DE19935433A1 - Mikrofluidischer Reaktionsträger - Google Patents

Mikrofluidischer Reaktionsträger

Info

Publication number
DE19935433A1
DE19935433A1 DE19935433A DE19935433A DE19935433A1 DE 19935433 A1 DE19935433 A1 DE 19935433A1 DE 19935433 A DE19935433 A DE 19935433A DE 19935433 A DE19935433 A DE 19935433A DE 19935433 A1 DE19935433 A1 DE 19935433A1
Authority
DE
Germany
Prior art keywords
channels
reaction
carrier according
reaction carrier
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19935433A
Other languages
English (en)
Inventor
Cord Friedrich Staehler
Manfred Mueller
Peer Friedrich Staehler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FeBiT AG
Original Assignee
FeBiT Ferrarius Biotechnology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FeBiT Ferrarius Biotechnology GmbH filed Critical FeBiT Ferrarius Biotechnology GmbH
Priority to DE19935433A priority Critical patent/DE19935433A1/de
Priority to CA002379787A priority patent/CA2379787A1/en
Priority to EP05024237A priority patent/EP1652578A3/de
Priority to EP00953136A priority patent/EP1198294B1/de
Priority to US10/030,182 priority patent/US7361314B1/en
Priority to AU65692/00A priority patent/AU6569200A/en
Priority to DE50011574T priority patent/DE50011574D1/de
Priority to PCT/EP2000/007445 priority patent/WO2001008799A1/de
Priority to AT00953136T priority patent/ATE309041T1/de
Publication of DE19935433A1 publication Critical patent/DE19935433A1/de
Priority to US12/003,826 priority patent/US20080132430A1/en
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5025Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/12Libraries containing saccharides or polysaccharides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/14Libraries containing macromolecular compounds and not covered by groups C40B40/06 - C40B40/12
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/14Solid phase synthesis, i.e. wherein one or more library building blocks are bound to a solid support during library creation; Particular methods of cleavage from the solid support
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/08Integrated apparatus specially adapted for both creating and screening libraries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00281Individual reactor vessels
    • B01J2219/00286Reactor vessels with top and bottom openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00319Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks the blocks being mounted in stacked arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00389Feeding through valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00427Means for dispensing and evacuation of reagents using masks
    • B01J2219/0043Means for dispensing and evacuation of reagents using masks for direct application of reagents, e.g. through openings in a shutter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00511Walls of reactor vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/0059Sequential processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/0061The surface being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00621Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • B01J2219/00704Processes involving means for analysing and characterising the products integrated with the reactor apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00709Type of synthesis
    • B01J2219/00711Light-directed synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00725Peptides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00729Peptide nucleic acids [PNA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00731Saccharides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00831Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00968Type of sensors
    • B01J2219/0097Optical sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0099Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0858Side walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0874Three dimensional network
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00237Handling microquantities of analyte, e.g. microvalves, capillary networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Abstract

Gegenstand der vorliegenden Erfindung ist ein mikrofluidischer Reaktionsträger, der eine rein fluidische oder auch eine lichtgesteuerte Synthese und Analyse von Oligomeren oder Polymeren ermöglicht.

Description

Gegenstand der vorliegenden Erfindung ist ein mikrofluidischer Reaktionsträger, der je nach Ausführungsform eine rein fluidische oder auch eine lichtgesteuerte Synthese und Analyse von Oligomeren oder Polymeren ermöglicht. Es ist darüber hinaus prinzipiell jede andere Anwendung als miniaturisierte chemische oder biochemische Synthese- und Analyseplattform beispielsweise zur Anwendung in der Kombinatorischen Chemie denkbar.
Mikrofluidische Systeme stehen allgemein noch am Anfang ihrer Entwicklung. Jedoch stellen sie schon jetzt ein wichtiges Gebiet z. B. im Bereich der Mikropumpen oder Mikroventile dar. Der Schwerpunkt derzeitiger Arbeiten auf diesem Gebiet liegt in der Herstellung miniaturisierter Strukturen bevorzugt unter Einsatz von Verfahren aus der Halbleitertechnik.
Mikrodosiersysteme verknüpfen mikrominiaturisierte Pumpen und Ventile mit Sensoren für Ansteuer- und Regelschaltungen. Solche Systeme werden derzeit für spezielle Anwendungen entwickelt und erprobt, z. B. für die Medikamentendosierung oder die Dosierung von kleinsten Flüssigkeitsmengen im Freistrahl nach dem Prinzip eines Tintenstrahldruckers. Diese werden beispielsweise für die Herstellung von "Polymersonden-Arrays" verwendet, indem verschiedene biochemische Substanzen auf definierte Positionen eines Trägerkörpers aufgespritzt werden.
Die Vermischung von Medien in Mikrofluidsystemen, etwa in chemischen Mikroreaktoren oder in Bioreaktoren, aber auch in chemischen Analysesystemen ist bisher noch wenig untersucht. Besteht die Notwendigkeit einer sehr raschen Vermischung, so lassen sich jedoch durch den Einsatz speziell konstruierter Wirbelstrecken, oder durch die Verwendung eines ebenfalls miniaturisierten Mischers sehr hohe Mischungsraten erzielen. Die Entwicklung von Mikromischern hat noch keine Marktreife erreicht und befindet sich größtenteils noch im experimentellen Stadium. Die Interaktion von Fluid und Wand, wie sie für den erfindungsgemäßen mikrofluidischen Reaktionsträgers von Bedeutung ist, wurde bisher noch nicht näher untersucht.
Die Realisierung kompletter Mikrofluidanalyse-Systeme wurde bisher nur in einigen Fällen durchgeführt, z. B. in Systemen zur Analyse des Schwermetallgehalts im Grundwasser. Für die Herstellung von Test- und Funktionsmustern solcher Mikrofluidanalyse-Systeme werden bevorzugt verschiedene etablierte Silizium- Technologien, wie zum Beispiel isotropes und anisotropes Ätzen, verwendet.
Ein großer Nachteil der Siliziumtechnik ist der relativ hohe Materialpreis. Deshalb werden aktuell verschiedene kostengünstige Technologien entwickelt, welche die Herstellung von Mikrostrukturen als "Wegwerfartikel" erlauben. Drei dieser Verfahren sind Mikro-Spritzguß, miniaturisierte Heißprägeverfahren (hot molding) oder die sogenannte LIGA (Lichtinduzierte Galvanoabformung) Technik. Diese Verfahren erlauben im Versuchsstadium die Herstellung von Mikrostrukturen mit Abmessungen kleiner 1 µm.
Heute werden diese Entwicklungen beispielsweise in der DNA-Analytik angewendet. Hierbei ist das aktuelle Forschungsthema eine möglichst schnelle und daher hochparallele Detektion. Die Kombination von Hybridisierung als Nachweisprinzip und optischer Signaldetektion ist am weitesten fortgeschritten. In den USA wird die Entwicklung dieser miniaturisierten Detektions-Chips mit enormem Aufwand vorangetrieben. Die Leistungsfähigkeit in der Analyse liegt hier im Bereich von 104 bis maximal 105 Basen pro Stunde.
Ziel ist daher die Entwicklung einer Technologie, mit Hilfe deren man im Bereich von 108 und mehr Basen pro Stunde analysieren und die ermittelten Daten so aufbereiten kann, daß eine sinnvolle Interaktion zwischen Bediener und dem einzusetzenden Gerät möglich ist. Das Herzstück eines solchen Gerätes ist der Gegenstand dieser Erfindung und soll im folgenden als mikrofluidischer Reaktionsträger beschrieben werden. Dieser erfindungsgemäße Reaktionsträger soll beispielsweise das zentrale Bauteil von Systemen zur automatischen Fragmentsynthese und -analyse von Oligo- bzw. Polymeren darstellen. Ein solches System ist in der Patentanmeldung 19924327.1 beschrieben.
Der erfindungsgemäße Reaktionsträger beinhaltet eine Struktur aus Mikrokanälen unterschiedlicher Größe, Geometrie und Funktion. Ein Teil der Mikrokanäle dient der Fluidzufuhr und -abfuhr. Alle weiteren Kanäle dienen als Reaktionsbereiche, wobei je nach Anwendung optional auch Fluidreservoirs etc. in die Mikrostruktur integriert werden können. Der Reaktionsträger wird entweder in einer zwei- oder einer dreidimensionalen Struktur durchströmt. Die zweidimensionale Ausführungsvariante besteht aus mindestens jeweils einem Zuführungs- und einem Abführungskanal in einer Strömungsebene. Diese beiden Kanäle sind durch mehrere etwa senkrecht hierzu verlaufende Kanäle verbunden, wobei diese senkrechten Verbindungskanäle als Reaktionsbereiche dienen. Die somit entstehenden Reaktionskanäle können ebenfalls wieder in kleinere Kanäle unterteilt sein, wobei jeder Reaktionskanal einen oder mehrere Reaktionsbereiche umfaßt. Diese Reaktionsbereiche können zum Beispiel entlang des Kanals angeordnet sein.
Die komplexere dreidimensionale Ausführungsvariante besteht aus drei Strömungsebenen. Die Zuführungskanäle sind jeweils zueinander parallel in einer ersten Strömungsebene und die Abführungskanäle jeweils zueinander parallel in einer dritten Strömungsebene angeordnet, wobei Zuführungs- und Abführungskanäle in einer senkrechten Projektion entweder parallel zueinander oder unter einem Winkel zueinander angeordnet sind, wobei dieser Winkel vorzugsweise annähernd gleich 90° gewählt wird. An den Kreuzungspunkten der Kanäle in deren senkrechter Projektion in der gewinkelten Anordnung oder entlang der Kanäle in der parallelen Anordnung sind außerdem senkrechte Kanäle angeordnet, die eine dritte Strömungsebene bilden und die Zuführungskanäle der ersten mit den Abführungskanälen der dritten Ebene verbinden. Diese Verbindungskanäle sind wesentlich enger als die Zuführungs- und Abführungskanäle. Damit wird ein Überströmen der Reaktionsbereiche in den Zuführungs- und Abführungskanälen ohne Eindringen von Fluid in die Reaktionskanäle ermöglicht. Mehrere Reaktionskanäle zusammen bilden einen Reaktionsbereich.
Damit sind die technischen Voraussetzungen für eine sehr schnelle, effiziente und damit kostengünstige Bereitstellung einer Vielzahl von Reaktionsbereichen geschaffen, zum Beispiel für die integrierte Synthese einer Vielzahl von Polymersonden und die Analyse einer Vielzahl von Polymerfragmenten mittels dieser Sonden.
In allen Ausführungsvarianten werden die Fluide aus den Reaktionsbereichen abgeführt, ohne daß dabei ein Kontakt dieser Fluide mit einem anderen Reaktionsbereich des gesamten Reaktionsträgers erfolgen würde. Dies ist vor allem bei Reaktionen relevant, deren Abfallprodukte andere Reaktionsbereiche schädigen oder zerstören könnten.
Alle drei Varianten des erfindungsgemäßen mikrofluidischen Reaktionsträgers haben auf der Ober- und der Unterseite jeweils eine Deckschicht. Bei der zweidimensionalen Struktur sowie bei den parallelen Zuführungs- und Abführungskanälen der dreidimensionalen Struktur ist mindestens eine der Deckschichten transparent ausgebildet, um eine lichtgesteuerte Photoaktivierung in den einzelnen Reaktionsbereichen durch individuelle Belichtung z. B. mittels einer programmierbaren Lichtquellenmatrix zu ermöglichen wie sie in der Patentanmeldung 199 07 080.6 beschrieben ist. Alle drei Varianten werden bevorzugt mit zwei transparenten Deckschichten ausgeführt um eine permanente optische Prozesskontrolle im Reaktionsträger sowie die Messung von Nachweisreaktionen im Durchlicht zu ermöglichen.
Die komplexere dreidimensionale Struktur mit den um einen Winkel gedrehten Zuführungs- und Abführungskanälen ermöglicht das individuelle Bespülen jedes einzelnen Reaktionsbereiches aus den senkrecht angeordneten Mikrokanälen. Dies erfolgt indem jeweils ein Zuführungskanal mit Fluid bespült und an einem Abführungskanal Fluid abgeführt wird. Das Fluid fließt durch den Zuführungskanal in die senkrechten Mikroreaktionskanäle und durch den Abführungskanal wieder aus dem Reaktionsträger hinaus. Genauso können auch mehrere Reaktionsbereiche gleichzeitig und dies sogar mit unterschiedlichen Fluiden bespült werden. Damit erschließt der erfindungsgemäße mikrofluidische Reaktionsträger mit der durch die gewinkelte Anordnung bedingten "Kreuzstruktur" eine Vielfalt an Anwendungen aus der Kombinatorischen Chemie oder der DNA-Analytik.
Eine weitere Anwendung ist das abwechselnde Beströmen zunächst aller Zuführungs- und Abführungskanäle mit Einsatzstoffen, wobei die Funktion der Fluidzufuhr und - abfuhr der Zuführungs- und Abführungskanäle von Zyklus zu Zyklus wechselt. Wird beispielsweise jeder Kanal mit einem anderen Baustein einer zu synthetisierenden Polymersonde bespült, so kann durch die Anwendung der Kreuzstruktur in wenigen Zyklen eine große Vielfalt an Oligomer- oder Polymersonden in den einzelnen Reaktionsbereichen eines Reaktionsträgers erzeugt werden. Die Synthese beliebig spezifischer Einzelsonden in einem Reaktionsbereich ist durch die zuvor beschriebene Einzelansteuerung eines Reaktionsbereiches in Ergänzung problemlos möglich. Damit bietet der erfindungsgemäße mikrofluidische Reaktionsträger mit der Kreuzstruktur die Möglichkeit zur effizienten naßchemischen Oligomersonden- oder Polymersondensynthese von "Sonden-Arrays". Diese Vorgehensweise soll im folgenden als fluidisches Multiplexen bezeichnet werden. Auch die In-situ-Synthese mittels Prozessüberwachung sowie die integrierte Synthese- und Analyse sind damit möglich.
Für die rein fluidische Reaktionssteuerung sind keine lichtdurchlässigen Deckschichten notwendig, jedoch ebenfalls sinnvoll für die optische Prozesskontrolle und die Erfassung von Nachweisreaktionen. Die Detektion kann hierbei ebenfalls entweder im Durchlicht oder auch im Rücklicht von einer Seite erfolgen. Kombiniert man die dreidimensionale Kreuzstruktur mit ihren um einen Winkel gedreht angeordneten Zuführungs- und Abführungskanälen mit der lichtgesteuerten Photoaktivierung der Reaktionsbereiche aus Mikrokanälen, so kann man die Effizienz der Synthese von Oligomer- oder Polymersonden noch weiter erhöhen. Sowohl die Lichtquellenmatrix als Lichtquelle als auch der benötigte Detektor können in den mikrofluidischen Reaktionsträger integriert werden. Gleiches gilt für die Integration einer CCD-Matrix als zweite gegenüberliegende Deckschicht. Auch eine direkter Anschluß einer programmierbaren Lichtquellenmatrix als Deckschicht ist möglich. Dies ist insbesondere dann naheliegend, wenn der mikrofluidische Reaktionsträger als festes Bauteil in ein Gerät integriert ist und zwischen den Anwendungen z. B. chemisch gereinigt wird und nur zu Wartungszwecken gewechselt werden muß. Wird der mikrofluidische Reaktionsträger nach jeder Verwendung ausgewechselt, so ist eine direkte Integration jedoch nicht sinnvoll. Vielmehr empfiehlt es sich dann, die Komponenten im System entsprechend anzuordnen.
Ebenfalls Gegenstand der Erfindung ist die Versorgung des mikrofluidische Reaktionsträgers mit den entsprechenden Fluiden. Hierzu wurde ein ebenfalls neuartiges, integriertes Ventilsystem konzipiert. Dies erlaubt eine schnelle Bereitstellung einer Vielzahl an Fluiden an den Zuführungs- und Abführungskanälen der Mikrostruktur.
Dieses Fluidversorgungssystem ist für die Anwendung des erfindungsgemäßen mikrofluidischen Reaktionsträgers für den Aufbau von Oligomer- oder Polymersondenarrays in den Reaktionsbereichen konzipiert. Das Versorgungssystem gleicht sich in den Anschlüssen und Komponenten für die "oberen" und die "unteren" Zuführungs- und Abführungskanäle. Von der einen Seite her werden alle Kanäle individuell über ein im folgenden beschriebenes Multiplexventil versorgt. Am jeweils dazugehörigen anderen Kanalende werden alle Kanäle zusammengeführt, wobei diese Zusammenführung für die Zu- und Abführung bei einheitlicher Bespülung aller Reaktionsbereiche verwendet wird. Bei der Synthese von Oligomer- oder Polymersonden in den Reaktionsbereichen sind dies alle Zyklen außer der Zuführung der spezifischen einzelnen Bausteine bestehend aus einem oder mehreren Nukleotiden. Will man alle Reaktionsbereiche erreichen und nicht spezifisch auswählen, so ist es besser, eine strömungsoptimierte Zuführung wie beispielsweise eine duale Verästelung zu wählen, als über das Multiplexventil mit dem höheren Verschleppungsrisiko. Für das Zuführen der spezifischen Bausteine benötigt man jedoch das Ventil. Dieses verbindet die Mikrokanäle des Reaktionsträgers auf der einen Seite mit einer maximal gleich großen Anzahl an individuellen Tanks sowie einem Sammelanschluß auf der anderen Seite. In einer Position des Ventils wird jeweils ein Tank mit einem oder mehreren Kanälen des Reaktionsträgers verbunden. Soll das Fluid eines Tanks in einem Zyklus in mehr als einen Kanal bzw. ein Kanalbündel des Reaktionsträgers gelangen, so wird erst ein Kanal und anschließend weitere Kanäle seriell versorgt. Der Sammelanschluß entspricht der Zusammenführung der Kanäle auf der jeweils gegenüberliegenden Seite des Reaktionsträgers. Er dient der effizienten Spülung von Ventil und Reaktionsträger.
Die Anschlüsse des mikrofluidischen Reaktionsträgers an seine Fluidversorgung und Fluidentsorgung ist ein wichtiges Element. Wird der Reaktionsträger in der spezifischen Anwendung immer wieder gereinigt und wiederverwendet, so kann eine aufwendiger Anschlußtechnik, beispielsweise an das Multiplexventil vorgesehen werden. Hierbei ist, insbesondere bei einer großen Anzahl von Kanälen, eine Ausführung analog der Halbleiterprozessortechnik mit einer Vielzahl an kleinsten Kanälen in sogenannten "Beinen" möglich. Diese Ausführung hat strömungstechnisch den Nachteil der Gefahr von Ablagerungen in den Biegungen und Knicken der einzelnen Mikrokanäle. Hier kann eine Hinterspülung wie zur Vermeidung von Verschleppungen vorgesehen werden. Bei der Anwendungsvariante, in welcher der Reaktionsträger nach jeder Anwendung ausgewechselt wird, sind schnelle und ohne Klebung dichtende Anschlüsse notwendig. Dabei kann zum Beispiel flächig an der Stirnseite des Reaktionsträgers mit durchgehendem biegungsfreiem Kanalverlauf angeschlossen werden. Somit ist das Verschleppungsrisiko minimal. Eine zweite Alternative ist das Aufpressen der Unterseite des Reaktionsträgers auf die Fluidzuführung. Geeignete chemikalienbeständige Dichtungen sind dabei jeweils vorzusehen.
Der Aufbau des erfindungsgemäßen mikrofluidische Reaktionsträger erfolgt wie dies auch in der Halbleiter-Mikrotechnik üblich ist in mehreren Schichten. Hierbei kann zwischen einer Einteilung der Mikrostruktur in funktionale Schichten und konstruktionsbedingte Schichten unterschieden werden.
Während es in einer zweidimensionalen Struktur mindestens drei funktionale Schichten gibt, besteht eine dreidimensionale Struktur aus mindestens fünf funktionalen Schichten. Diese funktionalen Schichten sind nachfolgend näher beschrieben. In der Produktion lassen sich oft mehrere dieser funktionalen Schichten mittels geeigneter Herstellungsverfahren in eine konstruktionsbedingte Schicht integrieren.
Die funktionalen Schichten der zweidimensionalen Struktur enthalten eine mittlere Strukturschicht, in welche die Mikroströmungsstruktur aus Kanälen, Reaktionsbereichen und Reservoirs eingebracht ist. Sie wird mit einer oberen und einer unteren Deckschicht verbunden und kann aus Glas, Kunststoff oder Silizium beschaffen sein. Je nach Ausführung kann das verwendete Material transparent oder auch lichtundurchlässig sein. Beispielsweise empfiehlt sich als lichtundurchlässiges Material Futoran-Glas der Firma Schott, Silizium oder Teflon.
Die dreidimensionalen Strukturen bestehen aus fünf Funktionalen Schichten. Einer ersten, "oberen" Deckschicht, einer darunterliegenden Struktur aus Mikrokanälen für die Fluidzuführung und Abführung in zur zweidimensionalen Struktur analogen Weise, einer mittleren Ebene aus senkrechten, (bevorzugt um mindestens den Faktor 10) kleineren Mikrokanälen, welche als Reaktionsbereiche dienen. Auf der "Unterseite" schließen sich wieder eine Ebene für Fluidversorgung und eine Deckschicht an, die beide analog zur "Oberseite" ausgebildet sind. Insgesamt ist der Reaktionsträger spiegelbildlich zu einer mittleren Ebene aufgebaut. Die Herstellung muß sich nicht unbedingt nach den funktionalen Schichten richten. So ist eine Integration der Zuführungs- und Abführungsstruktur sowohl in der mittleren Schicht als auch in der Deckschicht möglich. Für die mittlere Schicht mit den senkrechten Mikrokanälen als Reaktionsbereiche können beispielsweise geeignete Silizium-Wafer aus der Halbleitertechnik mit geätzten "Poren" der Firma Siemens oder zusammen­ geschmolzene Glasfasern (Fiberglas-Wafern) der Firma Schott mit herausgeätzten Seelen und einem Größenverhältnis zwischen Wandstärke und Kanalquerschnitt von vorzugsweise 1 zu 5 verwendet werden. Um die exakte Bespülung nur der "angesteuerten" Reaktionskanäle zu verbessern, kann die mittlere funktionale Ebene durch eine obere und eine untere Zwischenschicht ergänzt werden. Diese verhindert bzw. erschwert ein ungewollte Einströmen von Fluiden.
Die notwendigen Herstellungsverfahren unterscheiden sich je nach dem verwendeten Material. Bei Silizium-, Glas- und Fiberglaswafern (mit und ohne Seele) kommen als Verbindungstechniken Bonding-Verfahren zum Einsatz. Die Teile, wie zum Beispiel die verschieden Wafer, werden durch Ätztechniken sowie Sägen und Polieren hergestellt. Für die Verwendung von Kunststoffen wie Teflon, welches lichtundurchlässig ist, und COC oder Polystyrol, welches transparent ist, kommen Verfahren wie Spritzguß, Heißprägen oder LIGA zum Einsatz. Die Verbindung von Bauteilen erfolgt mittels Kleben oder Ultraschallschweißen.
Die obere Deckschicht schließt die darunterliegende Mikroströmungsstruktur nach außen ab. Hierdurch entstehen die Mikrokanäle. Für den Eintrag von Licht in diese Kanäle ist die Schicht lichtdurchlässig ausgebildet. Für eine optimierte Optik können auch Mikrolinsen in Glas der Firma Mikroglas oder Kunststoff (IMM Mainz) verwendet werden. Möglich ist ebenfalls der Einsatz einer Wabenstruktur aus zusammengeschmolzenen Glasfasern, die z. B. von der Firma Schott oder ITT entwickelt wurde und beispielsweise bei Nachtsichtgeräten zum Einsatz kommt. Hierzu werden lange Glasfaserbündel so erhitzt, daß sie zusammenschmelzen und eine Einheit bilden. Auf diese Weise entsteht eine "Stange", von welcher dann in zur Siliziumtechnologie analogen Weise dünne Scheiben abgesägt und poliert werden. Diese können anschließend mit Glas oder Silizium gebondet oder mit Kunststoffen verklebt bzw. verschweißt werden.
Der erfindungsgemäße mikrofluidische Reaktionsträger wird in seiner bestimmungsgemäßen Verwendung folgendermaßen eingesetzt: Zunächst wird eine Gruppe von Reaktionsbereichen durch die Mikrokanäle einer zwei- bzw. dreidimensionalen Mikrostruktur angesteuert. Nach der dort erfolgten Reaktion werden die in den einzelnen Reaktionsbereichen entstehenden Reaktionsprodukte durch Mikrokanäle abgeführt, ohne daß dabei die Reaktionsprodukte einen weiteren Reaktionsbereich durchströmen. Dabei kann eine Ansteuerung der Reaktionsbereiche in der beschriebenen dreidimensionalen Kreuzstruktur zur rein fluidischen Synthese von Oligo- oder Polymeren aus Mono-, Oligo- oder Polymeren, oder auch zur Beschleunigung der lichtgesteuerten Synthese von Polymeren durch das beschriebene intelligente Multiplexen der Einsatzstoffe genutzt werden.
Währenddessen erfolgt eine optische Kontrolle aller Reaktionsbereiche und Mikrokanäle durch transparente Deckschichten als Plattform für eine In-Situ- Synthese, eine permanente Prozesskontrolle und Regelung der Abläufe in der Mikrostruktur. Damit ist die Basis für eine umfassende Qualitätssicherung geschaffen. Lichtsignale von Nachweisreaktionen, welche in den Reaktionsbereichen durch chemische (z. B. Lumineszenz), biochemische (z. B. Biolumineszenz) oder lichtinduzierte (z. B. Fluoreszenz) Reaktionen entstehen, können in einem den fluidischen Mikroprozessor umgebenden integrierten Synthese- und Analyse-Gerät, wie es in der Patentanmeldung 19924327.1 beschrieben ist, erfaßt werden. Weiterhin möglich sind Absorptionsmessungen im Reaktionsträger durch die Erfassung von Lichtsignalen, welche die Mikrokanäle und Reaktionsbereiche im Durchlichtverfahren durchqueren oder im Rücklichtverfahren reflektiert werden. Dies kann zum Beispiel für eine erweiterte qualitative Qualitätssicherung genutzt werden.
Die Vorteile dieses erfindungsgemäßen mikrofluidischen Reaktionsträgers sind vielfältig: Zum einen werden die Reaktionsprodukte von jedem Reaktionsbereich abgeführt, ohne daß ein weiterer Reaktionsbereich mit den Reaktionsprodukten in Berührung kommt. Dies ermöglicht die Durchführung von Reaktionen für die Synthese und Analyse in den Reaktionsbereichen, welche Reaktionsprodukte (Endprodukte oder Zwischenprodukte) erzeugen, die für andere Reaktionsbereiche schädlich wären.
Im Vergleich zu planaren Flächen haben die dreidimensionalen Mikrokanäle eine größere als Festphase nutzbare Oberfläche.
Die Verwendung von Mikrostrukturen reduziert die für die Reaktionen benötigte Fluidmenge und erhöht gleichzeitig die Reaktionsgeschwindigkeit. Dies gilt sowohl für kovalente Bindungen wie auch zum Beispiel für die Hybridisierungszeiten bei Anwendungen in der DNA, RNA, PNA, LNA-Analytik oder bei Proteinanwendungen.
Durch transparente Deckschichten werden Photoreaktionen zum Beispiel für die lichtgesteuerte Synthese von DNA, RNA, PNA, LNA oder Proteinen, etc. ermöglicht.
Außerdem wird durch die transparenten Deckschichten eine permanente Prozesskontrolle für die Regelung der Reaktionen sowie der Fluidik im Reaktionsträger ermöglicht. Dadurch werden die Fehler sowohl bei der Produktion als auch bei der Detektion deutlich reduziert, womit sich die Zahl der auswertbaren Messungen pro Material- und Zeiteinsatz erhöht.
Durch eine geeignete Auslegung der Geometrie der einzelnen Reaktionsbereiche sowie der Mikrokanäle zwischen den Reaktionsbereichen lassen sich die Strahlengänge unter Berücksichtigung der auftretenden Brechungsindizes im Reaktionsträger gezielt beeinflussen.
Die erfindungsgemäßen fluidischen Mikroprozessoren können als einfache Komponenten für den einmaligen Gebrauch ausgeführt werden. Prinzipiell sind hier kostengünstige Kunststoff-Strukturen zu bevorzugen, aber auch Glas- und Silizium oder auch Materialkombinationen sind als Ausführungen möglich. Die schnelle und kostengünstige Produktion wird eine Vielfalt von individuellen Anwendungen ermöglichen, bei denen z. B. unter Berücksichtigung von Sequenz- und Gendatenbanken im Internet gezielt Sonden-Arrays synthetisiert und analysiert werden können.
Dabei finden die Reaktionen immer an den Wänden der Mikroreaktionskanäle statt. Folglich sind die Reaktionsbereiche immer dreidimensional ausgeprägt und haben eine erheblich größere Oberfläche als die planare Grundfläche. Durch diese dreidimensionale Geometrie ist also die nutzbare Reaktionsoberfläche stark vergrößert. Diese Größe der Oberfläche ist für die Verwendung als feste Phase von großer Bedeutung. Sie kann zum Beispiel für die Anlagerung von Oligonukleotiden bei der Synthese im Reaktionsträger ebenso von Bedeutung sein wie für die Anlagerung von vorbeiströmenden Proben-Fragmente bei einer Analyse im Reaktionsträger.
Die dreidimensionale Kreuz-Struktur ermöglicht Anwendungen zum Beispiel in der Oligonukleotid-Analytik oder in der Kombinatorischen Chemie etc. Durch die Verwendung der beiden sich überkreuzenden Strukturen läßt sich schnell eine Vielzahl an unterschiedlichen Kombinationen von Oligomeren oder Polymeren in den individuellen Reaktionsbereichen des Reaktionsträgers erzeugen. Dadurch ist eine sehr effiziente naßchemische Synthese eines Oligomer- oder Polymersondenarrays in einem Reaktionsträger möglich. Dies kann computergesteuert erfolgen, wodurch die Erzeugung von beliebigen Nukleotidkombinationen in jedem Reaktionsbereich ermöglicht wird. Die Analyse kann ebenfalls direkt im Reaktionsträger erfolgen, wobei eine permanente Prozeßkontrolle möglich ist.
Durch ein entsprechendes Multiplexen der Fluide kann die Zahl der Herstellungszyklen von "Sondenarrays" reduziert werden. Für die ortsspezifische Erzeugung einer Vielzahl unterschiedlicher Oligo- oder Polymersonden von beispielsweise 20 Basen Länge auf einer planaren Oberfläche mittels örtlicher Photoaktivierung benötigt man in jeder Ebene vier Synthesezyklen, was durch die vier verschiedenen Basen bedingt ist. Insgesamt werden also 4 × 20 = 80 Zyklen benötigt. Dabei besteht keine systematische Möglichkeit die Anzahl an Synthesezyklen zu reduzieren. Bei der Synthese im mikrofluidischen Reaktionsträger bietet sich hingegen die Möglichkeit, die Einsatzstoffe, also die Mono- oder Oligomere, gleichzeitig auf mikrofluidische Subbereiche zu verteilen. Dadurch lassen sich die Synthesezyklen bei Verwendung von Tetrameren beispielsweise auf minimal 5 Zyklen reduzieren. Die genaue Anzahl der für einen spezifischen Sondenarray benötigten Zyklen ist für jedes Sondenmuster individuell und kann nur als statistischer Mittelwert angegeben werden, wenn die Anzahl an Reaktionsbereichen im Reaktionsträger, die Anzahl an parallelen fluidischen Subräumen und die Länge der zu synthetisierenden Oligomere vorgegeben ist.
Folgende Verfahren werden mit dem erfindungsgemäßen Reaktionsträger anwendbar: Neben der Synthese von Oligomeren und Polymeren bis zu ganzen Genen und Genomen bietet sich die Möglichkeit des "de novo"-Sequenzierens von nicht bekannten Polymeren wie DNA, RNA, PNA, LNA, Proteinen und anderen durch einen Sequenzvergleich mit aufbereitetem Probenmaterial. Darüber hinaus möglich ist das "Re"-Sequenzieren von Polymeren, also der Vergleich von bekannten mit unbekannten Sequenzen, wobei die bekannten Sequenzen gezielt ausgewählt werden. Ebenfalls möglich ist die Herstellung von Substanzbibliotheken für Screening- und Analyseverfahren, insbesondere zur Nukleinsäure-Analyse über Hybridisierung.
In dem erfindungsgemäßen mikrofluidischen Reaktionsträger lassen sich alle Vorgänge von der Synthese bis zur Analyse einfacher oder komplexer Moleküle integrieren und diese sehr effizient durchführen. Dies ermöglicht zum Beispiel die flexible und kostensparende Analyse einer großen Zahl von Polymeren durch Bereitstellen einer Vielzahl von individuellen und spezifischen Polymersonden in miniaturisiertem Format mit anschließendem Vergleich der Sonden mit Analyten des Probenmaterials. Dadurch kann in Screening- und Analyseverfahren eine große Menge an Meßdaten erzeugt werden und somit die Informationsfülle biologischer Systeme effizient in kürzester Zeit ganzheitlich bewältigt werden.
Anwendungsfelder sind außerdem Verfahren und Geräte zur kontinuierlichen, diskreten Fragmentanalyse, welche durch die vorliegende Erfindung beschleunigt und damit effizient einsetzbar gemacht werden, sowie prinzipiell alle Anwendungen der Oligo/Polymeranalyse wie bei Liquid Chromatographie/High Pressure Liquid Chromatographie, Gaschromatographie, Dünnschichtchromatographie, Gelelektrophorese, Kapillarelektrophorese, Massenspektrometrie etc. sowie alle Anwendungen von "Sonden-Arrays". Weiterhin unterstützt wird damit die Substanzentwicklung und das Austesten von entsprechenden Substanzen u. a. in der Pharmaforschung. Weitere wichtige Anwendungsgebiete sind die Molekulare Diagnostik, DNA- und/oder RNA-Analyse, Screening nach molekularen Interaktionen beispielsweise in der Immunologie, Molekularbiologie, Histologie und Kombinatorischen Chemie.
Bei der Gestaltung gibt es ebenso wie bei der Fertigung der Reaktionsträger eine Vielzahl von Ausführungsvarianten, die in den folgenden Skizzen dargestellt sind:
Fig. 1a zeigt eine zweidimensionale Struktur des mikrofluidischen Reaktionsträgers in der Draufsicht. Fig. 1b und 1c zeigen die dazugehörigen Schnittdarstellungen: Die Mikrokanalstruktur 1 befindet sich in der mittleren Strömungsebene 30 des Reaktionsträgers. Diese mittlere Strömungsebene wird von der unteren Deckschicht 10 und der oberen Deckschicht 20 abgeschlossen. Die Strömungsstruktur besteht aus Zuführungskanälen 2 und Abführungskanälen 3, sowie den dazwischenliegenden Reaktionskanälen 4 mit jeweils mindestens einem Reaktionsbereich.
Fig. 2 zeigt eine dreidimensionale Struktur des mikrofluidischen Reaktionsträgers in der Draufsicht. Fig. 2b, 2c und 2d zeigen die dazugehörigen Schnittdarstellungen: Die Mikrokanalstruktur 100 besteht aus der unteren Fluidzuführungsstruktur 32 mit den Mikrokanälen 102 und der oberen Abführungskanalstruktur 31 mit den Mikrokanälen 103. Dazwischen befinden sich in der mittleren Schicht 40 die annähernd senkrecht zur Zuführung und Abführung angeordneten Verbindungs- bzw. Reaktionskanäle in den Reaktionsbereichen 104. Die Deckschichten 20 und 30 sind wahlweise transparent oder lichtundurchlässig.
Fig. 3a, 3b und 3c zeigen nochmals die Darstellungen der Fig. 2a, 2b und 2c. Dabei verdeutlichen die Schnittdarstellungen den Strömungsverlauf durch die Zuführungskanäle 102, die Reaktionskanäle 101 in den Reaktionsbereichen 104 und die Fluidabführung 103.
Fig. 4a zeigt eine dreidimensionale Kreuzstruktur des mikrofluidischen Reaktionsträgers in der Draufsicht. Fig. 4b, 4c, 4d und 4e zeigen die dazugehörigen Schnittdarstellungen: Die Mikrokanalstruktur 200 befindet sich in der unteren Fluidzuführungs- und Fluidabführungsstruktur 32 mit den Mikrokanälen 202 und der oberen Fluidzuführungs- und Fluidabführungsstruktur 31 mit den Mikrokanälen 203, jeweils um 90° zueinander gedreht. Dazwischen befinden sich in der mittleren Schicht 40 die senkrecht zur Zuführung und Abführung angeordneten Verbindungs- bzw. Reaktionskanäle in den Reaktionsbereichen 204. Die Deckschichten 20 und 30 sind wahlweise transparent oder lichtundurchlässig.
Fig. 5a, 5b und 5c zeigen nochmals die Darstellungen der Fig. 4a, 4b und 4c. Dabei verdeutlichen die Schnittdarstellungen der Mikrostruktur 200 den Strömungsverlauf durch die Zuführungs- und Abführungskanäle 202 und 203, sowie die Reaktionskanäle 201 in den Reaktionsbereichen 204.
Fig. 6 zeigt die Darstellung einer einzelnen zweidimensionalen Strömungsstruktur analog Fig. 1 mit veränderten Querschnitten der Zuführungskanäle 2 und der Abführungskanäle 3 zur gezielten Strömungsbeeinflussung. Die Reaktionskanäle 4 mit jeweils mindestens einem Reaktionsbereich sind hier im Querschnitt unverändert, können aber auch modifiziert werden.
Fig. 7a zeigt analog zu Fig. 6 eine einzelne zweidimensionale Strömungsstruktur mit in der Höhe der Kanäle veränderten Querschnitten der Zuführungskanäle 2 und der Abführungskanäle 3 zur gezielten Strömungsbeeinflussung. Die Reaktionskanäle 4 mit jeweils mindestens einem Reaktionsbereich sind hier im Querschnitt ebenfalls verändert und nicht einheitlich in der Größe. Die Struktur wird durch die schräg angeordneten Deckschichten 10 und 20 geschlossen.
Fig. 8 zeigt die Darstellung einer dreidimensionalen Strömungsstruktur analog Fig. 2 und 3 mit veränderten Querschnitten der Zuführungskanäle 102 und der Abführungskanäle 103 zur gezielten Strömungsbeeinflussung. Die Reaktionskanäle in den Reaktionsbereichen 104 sind dabei in ihrer Größe unverändert.
Fig. 9 zeigt eine zu Fig. 8 analoge Darstellung, wobei die Reaktionsbereiche 104 entsprechender der Größe der Zuführungskanäle 102 und Abführungskanäle 103 unterschiedliche Größe aufweisen.
Fig. 10a, 10b und 10c zeigen eine zu Fig. 3a, 3b und 3c analoge Darstellung, wobei sich die Zuführungskanäle 102 und die Abführungskanäle 103 in ihrer Höhe verändern und damit die Strömung beeinflussen. Die Reaktionsbereiche 104 und die Reaktionskanäle 101 sind, bedingt durch die Dicke der mittleren Strukturschicht 40, einheitlich lang.
Fig. 11a, 11b, 11c, 11d und 11e zeigen eine dreidimensionalen Kreuzstruktur der Strömung in einer zu Fig. 4a, 4b, 4c, 4d und 4e und 5a, 5b und 5c analogen Darstellung mit veränderten Querschnitten der Zuführungskanäle 202 und Abführungskanäle 203 zur gezielten Strömungsbeeinflussung. Die Reaktionskanäle in den Reaktionsbereichen 204 sind dabei von unveränderter Größe.
Fig. 12a zeigt die Darstellung der Fig. 5c der Kreuzstruktur mit zwei Detailvarianten 12b und 12c. Das Detail 12b stellt die Struktur aus den Deckschichten 10 und 20 sowie einer mittleren Schicht 40 mit den Reaktionsbereichen in den Reaktionskanälen 201 sowie den Zuführungskanälen 202 und den Abführungskanälen 203 dar. Im Detail 12c sind die Reaktionskanäle 201 aus der Variante 12b jeweils durch eine dreischichtige Mikrostruktur ersetzt. Diese umfaßt zwei Schichten 301 und 303 zur Glättung und Stabilisierung der Zu- und Abströmung 202 und 203 sowie einer eigentlichen Reaktionsschicht 302 aus weiteren Mikrokanälen oder beispielsweise einem Glasflies.
Fig. 13 zeigt eine Anschlußvariante der Mikro-Kreuzstruktur 200 nach Fig. 4a, 4b, 4c, 4d, 4e und 5a, 5b und 5c mit zwei Mikroanströmungskanalvarianten 401 und 402. Beide Varianten verbinden einen Kanal für die Fluidversorgung 400 jeweils mit allen parallelen Kanälen 202 und 203 der beiden Ebenen. So können sämtliche Reaktionsbereiche 204 gleichzeitig auf verschiedenen Zu- und Abführungsvarianten mit Fluid bespült werden.
Fig. 14 zeigt eine zu Fig. 13 analoge Darstellung mit zwei in die Fluidversorgung integrierten Ventilen 500. Diese versorgen die Mikrokanalstruktur 200 über die Kanäle in der einen Ebene 202 und der anderen Ebene 203. Dadurch können die Reaktionskanäle in den Reaktionsbereichen 204 mit Fluid bespült werden. Es können ein, mehrere oder alle Reaktionsbereiche 204 gleichzeitig mit Fluid bespült werden. Durch die Ventilstellung und die Strömungsrichtung durch die Reaktionskanäle können schnell beliebige Fluidversorgungszyklen realisiert werden. Hierzu sind nur die Ventile 500 zu verstellen und mit Unter- oder Überdruck zu beaufschlagen. Auch die einheitlichen Zuführungen 400, hier mit der Kanalvariante 402, können in die Fluidzyklen integriert werden.
Fig. 15a zeigt eine Ausführungsvariante des Ventils 500 aus Fig. 14 mit weiteren Schnittdarstellungen 15b und 15c. Das Ventil ist horizontal in Mikrotechnik ausgeführt. Es besteht im wesentlichen aus einer Scheibe 509 und einer Platte 600. Die Platte ist mit der Mikrostruktur 200 über Kanäle 601 bis 604 verbunden, so daß wahlweise die Fluide der Zuführungskanäle bzw. der Mikrotanks hinter den Kanälen 501 bis 504 in die Kanäle 202 der Mikrostruktur gepumpt werden können. Die Zuordnung kann durch Drehen der Ventilscheibe 509 seriell verändert werden. Dieses Ventil 500 kann gemäß Fig. 14 auch an beide Kanalstrukturen 202 und 203 der Kreuzstruktur 200 angeschlossen werden. Damit können die Reaktionskanäle individuell mit Fluid benetzt werden. Über eine zentrale Zuführung 510 im Ventil 500 werden analog zu den starren Zusammenführungen 401 und 402 aus Fig. 13 die einzelnen Mikrokanäle 601 bis 604 wahlweise verbunden, beispielsweise für einheitliche Bespülungen beim Reinigen oder anderen einheitlichen Schritten z. B. bei der ortsaufgelösten Synthese im Reaktionsträger.
Fig. 16a zeigt eine weitere Ausführungsvariante des Multiplexventils 500 mit der Schnittdarstellung 16b. Hier sind die einzelnen Versorgungskanäle 501 bis 516 kreisförmig um den Reaktionsträger 200 angeordnet. Das Prinzip entspricht Fig. 15a, 15b, 15c. Es können damit jedoch mehr oder größere Anschlüsse realisiert werden. Die Scheibe 509 befindet sich wieder auf einer zweischichtigen Grundplatte 600 und 610.
Fig. 17 zeigt einen fluidischen Reaktionsträger im Querschnitt, der durch eine Spannvorrichtung aufgenommen ist, die mit zwei gegenüberliegenden Spannbacken 701 und 702 mit einer integrierten Strömungsführung 703 versehen ist, wobei diese Strömungsführung in einer Strömungsebene 202 ohne Biegung etc. in den Kanälen auskommt. Die gleiche Anordnung ist auch für die Kanäle 203 möglich. Weiterhin dargestellt ist eine schmale Dichtfläche 705.
Fig. 18 zeigt eine weitere Anschlußvariante mit Strömungsführung 703 mit Biegungen 704 in mindestens zwei Ebenen. Dargestellt ist weiterhin eine breite Dichtfläche 705 im Auflager 710.
Fig. 19 zeigt eine weitere Anschlußvariante mit Strömungsführung 703 mit Biegungen 704 in mindestens zwei Ebenen. Mikrobeine 721 analog zu einem Prozessor aus der Halbleitertechnik verbinden den Aufnahmesockel 720 mit dem Reaktionsträger 200 bzw. den Kanälen 202. Die Kanäle 203 können analog angeschlossen werden. Eine Dichtung erfolgt durch die Mikrobeine 721 durch verkleben oder einstecken.
Fig. 20 zeigt am Beispiel der Mikrobeine 721 aus Fig. 19 eine Hinterspülung 803 zur Vermeidung von Ablagerungen in einer Biegung der Strömung und der damit verbundenen Verschleppungsgefahr. Diese Mikrobeine 721 sind in dem Reaktionsträger in der unteren Deckschicht 10 verankert. Durch die zweite Reihe an Reinigungsbeinen 801 kann gezielt Flüssigkeit über die Kanäle 802 in die Ecken 803 gespült werden und dadurch eine Ablagerung vermieden bzw. beseitigt werden.

Claims (25)

1. Mikrofluidischer Reaktionsträger mit einer Mehrzahl von Reaktionsbereichen, dadurch gekennzeichnet, daß dieser Reaktionsträger eine Strömungskanalstruktur für das Durchleiten von Fluiden enthält, wobei Zuführungskanäle und dazu parallele Abführungskanäle durch zu diesen unter einem Winkel angeordnete Verbindungskanäle miteinander verbunden sind und besagte Verbindungskanäle als Reaktionsbereiche dienen.
2. Mikrofluidischer Reaktionsträger nach Anspruch 1, dadurch gekennzeichnet, daß die Strömungskanalstruktur aus drei Strömungsebenen besteht, wobei die Zuführungskanäle zueinander parallel in einer ersten Strömungsebene liegen und die Abführungskanäle zueinander parallel in einer dritten Strömungsebene liegen und zu diesen beiden Strömungsebenen senkrecht oder annähernd senkrecht die Verbindungskanäle mit den Reaktionsbereichen liegen.
3. Mikrofluidischer Reaktionsträger nach Anspruch 2, dadurch gekennzeichnet, daß in einer zu der ersten und der dritten Strömungsebene senkrechten Projektion die Zuführungskanäle der ersten Strömungsebene die Abführungskanäle der zweiten Strömungsebene unter einem Winkel kreuzen.
4. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß jeder Strömungskanal individuell über ein Ventilsystem mit Fluid beströmt und entleert werden kann.
5. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Abführung des Fluids jedes Reaktionsbereichs ohne Kontakt dieses Fluids zu den anderen Reaktionsbereichen erfolgt.
6. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Strömungskanalstruktur einseitig mit einer transparenten Deckschicht versehen ist.
7. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Strömungskanalstruktur beidseitig mit einer transparenten Deckschicht versehen ist.
8. Mikrofluidischer Reaktionsträger nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die transparenten Deckschichten aus Glas oder Kunststoff bestehen und in diese Deckschichten eine Struktur von Mikrolinsen derart integriert ist, daß das einfallende Licht auf die Reaktionsbereiche fokussiert wird und das ausfallende Licht einer Nachweisreaktion entsprechend gebündelt wird.
9. Mikrofluidischer Reaktionsträger nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die transparenten Deckschichten aus einer Vielzahl von parallelen verschmolzenen Glasfasern bestehen, welche derart zu einer transparenten Wabenstruktur ausgebildet sind, daß das ein- und ausfallende Licht parallelisiert und ein seitliches reflexionsbedingtes Ausbreiten des Lichtes in der Deckschicht verhindert wird.
10. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Wände zwischen den Zuführungskanälen und den Abführungskanälen lichtundurchlässig ausgeführt sind.
11. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß die Verbindungskanäle aus einer Vielzahl von zusammengeschmolzenen Glasfaserbündeln bestehen, wobei die Glasfaserseelen herausgeätzt sind und somit Mikrokanäle bestehen.
12. Mikrofluidischer Reaktionsträger nach Anspruch 11, dadurch gekennzeichnet, daß die Glasfaserbündel mit herausgeätzten Seelen nur im Bereich der Reaktionsbereich angeordnet werden.
13. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß die Verbindungsebenen aus einer Siliziumschicht bestehen, in welche eine Vielzahl von kleinen Kanälen geätzt wurde.
14. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß mehrere Strömungsebenen so übereinander angeordnet werden, daß sich die Reaktionsbereiche in der zu den Strömungsebenen senkrechten Projektion nicht überlagern und individuell durch Licht photoaktiviert werden können und Licht ebenfalls ortsspezifisch für jeden der Reaktionsbereiche detektiert werden kann.
15. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß eine programmierbare Lichtquellenmatrix für die Synthese und Analyse in den Reaktionsträger integriert wird.
16. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß eine Detektionseinheit in Form einer CCD-Matrix in den Reaktionsträger integriert wird.
17. Verwendung eines mikrofluidischen Reaktionsträgers nach einem der Ansprüche 6 bis 16, wobei durch die transparente Deckschicht Lumineszenz- und Fluoreszenzmessungen im Rücklichtverfahren durchgeführt werden.
18. Verwendung eines mikrofluidischen Reaktionsträgers nach einem der Ansprüche 7 bis 16, wobei jeder Reaktionsbereich über eine programmierbare Lichtquellenmatrix Licht definierter Wellenlänge ausgesetzt wird und über besagtes Licht und besagte Fluidversorgung biochemisch funktionalisiert wird und gleichzeitig über die zweite transparente Deckschicht alle Vorgänge im Reaktionsträger optisch überwacht werden.
19. Verwendung eines mikrofluidischen Reaktionsträgers nach einem der Ansprüche 7 bis 16, wobei durch die beiden transparenten Deckschichten Lumineszenz- und Fluoreszenzmessungen sowie Absorptionsmessungen im Durchlichtverfahren durchgeführt werden.
20. Verwendung eines mikrofluidischen Reaktionsträgers nach einem der Ansprüche 1 bis 16 zur naßchemischen Synthese von Oligomer- oder Polymersonden wie DNA, RNA, PNA, LNA und anderen.
21. Verwendung eines mikrofluidischen Reaktionsträgers nach einem der Ansprüche 1 bis 16 zur integrierten Synthese und Analyse von Polymeren.
22. Verwendung eines mikrofluidischen Reaktionsträgers nach einem der Ansprüche 1 bis 16 zur optischen Analyse der Hybridisierung von Polymersonden mit komplementären Fragmenten.
23. Verwendung eines mikrofluidischen Reaktionsträgers nach einem der Ansprüche 1 bis 16 zur effizienten hochparallelen kombinierten naßchemischen und lichtgesteuerten Synthese von Oligomer- oder Polymersonden wie DNA, RNA, PNA, LNA, Proteinen und anderen sowie zur anschließenden optischen Analyse der Hybridisierung mit komplementären Fragmenten.
24. Verwendung eines mikrofluidischer Reaktionsträgers nach einem der Ansprüche 1 bis 16 zur lichtgesteuerten Synthese von Oligomer oder Polymersonden wie DNA, RNA, PNA, LNA und anderen sowie zur anschließenden optischen Analyse der Hybridisierung mit komplementären Fragmenten.
25. Verwendung eines mikrofluidischen Reaktionsträgers nach einem der Ansprüche 1 bis 16 zur individuellen Benetzung und biochemischen Funktionalisierung jedes Reaktionsbereiches im Reaktionsträger.
DE19935433A 1999-08-01 1999-08-01 Mikrofluidischer Reaktionsträger Ceased DE19935433A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE19935433A DE19935433A1 (de) 1999-08-01 1999-08-01 Mikrofluidischer Reaktionsträger
AU65692/00A AU6569200A (en) 1999-08-01 2000-08-01 Microfluid reaction carrier having three flow levels and a transparent protective layer
EP05024237A EP1652578A3 (de) 1999-08-01 2000-08-01 Mikrofluidischer Reaktionsträger
EP00953136A EP1198294B1 (de) 1999-08-01 2000-08-01 Mikrofluidischer reaktionsträger mit drei strömungsebenen
US10/030,182 US7361314B1 (en) 1999-08-01 2000-08-01 Microfluid reaction carrier having three flow levels and a transparent protective layer
CA002379787A CA2379787A1 (en) 1999-08-01 2000-08-01 Microfluid reaction carrier having three flow levels and a transparent protective layer
DE50011574T DE50011574D1 (de) 1999-08-01 2000-08-01 Mikrofluidischer reaktionsträger mit drei strömungsebenen
PCT/EP2000/007445 WO2001008799A1 (de) 1999-08-01 2000-08-01 Mikrofluidischer reaktionsträger mit drei strömungsebenen und transparenter deckschicht
AT00953136T ATE309041T1 (de) 1999-08-01 2000-08-01 Mikrofluidischer reaktionsträger mit drei strömungsebenen
US12/003,826 US20080132430A1 (en) 1999-08-01 2008-01-02 Microfluidic reaction support having three flow levels and a transparent cover layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19935433A DE19935433A1 (de) 1999-08-01 1999-08-01 Mikrofluidischer Reaktionsträger

Publications (1)

Publication Number Publication Date
DE19935433A1 true DE19935433A1 (de) 2001-03-01

Family

ID=7916347

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19935433A Ceased DE19935433A1 (de) 1999-08-01 1999-08-01 Mikrofluidischer Reaktionsträger
DE50011574T Expired - Lifetime DE50011574D1 (de) 1999-08-01 2000-08-01 Mikrofluidischer reaktionsträger mit drei strömungsebenen

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50011574T Expired - Lifetime DE50011574D1 (de) 1999-08-01 2000-08-01 Mikrofluidischer reaktionsträger mit drei strömungsebenen

Country Status (7)

Country Link
US (2) US7361314B1 (de)
EP (2) EP1198294B1 (de)
AT (1) ATE309041T1 (de)
AU (1) AU6569200A (de)
CA (1) CA2379787A1 (de)
DE (2) DE19935433A1 (de)
WO (1) WO2001008799A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048844A2 (de) * 1999-12-23 2001-07-05 P 21 Gmbh Vorrichtung in mikrostrukturtechnik zum hindurchleiten von medien sowie brennstoffzellensystem
DE10041853C1 (de) * 2000-08-25 2002-02-28 Gmd Gmbh Konfigurierbares Mikroreaktornetzwerk
DE10062246C1 (de) * 2000-12-14 2002-05-29 Advalytix Ag Verfahren und Vorrichtung zur Manipulation kleiner Flüssigkeitsmengen
DE10102726A1 (de) * 2001-01-22 2002-08-22 Vodafone Pilotentwicklung Gmbh Reaktor
DE10142691A1 (de) * 2001-08-31 2003-03-27 Infineon Technologies Ag Verfahren zum Nachweis biochemischer Reaktionen sowie eine Vorrichtung hierfür
DE10145831A1 (de) * 2001-09-10 2003-04-03 Siemens Ag Verfahren zur Individualisierung von Materialien mit Hilfe von Nukleotid-Sequenzen
WO2005028095A1 (de) * 2003-09-05 2005-03-31 Ehrfeld Mikrotechnik Bts Gmbh Mikrophotoreaktor zur durchführung photochemischer reaktionen
WO2005044442A1 (en) * 2003-10-27 2005-05-19 Velocys, Inc. Manifold designs, and flow control in multichannel microchannel devices
EP1534430A2 (de) * 2002-07-26 2005-06-01 Applera Corporation Mikrofluidgr ssenausschluss-vorrichtungen, -systeme und verfahren
US7214348B2 (en) 2002-07-26 2007-05-08 Applera Corporation Microfluidic size-exclusion devices, systems, and methods
US7641865B2 (en) 2005-04-08 2010-01-05 Velocys Flow control through plural, parallel connecting channels to/from a manifold

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19935433A1 (de) * 1999-08-01 2001-03-01 Febit Ferrarius Biotech Gmbh Mikrofluidischer Reaktionsträger
DE10115474A1 (de) * 2001-03-29 2002-10-10 Infineon Technologies Ag Mikrofluidkanalstruktur und Verfahren zur Herstellung einer derartigen Mikrofluidkanalstruktur
WO2002095073A1 (en) 2001-05-18 2002-11-28 Wisconsin Alumni Research Foundation Method for the synthesis of dna sequences
US20020187072A1 (en) * 2001-06-07 2002-12-12 Nanostream, Inc. Multi-layer microfluidic splitter
DE10143189A1 (de) * 2001-09-04 2003-03-20 Clariant Gmbh Verfahren und Vorrichtung zur prozeßbegleitenden Reinigung von Mikro-und Minireaktoren
DE10218280C1 (de) * 2002-04-19 2003-11-20 Fraunhofer Ges Forschung Integriertes Misch- und Schaltsystem für die Mikroreaktionstechnik
US7718099B2 (en) 2002-04-25 2010-05-18 Tosoh Corporation Fine channel device, fine particle producing method and solvent extraction method
FR2839660B1 (fr) * 2002-05-17 2005-01-21 Commissariat Energie Atomique Microreacteur,son procede de preparation,et procede pour realiser une reaction biochimique ou biologique
AU2003248273A1 (en) * 2002-07-12 2004-02-02 Mitsubishi Chemical Corporation Analytical chip, analytical chip unit, analyzing apparatus, method of analysis using the apparatus, and method of producing the analytical chip
US7169617B2 (en) * 2004-08-19 2007-01-30 Fujitsu Limited Device and method for quantitatively determining an analyte, a method for determining an effective size of a molecule, a method for attaching molecules to a substrate, and a device for detecting molecules
WO2006065387A1 (en) 2004-11-03 2006-06-22 Velocys, Inc. Partial boiling in mini and micro-channels
EP1938101A2 (de) * 2005-09-13 2008-07-02 Fluidigm Corporation Mikrofluidische testvorrichtungen und -verfahren
DE102006024355B4 (de) * 2006-05-19 2008-04-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrofluidische Anordnung zur Detektion von in Proben enthaltenen chemischen, biochemischen Molekülen und/oder Partikeln
DE102007018833A1 (de) 2007-04-20 2008-10-23 Febit Holding Gmbh Verbesserte molekularbiologische Prozessanlage
DE102006062089A1 (de) 2006-12-29 2008-07-03 Febit Holding Gmbh Verbesserte molekularbiologische Prozessanlage
EP1980854B1 (de) * 2007-04-12 2009-10-07 Micronas Holding GmbH Verfahren und Vorrichtung zur Messung der Konzentration eines in einer zu untersuchenden Probe enthaltenen Liganden
EP2556887A1 (de) * 2011-08-08 2013-02-13 SAW instruments GmbH Verbesserte mikrofluidische Vorrichtungen zur selektiven Exposition von einer oder mehr Probeflüssigkeiten mit einem oder mehreren Probenbereichen
CN105498867B (zh) * 2014-09-22 2017-07-04 北京科技大学 梯度二氧化硅表面微流体系统的构筑方法
CN104991055A (zh) * 2015-06-19 2015-10-21 大连理工大学 一种血栓即时检测poct产品中的血液样本延时流动仿生操控单元
DE102016222035A1 (de) 2016-11-10 2018-05-17 Robert Bosch Gmbh Mikrofluidische Vorrichtung und Verfahren zur Analyse von Proben
DE102022209420A1 (de) * 2022-09-09 2024-03-14 Robert Bosch Gesellschaft mit beschränkter Haftung Array für eine mikrofluidische Vorrichtung, mikrofluidische Vorrichtung und Verfahren zu ihrem Betrieb.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996015450A1 (en) * 1994-11-10 1996-05-23 David Sarnoff Research Center, Inc. A partitioned microelectronic device array
US5534328A (en) * 1993-12-02 1996-07-09 E. I. Du Pont De Nemours And Company Integrated chemical processing apparatus and processes for the preparation thereof
WO1998000231A1 (en) * 1996-06-28 1998-01-08 Caliper Technologies Corporation High-throughput screening assay systems in microscale fluidic devices
WO1998002728A1 (en) * 1996-07-16 1998-01-22 Caliper Technologies Corporation Fourier detection of species migrating in a microchannel
US5858195A (en) * 1994-08-01 1999-01-12 Lockheed Martin Energy Research Corporation Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US5867266A (en) * 1996-04-17 1999-02-02 Cornell Research Foundation, Inc. Multiple optical channels for chemical analysis
WO1999041015A1 (de) * 1998-02-11 1999-08-19 Institut für Physikalische Hochtechnologie e.V. Miniaturisierter temperaturzonen flussreaktor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979637A (en) * 1971-11-08 1976-09-07 American Optical Corporation Microchannel plates and method of making same
US5846708A (en) * 1991-11-19 1998-12-08 Massachusetts Institiute Of Technology Optical and electrical methods and apparatus for molecule detection
JP3558294B2 (ja) * 1992-05-01 2004-08-25 トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルベニア 微細加工装置を用いたポリヌクレオチド増幅分析
US5595712A (en) * 1994-07-25 1997-01-21 E. I. Du Pont De Nemours And Company Chemical mixing and reaction apparatus
US5872010A (en) 1995-07-21 1999-02-16 Northeastern University Microscale fluid handling system
US5863502A (en) * 1996-01-24 1999-01-26 Sarnoff Corporation Parallel reaction cassette and associated devices
US6143248A (en) * 1996-08-12 2000-11-07 Gamera Bioscience Corp. Capillary microvalve
US5872623A (en) * 1996-09-26 1999-02-16 Sarnoff Corporation Massively parallel detection
WO1999014368A2 (en) * 1997-09-15 1999-03-25 Whitehead Institute For Biomedical Research Methods and apparatus for processing a sample of biomolecular analyte using a microfabricated device
DE19745373A1 (de) * 1997-10-14 1999-04-15 Bayer Ag Optisches Meßsystem zur Erfassung von Lumineszenz- oder Fluoreszenzsignalen
US6210910B1 (en) * 1998-03-02 2001-04-03 Trustees Of Tufts College Optical fiber biosensor array comprising cell populations confined to microcavities
DE59905743D1 (de) 1998-03-11 2003-07-03 Steag Microparts Gmbh Probenträger
US6485690B1 (en) * 1999-05-27 2002-11-26 Orchid Biosciences, Inc. Multiple fluid sample processor and system
DE19935433A1 (de) * 1999-08-01 2001-03-01 Febit Ferrarius Biotech Gmbh Mikrofluidischer Reaktionsträger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534328A (en) * 1993-12-02 1996-07-09 E. I. Du Pont De Nemours And Company Integrated chemical processing apparatus and processes for the preparation thereof
US5858195A (en) * 1994-08-01 1999-01-12 Lockheed Martin Energy Research Corporation Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
WO1996015450A1 (en) * 1994-11-10 1996-05-23 David Sarnoff Research Center, Inc. A partitioned microelectronic device array
US5867266A (en) * 1996-04-17 1999-02-02 Cornell Research Foundation, Inc. Multiple optical channels for chemical analysis
WO1998000231A1 (en) * 1996-06-28 1998-01-08 Caliper Technologies Corporation High-throughput screening assay systems in microscale fluidic devices
WO1998002728A1 (en) * 1996-07-16 1998-01-22 Caliper Technologies Corporation Fourier detection of species migrating in a microchannel
WO1999041015A1 (de) * 1998-02-11 1999-08-19 Institut für Physikalische Hochtechnologie e.V. Miniaturisierter temperaturzonen flussreaktor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048844A3 (de) * 1999-12-23 2002-03-14 Mannesmann Ag Vorrichtung in mikrostrukturtechnik zum hindurchleiten von medien sowie brennstoffzellensystem
WO2001048844A2 (de) * 1999-12-23 2001-07-05 P 21 Gmbh Vorrichtung in mikrostrukturtechnik zum hindurchleiten von medien sowie brennstoffzellensystem
DE10041853C1 (de) * 2000-08-25 2002-02-28 Gmd Gmbh Konfigurierbares Mikroreaktornetzwerk
DE10062246C1 (de) * 2000-12-14 2002-05-29 Advalytix Ag Verfahren und Vorrichtung zur Manipulation kleiner Flüssigkeitsmengen
DE10102726A1 (de) * 2001-01-22 2002-08-22 Vodafone Pilotentwicklung Gmbh Reaktor
DE10142691B4 (de) * 2001-08-31 2006-04-20 Infineon Technologies Ag Verfahren zum Nachweis biochemischer Reaktionen sowie eine Vorrichtung hierfür
DE10142691A1 (de) * 2001-08-31 2003-03-27 Infineon Technologies Ag Verfahren zum Nachweis biochemischer Reaktionen sowie eine Vorrichtung hierfür
DE10145831A1 (de) * 2001-09-10 2003-04-03 Siemens Ag Verfahren zur Individualisierung von Materialien mit Hilfe von Nukleotid-Sequenzen
US7214348B2 (en) 2002-07-26 2007-05-08 Applera Corporation Microfluidic size-exclusion devices, systems, and methods
EP1534430A2 (de) * 2002-07-26 2005-06-01 Applera Corporation Mikrofluidgr ssenausschluss-vorrichtungen, -systeme und verfahren
EP1534430A4 (de) * 2002-07-26 2005-11-23 Applera Corp Mikrofluidgr ssenausschluss-vorrichtungen, -systeme und verfahren
US8623296B2 (en) 2002-07-26 2014-01-07 Applied Biosystems, Llc Microfluidic size-exclusion devices, systems, and methods
US10625258B2 (en) 2002-07-26 2020-04-21 Applied Biosystems, Llc Microfluidic size-exclusion devices, systems, and methods
WO2005028095A1 (de) * 2003-09-05 2005-03-31 Ehrfeld Mikrotechnik Bts Gmbh Mikrophotoreaktor zur durchführung photochemischer reaktionen
WO2005044442A1 (en) * 2003-10-27 2005-05-19 Velocys, Inc. Manifold designs, and flow control in multichannel microchannel devices
US7422910B2 (en) 2003-10-27 2008-09-09 Velocys Manifold designs, and flow control in multichannel microchannel devices
CN100450602C (zh) * 2003-10-27 2009-01-14 维罗西股份有限公司 歧管设计和多路微通道装置中的流动控制
EP2497569A3 (de) * 2003-10-27 2014-01-08 Velocys, Inc. Verfahren zur Verteilung von Fluiden in mehrkanaligen Mikrokanalvorrichtungen
US7641865B2 (en) 2005-04-08 2010-01-05 Velocys Flow control through plural, parallel connecting channels to/from a manifold

Also Published As

Publication number Publication date
AU6569200A (en) 2001-02-19
WO2001008799A9 (de) 2002-09-06
ATE309041T1 (de) 2005-11-15
EP1198294B1 (de) 2005-11-09
EP1198294A1 (de) 2002-04-24
WO2001008799A1 (de) 2001-02-08
CA2379787A1 (en) 2001-02-08
DE50011574D1 (de) 2005-12-15
EP1652578A2 (de) 2006-05-03
US7361314B1 (en) 2008-04-22
EP1652578A3 (de) 2006-07-26
US20080132430A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
DE19935433A1 (de) Mikrofluidischer Reaktionsträger
DE60300980T2 (de) Lochmikromischer
DE60003845T2 (de) Hybridisierungstest für biomaterial in einem biokanal
DE60018733T2 (de) Vorrichtung und verfahren zur probenanalyse
EP0706646B1 (de) Probenträger und seine verwendung
EP1117478B1 (de) Träger für analytbestimmungsverfahren und verfahren zur herstellung des trägers
DE19947495C2 (de) Mikrofluidischer Mikrochip
DE10228767B4 (de) Mikrovorrichtung und Verfahren für eine Komponententrennung in einem Fluid
EP1054735B1 (de) Miniaturisierter temperaturzonen flussreaktor
EP1807208B1 (de) Anordnung zur integrierten und automatisierten dna- oder protein-analyse in einer einmal verwendbaren cartridge, herstellungsverfahren für eine solche cartridge und betriebsverfahren der dna- oder protein-analyse unter verwendung einer solchen cartridge
DE60214155T2 (de) Verfahren zur beschleunigung und verstärkung der bindung von zielkomponenten an rezeptoren und vorrichtung dafür
DE19910392B4 (de) Mikrosäulenreaktor
WO2006072384A1 (de) Verfahren und vorrichtung zur dosierung und durchmischung kleiner flüssigkeitsmengen
WO1999057310A2 (de) Analyse- und diagnostikinstrument
DE102008002509A1 (de) Stopped-Flow-Chip
EP1303353B1 (de) Verfahren und vorrichtung zum analysieren von chemischen oder biologischen proben
EP1309397B1 (de) Mikroreaktoranordnung zur festphasengestützten synthese sowie mikroreaktorsystem mit einzelnen mikroreaktoranordnungen
DE102005049976A1 (de) Anordnung zur integrierten und automatisierten DNA- oder Protein-Analyse in einer einmal verwendbaren Cartridge, Herstellungsverfahren für eine solche Cartridge und Betriebsverfahren der DNA- oder Protein-Analyse unter Verwendung einer solchen Cartridge
DE10153663B4 (de) Mikroanalytische Vorrichtung zum Erfassen von Nahe-Infrarot-Strahlung emittierenden Molekülen
EP1510254A2 (de) Verfahren und Vorrichtung zur Bestimmung von Analyten in einer Flüssigkeit
DE10318257A1 (de) Mikroreaktorsystem für die Durchführung und Kontrolle physikalischer, chemischer, biochemischer und molekular-biologischer Reaktionen sowie Verfahren zu seiner Herstellung
DE10057827A1 (de) Mikroreaktoranordnung zur festphasengestützten Synthese sowie Mikroreaktorsystem mit einzelnen Mikroreaktoranordnungen
DE102005000834B4 (de) Verfahren und Vorrichtung zur Dosierung und Durchmischung kleiner Flüssigkeitsmengen

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8110 Request for examination paragraph 44
8131 Rejection