DE2328930A1 - INTERNAL COATED GLASS TUBE AND METHOD FOR MANUFACTURING THE COATING - Google Patents

INTERNAL COATED GLASS TUBE AND METHOD FOR MANUFACTURING THE COATING

Info

Publication number
DE2328930A1
DE2328930A1 DE2328930A DE2328930A DE2328930A1 DE 2328930 A1 DE2328930 A1 DE 2328930A1 DE 2328930 A DE2328930 A DE 2328930A DE 2328930 A DE2328930 A DE 2328930A DE 2328930 A1 DE2328930 A1 DE 2328930A1
Authority
DE
Germany
Prior art keywords
tube
layer
core
glass
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE2328930A
Other languages
German (de)
Other versions
DE2328930C2 (en
Inventor
Raymond William James Uffen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent NV
Original Assignee
International Standard Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Standard Electric Corp filed Critical International Standard Electric Corp
Publication of DE2328930A1 publication Critical patent/DE2328930A1/en
Application granted granted Critical
Publication of DE2328930C2 publication Critical patent/DE2328930C2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/44382Means specially adapted for strengthening or protecting the cables the means comprising hydrogen absorbing materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01853Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01861Means for changing or stabilising the diameter or form of tubes or rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01861Means for changing or stabilising the diameter or form of tubes or rods
    • C03B37/01869Collapsing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02754Solid fibres drawn from hollow preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/32Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/12Drawing solid optical fibre directly from a hollow preform
    • C03B2205/13Drawing solid optical fibre directly from a hollow preform from a hollow glass tube containing glass-forming material in particulate form, e.g. to form the core by melting the powder during drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/12Drawing solid optical fibre directly from a hollow preform
    • C03B2205/16Drawing solid optical fibre directly from a hollow preform the drawn fibre consisting of circularly symmetric core and clad

Description

Patentanwalt
7 Stuttgart 30
Kurze Straße 8
Patent attorney
7 Stuttgart 30
Short street 8

R.W.J.Uffen-2R.W.J.Uffen-2

INTERNATIONAL STANDARD ELECTRIC CORPORATION, NEW YORKINTERNATIONAL STANDARD ELECTRIC CORPORATION, NEW YORK

Innenbeschichtetes Glasrohr und Verfahren zur Herstellung der Beschichtung.Internally coated glass tube and method of making the coating.

Die Erfindung bezieht sich auf ein innenbeschichtetes Glasrohr zur Herstellung von Glasfaserlichtleitern und auf ein Verfahren zur Herstellung der Beschichtung.The invention relates to an internally coated glass tube for the production of glass fiber light guides and to a method to produce the coating.

Die U.S.-P.S. 3 659 915 beschreibt Glasfaserlichtleiter, die aus einem gutleitenden Kern und einem stark absorbierenden Mantel bestehen. Als Materialen für den Kern werden mit Oxyden von Titan, Tantal, Zinn, Niob, Zirkonium, Ytterbium, Lanthanium oder Aluminium dotierte Quarzgläser, als Material für den Mantel Quarzglas angegeben. Ausgegangen wird hierbei von einem Quarzglasrohr, dessen Innenwand mit einem stärker brechenden, dabei mit einem der aufgeführten Oxyde dotierten Quarzglas beschichtet ist. Dieses Rohr wird dann zu einem Glasfaserlichtleiter gewünschter Stärke ausgezogen.The U.S.-P.S. 3 659 915 describes fiber optic light guides made from consist of a highly conductive core and a highly absorbent sheath. The materials used for the core are oxides from Titanium, tantalum, tin, niobium, zirconium, ytterbium, lanthanium or aluminum doped quartz glasses as the material for the jacket Quartz glass specified. This is based on a quartz glass tube, the inner wall of which is covered with a more refractive, is coated with one of the listed oxides doped quartz glass. This tube then becomes a fiber optic light guide desired strength pulled out.

Nach der DT-OS 16 40 559.7 soll nun der Mantel eines aus Mantel und Kern bestehenden Glasfaserlichtleiters aus zwei Schichten bestehen, und zwar einer dünnen auf dem Kern aufliegenden hoher Transparenz und darüber einer weiteren, die dabei ruhig eine geringe Transparenz aufweisen darf, wenn nur die Brechungskoeffizienten der beiden Schichten gleich sind. Angaben über Aus-According to DT-OS 16 40 559.7, the coat should now be made of coat and the core of the existing fiber optic light guide consist of two layers, namely a thin, higher layer resting on the core Transparency and, above that, another one, which can still have a low level of transparency, if only the refractive index of the two layers are the same. Information about ex

309881/1076309881/1076

ORJGINAL INSPECTEDORJGINAL INSPECTED

R.W.J.Uffen-2R.W.J.Uffen-2

gangsmaterialen bei der Herstellung und über die Herstellung dieses Lichtleiters selbst werden nicht gemacht.raw materials during manufacture and through manufacture this light guide itself are not made.

Die vorliegende Erfindung setzt sich einmal zur Aufgabe besonders vorteilhaft beschichtete Glasrohre für die Herstellung von Glasfaserlichtleitern ebenso anzugeben wie auch das zur Herstellung einer solchen Beschichtung benötigte Herstellungsverfahren .The present invention sets itself the task of particularly advantageously coated glass tubes for the production of glass fiber light guides as well as the manufacturing process required to produce such a coating .

Die Lösung der gestellten Aufgabe ist dabei den Ansprüchen zu entnehmen. Vorteil der erfindungsgemäßen innenbeschichteten Glasrohre ist, daß das Glasrohr selbst nur einen gewissen Brechungsindex aber keine besonders hohe Durchlässigkeit, also keine besonders kleinen Verluste aufweisen muß, da zwischen Kernschicht und Rohrmantel noch eine Quarzschicht mit kleinen Verlusten niedergeschlagen wird.The solution to the problem can be found in the claims. Advantage of the internally coated according to the invention Glass tubes is that the glass tube itself only has a certain refractive index but not a particularly high permeability, so need not have particularly small losses, since there is still a quartz layer with small ones between the core layer and the pipe jacket Losses will be put down.

Die Erfindung soll nun anhand der Figuren eingehend beschrieben werden. Es zeigen dabei:The invention will now be described in detail with reference to the figures. It shows:

Pig.l ein mit einer Schicht beschichtetes Rohr nach dem Stand der Technik;Pig.l a pipe coated with a layer after the State of the art;

Fig.2 ein erfindungsgemäß beschichtetes Glasrohr;2 shows a glass tube coated according to the invention;

Fig. 3 eine Anordnung zum Beschichten der Innenwand eines Glasrohres;3 shows an arrangement for coating the inner wall of a Glass tube;

Fig.4 eine Anordnung zum gleichzeitigen Beschichten der Innenwand und zum Ausziehen eines Glasrohres zur Faser.4 shows an arrangement for the simultaneous coating of the Inner wall and for pulling out a glass tube to the fiber.

Fig.l zeigt nun ein Rohr 11, auf dessen Innenwandun? nur eine Beschichtung 10 aufgebracht ist, wie sie aus der US-PS 3 659Fig.l now shows a tube 11, on whose inner wall? just one Coating 10 is applied, as disclosed in US Pat. No. 3,659

309881/1076309881/1076

R.W.J.Uffen-2R.W.J.Uffen-2

bekannt ist. Der Kern der fertigen Lichtleiterfaser besteht dann aus dem Material der Beschichtung 10 und der Mantel aus dem Material des Rohres 11.is known. The core of the finished optical fiber then consists of the material of the coating 10 and the cladding the material of the pipe 11.

Bei einer Lichtleiterfaser für einen Modus wird ein gewisser Anteil der optischen Signalenergie auch im Mantel weitergeleitet. Die Durchlässigkeit des Mantelmaterials bestimmt also die optischen Verluste der Faser mit. Nun wird üblicherweise die Stärke des Mantels aus mechanischen Gründen erheblich größer als die Eindringtiefe der optischen Energie in den Mantel gemacht. Es muß also eigentlich nur die an den Kern unmittelbar anliegende Mantelschicht eine hohe Durchlässigkeit haben.In the case of an optical fiber for one mode, a certain proportion of the optical signal energy is also transmitted in the cladding. The permeability of the cladding material also determines the optical losses of the fiber. Now it is common the thickness of the cladding, for mechanical reasons, is considerably greater than the depth of penetration of the optical energy into the cladding made. So actually only the cladding layer directly adjacent to the core needs to have a high level of permeability.

Unter Ausnutzung dieses Faktors ergibt sich das in Fig.2 dargestellte erfindungsgemäße innenbeschichtete Glasrohr zur Herstellung einer Lichtleiterfaser. Auf die Innenwandung des Glasrohres (20) wird eine Glasschicht (21) "und darauf eine weitere zweite Schicht (22) aufgebracht. Nach dem Ziehvorgang wird der Kern der Lichtleiterfaser aus dem Material der zweiten Schicht (22) gebildet, wogegen der Mantel zwei Schichten aufweist, die aus dem Material der zuerst aufgebrachten Glasschicht (21) bzw. aus dem Material des Glasrohres (20) bestehen. Hierbei kann nun die äußere Mantelschicht größere Verluste als die innere aufweisen, da in sie keine optische Energie vom Kern her mehr eindringt. Der Realteil des Brechungsindexes der äußeren Mantelschicht wird dabei vorzugsweise gleich dem der inneren Mantelschicht, jedoch keinesfalls größer als dieser gewählt, wobei der Realteil des Brechungsidexes des Kernes größer ist als der beider Mantelschichten.When this factor is used, the result is that shown in FIG Internally coated glass tube according to the invention for the production of an optical fiber. On the inside wall of the glass tube (20) a glass layer (21) ″ and a further second layer (22) is applied to it. After the drawing process, the core of the optical fiber is formed from the material of the second layer (22), whereas the cladding has two layers, which consist of the material of the glass layer (21) applied first or of the material of the glass tube (20). In this case, the outer cladding layer can now have greater losses than the inner one, since no optical energy is transferred into it Core penetrates more. The real part of the refractive index of the outer cladding layer is preferably equal to that of the inner cladding layer, but in no way larger than this, the real part of the refractive index of the core is larger than that of both cladding layers.

Wenn man nach dieser Art auf die Innenwandung des Glasrohres eine Anzahl verschiedener Schichten aufbringt, deren Zusammensetzung so gewählt wird, daß eine nach einem quadratischen Gesetz erfolgende Abstufung des Brechungsindexes erfolgt, erhältIf you apply a number of different layers to the inner wall of the glass tube in this way, their composition is chosen so that the refractive index is graded according to a quadratic law

309881/10 76309881/10 76

R.W.J.Uffen-2R.W.J.Uffen-2

man nach dem Zidien eine selbstfocussierende Vielmoden-Lichtleiterfaser. one after the Zidien a self-focusing multi-mode optical fiber.

Für die Herstellung einer Einmoden-Lichtleiterfaser wählt man die Stärke der Innenwandbeschichtung nur zu 0,5 y· Bei den herkömmlichen Arten der Oxydbeschichtung liegt dieser Wert in dem Bereich, in dem noch keine Maßnahmen für den Ausgleich der Ausdehnungskoeffizienten von Kern und Mantel getroffen werden müssen. Wenn größere Schichtdicken etwa im Bereich von 5···10 μ gewählt werden müssen, so müssen die unterschiedlichen Ausdehnungskoeffizienten der Materialien berücksichtigt werden. Geeignete Zusammenstellungen können aus einer großen Anzahl bekannter Glasrohren ausgewählt werden. Im Einzelnen ist dabei bekannt, daß eine Reihe von Gläsern mit hohem Quarzanteil mit reinem Quarzglas verbunden werden kann.Selects for the manufacture of a single mode optical fiber the thickness of the inner wall coating is only 0.5 y · At With the conventional types of oxide coating, this value is in the range in which there are still no measures for compensation the expansion coefficients of the core and cladding must be met. If larger layer thicknesses, for example must be selected in the range of 5 ··· 10 μ, so must the different expansion coefficients of the materials are taken into account. Suitable compilations can can be selected from a large number of known glass tubes. In detail, it is known that a number of Glasses with a high quartz content can be combined with pure quartz glass.

Ein vorteilhaftes Herstellungsverfahren für eine solche Lichtleiterfaser, die für die Übertragung der Strahlung eines GaI-liumarsenidlasers dient,geht aus von einem Quarzglasrohr (30) mit ungefähr 7 mm Außendurchmesser und 1 mm Wandstärke. Die Innenwandung dieses Rohres ist flammpoliert und darauf im Vakuum getrocknet, um Feuchtigkeitsreste zu beseitigen. Feuchtigkeit bewirkt im Fertigprodukt das Vorkommen von OH-Gruppen, die eine unerwünschte Absorption bei Wellenlängen um 0,9 μ hervorrufen. Nach dem Trocknen wird das Rohr durch die Mittenöffnung einer Hochfrequenzspule (3D hindurchgeführt und seine Enden in Dichtungen (32) gehalten.An advantageous manufacturing process for such an optical fiber, those for the transmission of the radiation from a GaI-lium arsenide laser is based on a quartz glass tube (30) with an outer diameter of approximately 7 mm and a wall thickness of 1 mm. the The inner wall of this tube is flame-polished and then dried in a vacuum to remove moisture residues. Moisture causes the occurrence of OH groups in the finished product, which cause undesirable absorption at wavelengths by 0.9 μ. After drying, the pipe is passed through the center opening of a high-frequency coil (3D and its ends held in seals (32).

Die Schicht mit dem hohen Brechungsindex auf der Innenwand des Rohres entsteht bei einer Reaktion in der Dampfphase während einer Hochfrequenzerhitzung durch Niederschlagen eines Quarzglasbelages mit einem Titangehalt von ein paar Prozenten. Die chemischen Reagenzien für diesen Prozess sindThe layer with the high refractive index on the inner wall of the pipe is created by a reaction in the vapor phase during high-frequency heating by depositing a quartz glass coating with a titanium content of a few Percent. The chemical reagents for this process are

309881/1076309881/1076

R.W.J.Uffen-2R.W.J.Uffen-2

Siliziumtetrachlorid, Titantetrachlorid und Sauerstoff. Beide Chloride sind bei Raumtemperatur flüssig, sie werden aber an den Reaktionsort in Dampfform durch Versprühen mittels trockenen Stickstoffgasen gebracht. Die beiden flüssigen Reagenzien werden voneinander getrennt gehalten und deshalb werden auch zwei voneinander unabhängige Gasströme für ihr Heranführen verwendet. Hierdurch kann das Mischungsverhältnis der beiden Dämpfe in der Reaktionszone leicht durch Ändern der Gaszufuhr eingeregelt werden. Im Inneren des Rohres (30) werden die beiden Dämpfe vermischt mit trockenem Sauerstoffgas. Die Reaktion erfolgt bei Raumtemperatur nicht spontan, sie wird aber in der durch Hochfrequenzerregung begrenzten Glühzone beschleunigt.Silicon tetrachloride, titanium tetrachloride and oxygen. Both chlorides are liquid at room temperature, but they become on brought the reaction site in vapor form by spraying with dry nitrogen gases. The two liquid reagents are kept separate from each other and therefore two independent gas flows are used for their approach. This allows the mixing ratio of the two vapors in the reaction zone to be easily adjusted by changing the gas supply will. Inside the tube (30) the two vapors are mixed with dry oxygen gas. The reaction takes place not spontaneous at room temperature, but it is accelerated in the annealing zone limited by high-frequency excitation.

Eine gleichmäßige Beschichtung der Rohrinnenwand entlang des Rohrverlaufes wird dadurch erreicht, daß entweder das Rohr gleichförmig durch die Spule hindurchbewegt wird oder die Spule am Rohr entlang. Die gleichmäßige Verteilung des Niederschlages wird noch dadurch unterstützt, daß das Rohr während des Beschichtungsprozesses gedreht wird. Zusätzlich kann dabei auch das Rohr bzw. die Spule in der Portbewegungsrichtung etwas hin und her bewegt werden.A uniform coating of the inner wall of the pipe along the course of the pipe is achieved in that either the pipe is moved uniformly through the coil or the coil along the pipe. The even distribution of the precipitation is also supported by the fact that the pipe is rotated during the coating process. Additionally the tube or the coil can also be moved slightly back and forth in the port movement direction.

Das Ziehen des beschichteten Rohres zu einer Faser derart, daß die Rohröffnung dabei entfällt, ist ein besonderer Herstellungsschritt. Das Rohrende wird dabei in eine heiße Zone eingeführt, in der das Rohr soweit erwärmt wird, daß es weich für das Ausziehen zu einer Faser wird. Durch die Oberflächenspannung allein würde dabei das Hohlrohr zu einer massiven Rundform überführt werden, jedoch kann dieses noch dadurch unterstützt werden, daß das Innere des Rohres auf Unterdruck gehalten wird.The drawing of the coated tube into a fiber in such a way that the tube opening is omitted is a special manufacturing step. The end of the pipe is inserted into a hot zone, in which the tube is heated to such an extent that it becomes soft for drawing into a fiber. Surface tension alone the hollow tube would be converted into a massive round shape, but this can still be supported by that the inside of the tube is kept at negative pressure.

Wenn die Güte des Ausgangsquarzrohres nicht ausreicht und zunächst eine Beschichtung mit reinem Quarzglas erfolgen soll,If the quality of the starting quartz tube is insufficient and first a coating with pure quartz glass is to be carried out,

309881/1076309881/1076

R.W.J.Üffen-2R.W.J.Üffen-2

wird die Zufuhr von Titantetrachloriddampf unterbrochen. Darauf wird der Beschichtungsprozes^s mit beiden Dämpfen wiederholt und so eine Schicht mit höherem Brechungsindex aufgebracht.the supply of titanium tetrachloride vapor is interrupted. Thereon the coating process is repeated with both vapors and a layer with a higher refractive index is applied.

Das Aufbringen des Kernmaterials auf die Innenwand des Rohres kann vereinigt werden mit dem Ausziehen zu einer Paser, wovon in Fig.4 ein Beispiel dargestellt ist. Ein Quarzglasrohr (40), es möge z.B. einen äußeren Durchmesser von 15·.·25 mm und eine Wandstärke von 1...3 mm haben, laufe hängend durch einen Ringbrenner (41), durch den der Rohranfang so erwärmt wird, daß er zu einer Faser (42) zusammenschrumpft. Die gleichen Reagenzien, die beim Beispiel nach Fig.3 verwendet wurden, werden jetzt auch hier verwendet. Diese Reagenzien werden in das Rohr (1IO) mittels eines Zuführungsrohres (43) als Dampf eingebracht. Die Temperatur, die zum Erweichen des Glases benötigt wird, reicht aus um auch die chemische Reaktion dieser Reagenzien genügend zu beschleunigen. Hierdurch wird eine Glassicht(44) auf die Innenwand des Rohres (40) aufgebracht, die später den Kern (15) bildet.The application of the core material to the inner wall of the tube can be combined with the drawing out to form a paser, an example of which is shown in FIG. A quartz glass tube (40), for example, it may have an outer diameter of 15 ·. · 25 mm and a wall thickness of 1 ... 3 mm, runs hanging through a ring burner (41) through which the beginning of the pipe is heated so that it is shrinks into a fiber (42). The same reagents that were used in the example according to FIG. 3 are now also used here. These reagents are introduced into the tube (1 IO) by means of a feed pipe (43) as vapor. The temperature required to soften the glass is sufficient to accelerate the chemical reaction of these reagents sufficiently. In this way, a glass layer (44) is applied to the inner wall of the tube (40), which later forms the core (15).

6 Patentansprüche6 claims

2 Blatt Zeichnungen mit 4 Figuren2 sheets of drawings with 4 figures

309881 /1076309881/1076

Claims (1)

R.W.J.Uffen-2R.W.J.Uffen-2 PatentansprücheClaims 1. Innenbeschichtetes Glasrohr zum Ziehen von Glasfaser- Lichtleitern, die aus einem Kern mit hohem Brechungsindex und einem Mantel mit niederem Brechungsindex bestehen, dadurch gekennzeichnet, daß zwischen Rohrmantel (20) und der später den Kern bildenden Schicht (22) mindestens eine weitere Schicht (21) angeordnet ist.1. Internally coated glass tube for pulling glass fiber light guides, which consist of a core with a high refractive index and a cladding with a low refractive index, characterized in that between the tube jacket (20) and the later forming the core layer (22) at least one further layer (21) is arranged. 2. Innenbeschichtetes Glasrohr nach Anspruch 1, dadurch gekennzeichnet , daß zwischen Rohrmantel (20) und der später den Kern bildenden Schicht (22) eine einzige weitere Schicht (21) angebracht ist, daß diese Schicht (21) den gleichen Brechungsindex wie der Rohrmantel (20) jedoch,eine höhere Durchlässigkeit aufweist.2. Internally coated glass tube according to claim 1, characterized in that a single further layer (21) is attached between the tube jacket (20) and the layer (22) which will later form the core, that this layer (21) has the same refractive index as the tube jacket ( 20), however, has a higher permeability. 3· Innenbeschichtetes Glasrohr nach Anspruch 1, dadurch gekennzeichnet, daß zwischen dem Rohrmantel (20) und der später den Kern bildenden Schicht (21,...) weitere Schichten angeordnet sind, daß die Brechungsindices der weiteren Schichten vom Rohrmantel (20) zu der Schicht (22) hin nach einem quadratischen Gesetz ansteigen. 3. Internally coated glass tube according to claim 1, characterized in that further layers are arranged between the tube jacket (20) and the layer (21, ...) which will later form the core, so that the refractive indices of the further layers increase from the tube jacket (20) the layer (22) rise according to a quadratic law. ** · Verfahren zum Beschichten der Innenwand eines Glasrohres mit einen unterschiedlichen Brechungsindex aufweisenden Schichten, dadurch gekennzeichnet, daß als Rohrmaterial Quarzglas gewählt wird, daß in das Rohrinnere Siliziumtetrachlorid in der Dampfphase und Sauerstoff bzw. Siliziumtetrachlorid, Titantetrachlorid und Sauerstoff eingeleitet wird, daß durch Erwärmen mittels Hochfrequenz-Erhitzung die Reaktion beschleunigt wird und daß** Process for coating the inner wall of a glass tube with layers having different refractive indices, characterized in that quartz glass is selected as the tube material, that silicon tetrachloride in the vapor phase and oxygen or silicon tetrachloride, titanium tetrachloride and oxygen is introduced into the tube interior by heating the reaction is accelerated by means of high-frequency heating and that 309881/1076309881/1076 — ο—- ο— R.W.J.Uffen-2R.W.J.Uffen-2 als Reaktionsprodukt eine Glasschicht niedergeschlagen wird.a layer of glass is deposited as the reaction product. 5. Verfahren nach Anspruch ^, dadurch gekennzeichnet, daß zum Erzielen einer gleichmäßigen Beschichtung das Rohr (30) während des Reaktionsvorganges um seine Achse gedreht wird und daß zwischen Rohr und Hochfrequenzspule^in Achsrichtung eine gleichmäßige Relativbewegung erfolgt, daß ferner dieser Relativbewegung eine hin und hergehende Bewegung überlagert wird.5. The method according to claim ^, characterized in that to achieve a uniform coating, the tube (30) is rotated about its axis during the reaction process and that between the tube and high frequency coil ^ in the axial direction there is a uniform relative movement, that further this relative movement a back and forth forward movement is superimposed. 6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß ein Beschichten und Ausziehen des Rohres in einem Arbeitsgang erfolgt.6. The method according to claim 4, characterized in that the pipe is coated and pulled out in one operation. 309881/1076309881/1076 LeerseiteBlank page
DE2328930A 1972-06-08 1973-06-06 Process for the production of fiber optic light guides Expired DE2328930C2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2677072A GB1427327A (en) 1972-06-08 1972-06-08 Glass optical fibres

Publications (2)

Publication Number Publication Date
DE2328930A1 true DE2328930A1 (en) 1974-01-03
DE2328930C2 DE2328930C2 (en) 1982-05-13

Family

ID=10248922

Family Applications (2)

Application Number Title Priority Date Filing Date
DE2328930A Expired DE2328930C2 (en) 1972-06-08 1973-06-06 Process for the production of fiber optic light guides
DE2366295A Expired DE2366295C2 (en) 1972-06-08 1973-06-06 Fiber optic light guide

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE2366295A Expired DE2366295C2 (en) 1972-06-08 1973-06-06 Fiber optic light guide

Country Status (9)

Country Link
JP (2) JPS539740B2 (en)
AU (1) AU475394B2 (en)
CA (1) CA1054795A (en)
CH (1) CH586165A5 (en)
DE (2) DE2328930C2 (en)
ES (1) ES415658A1 (en)
GB (1) GB1427327A (en)
IT (1) IT988974B (en)
NL (1) NL7307907A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2434717A1 (en) * 1973-08-21 1975-03-06 Int Standard Electric Corp Process for the production of optical fibers and their preliminary stages
DE2402270A1 (en) * 1974-01-18 1975-07-31 Licentia Gmbh Coating bores of quartz tubes for making optical waveguides - using laser beam to heat the material being deposited
DE2524335A1 (en) * 1974-05-31 1975-12-11 Nat Res Dev OPTICAL WAVE CONDUCTORS
FR2284572A1 (en) * 1974-09-14 1976-04-09 Philips Nv PROCESS FOR MAKING GLASS TUBES WITH INTERNAL COATING FOR STRETCHING OPTICAL FIBERS
FR2360522A2 (en) * 1976-03-25 1978-03-03 Western Electric Co PROCESS FOR MAKING AN OPTICAL TRANSMISSION LINE
DE2804467A1 (en) * 1977-02-02 1978-08-03 Hitachi Ltd OPTICAL FIBER AND METHOD FOR MANUFACTURING OPTICAL FIBER
FR2380232A1 (en) * 1977-02-10 1978-09-08 Northern Telecom Ltd METHOD AND DEVICE FOR THE MANUFACTURE OF AN OPTICAL FIBER DEPOSITED IN A PLASMA ACTIVE TUBE
FR2428011A1 (en) * 1978-06-08 1980-01-04 Corning Glass Works PROCESS AND APPARATUS FOR MANUFACTURING OPTICAL ELEMENTS IN GLASS
US4217027A (en) 1974-02-22 1980-08-12 Bell Telephone Laboratories, Incorporated Optical fiber fabrication and resulting product
DE2929166A1 (en) * 1979-07-19 1981-01-29 Philips Patentverwaltung METHOD FOR THE PRODUCTION OF OPTICAL FIBERS
DE3047589A1 (en) * 1979-12-17 1981-09-17 Nippon Telegraph & Telephone Public Corp., Tokyo LIGHTWAVE GUIDE FOR OPTICAL CIRCUITS AND METHOD FOR THE PRODUCTION THEREOF
EP0082305A1 (en) * 1981-11-28 1983-06-29 Licentia Patent-Verwaltungs-GmbH Process and apparatus for making an optical glass fibre with a low neg. OH ions content
DE3222189A1 (en) * 1982-06-12 1984-01-26 Hans Dr.Rer.Nat. 5370 Kall Beerwald Plasma process for coating the interior of tubes with dielectric material
FR2543455A1 (en) * 1983-03-30 1984-10-05 Air Liquide Method for opalising the internal surface of objects which are long compared to their cross-section
US4975103A (en) * 1988-09-07 1990-12-04 Schott Glaswerke Process for producing a planar glass substrate coated with a dielectric layer system
DE3936006A1 (en) * 1989-10-28 1991-05-02 Rheydt Kabelwerk Ag Low attenuation optical fibre preform - by internal tube coating, using low viscosity molten layer as first layer

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983453A (en) * 1972-12-14 1974-08-10
CA1050833A (en) * 1974-02-22 1979-03-20 John B. Macchesney Optical fiber fabrication involving homogeneous reaction within a moving hot zone
JPS5174647A (en) * 1974-12-24 1976-06-28 Sumitomo Electric Industries HIKARIDENSOYOFUAIBAASOZAINOSEIZOHOHO
JPS51127743A (en) * 1975-04-30 1976-11-08 Nippon Telegr & Teleph Corp <Ntt> Optical fiber and its manufacturing method
JPS51138449A (en) * 1975-05-26 1976-11-30 Sumitomo Electric Ind Ltd Light transmission fiber and method for fabricating the same
CA1029993A (en) * 1975-09-11 1978-04-25 Frederick D. King Optical fibre transmission line
AU504423B2 (en) * 1975-11-14 1979-10-11 International Standard Electric Corporation Optical fibre
JPS5621777Y2 (en) * 1976-02-04 1981-05-22
GB1559097A (en) * 1976-06-01 1980-01-16 Standard Telephones Cables Ltd Optical fibre manufacture
DE2648702C3 (en) * 1976-10-27 1980-08-21 Jenaer Glaswerk Schott & Gen., 6500 Mainz Infrared-permeable optical fiber made from oxygen-poor or oxygen-free GUs and process for their production
JPS5413350A (en) * 1977-07-02 1979-01-31 Fujikura Ltd Production of optical fiber
US4334903A (en) 1977-08-29 1982-06-15 Bell Telephone Laboratories, Incorporated Optical fiber fabrication
JPS5748214Y2 (en) * 1978-05-11 1982-10-22
GB1603949A (en) * 1978-05-30 1981-12-02 Standard Telephones Cables Ltd Plasma deposit
US4331462A (en) 1980-04-25 1982-05-25 Bell Telephone Laboratories, Incorporated Optical fiber fabrication by a plasma generator
JPS5883573U (en) * 1981-12-03 1983-06-06 ダイハツディーゼル機器 Door closer stop device
DE3206177A1 (en) * 1982-02-20 1983-08-25 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Process for the production of a preform from which optical fibres can be drawn
DE3206144A1 (en) * 1982-02-20 1983-09-01 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt METHOD FOR PRODUCING A LIGHT WAVE GUIDE
DE3206176A1 (en) * 1982-02-20 1983-08-25 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Process for the production of a preform from which optical fibres can be drawn
DE3302128A1 (en) * 1983-01-22 1984-07-26 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Optical waveguide, and a process for the production thereof
CN1011227B (en) * 1985-06-25 1991-01-16 占河电气工业有限公司 Mfg. method for optics fibre

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2326059A (en) * 1939-04-22 1943-08-03 Corning Glass Works Glass having an expansion lower than that of silica
DE1640559U (en) 1949-07-07 1952-07-10 Schloemann Ag TRACTOR FOR ROLLED MATERIAL WITH ROPE-CONTROLLED TOWING PUMP.
DE1085393B (en) * 1956-02-11 1960-07-14 Degussa Process for depositing metal layers in pipes made of ceramic material
US3031338A (en) * 1959-04-03 1962-04-24 Alloyd Res Corp Metal deposition process and apparatus
US3127641A (en) * 1961-10-05 1964-04-07 Gen Electric Tungsten tube manufacture
US3275408A (en) * 1963-01-29 1966-09-27 Thermal Syndicate Ltd Methods for the production of vitreous silica
DE1909433A1 (en) * 1968-02-26 1969-09-18 Corning Glass Works Process for the production of a glass with high light transmission
NL7106382A (en) * 1970-05-11 1971-11-15
US3644607A (en) * 1969-12-18 1972-02-22 Texas Instruments Inc Use of vapor phase deposition to make fused silica articles having titanium dioxide in the surface layer
DE7202166U (en) 1972-05-04 Heraeus Schott Quarzschmelze Gmbh Optical fiber

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2967115A (en) * 1958-07-25 1961-01-03 Gen Electric Method of depositing silicon on a silica coated substrate
GB1145630A (en) * 1966-10-18 1969-03-19 Standard Telephones Cables Ltd Dielectric waveguide
US3737293A (en) * 1972-01-03 1973-06-05 Corning Glass Works Method of forming an economic optical waveguide fiber

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7202166U (en) 1972-05-04 Heraeus Schott Quarzschmelze Gmbh Optical fiber
US2326059A (en) * 1939-04-22 1943-08-03 Corning Glass Works Glass having an expansion lower than that of silica
DE1640559U (en) 1949-07-07 1952-07-10 Schloemann Ag TRACTOR FOR ROLLED MATERIAL WITH ROPE-CONTROLLED TOWING PUMP.
DE1085393B (en) * 1956-02-11 1960-07-14 Degussa Process for depositing metal layers in pipes made of ceramic material
US3031338A (en) * 1959-04-03 1962-04-24 Alloyd Res Corp Metal deposition process and apparatus
US3127641A (en) * 1961-10-05 1964-04-07 Gen Electric Tungsten tube manufacture
US3275408A (en) * 1963-01-29 1966-09-27 Thermal Syndicate Ltd Methods for the production of vitreous silica
DE1909433A1 (en) * 1968-02-26 1969-09-18 Corning Glass Works Process for the production of a glass with high light transmission
US3644607A (en) * 1969-12-18 1972-02-22 Texas Instruments Inc Use of vapor phase deposition to make fused silica articles having titanium dioxide in the surface layer
NL7106382A (en) * 1970-05-11 1971-11-15
DE2122895A1 (en) * 1970-05-11 1971-11-25 Corning Glass Works Process for making optical fibers
US3711262A (en) * 1970-05-11 1973-01-16 Corning Glass Works Method of producing optical waveguide fibers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Powell, C.F. - Oxley, J.H. - Blocher jun., J.N.: Vapour Deposition, New York, London, Sydney 1966, S. 259-263 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2434717A1 (en) * 1973-08-21 1975-03-06 Int Standard Electric Corp Process for the production of optical fibers and their preliminary stages
DE2402270A1 (en) * 1974-01-18 1975-07-31 Licentia Gmbh Coating bores of quartz tubes for making optical waveguides - using laser beam to heat the material being deposited
US4217027A (en) 1974-02-22 1980-08-12 Bell Telephone Laboratories, Incorporated Optical fiber fabrication and resulting product
DE2524335A1 (en) * 1974-05-31 1975-12-11 Nat Res Dev OPTICAL WAVE CONDUCTORS
FR2284572A1 (en) * 1974-09-14 1976-04-09 Philips Nv PROCESS FOR MAKING GLASS TUBES WITH INTERNAL COATING FOR STRETCHING OPTICAL FIBERS
FR2360522A2 (en) * 1976-03-25 1978-03-03 Western Electric Co PROCESS FOR MAKING AN OPTICAL TRANSMISSION LINE
DE2804467A1 (en) * 1977-02-02 1978-08-03 Hitachi Ltd OPTICAL FIBER AND METHOD FOR MANUFACTURING OPTICAL FIBER
FR2379826A1 (en) * 1977-02-02 1978-09-01 Hitachi Ltd OPTICAL FIBER AND ITS MANUFACTURING PROCESS
FR2380232A1 (en) * 1977-02-10 1978-09-08 Northern Telecom Ltd METHOD AND DEVICE FOR THE MANUFACTURE OF AN OPTICAL FIBER DEPOSITED IN A PLASMA ACTIVE TUBE
FR2428011A1 (en) * 1978-06-08 1980-01-04 Corning Glass Works PROCESS AND APPARATUS FOR MANUFACTURING OPTICAL ELEMENTS IN GLASS
DE2929166A1 (en) * 1979-07-19 1981-01-29 Philips Patentverwaltung METHOD FOR THE PRODUCTION OF OPTICAL FIBERS
DE3047589A1 (en) * 1979-12-17 1981-09-17 Nippon Telegraph & Telephone Public Corp., Tokyo LIGHTWAVE GUIDE FOR OPTICAL CIRCUITS AND METHOD FOR THE PRODUCTION THEREOF
EP0082305A1 (en) * 1981-11-28 1983-06-29 Licentia Patent-Verwaltungs-GmbH Process and apparatus for making an optical glass fibre with a low neg. OH ions content
DE3222189A1 (en) * 1982-06-12 1984-01-26 Hans Dr.Rer.Nat. 5370 Kall Beerwald Plasma process for coating the interior of tubes with dielectric material
FR2543455A1 (en) * 1983-03-30 1984-10-05 Air Liquide Method for opalising the internal surface of objects which are long compared to their cross-section
US4975103A (en) * 1988-09-07 1990-12-04 Schott Glaswerke Process for producing a planar glass substrate coated with a dielectric layer system
DE3936006A1 (en) * 1989-10-28 1991-05-02 Rheydt Kabelwerk Ag Low attenuation optical fibre preform - by internal tube coating, using low viscosity molten layer as first layer

Also Published As

Publication number Publication date
DE2366295C2 (en) 1982-05-13
DE2328930C2 (en) 1982-05-13
CH586165A5 (en) 1977-03-31
IT988974B (en) 1975-04-30
AU5657773A (en) 1974-12-12
JPS54151633A (en) 1979-11-29
JPS4964447A (en) 1974-06-21
NL7307907A (en) 1973-12-11
JPS539740B2 (en) 1978-04-07
AU475394B2 (en) 1976-08-19
CA1054795A (en) 1979-05-22
GB1427327A (en) 1976-03-10
ES415658A1 (en) 1976-06-16

Similar Documents

Publication Publication Date Title
DE2328930A1 (en) INTERNAL COATED GLASS TUBE AND METHOD FOR MANUFACTURING THE COATING
DE2434717C2 (en) Method of manufacturing a fiber optic light guide
DE2352003A1 (en) METHOD FOR PRODUCING AN OPTICAL TRANSMISSION LINE
CH641427A5 (en) METHOD FOR PRODUCING A MONO MODE LICHTLEITFASER elliptical core CROSS SECTION.
DE2919080B2 (en) Process for making a core and clad optical fiber
DE2313203B2 (en) METHOD OF MANUFACTURING OPTICAL WAVE GUIDES FROM GLASS
DE2945804C2 (en) Single mode optical fiber
DE2909390C2 (en)
DE2524335A1 (en) OPTICAL WAVE CONDUCTORS
WO2001090010A1 (en) Method for producing an optical fibre and blank for an optical fibre
DE2804467B2 (en) Optical fiber with an intermediate layer which is arranged between the core and the cladding and is produced by chemical vapor reaction and which has essentially the same refractive index as the cladding, as well as a process for the production of such a fiber
DE2714804A1 (en) MANUFACTURING METHOD OF A LIGHT GUIDE PREFORM
DE2907833C2 (en)
DE2730346C3 (en) Process for the production of a preform for optical glass fibers
DE3008416A1 (en) METHOD FOR PRODUCING A FIBERGLASS FIBER
DE19958276C1 (en) Quartz glass preform production comprises preparing a quartz glass hollow cylinder collapsed on a quartz glass rod containing a dopant and collapsing the cylinder
DE3733880A1 (en) METHOD FOR PRODUCING A LIGHT WAVE GUIDE
DE2447353B2 (en) METHOD OF MANUFACTURING FIBER OPTICS
DE2935347A1 (en) METHOD FOR PRODUCING GLASS FOR FIBER GLASS FIBER LOW DAMPING
DE3132508A1 (en) METHOD FOR THE PRODUCTION OF STRAND-SHAPED / ROD-SHAPED STARTING MATERIAL FOR LIGHT-GUIDE FIBERS
EP0463480A1 (en) Method and apparatus for preparing a preform of a glass optical waveguide
DE19929312A1 (en) Apparatus and method for manufacturing an optical fiber preform
DE3232888A1 (en) Method for the production of a beam waveguide
DE2912960A1 (en) METHOD FOR THE PRODUCTION OF OPTICAL FIBERS
DE2530786A1 (en) Light guiding glass filaments - contg. core doped with less volatile substances than dopants in envelope

Legal Events

Date Code Title Description
OI Miscellaneous see part 1
OI Miscellaneous see part 1
OD Request for examination
8125 Change of the main classification
8126 Change of the secondary classification
AH Division in

Ref country code: DE

Ref document number: 2366295

Format of ref document f/p: P

D2 Grant after examination
8363 Opposition against the patent
8363 Opposition against the patent
8365 Fully valid after opposition proceedings
8328 Change in the person/name/address of the agent

Free format text: GRAF, G., DIPL.-ING., PAT.-ASS., 7000 STUTTGART

8380 Miscellaneous part iii

Free format text: ES ERFOLGT NEUDRUCK DER PATENTSCHRIFT NACH AUFRECHTERHALTUNG

8327 Change in the person/name/address of the patent owner

Owner name: STC PLC, LONDON, GB

8328 Change in the person/name/address of the agent

Free format text: WALLACH, C., DIPL.-ING. KOCH, G., DIPL.-ING. HAIBACH, T., DIPL.-PHYS. DR.RER.NAT. FELDKAMP, R., DIPL.-ING., PAT.-ANWAELTE, 8000 MUENCHEN

8327 Change in the person/name/address of the patent owner

Owner name: ALCATEL N.V., AMSTERDAM, NL

8328 Change in the person/name/address of the agent

Free format text: GRAF, G., DIPL.-ING., PAT.-ASS., 7000 STUTTGART