DE19748173A1 - Biodegradable electronic components - Google Patents

Biodegradable electronic components

Info

Publication number
DE19748173A1
DE19748173A1 DE1997148173 DE19748173A DE19748173A1 DE 19748173 A1 DE19748173 A1 DE 19748173A1 DE 1997148173 DE1997148173 DE 1997148173 DE 19748173 A DE19748173 A DE 19748173A DE 19748173 A1 DE19748173 A1 DE 19748173A1
Authority
DE
Germany
Prior art keywords
electronic components
phb
hydroxybutyric acid
poly
shows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1997148173
Other languages
German (de)
Inventor
Horst Dr Ing Ahlers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE1997148173 priority Critical patent/DE19748173A1/en
Publication of DE19748173A1 publication Critical patent/DE19748173A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/17Post-manufacturing processes
    • H05K2203/178Demolishing, e.g. recycling, reverse engineering, destroying for security purposes; Using biodegradable materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Abstract

Electronic components that include sensors, consist of a biopolymer and can be converted to scrap by biodegradation.

Description

Die Erfindung ist in der gesamten Elektronik einsetzbar.The invention can be used in all electronics.

Bekannt sind elektronische Bauelemente, die von der Funktion her mit unterschiedlichsten Materialien aufgebaut sind. Die Entwicklungsziele orientieren auf die Erfüllung der Funktion in hoher Qualität, eine möglichst große Lebensdauer und eine preiswerte Herstellung.Electronic components are known which function very differently Materials are built. The development goals focus on the fulfillment of the function in high quality, the longest possible lifespan and inexpensive manufacture.

Erreicht ein damit aufgebautes Gerät das Ende seiner Lebensdauer oder soll es entsorgt werden, so ist der anfallende Elektronikschrott schwer zu vernichten, zu recyclen oder sonst­ wie zu verwenden.If a device assembled with it reaches the end of its life or should be disposed of electronic waste is difficult to destroy, recycle or otherwise how to use.

Aufgabe der Erfindung ist, Elektronikbauelemente zu finden, die die Entsorgung einfach gestalten.The object of the invention is to find electronic components that make disposal easy shape.

Die Erfindung ist dadurch gekennzeichnet, daß elektronische Bauelemente einschließlich dazugehörender physikalischer, chemischer, biologischer Sensoren auf der Grundlage biologisch abbaubarer Biopolymere wie Poly-β-Hydroxybuttersäure (PHB) oder ihren Copoly­ meren oder Mischungen mit diesen oder weiteren Vertretern der Poly-β-Hydroxyfettsäuren realisiert sind. Diese sind biologisch mit Mikroorganismen oder Pflanzen herstellbar und werden auch durch Mikroorganismen und Enzyme abgebaut. Von den elektronischen Bau­ elementen bleiben nach dem biologischen Abbauprozeß nur Dotierungs-, Legierungs-, Mischungs- und/oder Beschichtungsmaterialien übrig. Deren Anteil am elektronischen Bau­ element ist in der Regel verschwindend klein.The invention is characterized in that including electronic components associated physical, chemical, biological sensors based on biodegradable biopolymers such as poly-β-hydroxybutyric acid (PHB) or their copoly mers or mixtures with these or other representatives of poly-β-hydroxy fatty acids are realized. These can be produced biologically with microorganisms or plants are also broken down by microorganisms and enzymes. From the electronic construction After the biodegradation process, elements remain only doping, alloying, Mixing and / or coating materials left. Their share in electronic construction element is usually vanishingly small.

Der biologische Abbauprozeß für eine Verschrottung kann auf dem Komposthaufen erfolgen oder aber in einer dafür eingerichteten Anlage. Es können auch Depots in den Elektronik­ bauelementen oder in ihrer Nähe eingerichtet sein, die den Abbau nach Initialisierung in Gang bringen. Die Initialisierung kann sowohl durch einen Wärmeimpuls als auch durch einen kombinierten Wärme-Feuchte-Impuls ausgelöst werden. Die Feuchte kann dabei durch Einstellen des Taupunktes oder durch eine chemische Reaktion mit Wasserabspal­ tung besorgt sein.The biodegradation process for scrapping can take place on the compost heap or in a facility set up for this. There can also be depots in the electronics Components or be set up in their vicinity, the degradation after initialization in Get going. The initialization can be done either by a heat pulse or by a combined heat-humidity pulse can be triggered. The moisture can by setting the dew point or by a chemical reaction with water release be concerned.

Die Erfindung soll nachfolgend an Beispielen erläutert werden.The invention will be explained below using examples.

Fig. 1 zeigt den Aufbau und den Abbau von PHB, wobei die Enzyme β-Ketothiolase (1), NADPH-abhängige Acetoacetyl-CoA-Reduktase (2), NADH-abhängige Acetoacetyl-CoA- Reduktase (3), P(3HB)/PHF-Synthase (4), P(3HB)/PHF-Depolymerase (5), D-(-)-β-Hydroxy­ buttersäure-Dimer-Hydrolase (6), D-(-)-β-Hydroxybuttersäure-Dehydrogenase (7) und Aceto­ acetyl-CoA-Synthase (8) wirksam sind. Fig. 1 shows the structure and degradation of PHB, wherein the enzymes β-ketothiolase (1), NADPH-dependent acetoacetyl-CoA reductase (2), NADH-dependent acetoacetyl-CoA reductase (3), P (3HB) / PHF synthase ( 4 ), P (3HB) / PHF depolymerase ( 5 ), D - (-) - β-hydroxybutyric acid dimer hydrolase ( 6 ), D - (-) - β-hydroxybutyric acid dehydrogenase ( 7 ) and Aceto acetyl-CoA synthase ( 8 ) are effective.

Fig. 2 zeigt ein allgemeines Substrat (9) aus PHB. In dieses Substrat sind durch Laser Löcher gebohrt, die durch Verkupferung, Graphitierung oder Laserumwandlung leitend ge­ macht wurden (10). Der Abbau erfolgt zunächst durch eine Depolymerase, die das Makro­ molekül in Monomere und einen gewissen Anteil (15-20%) von Dimeren der Hydroxy­ buttersäure zerlegt. Durch eine spezifische D-(-)-β-Hydroxybuttersäure-Dimer-Hydrolase wird die Spaltung des Hydroxybuttersäure-Dimers katalysiert. Die entstandenen Monomere, d. h. Hydroxybuttersäure-Moleküle fließen über eine ATP-verbrauchende, durch die Acetyl- CoA-Synthase katalysierte Reaktion wieder in den Acetyl-CoA-pool der Zelle ein. Damit steht dieses Molekül dem zentralen C-Metabolismus der Mikroorganismuszelle zur Verfügung und kann zum Aufbau von zelleigenen Strukturen (Biomasse) oder zur Energiegewinnung ge­ nutzt werden. Fig. 2 shows a general substrate ( 9 ) made of PHB. Holes are drilled into this substrate by lasers, which have been made conductive by copper plating, graphitization or laser conversion ( 10 ). The degradation takes place first by a depolymerase, which breaks down the macro molecule into monomers and a certain proportion (15-20%) of dimers of hydroxybutyric acid. The cleavage of the hydroxybutyric acid dimer is catalyzed by a specific D - (-) - β-hydroxybutyric acid dimer hydrolase. The resulting monomers, ie, hydroxybutyric acid molecules, flow back into the cell's acetyl-CoA pool via an ATP-consuming reaction catalyzed by the acetyl-CoA synthase. This molecule is thus available to the central C metabolism of the microorganism cell and can be used to build up cell structures (biomass) or to generate energy.

In letzterem Fall erfolgt letztlich über den Tricarbonsäure-Zyklus (TCA-Zyklus) und die Atmungskette der Abbau zu Kohlendioxid (CO2) und Wasser. Da das PHB-Molekül nur aus den Atomen C, O und H besteht, können beim vollständigen Abbau nur CO2 und Wasser entstehen. Übrig bleiben minimale Mengen der leitenden Bahnen (10).In the latter case, the tricarboxylic acid cycle (TCA cycle) and the respiratory chain ultimately break down to carbon dioxide (CO 2 ) and water. Since the PHB molecule only consists of the atoms C, O and H, only CO 2 and water can be formed when it is completely broken down. Minimal quantities of the conductive tracks ( 10 ) remain.

Fig. 3 zeigt ein Substrat wie in Fig. 2 aber mit einer Schicht aus einem leitenden Polymer (11), z. B. Poly(2,5-furylen-vinylen) (PFV). Dieses regiert auf bestimmte Gase durch eine Leitfähigkeitsänderung und ist damit ein Gassensor. Fig. 3 shows a substrate as in Fig. 2 but with a layer of a conductive polymer ( 11 ), for. B. Poly (2,5-furylen-vinylene) (PFV). This reacts to certain gases by a change in conductivity and is therefore a gas sensor.

Fig. 4 zeigt schematisch auf einem Substrat nach Fig. 2 eine mäandrierende Widerstands­ bahn (12) und eine laterale Kapazität (13). Fig. 4 shows schematically on a substrate according to Fig. 2, a meandering resistance track ( 12 ) and a lateral capacitance ( 13 ).

Fig. 5 zeigt ein Substrat nach Fig. 2 mit zwei verschiedenen ionensensitiven Elektroden (14) und (15). FIG. 5 shows a substrate according to FIG. 2 with two different ion-sensitive electrodes ( 14 ) and ( 15 ).

Fig. 6 zeigt ein Substrat aus PHB mit eingelagerten Farbpigmenten (16) einer enantioselek­ tiven Farbe z. B. zur Detektion eines pH-Wertes mittels Durchstrahlung durch eine Licht­ quelle. Fig. 6 shows a substrate made of PHB with embedded color pigments ( 16 ) of an enantioselective color z. B. for the detection of a pH by means of radiation through a light source.

Fig. 7 zeigt ein Substrat aus PHB wie in Fig. 6 mit eingelagerten Farbreaktionen zeigenden Enzymen (17). Bei Durchstrahlung und Einwirkung einer zu messenden Konzentration ändert sich das Spektrum. Das kann für einen Sensor genutzt werden. FIG. 7 shows a substrate made of PHB as in FIG. 6 with enzymes ( 17 ) showing embedded color reactions. The spectrum changes as a result of radiation and exposure to a concentration to be measured. This can be used for a sensor.

Fig. 8 zeigt auf einem PHB-Substrat aufgebrachte Leiterbahnen (18) aus Kupfer und Lötbums (19) aus leitfähigem Kleber. Fig. 8 shows a PHB substrate applied conductor tracks (18) of copper and Lötbums (19) of conductive adhesive.

Fig. 9 zeigt die Ausgestaltung eines PHB-Substrats als Gehäuse (20) mit innen geführten Leiterbahnen (21) und nach außen geführten Verbindungen (22). Fig. 9 shows the configuration of a PHB-substrate as a housing (20) having inwardly directed conductor tracks (21) and guided outwardly compounds (22).

Alle in Fig. 2 bis Fig. 9 gezeigten elektronischen Bauelemente bestehen aus dem Material PHB, welches biologisch in Wasser und Kohlendioxid abgebaut wird, wenn die entspre­ chenden Bedingungen geschafft werden.All of the electronic components shown in Fig. 2 to Fig. 9 consist of the material PHB, which is biodegraded in water and carbon dioxide if the appropriate conditions are created.

Claims (2)

1. Elektronikbauelemente einschließlich Sensoren, dadurch gekennzeichnet, daß sie aus einem Biopolymer wie Poly-β-Hydroxybuttersäure (PHB) und/oder deren Copolymeren oder Mischungen mit diesen oder weiteren Vertretern der Poly-β-Hydroxyfettsäuren be­ stehen und eine definierte Verschrottung mittels biologischem Abbau auslösbar ist.1. Electronic components including sensors, characterized in that they are made of a biopolymer such as poly-β-hydroxybutyric acid (PHB) and / or their copolymers or mixtures with these or other representatives of the poly-β-hydroxyfatty acids and a defined scrapping by means of biological degradation can be triggered. 2. Elektronikbauelemente einschließlich Sensoren nach Anspruch 1, dadurch gekennzeich­ net, daß sie ein Depot aus Mikroorganismen und/oder Enzymen enthalten oder in ihrer Nähe ein solches vorhanden ist, welches durch Initialisierung für den biologischen Abbau aktivierbar ist.2. Electronic components including sensors according to claim 1, characterized net that they contain a depot of microorganisms and / or enzymes or in their Proximity to such is present, which by initialization for biodegradation can be activated.
DE1997148173 1997-10-31 1997-10-31 Biodegradable electronic components Withdrawn DE19748173A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1997148173 DE19748173A1 (en) 1997-10-31 1997-10-31 Biodegradable electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1997148173 DE19748173A1 (en) 1997-10-31 1997-10-31 Biodegradable electronic components

Publications (1)

Publication Number Publication Date
DE19748173A1 true DE19748173A1 (en) 1999-05-06

Family

ID=7847232

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1997148173 Withdrawn DE19748173A1 (en) 1997-10-31 1997-10-31 Biodegradable electronic components

Country Status (1)

Country Link
DE (1) DE19748173A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008085904A1 (en) * 2007-01-05 2008-07-17 Charles Stark Draper Laboratory, Inc. Biodegradable electronic devices
US8372726B2 (en) 2008-10-07 2013-02-12 Mc10, Inc. Methods and applications of non-planar imaging arrays
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
US8440546B2 (en) 2004-06-04 2013-05-14 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US8536667B2 (en) 2008-10-07 2013-09-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US8666471B2 (en) 2010-03-17 2014-03-04 The Board Of Trustees Of The University Of Illinois Implantable biomedical devices on bioresorbable substrates
US8886334B2 (en) 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
US8934965B2 (en) 2011-06-03 2015-01-13 The Board Of Trustees Of The University Of Illinois Conformable actively multiplexed high-density surface electrode array for brain interfacing
US8975073B2 (en) 2006-11-21 2015-03-10 The Charles Stark Draper Laboratory, Inc. Microfluidic device comprising silk films coupled to form a microchannel
US9024394B2 (en) 2013-05-22 2015-05-05 Transient Electronics, Inc. Controlled transformation of non-transient electronics
US9159635B2 (en) 2011-05-27 2015-10-13 Mc10, Inc. Flexible electronic structure
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
US9289132B2 (en) 2008-10-07 2016-03-22 Mc10, Inc. Catheter balloon having stretchable integrated circuitry and sensor array
US9554484B2 (en) 2012-03-30 2017-01-24 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
US9691873B2 (en) 2011-12-01 2017-06-27 The Board Of Trustees Of The University Of Illinois Transient devices designed to undergo programmable transformations
US9723122B2 (en) 2009-10-01 2017-08-01 Mc10, Inc. Protective cases with integrated electronics
US9765934B2 (en) 2011-05-16 2017-09-19 The Board Of Trustees Of The University Of Illinois Thermally managed LED arrays assembled by printing
US9936574B2 (en) 2009-12-16 2018-04-03 The Board Of Trustees Of The University Of Illinois Waterproof stretchable optoelectronics
US10441185B2 (en) 2009-12-16 2019-10-15 The Board Of Trustees Of The University Of Illinois Flexible and stretchable electronic systems for epidermal electronics
US10918298B2 (en) 2009-12-16 2021-02-16 The Board Of Trustees Of The University Of Illinois High-speed, high-resolution electrophysiology in-vivo using conformal electronics
US10925543B2 (en) 2015-11-11 2021-02-23 The Board Of Trustees Of The University Of Illinois Bioresorbable silicon electronics for transient implants
US11670165B2 (en) 2015-10-20 2023-06-06 Stc, Inc. Systems and methods for roadway management including feedback
US11758579B2 (en) 2018-10-09 2023-09-12 Stc, Inc. Systems and methods for traffic priority systems
US11756421B2 (en) 2019-03-13 2023-09-12 Stc, Inc. Protected turns

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9450043B2 (en) 2004-06-04 2016-09-20 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US11088268B2 (en) 2004-06-04 2021-08-10 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US10374072B2 (en) 2004-06-04 2019-08-06 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US8440546B2 (en) 2004-06-04 2013-05-14 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US9768086B2 (en) 2004-06-04 2017-09-19 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US9761444B2 (en) 2004-06-04 2017-09-12 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US8664699B2 (en) 2004-06-04 2014-03-04 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US8975073B2 (en) 2006-11-21 2015-03-10 The Charles Stark Draper Laboratory, Inc. Microfluidic device comprising silk films coupled to form a microchannel
WO2008085904A1 (en) * 2007-01-05 2008-07-17 Charles Stark Draper Laboratory, Inc. Biodegradable electronic devices
US9012784B2 (en) 2008-10-07 2015-04-21 Mc10, Inc. Extremely stretchable electronics
US8372726B2 (en) 2008-10-07 2013-02-12 Mc10, Inc. Methods and applications of non-planar imaging arrays
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
US8536667B2 (en) 2008-10-07 2013-09-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US9289132B2 (en) 2008-10-07 2016-03-22 Mc10, Inc. Catheter balloon having stretchable integrated circuitry and sensor array
US8886334B2 (en) 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
US9723122B2 (en) 2009-10-01 2017-08-01 Mc10, Inc. Protective cases with integrated electronics
US9936574B2 (en) 2009-12-16 2018-04-03 The Board Of Trustees Of The University Of Illinois Waterproof stretchable optoelectronics
US11057991B2 (en) 2009-12-16 2021-07-06 The Board Of Trustees Of The University Of Illinois Waterproof stretchable optoelectronics
US10918298B2 (en) 2009-12-16 2021-02-16 The Board Of Trustees Of The University Of Illinois High-speed, high-resolution electrophysiology in-vivo using conformal electronics
US10441185B2 (en) 2009-12-16 2019-10-15 The Board Of Trustees Of The University Of Illinois Flexible and stretchable electronic systems for epidermal electronics
US9986924B2 (en) 2010-03-17 2018-06-05 The Board Of Trustees Of The University Of Illinois Implantable biomedical devices on bioresorbable substrates
US8666471B2 (en) 2010-03-17 2014-03-04 The Board Of Trustees Of The University Of Illinois Implantable biomedical devices on bioresorbable substrates
US9765934B2 (en) 2011-05-16 2017-09-19 The Board Of Trustees Of The University Of Illinois Thermally managed LED arrays assembled by printing
US9159635B2 (en) 2011-05-27 2015-10-13 Mc10, Inc. Flexible electronic structure
US10349860B2 (en) 2011-06-03 2019-07-16 The Board Of Trustees Of The University Of Illinois Conformable actively multiplexed high-density surface electrode array for brain interfacing
US8934965B2 (en) 2011-06-03 2015-01-13 The Board Of Trustees Of The University Of Illinois Conformable actively multiplexed high-density surface electrode array for brain interfacing
US9691873B2 (en) 2011-12-01 2017-06-27 The Board Of Trustees Of The University Of Illinois Transient devices designed to undergo programmable transformations
US10396173B2 (en) 2011-12-01 2019-08-27 The Board Of Trustees Of The University Of Illinois Transient devices designed to undergo programmable transformations
US9554484B2 (en) 2012-03-30 2017-01-24 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
US10357201B2 (en) 2012-03-30 2019-07-23 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
US10052066B2 (en) 2012-03-30 2018-08-21 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
US9024394B2 (en) 2013-05-22 2015-05-05 Transient Electronics, Inc. Controlled transformation of non-transient electronics
US11670165B2 (en) 2015-10-20 2023-06-06 Stc, Inc. Systems and methods for roadway management including feedback
US10925543B2 (en) 2015-11-11 2021-02-23 The Board Of Trustees Of The University Of Illinois Bioresorbable silicon electronics for transient implants
US11758579B2 (en) 2018-10-09 2023-09-12 Stc, Inc. Systems and methods for traffic priority systems
US11756421B2 (en) 2019-03-13 2023-09-12 Stc, Inc. Protected turns

Similar Documents

Publication Publication Date Title
DE19748173A1 (en) Biodegradable electronic components
Švancara et al. Carbon paste electrodes in facts, numbers, and notes: a review on the occasion of the 50‐years jubilee of carbon paste in electrochemistry and electroanalysis
Schuhmann et al. Leaching of dimethylferrocene, a redox mediator in amperometric enzyme electrodes
Švitel et al. Development of tyrosinase-based biosensor and its application for monitoring of bioremediation of phenol and phenolic compounds
Yang et al. A comprehensive review of biochar-derived dissolved matters in biochar application: Production, characteristics, and potential environmental effects and mechanisms
MacCarthy The principles of humic substances: An introduction to the first principle
EP2926128B1 (en) Chemically-stable sensor
Keita et al. The Ball‐Shaped Heteropolytungstates [{Sn (CH3) 2 (H2O)} 24 {Sn (CH3) 2} 12 (A‐XW9O34) 12] 36−(X= P, As): Stability, Redox and Electrocatalytic Properties in Aqueous Media
Gursoy et al. A novel lactose biosensor based on electrochemically synthesized 3, 4-ethylenedioxythiophene/thiophene (EDOT/Th) copolymer
Arfin et al. Review on detection of phenol in water
Sonu et al. Integrated Constructed Wetland‐Microbial Fuel Cell using Biochar as Wetland Matrix: Influence on Power Generation and Textile Wastewater Treatment
Taipale et al. Biodegradation of microplastic in freshwaters: A long‐lasting process affected by the lake microbiome
Djemmoe et al. Activated Hordeum vulgare L. dust as carbon paste electrode modifier for the sensitive electrochemical detection of Cd2+, Pb2+ and Hg2+ ions
Sehar et al. Recent advances in biodecolorization and biodegradation of environmental threatening textile finishing dyes
El Aggadi et al. Electrochemical oxidation of textile azo dye reactive orange 16 on the Platinum electrode
DE102014007135B4 (en) Measuring system for the determination of unsubstituted and halogen-substituted hydrocarbons
Huang et al. Persistent Toxic Substance Monitoring: Nanoelectrochemical Methods
Santos et al. Ecological aspects of aquatic macrophytes for environmental pollution control: An eco-remedial approach
Rajesh et al. Development of an amperometric biosensor based on a redox‐mediator‐doped polypyrrole film
Ahmad et al. Synthesis and characterization of a novel chitosan-grafted-polyorthoethylaniline biocomposite and utilization for dye removal from water
Donkadokula et al. Assessment of the aerobic glass beads fixed biofilm reactor (GBs-FBR) for the treatment of simulated methylene blue wastewater
Banurea et al. Molecularly imprinted polymer of p-amino thiophenol for a 3-monochloropropane-1, 2-diol impedance-based sensor
Geng et al. Unveiling Molecular Transformations of Soil Organic Matter after Remediation by Chemical Oxidation Based on ESI-FT-ICR-MS analysis
DE4224603C2 (en) Bioelectric arrangement
Zheng et al. Biochar-based materials for electroanalytical applications: An overview

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee