DE19820152A1 - Boundary layer containing nitrogen on components consisting of stainless steel, and method for producing such a boundary layer - Google Patents

Boundary layer containing nitrogen on components consisting of stainless steel, and method for producing such a boundary layer

Info

Publication number
DE19820152A1
DE19820152A1 DE1998120152 DE19820152A DE19820152A1 DE 19820152 A1 DE19820152 A1 DE 19820152A1 DE 1998120152 DE1998120152 DE 1998120152 DE 19820152 A DE19820152 A DE 19820152A DE 19820152 A1 DE19820152 A1 DE 19820152A1
Authority
DE
Germany
Prior art keywords
nitrogen
layer
stainless steel
boundary layer
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE1998120152
Other languages
German (de)
Inventor
Stefano Parascandola
Reinhard Guenzel
Edgar Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Dresden Rossendorf eV
Original Assignee
Forschungszentrum Dresden Rossendorf eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Dresden Rossendorf eV filed Critical Forschungszentrum Dresden Rossendorf eV
Priority to DE1998120152 priority Critical patent/DE19820152A1/en
Publication of DE19820152A1 publication Critical patent/DE19820152A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

The nitrogen layer in precipitated nitride form is superimposed by a further layer containing nitrogen largely dissolved. The surface nitrided at 450 to 600 deg C is subjected to an energy input with a power density greater than 20 kW/cm<2> and a duration of less than 5 ms to raise its temperature to at least 1200 deg C. Subsequent nitration takes place at 350 to 450 deg C by ion implantation or plasma.

Description

Die Erfindung betrifft eine stickstoffhaltige Randschicht auf Bauteilen aus nichtrostendem Stahl sowie ein Verfahren zur Herstellung dieser Randschicht. Die Randschicht verbessert das Verschleiß- und Korrosionsverhalten der Stahlbauteile erheblich.The invention relates to a nitrogen-containing surface layer on components made of stainless steel as well as a method for producing this boundary layer. The edge layer improves that Wear and corrosion behavior of the steel components significantly.

Es ist bereits bekannt, die Randschicht von Bauteilen aus Stahl durch Nitrieren mit Stickstoff anzureichern. Die Behandlungstemperatur liegt üblicherweise im Temperaturbereich zwischen 450 und 600°C, vorzugsweise im Bereich zwischen 480 und 550°C. Die Behandlungsdauer beträgt mehrere Stunden bis Tage (DIN 17 022-4). Auf Bauteilen aus Stahl bildet sich bei der Behandlung im oben genannten Temperaturbereich eine stickstoffhaltige Randschicht, in der der Stickstoff überwiegend in Form von Metallnitridausscheidungen vorliegt. Diese Schicht führt zu einer Verbesserung des Verschleißverhaltens, aber bei nichtrostenden Stählen gleichzeitig zu einer deutlichen Verschlechterung des Korrosionsverhaltens der Bauteile (VDI-Lexikon Werkstofftechnik, VDI-Verlag, Düsseldorf, 1993, 700).It is already known to make the surface layer of steel components by nitriding with nitrogen enrich. The treatment temperature is usually in the temperature range between 450 and 600 ° C, preferably in the range between 480 and 550 ° C. The duration of treatment is several hours to days (DIN 17 022-4). Steel components are formed at the Treatment in the temperature range mentioned above a nitrogen-containing surface layer in which the Nitrogen is predominantly in the form of metal nitride deposits. This shift leads to an improvement in wear behavior, but at the same time with stainless steels a significant deterioration in the corrosion behavior of the components (VDI lexicon Materials technology, VDI-Verlag, Düsseldorf, 1993, 700).

Es ist auch bekannt, Bauteile aus nichtrostendem austenitischen oder austenitisch-ferritischen Stahl bei Temperaturen zwischen 350 und 450°C unter Einsatz von energetischem Stickstoff zu nitrieren. Dazu werden das Plasmanitrieren oder die Ionenimplantation eingesetzt. Das Nitrieren im Plasma kann in einem Gasgemisch aus Stickstoff und Wasserstoff (80% N2, 20% H2) bei einem Druck von 400 Pa durch Anlegen einer gepulsten Gleichspannung von 410 V vor­ genommen werden (Menthe, E.; Rie, K. T.; Schultze, J. W.; Simon, S.; Surf. Coat. Technol., 74-75,(1995) 412). Das Nitrieren mittels Ionenimplantation kann durch Extraktion von Stick­ stoffionen aus einer Plasmaquelle mit einer Beschleunigungsspannung von 2 kV bei einem Druck von (5-10) × 10-2 Pa erfolgen (Lei, M. K.; Zhang, Z. L.; Plasma source ion nitriding, A new low temperature, low-pressure nitriding approuch, J. Vac. Sc. Technol. A 13 (6), Nov/Dec 1995). Bei der Behandlung im Temperaturbereich zwischen 350 und 450°C bilden sich auf nichtrostendem Stahl stickstoffhaltige Randschichten mit einem Stickstoffgehalt <3%, in denen der Stickstoff überwiegend in gelöster Form vorliegt. Diese Schichten führen zu einer Ver­ besserung des Verschleiß- und Korrosionsverhalten der Bauteile, insbesondere zu einer deutli­ chen Steigerung der Oberflächenhärte. Für einen Großteil der Anwendungsfälle ist jedoch die erreichbare Randschichtdicke zu gering.It is also known to nitride components made of austenitic or austenitic-ferritic stainless steel at temperatures between 350 and 450 ° C. using energetic nitrogen. For this purpose, plasma nitriding or ion implantation are used. Nitriding in plasma can be carried out in a gas mixture of nitrogen and hydrogen (80% N 2 , 20% H 2 ) at a pressure of 400 Pa by applying a pulsed DC voltage of 410 V (Menthe, E .; Rie, KT; Schultze, JW; Simon, S .; Surf. Coat. Technol., 74-75, (1995) 412). The nitriding by means of ion implantation can be carried out by extracting nitrogen ions from a plasma source with an acceleration voltage of 2 kV at a pressure of (5-10) × 10 -2 Pa (Lei, MK; Zhang, ZL; plasma source ion nitriding, A new low temperature, low-pressure nitriding approuch, J. Vac. Sc. Technol. A 13 (6), Nov / Dec 1995). During treatment in the temperature range between 350 and 450 ° C, nitrogen-containing surface layers with a nitrogen content of <3% are formed on stainless steel, in which the nitrogen is predominantly in dissolved form. These layers lead to an improvement in the wear and corrosion behavior of the components, in particular to a significant increase in the surface hardness. However, the achievable surface layer thickness is too small for a majority of the applications.

Weiterhin ist es bekannt, endformnahe Bauteile aus nichtrostendem Stahl bei Temperaturen zwischen 1000 und 1200°C und Drücken bis zu 300 kPa einer stickstoffhaltigen Atmosphäre auszusetzen und die Bauteile an diese Behandlung anschließend abzuschrecken. Durch diese Behandlung bilden sich auf den Bauteilen Diffusionsschichten mit einem maximalen Stickstoff­ gehalt von <3%, in denen der Stickstoff weitgehend in gelöster Form vorliegt (Siebert, S.; Randschichtaufsticken nichtrostender Stähle; Fortschr.-Bericht VDI-Reihe 5 Nr. 383; VDI-Verlag Düsseldorf, 1994).Furthermore, it is known to have near-net shape components made of stainless steel at temperatures between 1000 and 1200 ° C and pressures up to 300 kPa in a nitrogenous atmosphere suspend and then deter the components after this treatment. Through this Treatment forms diffusion layers with a maximum of nitrogen on the components content of <3%, in which the nitrogen is largely in dissolved form (Siebert, S .; Edge layer embroidery of stainless steels; Progress Report VDI Series 5 No. 383; VDI publishing house Düsseldorf, 1994).

Diese Schichten führen zu einem besseren Verschleiß- und Korrosionsverhalten der Bauteile bei Randschichtdicken <200 µm. Für einen Großteil der Anwendungsfälle ist jedoch die erreichbare Oberflächenhärte zu gering.These layers lead to better wear and corrosion behavior of the components Surface layer thicknesses <200 µm. For a large part of the use cases, however, is the attainable Surface hardness too low.

Aufgabe der vorliegenden Erfindung ist es, für Bauteile aus nichtrostendem Stahl eine stick­ stoffhaltige Randschicht und ein Verfahren zur Herstellung dieser Schicht vorzuschlagen, die zu einer Verbesserung des Verschleißverhalten und des Korrosionsverhalten der Bauteile führt, wobei die Verbesserung der Verschleißeigenschaften charakterisiert ist durch eine Steigerung der Oberflächenhärte um mindestens den Faktor 2 und eine Randschichtdicke <200 µm.The object of the present invention is to stick for components made of stainless steel propose material-containing surface layer and a method for producing this layer, which too leads to an improvement in wear behavior and corrosion behavior of the components, the improvement in wear properties is characterized by an increase the surface hardness by at least a factor of 2 and a surface layer thickness <200 µm.

Erfindungsgemäß wird die Aufgabe für die stickstoffhaltige Randschicht dadurch gelöst, daß sich auf einer Stickstoff-Diffusionsschicht, in der der Stickstoff überwiegend in Form von Metallnitridausscheidungen vorliegt, eine weitere Schicht mit einer Schichtdicke bis zu 100 µm befindet, in der der Stickstoff mit Konzentrationen <3% weitgehend in gelöster Form vorliegt.According to the invention the object for the nitrogen-containing surface layer is achieved in that on a nitrogen diffusion layer, in which the nitrogen predominantly in the form of Metal nitride precipitates are present, another layer with a layer thickness of up to 100 µm is in which the nitrogen with concentrations <3% is largely in dissolved form.

Für das Verfahren wird die Aufgabe dadurch gelöst, daß die Oberfläche von Bauteile aus nichtrostendem austenitischen oder austenitisch-ferritischen Stahl, die durch Nitrieren bei einer Temperatur zwischen 450 und 600°C, vorzugsweise im Bereich zwischen 480 und 550°C mit einer Stickstoff-Diffusionsschicht versehen sind, in der der Stickstoff überwiegend in Form von Metallnitridausscheidungen vorliegt, kurzeitig auf Temperaturen zwischen 1200°C und Schmelztemperatur erwärmt wird. Die für diese kurzzeitige Erwärmung notwendige Energie wird mittels Bestrahlung der Oberfläche mit Photonen oder Elektronen eingebracht. Die erforderliche Leistungsdichte beträgt <50 kW/cm2 bei einer Einwirkdauer <1 ms. Durch diese Behandlung geht der in Metallnitridausscheidungen vorliegende Stickstoff oberflächennah (ca. einige 10 µm) in Lösung. Die Dicke der Schicht, in der der Stickstoff in Lösung geht, wird durch das Temperaturprofil bestimmt, auf das Leistungsdichte, Einwirkdauer, Absorptions­ koeffizient, Wärmeleitung und Wärmekapazität einen Einfluß haben. Um eine möglichst vollständige Umwandlung des in metallnitridischer Form vorliegenden Stickstoffs zu erreichen, kann die kurzeitig Erwärmung auf Temperaturen zwischen 1200°C und Schmelztemperatur mehrfach erfolgen. Anschließend wird das Bauteil bei Temperaturen zwischen 350 und 450°C mittels Ionenimplantation oder in einem Plasma nitriert. Die Dauer der Behandlung wird durch die beginnende Metallnitridausscheidung im oberflächennahen Bereich bestimmt und beträgt in der Regel wenige Stunden.For the method, the object is achieved in that the surface of components made of stainless austenitic or austenitic-ferritic steel, which by nitriding at a temperature between 450 and 600 ° C, preferably in the range between 480 and 550 ° C with a nitrogen diffusion layer are provided, in which the nitrogen is predominantly in the form of metal nitride precipitates, is briefly heated to temperatures between 1200 ° C and melting temperature. The energy required for this brief heating is introduced by irradiating the surface with photons or electrons. The required power density is <50 kW / cm 2 with an exposure time <1 ms. This treatment causes the nitrogen present in metal nitride precipitates to dissolve close to the surface (approx. A few 10 µm). The thickness of the layer in which the nitrogen dissolves is determined by the temperature profile, on which the power density, exposure time, absorption coefficient, heat conduction and heat capacity have an influence. In order to achieve as complete a conversion as possible of the nitrogen present in the metal nitride form, it can be briefly heated to temperatures between 1200 ° C. and the melting temperature several times. The component is then nitrided at temperatures between 350 and 450 ° C using ion implantation or in a plasma. The duration of the treatment is determined by the beginning precipitation of metal nitride near the surface and is usually a few hours.

In vorteilhafter Ausgestaltung der Erfindung wird die Ionenimplantation in einem Vakuum mit einem Basisdruck <10-2 Pa mit Ionenenergien zwischen 400 eV und 40 keV und Ionenstrom­ dichten zwischen 0,2 und 5 mA/cm2 ausgeführt. Bei Einsatz des Plasmanitrierens ist der Basisdruck auch <10-2 Pa, der Arbeitsdruck beträgt mehr als 102 Pa. Es kann mit konstanter oder pulsierender Gleichspannung zwischen 400 V und 4 kV und Ionenstrahldichten von ebenfalls 0,2 bis 5 mA/cm2 gearbeitet werden. Sowohl bei der Ionenimplantation als auch beim Plasmani­ trieren können Stickstoff oder Ammoniak als Stickstoffspender eingesetzt werden. Diesen Substanzen können Wasserstoff oder Argon zugesetzt werden.In an advantageous embodiment of the invention, the ion implantation is carried out in a vacuum with a base pressure <10 -2 Pa with ion energies between 400 eV and 40 keV and ion current densities between 0.2 and 5 mA / cm 2 . When using plasma nitriding, the base pressure is also <10 -2 Pa, the working pressure is more than 10 2 Pa. It can work with constant or pulsating DC voltage between 400 V and 4 kV and ion beam densities of 0.2 to 5 mA / cm 2 . Nitrogen or ammonia can be used as a nitrogen donor for both ion implantation and plasma implantation. Hydrogen or argon can be added to these substances.

Der wesentliche Vorteil der Erfindung besteht darin, daß eine stickstoffhaltige Randschicht auf Bauteilen aus nichtrostendem austenitischen oder austenitisch-ferritischen Stahl erreichbar ist, die neben einer Verbesserung der Korrosionseigenschaften auch zu einer Verbesserung der Verschleißeigenschaften führt, die durch eine Steigerung der Oberflächenhärte um mehr als den Faktor 2 und einer Randschichtdicke <200 µm charakterisiert ist. The main advantage of the invention is that a nitrogen-containing surface layer Components made of stainless austenitic or austenitic-ferritic steel can be reached, which, in addition to improving the corrosion properties, also improves the Wear properties, which leads to an increase in surface hardness by more than Factor 2 and an edge layer thickness <200 µm is characterized.  

Mit der Erfindung konnten nachstehende Ergebnisse erreicht werden:
Auf Bauteilen aus nichtrostendem austenitischen Edelstahl (DIN 1.4401) konnten stickstoff­ haltige Randschichten erzeugt werden, die eine Oberflächenhärte von HV 0,1 800 und eine deutliche Verbesserung des Verschleißverhaltens aufweisen. Die Randschichten zeigten zusätz­ lich eine verbesserte Korrosionsbeständigkeit, insbesondere gegen Lochfraß. Lichtmikrosko­ pisch ist die Stickstoff-Diffusionsschicht, in der der Stickstoff weitgehend in Form nitridischer Ausscheidungen vorliegt, deutlich zu unterscheiden von der oberflächennahen stickstoffhaltigen Schicht, in der der Stickstoff weitgehend in gelöster Form vorliegt. In der Röntgenbeugung zeigt sich für die oberflächennahe stickstoffhaltige Schicht, in der der Stickstoff weitgehend in gelöster Form vorliegt, ein austenitisches Gefüge. Die austenitischen Reflexe weisen eine charakteristische Verbreiterung und Verschiebung zu kleineren Winkeln auf, die aus dem hohen Anteil an gelöstem Stickstoff resultiert. Das Konzentrationsprofil zeigt einen Stickstoffgehalt <3% in der oberflächennahen Schicht und einen für eine Stickstoff-Diffusionsschicht typischen Profilverlauf in der weitgehend metallnitridhaltigen Schicht. Die gesamte Randschichtdicke beträgt ca. 500 µm.
The following results could be achieved with the invention:
Components made of rust-proof austenitic stainless steel (DIN 1.4401) were able to produce nitrogen-containing surface layers with a surface hardness of HV 0.1 800 and a significant improvement in wear behavior. The surface layers also showed improved corrosion resistance, especially against pitting. Light microscopic, the nitrogen diffusion layer, in which the nitrogen is largely in the form of nitridic precipitates, can be clearly distinguished from the near-surface nitrogen-containing layer, in which the nitrogen is largely in dissolved form. X-ray diffraction shows an austenitic structure for the near-surface nitrogen-containing layer, in which the nitrogen is largely in dissolved form. The austenitic reflections show a characteristic broadening and shifting to smaller angles, which results from the high proportion of dissolved nitrogen. The concentration profile shows a nitrogen content of <3% in the layer near the surface and a profile profile typical of a nitrogen diffusion layer in the largely metal nitride layer. The total surface layer thickness is approx. 500 µm.

Die Erfindung wird nachfolgend an je einem Ausführungsbeispiel für die Randschicht und das Verfahren zur Herstellung dieser näher beschrieben.The invention is based on an embodiment for the edge layer and the Process for producing this described in more detail.

Ausführungsbeispiel für die Randschicht:
Die stickstoffhaltige Randschicht hat einen Mehrschichtenaufbau, der aus verschiedenen Erscheinungsformen des Stickstoffs besteht. In der auf dem Stahlbauteil unmittelbar aufliegen­ der ersten Schicht liegt der Stickstoff weitgehend in nitridischer Form als Nitridausscheidung vor. Die Dicke dieser ersten Schicht beträgt etwa 500 µm. Über der ersten Schicht befindet sich eine zweite Stickstoffschicht einer Dicke von etwa 10 µm, wobei der Stickstoff in dieser zweiten Schicht überwiegend in gelöster Form vorliegt.
Embodiment for the boundary layer:
The nitrogen-containing surface layer has a multi-layer structure, which consists of various forms of nitrogen. In the first layer lying directly on the steel component, the nitrogen is largely in nitridic form as nitride excretion. The thickness of this first layer is approximately 500 µm. Above the first layer there is a second nitrogen layer with a thickness of approximately 10 μm, the nitrogen in this second layer being predominantly in dissolved form.

Ausführungsbeispiel für das Verfahren:
Ein Bauteil aus nichtrostendem austenitischen Stahl (DIN 1.4401), das bei einer Temperatur von 500°C, einer Behandlungszeit von 4 h, einem Ofendruck von 400 Pa, einer Spannung von 600 V, in einem Gemisch aus Wasserstoff und Stickstoff (Volumenanteile: H2/N2=20/80) auf eine Randschichtdicke von 500 µm plasmanitriert wurde, wird durch Bestrahlung mit Photonen kurzzeitig auf eine Oberflächentemperatur von 1400°C erwärmt. Dazu wird in atmosphärischer Umgebung mittels fokussierter Blitzlichter eine Leistungsdichte von 60 kW/cm2 mit einer Einwirkdauer von 0,5 ms auf die Oberfläche des Bauteils aufgebracht. Anschließend wird das Bauteil wieder in einen Plasmaofen eingesetzt. Nach Anlegen einer Spannung von 600 V wird das Bauteil zwei Stunden bei 380°C in einem Gemisch aus Wasserstoff und Stickstoff (Volu­ menanteile: H2/N2=20/80) nitriert.
Exemplary embodiment for the method:
A component made of austenitic stainless steel (DIN 1.4401), which at a temperature of 500 ° C, a treatment time of 4 h, an oven pressure of 400 Pa, a voltage of 600 V, in a mixture of hydrogen and nitrogen (volume fraction: H 2 / N 2 = 20/80) was plasma nitrided to an edge layer thickness of 500 µm, is briefly heated to a surface temperature of 1400 ° C by irradiation with photons. For this purpose, a power density of 60 kW / cm 2 with an exposure time of 0.5 ms is applied to the surface of the component in an atmospheric environment using focused flashlights. The component is then reinserted into a plasma furnace. After applying a voltage of 600 V, the component is nitrided for two hours at 380 ° C in a mixture of hydrogen and nitrogen (parts by volume: H 2 / N 2 = 20/80).

Claims (8)

1. Stickstoffhaltige Randschicht auf Bauteilen aus nichtrostendem Stahl, wobei der Stickstoff in der Randschicht weitgehend in nitridischer Form als Nitridausscheidung vorliegt, dadurch gekennzeichnet, daß sich auf der Stickstoffschicht in nitridischer Form eine weitere stickstoffhaltige Schicht befindet, in der der Stickstoff weitgehend in gelöster Form vorliegt.1. nitrogen-containing surface layer on components made of stainless steel, the nitrogen in the surface layer being largely in nitridic form as nitride excretion, characterized in that there is another nitrogen-containing layer on the nitrogen layer in nitridic form, in which the nitrogen is largely in dissolved form . 2. Verfahren zur Herstellung einer stickstoffhaltigen Randschicht auf Bauteilen aus nichtrostendem Stahl, wobei die Bauteile bei Temperaturen zwischen 450 und 600°C nitriert werden, dadurch gekennzeichnet, daß in die nitrierte Oberfläche zur oberflächlichen Erwärmung auf mindestens 1200°C Energie mit einer Leistungsdichte von <20 kW/cm2 und einer Einwirkdauer <5 ms eingebracht wird und daß die Bauteile bei Temperaturen zwischen 350 und 450°C mittels Ionenimplantation oder im Plasma nitriert werden.2. A method for producing a nitrogen-containing surface layer on components made of stainless steel, the components being nitrided at temperatures between 450 and 600 ° C, characterized in that energy with a power density of <in the nitrided surface for surface heating to at least 1200 ° C 20 kW / cm 2 and an exposure time <5 ms is introduced and that the components are nitrided at temperatures between 350 and 450 ° C by means of ion implantation or in plasma. 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Oberflächenerwärmung mittels Photonenbestrahlung bewirkt wird.3. The method according to claim 2, characterized in that the surface heating is effected by means of photon radiation. 4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Oberflächenerwärmung mittels Elektroneneinsatz vorgenommen wird.4. The method according to claim 2, characterized in that the surface heating is carried out using electrons. 5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Energie mehrfach hintereinander mit einer Einwirkdauer <5 ms eingebracht wird. 5. The method according to claim 2, characterized in that the energy several times is introduced in succession with an exposure time of <5 ms.   6. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Oberflächenerwärmung lokal erfolgt.6. The method according to claim 2, characterized in that the surface heating done locally. 7. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Ionenimplantation in einem Vakuum bei einem Druck <10 Pa, mit Ionenenergien zwischen 400 eV und 40 keV und mit Ionenstromdichten zwischen 0,1 und 5 mA/cm2 ausgeführt wird.7. The method according to claim 2, characterized in that the ion implantation is carried out in a vacuum at a pressure <10 Pa, with ion energies between 400 eV and 40 keV and with ion current densities between 0.1 and 5 mA / cm 2 . 8. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Plasmanitrieren in einem Vakuum bei einem Druck <10 Pa, mit konstanter oder pulsierender Gleichspannung zwischen 400 V und 4 kV und mit Stromdichten zwischen 0,1 und 5 mA/cm2 ausgeführt wird.8. The method according to claim 2, characterized in that the plasma nitriding is carried out in a vacuum at a pressure <10 Pa, with constant or pulsating DC voltage between 400 V and 4 kV and with current densities between 0.1 and 5 mA / cm 2 .
DE1998120152 1998-05-06 1998-05-06 Boundary layer containing nitrogen on components consisting of stainless steel, and method for producing such a boundary layer Ceased DE19820152A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1998120152 DE19820152A1 (en) 1998-05-06 1998-05-06 Boundary layer containing nitrogen on components consisting of stainless steel, and method for producing such a boundary layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1998120152 DE19820152A1 (en) 1998-05-06 1998-05-06 Boundary layer containing nitrogen on components consisting of stainless steel, and method for producing such a boundary layer

Publications (1)

Publication Number Publication Date
DE19820152A1 true DE19820152A1 (en) 1999-11-11

Family

ID=7866804

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1998120152 Ceased DE19820152A1 (en) 1998-05-06 1998-05-06 Boundary layer containing nitrogen on components consisting of stainless steel, and method for producing such a boundary layer

Country Status (1)

Country Link
DE (1) DE19820152A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10337463A1 (en) * 2003-08-14 2005-03-10 Voith Paper Patent Gmbh Alloy for wear resistant tools for the mechanical treatment of cellulose fibers contains chromium and manganese, carbon, vanadium and molybdenum, silicon, niobium, nickel, phosphorus and sulfur, and a balance of iron
EP1548139A1 (en) * 2002-07-31 2005-06-29 National Institute of Advanced Industrial Science and Technology Ultra-low carbon stainless steel
WO2009152368A1 (en) * 2008-06-11 2009-12-17 Solar Implant Technologies Inc. Application specific implant system and method for use in solar cell fabrications
US8697552B2 (en) 2009-06-23 2014-04-15 Intevac, Inc. Method for ion implant using grid assembly
FR2999610A1 (en) * 2012-12-13 2014-06-20 Peugeot Citroen Automobiles Sa Thermochemically treating steel part e.g. gear train that is used in gear box, comprises performing first thermochemical enrichment process in steel part with carbon in beginning of austenitic transformation of steel
US9318332B2 (en) 2012-12-19 2016-04-19 Intevac, Inc. Grid for plasma ion implant
US9324598B2 (en) 2011-11-08 2016-04-26 Intevac, Inc. Substrate processing system and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH396563A (en) * 1959-02-11 1965-07-31 Berghaus Elektrophysik Anst Process for the surface finishing of metal objects and metal object produced by the process
DD237764A3 (en) * 1982-03-11 1986-07-30 Joerg Heinrich DIFFUSION METHOD FOR THE PRODUCTION OF TANTAL CARBIDE-ALLOYED SINTERED CARBIDE CUTTING INSERTS
DD244150A1 (en) * 1985-12-13 1987-03-25 Werkzeugmasch Okt Veb METHOD FOR PRODUCING A HIGH-RESISTANCE-RESISTANT SURFACE
DD267742A1 (en) * 1987-12-05 1989-05-10 Immelborn Hartmetallwerk METHOD FOR INCREASING THE WEAR RESISTANCE OF SURFACE LAYERS
DD286626A5 (en) * 1988-07-13 1991-01-31 Bergakademie Freiberg,De METHOD FOR INCREASING THE WEAR AND CORROSION RESISTANCE OF THERMOPHYLENE-TREATED IRON MATERIALS
US5096508A (en) * 1990-07-27 1992-03-17 Olin Corporation Surface modified copper alloys
DE4332912C1 (en) * 1993-09-23 1994-06-01 Johann Grosch Thermochemical surface layer treatment of titanium@ or titanium alloy - components in nitrogen@ gas at temp. below m.pt., giving increased surface hardness and consequently wear resistance
US5443663A (en) * 1992-06-30 1995-08-22 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Plasma nitrided titanium and titanium alloy products

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH396563A (en) * 1959-02-11 1965-07-31 Berghaus Elektrophysik Anst Process for the surface finishing of metal objects and metal object produced by the process
DD237764A3 (en) * 1982-03-11 1986-07-30 Joerg Heinrich DIFFUSION METHOD FOR THE PRODUCTION OF TANTAL CARBIDE-ALLOYED SINTERED CARBIDE CUTTING INSERTS
DD244150A1 (en) * 1985-12-13 1987-03-25 Werkzeugmasch Okt Veb METHOD FOR PRODUCING A HIGH-RESISTANCE-RESISTANT SURFACE
DD267742A1 (en) * 1987-12-05 1989-05-10 Immelborn Hartmetallwerk METHOD FOR INCREASING THE WEAR RESISTANCE OF SURFACE LAYERS
DD286626A5 (en) * 1988-07-13 1991-01-31 Bergakademie Freiberg,De METHOD FOR INCREASING THE WEAR AND CORROSION RESISTANCE OF THERMOPHYLENE-TREATED IRON MATERIALS
US5096508A (en) * 1990-07-27 1992-03-17 Olin Corporation Surface modified copper alloys
US5443663A (en) * 1992-06-30 1995-08-22 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Plasma nitrided titanium and titanium alloy products
DE4332912C1 (en) * 1993-09-23 1994-06-01 Johann Grosch Thermochemical surface layer treatment of titanium@ or titanium alloy - components in nitrogen@ gas at temp. below m.pt., giving increased surface hardness and consequently wear resistance

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP 3-257150 A.,In: Patents Abstracts of Japan, C-910,Feb. 17,1992,Vol.16,No. 61 *
LEI,M.K., ZHANG,Z.L.: Plasma source ion nitriding: A new low temperature, low-pressure nitriding approach. In: J. Vac. Sci. Technol.A 13 (6), Nov./Dec. 1995, S.2986-2990 *
WPIDS Abstract, Ref. 97-455885/42 zu RU 2075536 C1 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1548139A1 (en) * 2002-07-31 2005-06-29 National Institute of Advanced Industrial Science and Technology Ultra-low carbon stainless steel
EP1548139A4 (en) * 2002-07-31 2005-08-31 Nat Inst Of Advanced Ind Scien Ultra-low carbon stainless steel
US7648586B2 (en) 2002-07-31 2010-01-19 National Institute Of Advanced Industrial & Technology Ultra-low carbon stainless steel
DE10337463A1 (en) * 2003-08-14 2005-03-10 Voith Paper Patent Gmbh Alloy for wear resistant tools for the mechanical treatment of cellulose fibers contains chromium and manganese, carbon, vanadium and molybdenum, silicon, niobium, nickel, phosphorus and sulfur, and a balance of iron
DE10337463B4 (en) * 2003-08-14 2005-08-04 Voith Paper Patent Gmbh Process for the production of wear-resistant tools for the mechanical treatment of pulp fibers and their use
WO2009152368A1 (en) * 2008-06-11 2009-12-17 Solar Implant Technologies Inc. Application specific implant system and method for use in solar cell fabrications
US8697553B2 (en) 2008-06-11 2014-04-15 Intevac, Inc Solar cell fabrication with faceting and ion implantation
US8871619B2 (en) 2008-06-11 2014-10-28 Intevac, Inc. Application specific implant system and method for use in solar cell fabrications
US8749053B2 (en) 2009-06-23 2014-06-10 Intevac, Inc. Plasma grid implant system for use in solar cell fabrications
US8697552B2 (en) 2009-06-23 2014-04-15 Intevac, Inc. Method for ion implant using grid assembly
US8997688B2 (en) 2009-06-23 2015-04-07 Intevac, Inc. Ion implant system having grid assembly
US9303314B2 (en) 2009-06-23 2016-04-05 Intevac, Inc. Ion implant system having grid assembly
US9741894B2 (en) 2009-06-23 2017-08-22 Intevac, Inc. Ion implant system having grid assembly
US9324598B2 (en) 2011-11-08 2016-04-26 Intevac, Inc. Substrate processing system and method
US9875922B2 (en) 2011-11-08 2018-01-23 Intevac, Inc. Substrate processing system and method
FR2999610A1 (en) * 2012-12-13 2014-06-20 Peugeot Citroen Automobiles Sa Thermochemically treating steel part e.g. gear train that is used in gear box, comprises performing first thermochemical enrichment process in steel part with carbon in beginning of austenitic transformation of steel
US9318332B2 (en) 2012-12-19 2016-04-19 Intevac, Inc. Grid for plasma ion implant
US9583661B2 (en) 2012-12-19 2017-02-28 Intevac, Inc. Grid for plasma ion implant

Similar Documents

Publication Publication Date Title
DE2216628C2 (en) Process for treating a surface made of steel by ion implantation to modify the structure of the surface
EP0098453B1 (en) Method for the production of hard, wear-resistant external coats on a metallic material
DE3235670C2 (en) Process for glow nitriding of materials
DE19525182C2 (en) Process for the production of corrosion and wear protection layers on iron-based materials
DE102015115298B4 (en) Manufacturing method for a separator of a fuel cell
DE2135763C3 (en) 31 08 70 Japan 45 76202 Process for the treatment of iron and steel objects to form a nitride layer
DE2928442A1 (en) ION NITRATION PROCESS
DE2647088A1 (en) METHOD AND DEVICE FOR CLEANING SURFACES
CH647265A5 (en) METHOD FOR PRODUCING PROTECTIVE OXIDE LAYERS.
DE2847861A1 (en) METHOD AND DEVICE FOR THE SURFACE TREATMENT OF METAL WORKPIECES IN A VACUUM CHAMBER
DE19820152A1 (en) Boundary layer containing nitrogen on components consisting of stainless steel, and method for producing such a boundary layer
DE102016218979A1 (en) Device for the apparatus for plasma-assisted generation of highly reactive process gases based on unsaturated H-C-N compounds, which contribute to the enrichment of the surface layer of metallic components with increased nitrogen and / or carbon content
DE60310890T2 (en) MARTENSITIC STAINLESS STEEL AND METHOD FOR THE PRODUCTION THEREOF
DE19610322A1 (en) Passivation treatment of piping system for high-purity gas
DE2845756A1 (en) ION NITRATION CURING PROCESS
Kenéz et al. Anodic plasma nitriding in hollow cathode (HCAPN)
EP0647723A1 (en) Process for manufacturing of seamless drawn medium hard/hard copper fitting tubes
EP0049373A1 (en) Surface hardened sintered iron workpiece and method of manufacturing this workpiece
DE3500935A1 (en) COMPONENT WITH CORROSION-RESISTANT OXIDIC COATING APPLIED ON OPPOSITE SIDES OF A METAL CONSTRUCTION
DE10351946A1 (en) Process for treating the surface of a component consisting of an AL alloy, in particular a TiAL alloy, and the use of organic halocarbon compounds or halides incorporated in an organic matrix
DE3208086C2 (en) Using a plasma cannon
DE1295309B (en) Method and arrangement for the production of surface protection for solids
DE10227521A1 (en) Component with a region made of non-magnetic steel and a magnetic surface layer and method for its production
DE2310465A1 (en) PROCESS FOR MANUFACTURING A RADIOACTIVE TRITIUM FILM EMITING BUTTERFLY AND A DETECTOR EQUIPPED WITH IT
DE1521151C3 (en) Method and device for evaporation of thin layers on all sides on elongated bodies

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8110 Request for examination paragraph 44
8131 Rejection