 15 bits long. The check sum is then added to the frame in a second block 306 . The length is then 19 bits. In block 318 , the required coding of the transmission frame is carried out by an HDLC encoder, which leads to a length of the frame of 19 to 22 bits. The binary signal present at the output of block 308 is now converted into an antipodal signal. This can e.g. B. with the assignment 0 → 1 and 1 → -1. To complete the frame, the sync word is added to it in block 310 . At the output 312 of the source coding block 105 is the transmission frame with a length of 26 to 29 bits, which is fed to the BPSK baseband modulator 108 .

Der Pseudo-Noise-Signalgenerator 106 (PNSG) stellt das Spreizungssignal g(l) mit der Bitrate 1/Tg bereit. Die Band­ breite ωg dieses Signals bestimmt die Bandbreite ωs des Spread-Spektrum-Signals und legt bei dem in Fig. 1 darge­ stellten Ausführungsbeispiel im Bereich von 6 kHz. Die hö­ heren Frequenzen, die ein hochwertiges Musiksignal bietet, wurden unter Berücksichtigung des Frequenzgangs der Wieder­ gabegeräte (z. B. Kofferradios) außer Acht gelassen. Der PNSG 106 ist gemäß einem Ausführungsbeispiel als rückgekoppeltes Schieberegister aufgebaut und liefert eine pseudozufällige Pseudo-Noise-Sequenz (PN Sequenz) der Länge N. Diese Sequenz muß im Decoder zur Decodierung des Signals bekannt sein. The pseudo-noise signal generator 106 (PNSG) provides the spread signal g (l) with the bit rate 1 / Tg. The bandwidth ω g of this signal determines the bandwidth ω s of the spread spectrum signal and is in the embodiment shown in FIG. 1 Darge in the range of 6 kHz. The higher frequencies that a high-quality music signal offers have been disregarded, taking into account the frequency response of the playback devices (e.g. portable radios). According to one exemplary embodiment, the PNSG 106 is constructed as a feedback shift register and supplies a pseudo-random pseudo-noise sequence (PN sequence) of length N. This sequence must be known in the decoder for decoding the signal.

Das Verhältnis Tx/Tn wird als Spreizungsfaktor bezeichnet und bestimmt direkt das Signal-Rausch-Verhältnis, bis zu dem das Verfahren noch zuverlässig arbeitet. Gemäß dem hier beschriebenen Ausführungsbeispiel beträgt der Spreizungs­ faktor 128 und damit das Signal-Rausch-Verhältnis S/N = 10log10(Tx/Tn) = -21 dB.The ratio T x / T n is called the spreading factor and directly determines the signal-to-noise ratio up to which the method still works reliably. According to the exemplary embodiment described here, the spreading factor is 128 and thus the signal-to-noise ratio S / N = 10log10 (T x / T n ) = -21 dB.

Das vorliegende Binärsignal g(l) des PNSG 106 wird nun in ein antipodisches Signal umgewandelt. Dies kann z. B. mit der Zuordnung 0 → 1 und 1 → -1 erfolgen. Nach dieser Format­ tierung ist das Signal aufbereitet und wird dem BPSK-Basis­ bandmodulator zugeführt.The present binary signal g (l) of the PNSG 106 is now converted into an antipodal signal. This can e.g. B. with the assignment 0 → 1 and 1 → -1. After this formatting, the signal is processed and fed to the BPSK base band modulator.

Der BPSK-Basisbandmodulator 108 gestaltet sich bei der Ver­ wendung antipodischer Signale einfach, da eine Abtastwert­ weise Multiplikation der BPSK-Modulation entspricht. Das sich ergebende Signal h(l) = g(l)x′(n) hat eine Bandbreite von ωh ≈ 6 kHz. Die Amplitudenwerte sind -1 und 1. Das Si­ gnal hat das Hauptmaximum bei 0 Hz, liegt also im Basisband vor.The BPSK baseband modulator 108 is simple when using antipodal signals, since a sample value corresponds to multiplication of the BPSK modulation. The resulting signal h (l) = g (l) x ′ (n) has a bandwidth of ω h ≈ 6 kHz. The amplitude values are -1 and 1. The signal has the main maximum at 0 Hz, ie it is in the baseband.

Das Basisbandsignal h(l) wird nun dem BPSK-Modulator 110 zu­ geführt. Dort wird das Basisbandsignal h(l) auf einen cosi­ nusförmigen Träger cos(ωTt) aufmoduliert. Die Frequenz des Trägers beträgt die Hälfte der Bandbreite des Spreizbandsi­ gnals im Basisband. Somit kommt die erste Nullstelle des mo­ dulierten Spektrums bei 0 Hz zu liegen. Dadurch kann das Si­ gnal auf Kanälen übertragen werden, deren Übertragungsfunk­ tion im Bereich von 0 bis 100 Hz stark dämpft, wie dies bei Audioübertragungen über Lautsprecher und Mikrophon zu erwar­ ten ist.The baseband signal h (l) is now fed to the BPSK modulator 110 . There, the baseband signal h (l) is modulated onto a cosine-shaped carrier cos (ω T t). The frequency of the carrier is half the bandwidth of the spreading band signal in the baseband. The first zero of the modulated spectrum thus comes to be at 0 Hz. As a result, the signal can be transmitted on channels whose transmission function dampens strongly in the range from 0 to 100 Hz, as can be expected in audio transmissions via loudspeakers and microphone.

Alternativ kann die Modulation statt mit einem Trägercosinus auch durch geeignete Codierung erfolgen. Durch seine beson­ dere Eigenschaft mittelwertfrei zu sein, kann auch der Man­ chester-Code Verwendung finden. Durch seine Mittelwertfrei­ heit kommt somit hier auch bei 0 Hz keine Energie des Spreizbandsignals zu liegen, was für die Übertragbarkeit wichtig ist. Die Codiervorschrift für den Manchester-Code lautet 0 → 10 und 1 → 01. Die Anzahl der Bits verdoppeln sich also.Alternatively, the modulation can be used instead of a carrier cosine also be done by suitable coding. Because of its particular the man chester code are used. Due to its mean free So there is no energy from the Spread band signal to lie, which is for portability  important is. The coding rule for the Manchester code reads 0 → 10 and 1 → 01. Double the number of bits so yourself.

Das Zeitsignal s(l), das am Ausgang des BPSK-Modulators 110 anliegt, wird nun mittels einer schnellen Fourier-Transfor­ mation im Transformationsblock 118 in den Spektralbereich transformiert, so daß am Ausgang des Blocks 118 S(ω) an­ liegt.The time signal s (l), which is present at the output of the BPSK modulator 110 , is now transformed by means of a fast Fourier transform in the transformation block 118 into the spectral range, so that S (ω) is present at the output of the block 118 .

Der spektrale Verlauf des gespreizten Nutzsignals S(ω) wird nun mit dem Verlauf der Maskierungsschwelle W(ω) durch den Gewichtungsblock 112 gewichtet, was dazu führt, daß an kei­ ner Stelle im Audiospektrum mehr Rauschenergie durch das Spread-Spektrum-Signal eingebracht wird, als das menschliche Ohr wahrnehmen kann. In Bezug auf die Demodulation des Nutz­ signals wirkt sich der statisch verändernde Verlauf der Energieverteilung im Nutzsignal nur geringfügig aus, da das Verfahren gerade in diesem Zusammenhang besonders leistungs­ fähig ist.The spectral profile of the spread useful signal S (ω) is now weighted with the profile of the masking threshold W (ω) by the weighting block 112 , which means that no noise energy is introduced by the spread spectrum signal at any point in the audio spectrum, than the human ear can perceive. With regard to the demodulation of the useful signal, the statically changing course of the energy distribution in the useful signal has only a minor effect, since the method is particularly powerful in this context.

Anschließend erfolgt eine Rücktransformation durch eine in­ verse schnelle Fourier-Transformation im Block 114, so daß das codierte Musiksignal wieder im Zeitbereich vorliegt. Bei der Rücktransformation sind die 50% Überlappung zu beachten.This is followed by a reverse transformation by an inverse fast Fourier transform in block 114 , so that the encoded music signal is again in the time domain. The 50% overlap must be taken into account for the reverse transformation.

Beim Block 116 wird das psychoakustisch gewichtete Nutzsig­ nal im Zeitbereich zum Musiksignal n(k) addiert.At block 116 , the psychoacoustically weighted useful signal is added to the music signal n (k) in the time domain.

Am Ausgang "AUS" liefert der Codierer ein digitales PCM-Si­ gnal nc(k), das auf einer beliebigen Übertragungsstrecke übermittelt werden kann, solange diese eine Bandbreite von mindestens 6 kHz aufweist.At the "OFF" output, the encoder supplies a digital PCM signal n c (k) that can be transmitted on any transmission link as long as it has a bandwidth of at least 6 kHz.

Alternativ zu dem oben beschriebenen Ausführungsbeispiel kann anstelle des Eingangs der Schaltung der Ausgang des Transformationsblocks 100 zusätzlich mit der Überlagerungs­ einrichtung 116 verbunden sein. In diesem Fall erfolgt eine Überlagerung des spektralen Spreizungssignals und des spek­ tralen Audiosignals und anschließend die Rücktransformation in den Zeitbereich.As an alternative to the exemplary embodiment described above, instead of the input of the circuit, the output of the transformation block 100 can additionally be connected to the superimposition device 116 . In this case, the spectral spreading signal and the spectral audio signal are superimposed and then back-transformed into the time domain.

Nachfolgend wird ein bevorzugtes Ausführungsbeispiel einer Decodierschaltung beschrieben, die zur Ausführung eines be­ vorzugten Ausführungsbeispiels des erfindungsgemäßen Verfah­ rens zum Decodieren eines nicht hörbar in einem Audiosignal enthaltenen Datensignals verwendet wird.Below is a preferred embodiment of one Decoding circuit described to perform a be preferred embodiment of the inventive method rens for decoding an inaudible in an audio signal contained data signal is used.

Der Decodierer umfaßt ein Mikrophon 400, das ein beispiels­ weise von einem Rundfunkempfänger abgestrahltes Musiksignal empfängt. Der Ausgang des Mikrophons 400 ist mit dem Eingang eines Tiefpasses 402 verbunden, dessen Ausgang mit einem Verstärker 404 mit automatischer Verstärkungssteuerung ver­ bunden ist. Der Ausgang des Verstärkers 404 ist mit einem Analog/Digital-Wandler 406 verbunden. Der Ausgang des Ana­ log/Digital-Wandler 406 ist mit dem Eingang eines nicht-re­ kursiven Filters 408 (matched FIR-Filter) verbunden, dessen Ausgang mit einem Eingang eines Bitsynchronisationssteue­ rungsblocks 410 verbunden ist. Der Ausgang des Blocks 410 ist mit dem Eingang eines Datendecodieres 412 verbunden. Am Ausgang des Datendecodierers 412 liegt das decodierte Daten­ signal vor.The decoder comprises a microphone 400 , which receives, for example, a music signal emitted by a radio receiver. The output of the microphone 400 is connected to the input of a low pass 402 , the output of which is connected to an amplifier 404 with automatic gain control. The output of amplifier 404 is connected to an analog / digital converter 406 . The output of the analog / digital converter 406 is connected to the input of a non-recursive filter 408 (matched FIR filter), the output of which is connected to an input of a bit synchronization control block 410 . The output of block 410 is connected to the input of a data decoder 412 . The decoded data signal is present at the output of the data decoder 412 .

Nachfolgend wird ein Ausführungsbeispiel des erfindungsge­ mäßen Decodierers anhand der Fig. 4 beschrieben. Das vom Rundfunkempfänger abgestrahlte Musiksignal nc(k) wird vom Mikrophon 400 in elektrische Signale umgewandelt und dem Tiefpaß 402 zugeführt. Die Grenzfrequenz des Tiefpasses 402 ist so bemessen, daß die Frequenzanteile, in denen keine Da­ ten einmoduliert sind, stark gedämpft werden. Bei dem vor­ liegenden Ausführungsbeispiel ist die Grenzfrequenz gleich 6 kHz. Die Tiefpaßfilterung dient dazu, Überfaltungen zu ver­ meiden, die durch das später stattfindende Abtasten des Si­ gnals entstehen können.An embodiment of the decoder according to the invention is described below with reference to FIG. 4. The music signal n c (k) emitted by the radio receiver is converted into electrical signals by the microphone 400 and fed to the low-pass filter 402 . The cut-off frequency of the low-pass filter 402 is dimensioned such that the frequency components in which no data are modulated are greatly attenuated. In the prior embodiment, the cutoff frequency is 6 kHz. The low-pass filtering is used to avoid convolutions that may arise from the later sampling of the signal.

Der Verstärker 404 mit automatischer Verstärkungssteuerung (AGC = Automatic Gain Control) stellt eine konstante Mo­ mentanleistung des Eingangssignals vor dem A/D-Wandler 406 sicher. Dies ist erforderlich, um kanalbedingte zeitweise Dämpfungen ausgleichen zu können. Es wird daraufhingewie­ sen, daß der Decodierer sowohl hardwaremäßig als auf soft­ waremäßig realisierbar ist. Im Fall einer softwaremäßigen Realisierung kann auf den Verstärker 404 verzichtet werden.The amplifier 404 with automatic gain control (AGC = Automatic Gain Control) ensures a constant instantaneous power of the input signal in front of the A / D converter 406 . This is necessary in order to be able to compensate for temporary damping caused by the channel. It is pointed out that the decoder can be implemented in terms of both hardware and software. In the case of a software implementation, the amplifier 404 can be omitted.

Der A/D-Wandler führt eine Abtastung und Digitalisierung des Signals durch.The A / D converter scans and digitizes the Signal through.

Das angepaßte (matched) Filter 408 besteht aus einem FIR-Filter bzw. einem nicht-rekursiven Filter. Das Filter 408 enthält als Koeffizienten die umgekehrte Folge der PN-Se­ quenz des Senders. Die PN-Sequenz des Pseudorauschsignals kann beispielsweise manchestercodiert sein. In diesem Fall enthält das Filter 408 enthält als Koeffizienten die umge­ kehrte manchestercodierte Folge der PN-Sequenz des Senders. Somit erzeugt das Filter 408 bei maximaler Korrelation eine Spitze am Ausgang, deren Vorzeichen dem übertragenen Symbol entspricht. Der Filterausgang liefert also im Abstand der Länge 2 * N der PN-Sequenz Spitzen, die die übertragenen Daten darstellen. Da die Spitzen nicht zu jeder Zeit eindeutig zu bestimmen sind, ist dem Filter 408 der Bitsynchronisations­ steuerungsblock 410 nachgeschaltet.The matched filter 408 consists of an FIR filter or a non-recursive filter. Filter 408 contains, as coefficients, the reverse sequence of the transmitter's PN sequence. The PN sequence of the pseudo-noise signal can, for example, be man-coded. In this case, the filter 408 contains, as coefficients, the reverse, man-coded sequence of the transmitter's PN sequence. Thus, at maximum correlation, filter 408 generates a peak at the output, the sign of which corresponds to the symbol transmitted. The filter output therefore delivers peaks at a distance of 2 * N in length from the PN sequence, which represent the transmitted data. Since the peaks cannot be clearly determined at all times, the filter 408 is followed by the bit synchronization control block 410 .

Die Synchronisationssteuerung im Block 410 sucht im Aus­ gangssignal des Filters 408 Spitzen, die sich eindeutig von dem Rauschgrund abheben. Ist eine solche Spitze gefunden, wird synchron zu der Länge der PN-Sequenz in den Ausgang des Filters 408 hineingetastet, um die übertragenen Symbole zurückzugewinnen. Erscheint während dieser Zeit eine eindeu­ tige Spitze, wird der Abtastzeitpunkt entsprechend kor­ rigiert.The synchronization control in block 410 looks for peaks in the output signal of the filter 408 which clearly stand out from the noise reason. If such a peak is found, the output of the filter 408 is scanned in synchronism with the length of the PN sequence in order to recover the transmitted symbols. If a clear peak appears during this time, the sampling time is corrected accordingly.

Der Ausgang des Blocks 410 liefert einen Bitstrom, der im nachfolgenden Datendekodierer 412 bearbeitet wird. Dieser Bitstrom stellt im Fall, daß am Eingang des Mikrophons 402 kein gültig codiertes Signal anliegt, eine zufällige Folge von Bits dar. Ist der Dekodierer bitsynchronisiert, enthält der Bitstrom die gesendeten Daten.The output of block 410 provides a bit stream that is processed in subsequent data decoder 412 . In the event that there is no validly coded signal at the input of the microphone 402, this bit stream represents a random sequence of bits. If the decoder is bit-synchronized, the bit stream contains the transmitted data.

Im Datendekodierer 412 erfolgt die Dekodierung des Nutzda­ tensignals aus dem Bitstrom vom Block 410. Anhand der Fig. 5 wird nachfolgend der Datendekodierer näher beschrieben. Der Datendekodierer 412 umfaßt einen Eingang EIN, der mit einem Rahmensynchronisationsblock 502 und einem HDLC-Decodierblock 504 verbunden ist. Der Block 502 gibt ein Auslöse- bzw. Triggersignal an den Block 504 aus. Der Ausgang des Blocks 504 ist mit dem Eingang eines Hamming-Fehlerkorrekturblocks 506 verbunden, dessen Ausgang mit dem Eingang eines Über­ prüfungssummenblocks 508 verbunden ist. Anschließend an den Block 508 erfolgt eine Hammingdatenberechnung im Block 410. Der Ausgang des Blocks 410 ist mit dem Ausgang AUS des Da­ tendecodierers 412 verbunden, an dessen Ausgang das Daten­ wort mit einer Länge von 11 Bits anliegt.The data decoder 412 decodes the useful data signal from the bit stream from block 410 . The data decoder is described in more detail below with reference to FIG. 5. The data decoder 412 includes an IN input connected to a frame synchronization block 502 and an HDLC decoding block 504 . Block 502 outputs a trigger signal to block 504 . The output of block 504 is connected to the input of a Hamming error correction block 506 , the output of which is connected to the input of a checksum block 508 . Subsequent to block 508 , Hamming data is calculated in block 410 . The output of block 410 is connected to the output OFF of data decoder 412 , at whose output the data word with a length of 11 bits is present.

Der Rahmensynchronisationsblock 502 empfängt den Eingangs­ bitstrom und sucht darin das Synchronisationswort 202. Ist es gefunden, wird der HDLC-Decodierer 504 getriggert und die Eingangsdaten entsprechend decodiert. Anschließend erfolgt die Syndromberechnung und die Fehlerkorrektur durch den Hammingcode. Über das bitfehlerkorrigierte 15-Bitwort wird die Prüfsumme berechnet und mit den übertragenen Bits ver­ glichen. Sind alle diese Operationen erfolgreich, werden die 15 Bits mit dem Hammingcode decodiert und die 11 übertra­ genen Datenbits aus dem Decodierer ausgegeben.The frame synchronization block 502 receives the input bit stream and searches for the synchronization word 202 . If it is found, the HDLC decoder 504 is triggered and the input data is decoded accordingly. The syndrome is then calculated and the error is corrected using the Hamming code. The checksum is calculated using the bit error-corrected 15-bit word and compared with the transmitted bits. If all of these operations are successful, the 15 bits are decoded with the Hamming code and the 11 transmitted data bits are output from the decoder.

Es wird darauf hingewiesen, daß die im vorhergehenden be­ schriebenen Verfahren zum Codieren und zum Decodieren le­ diglich bevorzugte Ausführungsbeispiele der vorliegenden Er­ findung darstellen, auf die die Erfindung nicht beschränkt ist.It should be noted that the above be described methods for coding and for decoding le diglich preferred embodiments of the present Er represent invention, to which the invention is not limited is.

Die wesentlichen Merkmale des erfindungsgemäßen Codierver­ fahrens zur Einbringung eines nicht hörbaren Datensignals in ein Audiosignal sind das Umwandeln des Audiosignals in den Spektralbereich, das Bestimmen der Maskierungsschwelle des Audiosignals, das Bereitstellen eines Pseudorauschsignals, das Bereitstellen des Datensignals, das Multiplizieren des Pseudorauschsignals mit dem Datensignal, um ein frequenz­ mäßig gespreiztes Datensignal zu schaffen, das Gewichten des gespreizten Datensignals mit der Maskierungsschwelle und das Überlagern des Audiosignals und des gewichteten Signals.The essential features of the coding ver according to the invention driving for the introduction of an inaudible data signal in  an audio signal are converting the audio signal into the Spectral range, determining the masking threshold of the Audio signal, providing a pseudo noise signal, providing the data signal, multiplying the Pseudo noise signal with the data signal to a frequency to create moderately spread data signal, weighting the spread data signal with the masking threshold and that Superimposing the audio signal and the weighted signal.

Die wesentlichen Merkmale des erfindungsgemäßen Verfahrens zum Decodieren eines nicht hörbar in einem Audiosignal ent­ haltenen Datensignals sind das Abtasten des Audiosignals, das nicht-rekursive Filtern des abgetasteten Audiosignals, und das Vergleichen des gefilterten Audiosignals mit einem Schwellenwert, um das Datensignal wiederzugewinnen.The essential features of the method according to the invention to decode an inaudible ent in an audio signal held data signal are the sampling of the audio signal, the non-recursive filtering of the sampled audio signal, and comparing the filtered audio signal to one Threshold to recover the data signal.

Nachfolgend wird anhand der Fig. 6 ein System gemäß der vor­ liegenden Erfindung zum Bestimmen der Zuhörerverteilung ein­ zelner Radiostationen anhand eines Kennungssignals näher be­ schrieben. Das anhand der Fig. 6 beschriebene System verwen­ det zum Einbringen des Kennungssignals in das übertragene Audiosignal, das im vorhergehenden beschriebene Codierungs­ verfahren, und verwendet zum Decodieren des Signals aus dem empfangenen Audiosignal, das oben beschriebene Decodierver­ fahren.6 below, a system with reference to FIG. According to the dictated lying invention for determining the listener distribution of individual radio stations based on an identification signal closer be. The system described with reference to FIG. 6 uses the coding method described above for introducing the identification signal into the transmitted audio signal and uses the decoding method described above for decoding the signal from the received audio signal.

Das anhand der Fig. 6 beschriebene System ermöglicht es, die Zuhörerverteilung der einzelnen Radiostationen zuverlässig zu ermitteln. Das System ist unabhängig von den verwendeten Empfangsgeräten, so daß den unterschiedlichen Hörgewohnhei­ ten Rechnung getragen werden kann.The system described with reference to FIG. 6 makes it possible to reliably determine the audience distribution of the individual radio stations. The system is independent of the receiving devices used, so that the different Hörgewohnhei th can be taken into account.

Die Rundfunkübertragung kann ebenfalls über unterschiedliche Medien erfolgen:The broadcast transmission can also have different Media take place:

  • - FM (analog)- FM (analog)
  • - Kabel (analog und digital) - cables (analog and digital)  
  • - DAB (220 MHz terrestrisch; 1,5 GHz terrestrisch und satellitengestützt)- DAB (220 MHz terrestrial; 1.5 GHz terrestrial and satellite-based)
  • - ADR- ADR
  • - Analoge Satelliten Unterträger (Fernsehsatelliten)- Analog satellite subcarriers (television satellites)
  • - LW/MW/KW- LW / MW / KW
  • - Fernsehton- TV sound

Es ist landesspezifisch, welche Medien für eine Auswertung relevant sind, jedoch ermöglicht es das in Fig. 6 darge­ stellte System die oben aufgeführten Medien zu unterstützen. Die Erfassung der Hörer-Reichweite erfolgt in einem vorbe­ stimmten Zeitabstand, der abhängig vom jeweiligen Einzelfall einstellbar ist. Gemäß einem Beispiel kann der Zeitabstand 10 Sekunden betragen. Ferner muß festgelegt werden, wie ak­ tuell die Auswertung zu sein hat. Gemäß dem in Fig. 6 darge­ stellten Beispiel eines Systems werden die Hörerdaten über Nacht erfaßt. Bei anderen Ausführungsbeispielen kann es aus­ reichend sein, das Erfassungsgerät alle 4 Wochen zur Daten­ auswertung einzusenden.It is country-specific which media are relevant for an evaluation, but the system shown in FIG. 6 enables the media listed above to be supported. The range of the listener is recorded at a predetermined time interval, which can be set depending on the individual case. In one example, the time interval can be 10 seconds. It must also be determined how up-to-date the evaluation should be. According to the example of a system shown in FIG. 6, the handset data are acquired overnight. In other exemplary embodiments, it may be sufficient to send in the recording device every 4 weeks for data evaluation.

Das System, wie es in Fig. 6 näher dargestellt ist, umfaßt ein Erfassungsgerät, das seitens der Hörer eine hohe Akzep­ tanz erreicht, um die Zuverlässigkeit der Datenerhebung si­ cherzustellen. Um eine möglichst umfassende Datenermittlung sicherzustellen, wird das Erfassungsgerät am Körper des Te­ sthörers bzw. Probanden getragen, und es handelt sich hier­ bei um ein kleines Gerät mit ausreichender Batterieversor­ gung, wie beispielsweise durch Akkus, das im Design anspre­ chend und in der Handhabung einfach ist. Die Akkus werden in einer Lade- bzw. Dockingstation nachgeladen.The system, as shown in Fig. 6 in more detail, comprises a recording device that reaches a high acceptance on the part of the listener to ensure the reliability of the data collection. In order to ensure that the data is as comprehensive as possible, the recording device is worn on the body of the listener or test person, and this is a small device with sufficient battery supply, such as batteries, which is appealing in design and easy to use is. The batteries are recharged in a charging or docking station.

Das erfindungsgemäße System ist in Fig. 6 in seiner Gesamt­ heit mit dem Bezugszeichen 600 versehen. Das System 600 be­ steht aus folgenden Komponenten. Ein Audiosignal wird in einer Radiostation 602 erzeugt und mittels eines Kennungs­ gebers 604 mit einem Kennungssignal beaufschlagt. Die Beauf­ schlagung des Audiosignals durch den Kennungsgeber 604 er­ folgt unter Verwendung des oben beschriebenen Codierverfah­ rens zum Einbringen eines nicht hörbaren Datensignals in ein Audiosignal. Das mit dem Kennungssignal beaufschlagte Audio­ signal wird an eine Antenne 606 weitergeleitet, die eine Ab­ strahlung 608 des Audiosignals bewirkt. Ein Rundfunkempfän­ ger 610 bestehend aus einer Antenne 612, einem Empfängerge­ rät 614 und zwei Lautsprechern 616 empfängt das abgestrahlte Audiosignal. Das von der Antenne 612 empfangene Audiosignal wird über den Empfänger 614 und die Lautsprecher 616 in ein hörbares Audiosignal 618 umgewandelt, das von einem Erfas­ sungsgerät 620 empfangen wird. Bei dem in Fig. 6 dargestell­ ten Ausführungsbeispiel ist das Empfangsgerät 620 in der Form einer Armbanduhr ausgestaltet. Das Erfassungsgerät 620 ist wirksam, um aus dem empfangenen Audiosignal 618 das Ken­ nungssignal herauszuziehen. Dies erfolgt mittels des erfin­ dungsgemäßen Verfahrens zum Decodieren eines nicht hörbar in einem Audiosignal enthaltenen Datensignals. Das Kennungssi­ gnal, das von dem Empfangsgerät 620 bestimmt wird, wird in dem Empfangsgerät zwischengespeichert. Eine sogenannte Docking-Station 622 ist vorgesehen, um die Armbanduhr 620 beispielsweise während der Nacht aufzunehmen, um eine Über­ tragung der gespeicherten Kennungsdaten zu bewirken. Die Docking-Station 622 ist über eine Leitung 624 und eine ent­ sprechende Verbindungsstelle 626, an die auch noch ein Fern­ sprecher 628 anschließbar ist, mit einem Kommunikationsnetz­ werk 630 verbunden, das bei einem Ausführungsbeispiel das Telephonnetz ist. Über das Kommunikationsnetzwerk 630 werden die von dem Empfangsgerät 620 gespeicherten Daten bzw. Ken­ nungsdaten an eine Zentrale 632 gesendet, die einen Rechner 634 aufweist, um die empfangenen Daten auszuwerten. Der Rechner 634 ist über eine Leitung 636 mit einem Modem 638 verbunden, das seinerseits über eine Leitung 640 und eine weitere Verbindungseinrichtung 642 mit dem Kommunikations­ netzwerk 630 verbunden ist. The system according to the invention is provided with the reference number 600 in its entirety in FIG. 6. System 600 consists of the following components. An audio signal is generated in a radio station 602 and an identifier signal 604 is applied to it by means of an identifier. The application of the audio signal by the identifier 604 it follows using the coding method described above for introducing an inaudible data signal into an audio signal. The applied with the identification signal audio signal is forwarded to an antenna 606 , which causes radiation from 608 of the audio signal. A broadcast receiver 610 consisting of an antenna 612 , a Receiver 614 and two speakers 616 receives the radiated audio signal. The audio signal received by the antenna 612 is converted via the receiver 614 and the speakers 616 into an audible audio signal 618 , which is received by a detection device 620 . In the embodiment shown in FIG. 6, the receiving device 620 is designed in the form of a wristwatch. The detection device 620 is operative to extract the identification signal from the received audio signal 618 . This is done by means of the method according to the invention for decoding a data signal which is not audibly contained in an audio signal. The identifier signal, which is determined by the receiving device 620 , is temporarily stored in the receiving device. A so-called docking station 622 is provided in order to receive the wristwatch 620, for example during the night, in order to cause the stored identification data to be transmitted. The docking station 622 is connected via a line 624 and a corresponding connection point 626 , to which a speaker 628 can also be connected, to a communication network 630 , which in one exemplary embodiment is the telephone network. Via the communication network 630 , the data or identification data stored by the receiving device 620 are sent to a control center 632 , which has a computer 634 in order to evaluate the received data. The computer 634 is connected via a line 636 to a modem 638 , which in turn is connected to the communication network 630 via a line 640 and a further connection device 642 .

Mit dem in Fig. 6 dargestellten System ist es möglich, ta­ gesaktuell die Hörerdaten von ausgewählten Radiostationen zuverlässig zu ermitteln, wobei die zeitliche Auflösung des Systems im Bereich weniger Sekunden liegt. Durch die wenig aufwendige Technik kann das System kostengünstig realisiert werden.With the system shown in FIG. 6, it is possible to reliably ascertain ta actual listener data from selected radio stations, the temporal resolution of the system being in the range of a few seconds. The system can be implemented inexpensively due to the less complex technology.

Nachfolgend wird anhand der Fig. 7 ein System gemäß der vor­ liegenden Erfindung zum Bestimmen der Senderreichweite einer Radiostation anhand eines Kennungssignals näher beschrieben. Das anhand der Fig. 7 beschriebene System verwendet zum Ein­ bringen des Kennungssignals in das übertragene Audiosignal, das im vorhergehenden beschriebene Codierungsverfahren, und verwendet zum Decodieren des Signals aus dem empfangenen Au­ diosignal, das oben beschriebene Decodierverfahren.A system according to the present invention for determining the range of a radio station based on an identification signal is described in more detail below with reference to FIG. 7. The system described with reference to FIG. 7 uses the coding method described above to bring the identification signal into the transmitted audio signal, and uses the above-described decoding method to decode the signal from the received audio signal.

Das erfindungsgemäße System ist in Fig. 7 in seiner Gesamt­ heit mit dem Bezugszeichen 700 versehen. Bei dem System 700 wird ein Audiosignal in einer Radiostation 702 zum Beispiel in einem Studio 704 erzeugt und mittels eines Kennungsgebers bzw. Kodierers 706 mit einem Kennungssignal beaufschlagt. Die Beaufschlagung des Audiosignals durch den Kennungsgeber 706 erfolgt unter Verwendung des oben beschriebenen Codier­ verfahrens zum Einbringen eines nicht hörbaren Datensignals in ein Audiosignal. Das mit dem Kennungssignal beaufschlagte Audiosignal wird an eine Antenne 708 weitergeleitet, die eine Abstrahlung 710 des Audiosignals bewirkt. Ein Rundfunk­ empfänger 712, beispielsweise ein Testempfänger, bestehend aus einer Antenne 714 und einem Empfängergerät 716 empfängt das abgestrahlte Audiosignal. Der in Fig. 7 dargestellte Empfänger 716 dient lediglich dazu, das Audiosignal zu emp­ fangen. Da es bei diesem Ausführungsbeispiel lediglich um die Feststellung der Senderreichweite geht, kann auf eine Wiedergabe des gesendeten Audiosignals verzichtet werden. Ein Vorteil dieser Vorgehensweise besteht darin, das zum Feststellen der Senderreichweite nicht nur ein begrenzter Bandbereich in dem Audiosignal zur Übertragung des Datensi­ gnals verwendet werden kann. Es ist möglich, die gesamte Bandbreite des gesendeten Audiosignals zu verwenden. Dadurch kann entweder die Dekodiersicherheit oder die übertragene Datenmenge gesteigert werden.The system according to the invention is provided with the reference numeral 700 in its entirety in FIG. 7. In system 700 , an audio signal is generated in a radio station 702, for example in a studio 704 , and an identification signal is applied to it by means of an identifier or encoder 706 . The application of the audio signal by the identifier 706 takes place using the coding method described above for introducing an inaudible data signal into an audio signal. The audio signal to which the identification signal is applied is passed on to an antenna 708 , which causes the audio signal to be radiated 710 . A radio receiver 712 , for example a test receiver, consisting of an antenna 714 and a receiver device 716 receives the radiated audio signal. The receiver 716 shown in FIG. 7 only serves to receive the audio signal. Since in this exemplary embodiment it is only a matter of determining the transmitter range, it is not necessary to reproduce the transmitted audio signal. An advantage of this procedure is that not only a limited band range in the audio signal can be used to transmit the data signal to determine the transmitter range. It is possible to use the entire bandwidth of the audio signal sent. As a result, either the decoding security or the amount of data transmitted can be increased.

Bei dem in Fig. 7 dargestellten Ausführungsbeispiel ist der Decodierer 718, der das Verfahren zum Decodieren ausführt, durch einen Computer 720 gebildet, der das Verfahren soft­ waretechnisch realisiert. Wie in Fig. 7 zu sehen ist, ist der Empfänger 716 wirksam über eine Leitung oder ein Kabel 722 mit einer sogenannten Soundkarte 724 in dem Computer verbun­ den, um eine Verarbeitung des Audiosignals durch den Compu­ ter zu ermöglichen. Die Übertragung von dem Empfänger 712 zu dem Decodierer 718 über die Leitung 722 erfolgt analog. Mit anderen Worten wird das empfangene Audiosignal direkt vom Empfänger 712 in den Decodierer 718 eingespeist.In the exemplary embodiment shown in FIG. 7, the decoder 718 , which carries out the method for decoding, is formed by a computer 720 , which implements the method in terms of software. As can be seen in FIG. 7, the receiver 716 is operatively connected via a line or cable 722 to a so-called sound card 724 in the computer in order to enable the computer to process the audio signal. Transmission from receiver 712 to decoder 718 over line 722 is analog. In other words, the received audio signal is fed directly from the receiver 712 into the decoder 718 .

Der Decodierer 718 ist über eine Leitung 724 mit einem Modem 728 verbunden, das seinerseits über eine weitere Leitung 730 mit einer entsprechenden Verbindungsstelle 732 verbunden ist. Die Verbindungsstelle 732 ist mit einem Kommunikations­ netzwerk 734, beispielsweise mit einem Fernsprechnetz, ver­ bunden. Über das Kommunikationsnetzwerk 734 werden die aus dem Datensignal erfaßten Daten bzw. Kennungsdaten an eine Zentrale 736 gesendet, die einen Rechner 738 aufweist, um die empfangenen Daten auszuwerten. Der Rechner 738 ist über eine Leitung 740 mit einem Modem 742 verbunden, das seiner­ seits mit dem Kommunikationsnetzwerk 734 verbunden ist.The decoder 718 is connected via a line 724 to a modem 728 , which in turn is connected via a further line 730 to a corresponding connection point 732 . The junction 732 is connected to a communication network 734 , for example a telephone network. Via the communication network 734 , the data or identification data acquired from the data signal are sent to a center 736 which has a computer 738 in order to evaluate the received data. The computer 738 is connected via a line 740 to a modem 742 , which in turn is connected to the communication network 734 .

Anhand der Fig. 8 wird nachfolgend ein System zum Kennzeich­ nen von Audiosignalen beschrieben, das dazu dient, Tonträger und Kopien von Tonträgern anhand des in das Audiosignals eingebrachten Kennungssignals zu identifizieren. Der Vorteil besteht darin, daß dadurch ermöglicht wird, eventuelle Raub­ kopien ohne weiteres zu identifizieren, da jeder einzelne Tonträger mit einer individuellen Kennung ab Werk versehen ist. With reference to FIG. 8, a system is hereinafter referred to NEN Distinguishing described audio signals which serves to identify records and copies of sound carriers on the basis of the audio signal introduced into the identification signal. The advantage is that it makes it possible to easily identify possible pirated copies, since each individual sound carrier is provided with an individual identifier ex works.

In Fig. 8a ist schematisch die Herstellung eines Tonträgers, wie zum Beispiel einer Compact Disk "CD", in einem Preßwerk 800 dargestellt. Das Preßwerk 800 umfaßt eine Abspielvor­ richtung 802, in der ein Masterband läuft, das die auf eine CD aufzubringenden Audiosignale enthält. Die CD wird in einem Preßwerk 804 gepreßt. Zwischen Preßwerk 804 und Abspielvorrichtung 802 ist ein Codierer 806 angeordnet. Durch den Codierer wird jeder CD ein Kennungssignal zuge­ ordnet, das in das Audiosignal eingebracht wird. Die Codie­ rung erfolgt gemäß dem oben beschriebenen Codierverfahren. Um die Erzeugung individueller Kennungssignale für einzelne CDs sicherzustellen, ist dem Codierer 806 ein Zähler zuge­ ordnet, der beispielsweise fortlaufende Identifikationsnum­ mern als Kennungssignal bereitstellt, das in das Audiosignal eingebracht wird.In Fig. 8a schematically the production of an audio medium such as a compact disk, "CD" shown in a Preßwerk 800th The press 800 includes a Abspielvor direction 802 , in which a master tape is running, which contains the audio signals to be applied to a CD. The CD is pressed in an 804 press. An encoder 806 is arranged between the press unit 804 and the playback device 802 . Each CD assigns an identifier signal to the CD, which is introduced into the audio signal. The coding takes place according to the coding method described above. In order to ensure the generation of individual identification signals for individual CDs, the encoder 806 is assigned a counter which, for example, provides continuous identification numbers as identification signals which are introduced into the audio signal.

Anhand der Fig. 8b wird die Wirkungsweise der Kennungen auf einzelnen CDs näher erläutert. Eine CD 808, die mit einer individuellen Kennung versehen ist, wird mehrmals kopiert, wie dies durch die schematisch dargestellten Abspielgeräte 810 angedeutet ist. Die Kopien können sowohl analog als auch digital erstellt werden.The mode of operation of the identifiers on individual CDs is explained in more detail with reference to FIG. 8b. A CD 808 , which is provided with an individual identifier, is copied several times, as indicated by the schematically represented playback devices 810 . The copies can be made both analog and digital.

Nach dem die Kennung in dem Audiosignal eingebaut ist, wird diese auch bei einer Übertragung des Audiosignals in Form eine Tondatei (Soundfile) über das Internet beibehalten, wie die in Fig. 8 durch das Bezugszeichen 812 angedeutet ist. Auf diese Weise können Rückschlüsse auf die Sounddatei auf dem Tonträger vorgenommen werden.After the identifier has been built into the audio signal, it is retained even when the audio signal is transmitted in the form of a sound file (sound file) via the Internet, as is indicated in FIG. 8 by reference number 812 . In this way, conclusions can be drawn about the sound file on the sound carrier.

Nachfolgend wird ein weiteres Ausführungsbeispiel anhand der Fig. 9 beschrieben. In Fig. 9 ist ein System zur Fernsteue­ rung von Audiogeräten dargestellt, das die erfindungsgemäßen Verfahren zum Codieren und Decodieren verwendet.A further exemplary embodiment is described below with reference to FIG. 9. In Fig. 9, a system for remote control of audio equipment is shown, which uses the inventive method for coding and decoding.

Das erfindungsgemäße System ist in Fig. 9 in seiner Gesamt­ heit mit dem Bezugszeichen 900 versehen. Bei dem System 900 wird ein Audiosignal in einer Radiostation 902 zum Beispiel in einem Studio 904 erzeugt. Mittels eines Kodierers 706 wird ein Datensignal bzw. Steuerungssignal in das Audiosi­ gnal eingebracht. Die Beaufschlagung des Audiosignals durch den Kodierer 906 erfolgt unter Verwendung des oben beschrie­ benen Codierverfahrens zum Einbringen eines nicht hörbaren Datensignals in ein Audiosignal. Das mit dem Signal beauf­ schlagte Audiosignal wird an eine Antenne 908 weitergelei­ tet, die eine Abstrahlung 910 des Audiosignals bewirkt. Ein Empfänger 912, bestehend aus einer Antenne 914 und einem Empfängergerät 916 empfängt das abgestrahlte Audiosignal. In dem Empfänger 916 ist ein Decodierer vorgesehen, der das in dem Audiosignal enthaltene Datensignal gemäß dem oben be­ schriebenen Decodierverfahren herauszieht. Der Empfänger ist derart aufgebaut, daß er auf das Datensignal reagiert, um beispielsweise die Aufzeichnung eines Musikprogramms eines Radiosenders zu beginnen. Aufgrund des aus dem Audiosignal herausgezogenen Datensignals bewirkt der Empfänger, daß ein Aufnahmegerät 918 aktiviert wird, mit dem das gesendete Audiosignal aufgezeichnet wird. Hierdurch wird für Radios in System geschaffen, das ein Verfahren bereitstellt, das dem "VPS"-Verfahren beim Fernsehen vergleichbar ist.The system according to the invention is provided with the reference number 900 in its entirety in FIG. 9. In system 900 , an audio signal is generated in a radio station 902, for example in a studio 904 . A data signal or control signal is introduced into the audio signal by means of an encoder 706 . The encoder 906 applies the audio signal using the coding method described above for introducing an inaudible data signal into an audio signal. The audio signal impinged with the signal is passed on to an antenna 908 , which causes radiation 910 of the audio signal. A receiver 912 , consisting of an antenna 914 and a receiver device 916, receives the radiated audio signal. A decoder is provided in the receiver 916 which extracts the data signal contained in the audio signal in accordance with the decoding method described above. The receiver is constructed in such a way that it responds to the data signal, for example in order to start recording a music program of a radio station. Based on the data signal extracted from the audio signal, the receiver causes a recording device 918 to be activated with which the transmitted audio signal is recorded. This creates a system for radios that provides a method that is comparable to the "VPS" method in television.

Gemäß einem weiteren Ausführungsbeispiel der vorliegenden Erfindung wird ein System geschaffen, daß einen parallel zum Audiosignal arbeitenden Datenkanal in Audiogeräten, die digitale Daten verarbeiten, bereitstellt. Dieser Datenkanal hat eine niedrige Bitrate, in den Informationen gemäß dem oben beschriebenen Verfahren eingebracht werden, und gemäß dem oben beschriebenen Decodierverfahren herausgezogen werden.According to a further exemplary embodiment of the present Invention, a system is created that a parallel to Audio signal working data channel in audio devices that process, provide digital data. This data channel has a low bit rate, in the information according to the methods described above are introduced, and according to pulled out the decoding method described above will.

Es wird darauf hingewiesen, daß der im vorhergehenden be­ schriebene Codierer und Decodierer lediglich bevorzugte Ausführungsbeispiele sind. Die wesentlichen Merkmale des Codierers zur Einbringung eines nicht hörbaren Datensignals in ein Audiosignal sind das Umwandeln des Audiosignals in den Spektralbereich, das Bestimmen der Maskierungsschwelle des Audiosignals, das Bereitstellen eines Pseudorauschsig­ nals, das Bereitstellen des Datensignals, das Multiplizieren des Pseudorauschsignals mit dem Datensignal, um ein fre­ quenzmäßig gespreiztes Datensignal zu schaffen, das Gewich­ ten des gespreizten Datensignals mit der Maskierungsschwelle und das Überlagern des Audiosignals und des gewichteten Sig­ nals.It should be noted that the previous be written coders and decoders are only preferred Embodiments are. The main features of the Encoder for the introduction of an inaudible data signal into an audio signal are converting the audio signal into the spectral range, determining the masking threshold of the audio signal, providing a pseudo-noise  nals, providing the data signal, multiplying of the pseudo noise signal with the data signal to a fre to create a quasi-spread data signal, the weight th of the spread data signal with the masking threshold and superimposing the audio signal and the weighted sig nals.

Die wesentlichen Merkmale des Decodierers zum Herausziehen nicht hörbar in einem Audiosignal enthaltenen Datensignals sind das Abtasten des Audiosignals, das nicht-rekursive Filtern des abgetasteten Audiosignals, und das Vergleichen des gefilterten Audiosignals mit einem Schwellenwert, um das Datensignal wiederzugewinnen.The main features of the pull-out decoder inaudible data signal contained in an audio signal are the sampling of the audio signal, the non-recursive Filtering the sampled audio signal, and comparing of the filtered audio signal with a threshold around which Recover data signal.

Claims (24)

1. Codierer zur Einbringung eines nicht hörbaren Daten­ signals (x(n)) in ein Audiosignal (n(k)), der
  • - das Audiosignal (n(k)) in den Spektralbereich um­ wandelt;
  • - die Maskierungsschwelle (W(ω)) des Audiosignals be­ stimmt;
  • - ein Pseudorauschsignal bereitstellt;
  • - ein Datensignal bereitstellt;
  • - das Pseudorauschsignal mit dem Datensignal multipli­ ziert, um ein frequenzmäßig gespreiztes Datensignal zu schaffen;
  • - das gespreizte Datensignal mit der Maskierungs­ schwelle gewichtet; und
  • - das Audiosignal und das gewichtete Datensignal ge­ wichtet.
1. encoder for introducing an inaudible data signal (x (n)) into an audio signal (n (k)), the
  • - Converts the audio signal (n (k)) into the spectral range;
  • - The masking threshold (W (ω)) of the audio signal be determined;
  • - provides a pseudo noise signal;
  • - provides a data signal;
  • - The pseudo noise signal multiplied by the data signal to create a frequency-spread data signal;
  • - Weighted the spread data signal with the masking threshold; and
  • - Weighted the audio signal and the weighted data signal.
2. Codierer nach Anspruch 1, der das Audiosignal durch eine schnelle Fourier-Transformation in den Spektralbe­ reich umwandelt.2. Encoder according to claim 1, which passes the audio signal a fast Fourier transform in the spectral albums richly transformed. 3. Codierer nach Anspruch 1 oder 2, der bei der Bestimmung der Maskierungsschwelle
  • - das Spektrum des Audiosignals in kritische Bänder (z) aufteilt;
  • - die Energie in jedem kritischen Band bestimmt;
  • - die Spreizungsfunktion für jedes kritische Band be­ rechnet;
  • - die Spreizungsverläufe aller kritischen Bänder mit den Bandenergien faltet, um den Verlauf der Anregung zu erhalten;
  • - die Unvorhersagbarkeit des Signals bestimmt;
  • - das Verdeckungsmaß aus der Tonalität bestimmt; und
  • - die Maskierungsschwelle aus der Anregung unter Be­ rücksichtigung des bestimmten Verdeckungsmaßes be­ rechnet.
3. Encoder according to claim 1 or 2, in the determination of the masking threshold
  • - divides the spectrum of the audio signal into critical bands (z);
  • - determines the energy in each critical band;
  • - The spreading function calculates for each critical band;
  • - the spreading curves of all critical bands fold with the band energies in order to maintain the course of the excitation;
  • - determines the unpredictability of the signal;
  • - Determines the degree of masking from the tonality; and
  • - The masking threshold is calculated from the excitation taking into account the specific masking dimension.
4. Codierer nach Anspruch 1 oder 2, der bei der Bestimmung der Maskierungsschwelle
  • - das Spektrum des Audiosignals in kritische Bänder (z) aufteilt;
  • - die Energie in jedem kritischen Band bestimmt;
  • - die Maskierungsschwelle aus den Bandenergien unter Berücksichtigung des Verdeckungsmaßes für die tonale Verdeckung bestimmt.
4. Encoder according to claim 1 or 2, in the determination of the masking threshold
  • - divides the spectrum of the audio signal into critical bands (z);
  • - determines the energy in each critical band;
  • - The masking threshold is determined from the band energies, taking into account the masking measure for the tonal masking.
5. Codierer nach einem der Ansprüche 1 bis 4, bei dem das Pseudorauschsignal eine Bandbreite von 6 kHz hat.5. Encoder according to one of claims 1 to 4, in which the Pseudo noise signal has a bandwidth of 6 kHz. 6. Codierer nach einem der Ansprüche 1 bis 5, bei dem das Datensignal eine Bandbreite von 50 Hz hat.6. Encoder according to one of claims 1 to 5, in which the Data signal has a bandwidth of 50 Hz. 7. Codierer nach einem der Ansprüche 1 bis 6, der das Datensignal durch einen Blockcode kanalcodiert.7. Encoder according to one of claims 1 to 6, which Data signal channel-coded by a block code. 8. Codierer nach einem der Ansprüche 1 bis 7, der vor dem Multiplizieren des Pseudorauschsignals mit dem Daten­ signal das Pseudorauschsignal und das Datensignal in antipodische Signale umwandelt.8. Encoder according to one of claims 1 to 7, which before Multiply the pseudo noise signal by the data  signal the pseudo noise signal and the data signal in converts antipodal signals. 9. Codierer nach einem der Ansprüche 1 bis 8, der beim Multiplizieren des Pseudorauschsignals mit dem Datensi­ gnal
  • - eine BPSK-Basisbandmodulation des Datensignals mit dem Pseudorauschsignal bewirkt;
  • - eine BPSK-Modulation des modulierten Signals aus dem mit einem Trägersignal, dessen Frequenz im Bereich des hörbaren Audiospektrums liegt, bewirkt; und
  • - das modulierte Signal in den Spektralbereich umwan­ delt.
9. Encoder according to one of claims 1 to 8, the signal when multiplying the pseudo noise signal with the Dateni
  • - BPSK baseband modulation of the data signal with the pseudo-noise signal;
  • - BPSK modulation of the modulated signal from the with a carrier signal whose frequency is in the range of the audible audio spectrum, and
  • - The modulated signal converts into the spectral range.
10. Codierer nach Anspruch 9, bei dem das Trägersignal co­ sinusförmig ist und eine Frequenz von 3 kHz hat.10. The encoder of claim 9, wherein the carrier signal co is sinusoidal and has a frequency of 3 kHz. 11. Codierer nach Anspruch 9, bei dem das Multiplizieren des Pseudorauschsignals mit dem Datensignal durch eine Manchester-Codierung des Pseudorauschsignals erfolgt.11. The encoder of claim 9, wherein the multiplying the pseudo noise signal with the data signal by a Manchester coding of the pseudo noise signal is carried out. 12. Codierer nach einem der Ansprüche 1 bis 8, der vor dem Umwandeln des modulierten Spreizbandsignals das ge­ wichtete Datensignal in den Zeitbereich transformiert.12. Encoder according to one of claims 1 to 8, which before Convert the modulated spreading band signal to the ge important data signal transformed in the time domain. 13. Codierer nach einem der Ansprüche 1 bis 8, der vor dem Umwandeln des modulierten Spreizbandsignals das ge­ wichtete Datensignal mit dem Audiosignal im Spektralbe­ reich überlagert und das überlagerte Signal anschlie­ ßend in den Zeitbereich zurücktransformiert.13. Encoder according to one of claims 1 to 8, which before Convert the modulated spreading band signal to the ge weighted data signal with the audio signal in the spectral album richly superimposed and then the superimposed signal transformed back into the time domain. 14. Codierer nach Anspruch 12 oder 13, der die Rücktransformation in den Zeitbereich durch eine schnelle Fourier-Transformation bewirkt. 14. Encoder according to claim 12 or 13, the Back transformation into the time domain by a fast Fourier transform.   15. Decodierer zum Herausziehen eines nicht hörbar in einem Audiosignal enthaltenen Datensignals, der
  • - das Audiosignal abtastet;
  • - das abgetastete Audiosignal nicht-rekursiv filtert;
    und
  • - das gefilterte Audiosignal mit einem Schwellenwert vergleicht, um das Datensignal wiederzugewinnen.
15. Decoder for extracting a data signal which is not audibly contained in an audio signal, the
  • - samples the audio signal;
  • - filters the sampled audio signal non-recursively;
    and
  • - compares the filtered audio signal with a threshold value in order to recover the data signal.
16. Decodierer nach Anspruch 15, der das Audiosignal mit einem Mikrophon empfangen wird.16. A decoder according to claim 15, which with the audio signal a microphone is received. 17. Decodierer nach Anspruch 15 oder 16, der das Audiosignal vor dem Abtasten Tiefpaß-filtert und verstärkt.17. A decoder according to claim 15 or 16, which Low pass filters and audio signal before sampling reinforced. 18. Decodierer nach einem der Ansprüche 15 bis 17, der bei der Wiedergewinnung des Datensignals
  • - einen Korrelatorpeak auffindet;
  • - die Bitsynchronisation steuert, und
  • - eine Rahmensynchronisation und eine Kanaldekodierung durchführt.
18. Decoder according to one of claims 15 to 17, in the recovery of the data signal
  • - finds a correlator peak;
  • - controls the bit synchronization, and
  • - performs a frame synchronization and a channel decoding.
19. System zum Bestimmen der Zuhörerverteilung einzelner Radiostationen anhand eines Kennungssignals, mit einem Codierer nach einem der Ansprüche 1 bis 14, der das Kennungssignal in das Audiosignal einbringt, und mit einem Decodierer nach einem der Ansprüche 15 bis 18, der das Kennungssignal aus dem gesendeten Audiosignal herauszieht.19. System for determining the distribution of listeners Radio stations based on an identification signal, with a Encoder according to one of claims 1 to 14, the Introduces identification signal in the audio signal, and with a decoder according to one of claims 15 to 18, which the identification signal from the transmitted audio signal pulls out. 20. System zum Bestimmen der Senderreichweite einer Radio­ station anhand eines Kennungssignals, mit einem Codie­ rer nach einem der Ansprüche 1 bis 14, der das Ken­ nungssignal in das Audiosignal einbringt, und mit einem Decodierer nach einem der Ansprüche 15 bis 18, der das Kennungssignal aus dem gesendeten Audiosignal heraus­ zieht.20. System for determining the range of a radio station based on an identification signal, with a code  rer according to one of claims 1 to 14, the Ken introduces the signal into the audio signal, and with a Decoder according to one of claims 15 to 18, the Identifier signal from the transmitted audio signal pulls. 21. System zum Kennzeichnen von Audiosignalen mit einer eindeutigen Kennummer zur Identifizierung der Quellen von Kopien von Tonträgern, mit einem Codierer nach einem der Ansprüche 1 bis 14, der die Kennummer in das Audiosignal einbringt, und mit einem Decodierer nach einem der Ansprüche 15 bis 18, der die Kennummer aus dem gesendeten Audiosignal herauszieht.21. System for labeling audio signals with a unique identification number to identify the sources copies of sound carriers, using an encoder one of claims 1 to 14, which the identification number in the Introduces audio signal, and after with a decoder one of claims 15 to 18, the identification number pulls out the transmitted audio signal. 22. System zum Fernsteuern von Audiogeräten anhand eines Steuerungssignals, mit einem Codierer nach einem der Ansprüche 1 bis 14, der das Steuerungssignal in das Audiosignal einbringt, und mit einem Decodierer nach einem der Ansprüche 15 bis 18, der das Steuerungssignal aus dem gesendeten Audiosignal herauszieht.22. System for remote control of audio devices using a Control signal, with an encoder according to one of the Claims 1 to 14, the control signal in the Introduces audio signal, and after with a decoder one of claims 15 to 18, the control signal pulls out of the transmitted audio signal. 23. System zum Fernsteuern von Audiogeräten anhand eines Steuerungssignals nach Anspruch 21, bei dem die Aufzeichnung eines Audiosignals in einem Aufnahmegerät durch das Steuerungssignal begonnen und/oder beendet wird.23. System for remote control of audio devices using a A control signal according to claim 21, wherein the Recording an audio signal in a recording device started and / or ended by the control signal becomes. 24. System zum Bereitstellen eines zum Audiosignal parallel arbeitenden Datenkanals mit niedriger Bitrate in digi­ tal verarbeitenden Audiogeräten, mit einem Codierer nach einem der Ansprüche 1 bis 14, der die Informa­ tionen in das Audiosignal einbringt, und mit einem De­ codierer nach einem der Ansprüche 15 bis 18, der die Informationen aus dem gesendeten Audiosignal heraus­ zieht.24. System for providing a parallel to the audio signal working data channel with low bit rate in digi tal processing audio devices, with an encoder according to one of claims 1 to 14, the informa ion into the audio signal, and with a de An encoder according to any one of claims 15 to 18, which the Information from the broadcast audio signal pulls.
DE19640825A 1996-03-07 1996-10-02 Encoder for introducing an inaudible data signal into an audio signal and decoder for decoding a data signal contained inaudibly in an audio signal Expired - Lifetime DE19640825C2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE19640825A DE19640825C2 (en) 1996-03-07 1996-10-02 Encoder for introducing an inaudible data signal into an audio signal and decoder for decoding a data signal contained inaudibly in an audio signal
EP97902223A EP0875107B1 (en) 1996-03-07 1997-01-24 Coding process for inserting an inaudible data signal into an audio signal, decoding process, coder and decoder
US09/142,325 US6584138B1 (en) 1996-03-07 1997-01-24 Coding process for inserting an inaudible data signal into an audio signal, decoding process, coder and decoder
DE59700389T DE59700389D1 (en) 1996-03-07 1997-01-24 CODING METHOD FOR INPUTING AN INAUDIBLE DATA SIGNAL INTO AN AUDIO SIGNAL, DECODING METHOD, CODER AND DECODER
AT97902223T ATE184140T1 (en) 1996-03-07 1997-01-24 CODING METHOD FOR INTRODUCING A NON-AUDIBLE DATA SIGNAL INTO AN AUDIO SIGNAL, DECODING METHOD, CODER AND DECODER
PCT/EP1997/000338 WO1997033391A1 (en) 1996-03-07 1997-01-24 Coding process for inserting an inaudible data signal into an audio signal, decoding process, coder and decoder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19608926 1996-03-07
DE19640825A DE19640825C2 (en) 1996-03-07 1996-10-02 Encoder for introducing an inaudible data signal into an audio signal and decoder for decoding a data signal contained inaudibly in an audio signal

Publications (2)

Publication Number Publication Date
DE19640825A1 true DE19640825A1 (en) 1997-09-11
DE19640825C2 DE19640825C2 (en) 1998-07-23

Family

ID=7787567

Family Applications (3)

Application Number Title Priority Date Filing Date
DE19640825A Expired - Lifetime DE19640825C2 (en) 1996-03-07 1996-10-02 Encoder for introducing an inaudible data signal into an audio signal and decoder for decoding a data signal contained inaudibly in an audio signal
DE19640814A Expired - Lifetime DE19640814C2 (en) 1996-03-07 1996-10-02 Coding method for introducing an inaudible data signal into an audio signal and method for decoding a data signal contained inaudibly in an audio signal
DE59700389T Expired - Lifetime DE59700389D1 (en) 1996-03-07 1997-01-24 CODING METHOD FOR INPUTING AN INAUDIBLE DATA SIGNAL INTO AN AUDIO SIGNAL, DECODING METHOD, CODER AND DECODER

Family Applications After (2)

Application Number Title Priority Date Filing Date
DE19640814A Expired - Lifetime DE19640814C2 (en) 1996-03-07 1996-10-02 Coding method for introducing an inaudible data signal into an audio signal and method for decoding a data signal contained inaudibly in an audio signal
DE59700389T Expired - Lifetime DE59700389D1 (en) 1996-03-07 1997-01-24 CODING METHOD FOR INPUTING AN INAUDIBLE DATA SIGNAL INTO AN AUDIO SIGNAL, DECODING METHOD, CODER AND DECODER

Country Status (1)

Country Link
DE (3) DE19640825C2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998048531A1 (en) * 1997-04-23 1998-10-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for masking defects in a stream of audio data
WO2001026262A2 (en) * 1999-10-05 2001-04-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for introducing information into a data stream and a method for encoding an audio signal
FR2812503A1 (en) * 2000-07-31 2002-02-01 Telediffusion De France Tdf Coding scheme for audience sampling uses spread spectrum audio data signal does not affect users
DE10115733A1 (en) * 2001-03-30 2002-11-21 Fraunhofer Ges Forschung Method and device for determining information introduced into an audio signal and method and device for introducing information into an audio signal
EP1400043A2 (en) * 2000-10-20 2004-03-24 Koninklijke Philips Electronics N.V. Method and arrangement for enabling disintermediation, and receiver for use thereby
EP2312763A4 (en) * 2008-08-08 2015-12-23 Yamaha Corp Modulation device and demodulation device
WO2021258037A1 (en) * 2020-06-19 2021-12-23 Dolby Laboratories Licensing Corporation Non-intrusive transducer health detection

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004021404B4 (en) * 2004-04-30 2007-05-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Watermark embedding
DE102004021403A1 (en) 2004-04-30 2005-11-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Information signal processing by modification in the spectral / modulation spectral range representation
EP1999999B1 (en) 2006-03-24 2011-11-02 Dolby Sweden AB Generation of spatial downmixes from parametric representations of multi channel signals
EP2362384A1 (en) 2010-02-26 2011-08-31 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Watermark generator, watermark decoder, method for providing a watermark signal, method for providing binary message data in dependence on a watermarked signal and a computer program using improved synchronization concept
EP2362383A1 (en) 2010-02-26 2011-08-31 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Watermark decoder and method for providing binary message data
EP2362382A1 (en) 2010-02-26 2011-08-31 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Watermark signal provider and method for providing a watermark signal
EP2362387A1 (en) * 2010-02-26 2011-08-31 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Watermark generator, watermark decoder, method for providing a watermark signal in dependence on binary message data, method for providing binary message data in dependence on a watermarked signal and computer program using a differential encoding
EP2362386A1 (en) * 2010-02-26 2011-08-31 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Watermark generator, watermark decoder, method for providing a watermark signal in dependence on binary message data, method for providing binary message data in dependence on a watermarked signal and computer program using a two-dimensional bit spreading
EP2362385A1 (en) * 2010-02-26 2011-08-31 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Watermark signal provision and watermark embedding

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2260246A (en) * 1991-09-30 1993-04-07 Arbitron Company The Method and apparatus for automatically identifying a program including a sound signal
WO1994011989A1 (en) * 1992-11-16 1994-05-26 The Arbitron Company Method and apparatus for encoding/decoding broadcast or recorded segments and monitoring audience exposure thereto
US5319735A (en) * 1991-12-17 1994-06-07 Bolt Beranek And Newman Inc. Embedded signalling
WO1995004430A1 (en) * 1993-08-02 1995-02-09 The Arbitron Company Compliance incentives for audience monitoring/recording devices
US5450490A (en) * 1994-03-31 1995-09-12 The Arbitron Company Apparatus and methods for including codes in audio signals and decoding
GB2292506A (en) * 1991-09-30 1996-02-21 Arbitron Company The Automatically identifying a program including a sound signal
WO1997009797A1 (en) * 1995-09-06 1997-03-13 Solana Technology Development Corporation Method and apparatus for transporting auxiliary data in audio signals

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2260246A (en) * 1991-09-30 1993-04-07 Arbitron Company The Method and apparatus for automatically identifying a program including a sound signal
GB2292506A (en) * 1991-09-30 1996-02-21 Arbitron Company The Automatically identifying a program including a sound signal
US5319735A (en) * 1991-12-17 1994-06-07 Bolt Beranek And Newman Inc. Embedded signalling
WO1994011989A1 (en) * 1992-11-16 1994-05-26 The Arbitron Company Method and apparatus for encoding/decoding broadcast or recorded segments and monitoring audience exposure thereto
WO1995004430A1 (en) * 1993-08-02 1995-02-09 The Arbitron Company Compliance incentives for audience monitoring/recording devices
US5450490A (en) * 1994-03-31 1995-09-12 The Arbitron Company Apparatus and methods for including codes in audio signals and decoding
WO1997009797A1 (en) * 1995-09-06 1997-03-13 Solana Technology Development Corporation Method and apparatus for transporting auxiliary data in audio signals

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998048531A1 (en) * 1997-04-23 1998-10-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for masking defects in a stream of audio data
US6421802B1 (en) 1997-04-23 2002-07-16 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for masking defects in a stream of audio data
WO2001026262A2 (en) * 1999-10-05 2001-04-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for introducing information into a data stream and a method for encoding an audio signal
WO2001026262A3 (en) * 1999-10-05 2001-10-25 Fraunhofer Ges Forschung Method and device for introducing information into a data stream and a method for encoding an audio signal
US8117027B2 (en) 1999-10-05 2012-02-14 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method and apparatus for introducing information into a data stream and method and apparatus for encoding an audio signal
FR2812503A1 (en) * 2000-07-31 2002-02-01 Telediffusion De France Tdf Coding scheme for audience sampling uses spread spectrum audio data signal does not affect users
EP1400043A2 (en) * 2000-10-20 2004-03-24 Koninklijke Philips Electronics N.V. Method and arrangement for enabling disintermediation, and receiver for use thereby
DE10115733A1 (en) * 2001-03-30 2002-11-21 Fraunhofer Ges Forschung Method and device for determining information introduced into an audio signal and method and device for introducing information into an audio signal
EP2312763A4 (en) * 2008-08-08 2015-12-23 Yamaha Corp Modulation device and demodulation device
WO2021258037A1 (en) * 2020-06-19 2021-12-23 Dolby Laboratories Licensing Corporation Non-intrusive transducer health detection

Also Published As

Publication number Publication date
DE19640814A1 (en) 1997-09-11
DE59700389D1 (en) 1999-10-07
DE19640825C2 (en) 1998-07-23
DE19640814C2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
EP0875107B1 (en) Coding process for inserting an inaudible data signal into an audio signal, decoding process, coder and decoder
DE19640825C2 (en) Encoder for introducing an inaudible data signal into an audio signal and decoder for decoding a data signal contained inaudibly in an audio signal
AT410047B (en) DEVICE AND METHOD FOR INSERTING CODES IN AUDIO SIGNALS AND FOR DECODING
DE69333661T2 (en) METHOD AND DEVICE FOR CODING / DECODING SEND OR RECORDED CIRCUITS AND MONITORING THE SUPPLY RESPONSE THEREOF
DE69838401T2 (en) METHOD AND DEVICE FOR CODING SOUND SIGNALS BY ADDING AN UNRESCRIBED CODE TO THE SOUND SIGNAL FOR USE IN PROGRAM IDENTIFICATION SYSTEMS
DE10084633B3 (en) Decoding of information in audio signals
DE69632340T2 (en) TRANSPORT OF HIDDEN DATA AFTER COMPRESSION
DE69835521T2 (en) DEVICE AND METHOD FOR IMPLEMENTING AND RECOVERING INFORMATION IN ANALOG SIGNALS USING THE DISTRIBUTED SIGNAL FEATURES
Garcia Digital watermarking of audio signals using a psychoacoustic auditory model and spread spectrum theory
DE10393776T5 (en) Encoding of several messages in audio data and detection of the same
US5404377A (en) Simultaneous transmission of data and audio signals by means of perceptual coding
DE60314725T2 (en) METHOD AND SYSTEM FOR RECEIVING A MULTI SUCH SIGNAL
EP0729678B1 (en) Process and device for speech scrambling and unscrambling in speech transmission
CN101425858A (en) Apparatus and methods for including codes in audio signals and decoding
DE2648273A1 (en) METHOD AND DEVICE FOR REDUCING AUDIBLE CROSS-SPEAKING IN SINGLE-SIDED RADIO TRANSMISSION SYSTEMS
DE2911487A1 (en) FM STEREOPHONY RECEIVING CIRCUIT ARRANGEMENT
DE60220307T2 (en) METHOD FOR TRANSMITTING BROADBAND SOUND SIGNALS VIA A TRANSMISSION CHANNEL WITH REDUCED BANDWIDTH
EP1604527B1 (en) Device and method for embedding a binary piece of user data in a carrier signal
DE69728330T2 (en) WITH A 5-CHANNEL TRANSMISSION AND A 2-CHANNEL TRANSMISSION COMPATIBLE 7-CHANNEL TRANSMISSION
DE102013225031B4 (en) Communication method, and communication system
DE19539538A1 (en) Inaudible insertion of information into an audio signal
Link An attack processing of audio signals for optimizing the temporal characteristics of a low bit-rate audio coding system
DE102006010390A1 (en) A method of providing a total signal for transmission as a broadcast signal, transmitting device and receiving device therefor
EP1149480B1 (en) Method and device for inserting information into an audio signal, and method and device for detecting information inserted into an aufio signal
DE4138175C2 (en) Method for transmitting coded commands and circuit arrangement therefor

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
R071 Expiry of right