DE3228542A1 - Verfahren zur bestimmung der konzentration elektrochemisch umsetzbarer stoffe - Google Patents

Verfahren zur bestimmung der konzentration elektrochemisch umsetzbarer stoffe

Info

Publication number
DE3228542A1
DE3228542A1 DE19823228542 DE3228542A DE3228542A1 DE 3228542 A1 DE3228542 A1 DE 3228542A1 DE 19823228542 DE19823228542 DE 19823228542 DE 3228542 A DE3228542 A DE 3228542A DE 3228542 A1 DE3228542 A1 DE 3228542A1
Authority
DE
Germany
Prior art keywords
potential
concentration
electrode
determined
measuring electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19823228542
Other languages
English (en)
Inventor
Konrad Dipl.-Phys. Dr. 8521 Uttenreuth Mund
Walter Dipl.-Chem. Dr. 8520 Erlangen Preidel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE19823228542 priority Critical patent/DE3228542A1/de
Priority to AT83107037T priority patent/ATE40753T1/de
Priority to DE8383107037T priority patent/DE3379178D1/de
Priority to EP83107037A priority patent/EP0101880B1/de
Publication of DE3228542A1 publication Critical patent/DE3228542A1/de
Priority to US06/945,065 priority patent/US4919770A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48714Physical analysis of biological material of liquid biological material by electrical means for determining substances foreign to the organism, e.g. drugs or heavy metals

Description

SIEMENS AKTIENGESELLSCHAFT Unser Zeichen Berlin und München VPA 82 P 32 2 8 DE
Verfahren zur Bestimmung der Konzentration elektrochemisch umsetzbarer Stoffe
Die Erfindung betrifft ein Verfahren zur Bestimmung der Konzentration von elektrochemisch umsetzbaren Stoffen in einer Lösung mittels einer eine Meßelektrode aufweisenden Meßzelle.
Die Bestimmung der Konzentration gelöster Stoffe, insbesondere in Gegenwart störender Fremdsubstanzen, ist auf vielen Gebieten von Bedeutung. Beispielhaft sei hierzu die Bestimmung von Glucose in Körperflüssigkeiten, wie Blut, genannt. Eine derartige Bestimmung ist insbesondere bei Diabetikern erforderlich.
Die Diabetestherapie kann wesentlich verbessert werden, wenn die Patienten fortwährend, d.h. bei einer konstanten Basalrate, mit Insulin versorgt werden und wenn vor den Mahlzeiten zusätzliche Insulindosen abgerufen werden. Für dieses Prinzip aind bereits implantierbare *■*"* 25 Pumpen entwickelt worden, die mit einem insulingefüllten Vorratsbehälter verbunden sind. Die Pumpen werden dabei durch eine programmierbare Steuereinheit geführt. Angestrebt wird jedoch ein geschlossener Regelkreis, wozu aber ein Sensor benötigt wird, der die Konzentration der Glucose im Blut des Patienten ermittelt.
Zur Glucosebestimmung sind bereits implantierbare elektrokatalytische Zuckersensoren bekannt. Derartige Sensoren weisen eine Meßelektrode, beispielsweise aus
Bh 2 Koe / 28.7.1982
-*- VPA 82 P 3 2 2 8 DE
Platin, auf, vor der eine diffusionsbestimmende Membran angeordnet sein kann (siehe dazu; DE-OS 28 17 363). Zur Glucosebestlmmung wird der Meßelektrode dabei potentiostatisch ein Potentialprofil aufgeprägt, wobei zwei Niveaus vorgegeben werden: Ein positives und ein negatives Potential. Beim positiven Potential wird die Meßelektrode reaktiviert, d.h. die auf der Elektrode befindlichen Reaktionsprodukte werden oxidiert. Wenn die Meßelektrode das negative Potential, d.h. das Meßpotential, erreicht, wird der Strom integriert; die dabei ermittelte Ladung ist das MeSsignal, das der Glucosekonzentration zugeordnet wird. Bei den implantierbaren elektrokatalytisehen Glucosesensoren bereitet es jedoch Schwierigkeiten, den Einfluß von Störfaktoren, wie Harnstoff und Aminosäuren, die Bestandteil der Körperflüssigkeit sind, zu unterdrücken.
Aufgabe der Erfindung ist es, ein Verfahren zur Bestimmung der Konzentration von elektrochemisch umsetzbaren Stoffen in einer Lösung mittels einer eine Meßelektrode aufweisenden Meßzelle in der Weise auszugestalten, daß eine empfindliche und über lange Zeit zuverlässige Bestimmung der Konzentration, auch in Gegenwart anderer Reaktanten, möglich ist.
Dies wird erfindungsgemäß dadurch erreicht, daß der Meßelektrode ein innerhalb eines Potentialintervalls zeitlich variierendes Potential aufgeprägt wird, daß diesem Potential eine Wechselspannung vorgegebener Amplitude und Frequenz überlagert wird, und daß wenigstens für eine Potentialstufe der Real- und/oder der Imaginäranteil der Impedanz ermittelt und daraus die Konzentration bestimmt wird.
VPA 82P32 2 8DE
Vorzugsweise wird beim erfindungsgemäßen Verfahren der Realanteil und der Imaginäranteil der Impedanz ermittelt und zwar bei mehreren Potentialstufen.
Beim erfindungsgemäßen Verfahren wird, um ein hohes Maß an Informationen zu erhalten, der Gleichspannung eine Wechselspannung überlagert und quasi die Antwort des angesprochenen elektrochemischen Systems analysiert. Als Meßgröße erhält man die Impedanz in Form von deren Real- und Imaginäranteil, und zwar in Abhängigkeit von der WechselSpannungsfrequenz und vom Potential. Somit ist es möglich, ein potentialabhängiges Impedanzspektrum der elektrochemischen Reaktion zu messen und die elektrischen Größen beispielsweise als Ersatzschaltbild für diese Reaktion zu beschreiben.
Das erfindungsgemäße Verfahren eignet eich insbesondere zur Konzentrationsbestimmung von Glucose, Harnstoff und Aminosäuren in Flüssigkeiten, insbesondere Körperflüssigkeitenj bei den Aminosäuren wird dabei die Gesamtkonzentration ermittelt. Bei der Untersuchung von physiologischen Lösungen ist es auch möglich, die vorstehend genannten Stoffe nebeneinander, d.h. gleichzeitig zu bestimmen. Ferner eignet sich das erfindungsgemäße Verfahren auch zur Bestimmung der Konzentration von in Flüssigkeiten gelösten Gasen, insbesondere Sauerstoff und Chlor.
Beim erfindungsgemäßen Verfahren wird der Meßelektrode das Potential im allgemeinen mittels eines Potentiostaten aufgeprägt. Das Potential pendelt dabei zwischen zwei Grenzen, die sich nach den untersuchten Stoffen richten. So liegt beispielsweise bei der Bestimmung von Glucose, von Harnstoff und von Aminosäuren der Potentialbereich zwischen dem Potential der
Sr « *
-A- VPA 82 P 3 2 2 8 QE
reversiblen Wasserstoffelektrode (H2rev) und 1650 mV, bei der Bestimmung von Sauerstoff oder von Chlor wird folgender Potentialbereich gewählt: 250 mV -s H2rev S 1450 mV.
Allgemein richtet sich das jeweilige Potentialintervall nach der zu bestimmenden Substanz, nach den Begleitsubstanzen, nach der Art des Elektrodenmaterials und gegebenenfalls nach der vor der Meßelektrode befindlichen Membran.
Das Potential, d.h. das Grundprofil des Potentials, besteht beim erfindungsgemäßen Verfahren aus einer Anzahl von Stufen; diese Potentialstufen können voneinander den gleichen oder einen unterschiedlichen Abstand haben. Dem Grundprofil wird dann eine Wechselspannung vorgegebener Amplitude und Frequenz überlagert. Die Amplitude soll dabei klein sein im Vergleich zur Intervallbreite des Potentials; sie beträgt vorzugsweise 10 mV, kann beispielsweise aber auch Werte bis zu 100 mV annehmen. Die höchste nutzbare Frequenz liegt bei 10 kHz und ist durch die Doppelschichtkapazität der Elektrode sowie gegebenenfalls durch den Membranwiderstand vorgegeben. Die untere Grenze der Frequenz wird durch die zulässige Zyklendauer bedingt.
Beim erfindungsgemäßen Verfahren wird für die einzelnen Potentialstufen der Real- und der Imaginäranteil der Elektrodenimpedanz ermittelt. Beide Anteile werden dabei durch die Konzentration der in der Lösung vorhandenen Stoffe beeinflußt; zusätzlich ergibt sich auch noch ein Einfluß des Potentials. Wird nun eine Eichung durchgeführt und die Impedanz als Funktion der verschiedenen Potentiale bei fester Amplitude und Frequenz bestimmt, so erhält man die Koeffizienten
-5- VFA 82 P 3 2 2 8 DE
eines AuswertungsSchemas, anhand dessen die Konzentration der zu bestimmenden Stoffe ermittelt werden kann.
Wesentlich ist beim erfindungsgemäßen Verfahren, daß an die katalytische Aktivität der Meßelektrode keine erhöhten Anforderungen zu stellen sind. Voraussetzung ist allerdings, daß die Reaktanten an der Elektrode umgesetzt werden. Vorzugsweise wird bei diesem Verfahren eine Platinelektrode verwendet. Von Vorteil ist es beim erfindungsgemäßen Verfahren ferner, wenn vor der Meßelektrode eine Membran angeordnet wird. Diese Membran hat dann die Aufgabe, insbesondere große Moleküle, wie Eiweißstoffe, die stören können, von der Elektrode fernzuhalten und somit eine Umsetzung zu verhindern. Die Membran kann aber auch als Diffusionsbegrenzung für die durch sie hindurchdiffundierenden Stoffe dienen und auf diese Weise eine Vorselektierung von kleineren Molekülen bewirken.
Die der Meßelektrode vorgelagerte Membran, die einen hydrophilen Charakter besitzt, weist vorzugsweise eine Dicke d < 50 /um auf. Darüber hinaus soll diese Membran einen möglichst kleinen Diffusionskoeffizienten besitzen; angestrebt wird ein Diffusionskoeffizient
8 2 1
D τ 10 cm . s . Zur Herstellung derartiger Membranen kann von Kunststoffen ausgegangen werden, die relativ hydrophobe Folien bilden; diese Kunststoffe werden dann durch geeignete Maßnahmen hydrophiliert.
Das erfindungsgemäße Verfahren ermöglicht die analytische Erfassung der an der Meßelektrode elektrochemisch reagierenden oder adsorbierten Stoffe. Mit diesem Verfahren können auch mehrere elektrochemisch wirksame Einzelkomponenten nebeneinander bestimmt werden. So
-*- VPA 82 P 32 2 8DE
ist es beispielsweise möglich, die Konzentration von Glucose auch in Anwesenheit von Harnstoff und Aminosäuren zu ermitteln.
Wird beispielsweise bei der Bestimmung der Glucosekonzentration (V » 1 Hz) lediglich die Kapazität der Meßelektrode für die Auswertung herangezogen, so ergibt sich für die Konzentration ein Meßfehler von etwa 20 %, wenn das Potentialintervall in elf äquidistante Potentialstufen eingeteilt wird und diese Potentialstufen gleichrangig ausgewertet werden. Werden für die Auswertung dagegen diejenigen Potentialstufen ausgewählt, die bei Variation der Konzentration die ausgeprägtesten Änderungen der Impedanz zeigen und werden sowohl der Real- als auch der Imaginäranteil der Impedanz berücksichtigt, so kann der Meßfehler auf unter 10 % gesenkt werden.
Anhand von Ausführungsbeispielen und Figuren soll die Erfindung noch näher erläutert werden.
Bei der Konzentrationsbestimmung entsprechend dem erfindungsgemäßen Verfahren gelangt ein elektrochemischer Sensor zum Einsatz, welcher eine Meßzelle, die beispielsweise aus Polymethylmethacrylat besteht, aufweist. Innerhalb der Meßzelle befindet sich eine Meß- oder Arbeitselektrode (AE) aus Platin (aktive Fläche: beispielsweise ca. 0,1 cm ), vor der gegebenen falls eine Membran angeordnet ist. Die Membran besteht beispielsweise aus Polytetrafluoräthylen, das mit quaternisiertem Benzylamin gegraftet ist; die Membran kann beispielsweise aber auch aus sulfonierten! PoIysulfon bestehen. Auf der anderen Seite der Membran ist eine Gegenelektrode (GE), beispielsweise in Form eines platinierten Platinbleches, angeordnet. Die
-t- VPA 82 P32 2 8DE
Meßzelle, durch welche die die zu bestimmenden Stoffe enthaltende Lösung in einem geschlossenen Kreislauf geführt wird, ist schließlich noch mit einer Bezugselektrode (BE), beispielsweise in Form einer Hg/HggClg-Elektrode, verbunden. Die Bezugselektrode kann, bezogen auf die Membran, auf der Seite der Gegenelektrode oder auf der Seite der Meßelektrode angeordnet sein. Im letzten Fall wird verhindert, daß die Bezugselektrode durch Verunreinigungen der Lösung oder durch Bestandteile der Körperflüssigkeit geschädigt wird. Dies kann vorteilhaft auch dadurch vermieden werden, daß eine hochkapazitive Gegenelektrode verwendet wird, die gleichzeitig als Bezugselektrode dient.
Beim Impedanzverfahren, wie das erfindungsgemäße Verfahren kurz auch bezeichnet wird, ist es für die Auswertung günstig, wenn der elektrochemischen Meßzelle, d.h. der Anordnung aus Meßelektrode und Membran, ein Ersatzschaltbild zugeordnet wird und die elektrischen Größen dieses Ersatzschaltbildes dann meßtechnisch erfaßt werden. Das Ersatzschaltbild weist einen Widerstand R,. und einen parallel dazu geschalteten Kondensator mit der Kapazität C. auf; diese Anordnung aus Widerstand und Kondensator ist mit einem weiteren Widerstand R0 in Reihe geschaltet (siehe Fig. 1). Das Ersatzschaltbild ändert sich in Abhängigkeit vom Potential an der Meßelektrode und in Abhängigkeit von der Konzentration, beispielsweise der Glucosekonzentration; dabei ändern sich jedoch nur die Werte der elektrischen Größen, nicht aber deren Anordnung.
Der Aufbau des Ersatzschaltbildes kann unmittelbar der Art und dem Verlauf der sogenannten Ortskurve entnommen werden. Die Ortskurve (in Gestalt eines Halbkreises)
-B- VPA 82 P 3 2 2 8 DE
ist eine Darstellung des Imaginäranteils der Impedanz gegen den Realanteil; unter Impedanz wird im übrigen der Scheinwiderstand in der Wechselstromtechnik verstanden. Der Zahlenwert der Impedanz ergibt sich aus dem Quotienten ^eff/^eff· Bei einer rein sinusförmigen Spannung gilt:
U»UQ. sin (tot + f) und Ueff = UQ . /2/2, mit ω= Kreisfreuquenz (2Ij1V), <*> = Phasenverschiebung (zwischen Spannung und Strom) und Uq * Amplitude; entsprechendes gilt für den Strom I.
Der Realanteil der Impedanz ist definiert als
a m -Sii . cos (f),
der Imaginäranteil ist b » T^i= · sin (ψ).
xett
Wird nun die Impedanz als Funktion der Frequenz y aufgenommen und dann in Form der Ortskurve dargestellt, so erhält man aus dem Kurvenverlauf- Aufschluß über die Anordnung der elektrischen Größen (Widerstände und Kondensatoren) und aus den Zahlenwerten die elektrisehen Werte der Elemente des Ersatzschaltbildes. Für das vorstehend beschriebene Ersatzschaltbild gilt dabei folgendesί
Bei hoher Frequenz: Rq » a;
bei niedriger Frequenz; ΚΛ * a";
1 λ
bei mittlerer Frequenz: C1 »
Wird die Impedanz in Abhängigkeit von der Frequenz für 3ede Potentialstufe einer - sich bei der Überlagerung von Dreieckspannungskurven mit Wechselstrom ergebenden - Potentialtreppe (siehe Fig. 1) zyklisch gemessen, so werden für die einzelnen Stufen die jeweiligen Widerstands- und Kapazitätswerte der elektrischen Größen des Ersatzschaltbildes erhalten. Eine Messung der Impedanz für viele Frequenzen erübrigt sich dabei dann, wenn zwei Einzelfrequenzen in der Ortskurve
10 -*- VPA 82 P32 2 8DE
günstig ausgewählt werden. In geometrischer Hinsicht bedeutet dies: Der Halbkreis ist dann gut zu konstruieren, wenn zwei genügend weit voneinander entfernte Punkte (des Kreisumfangs) bekannt sind.
Trägt man die Kapazität bzw. den Widerstand der einzelnen Potentialstufen gegen die Konzentration auf, so erhält man für bestimmte Potentialstufen eine Gerade; dies bedeutet, daß die Konzentration linear abhängig ist von der elektrischen Größe. Sind verschiedene Stoffe in der untersuchten Lösung vorhanden und machen sich diese Substanzen, was im allgemeinen der Fall 1st, bei unterschiedlichen Potentialen bemerkbar, so ist auch eine Bestimmung sämtlicher Stoffe nebeneinander möglich.
Zur Bestimmung der elektrischen Größen der Meßelektrode (mit vorgelagerter Membran) dient beispielsweise ein Potentiostat. An den Eingang des Potentiostaten 11 werden, wie aus Fig. 2 ersichtlich, die sich zeitlich ändernde Gleichspannung (DC) und die zu überlagernde sinusförmige Wechselspannung (AC) gegeben. Diese beiden Spannungen können in der Gleichspannungsquelle bzw. im Oszillator eines Frequenzganganalysators 12 erzeugt werden. Die Antwort des elektrochemischen Systems, d.h. der Meßzelle 10, auf die Wechselspannung wird als Spannung zwischen Meßelektrode (AE) und Bezugselektrode (BE) vom y-Eingang abgenommen. Der Abgriff am Widerstand im Gegenelektrodenkreis (GE) dient zur Information über den Strom, gemessen über den x-Eingang. Aus den Eingangsgrößen I und U werden im Frequenzganganalysator die Effektivwerte der Spannung für die am Oszillator eingestellte Frequenz (sogenanntes Lock-in-Prinzip) sowie der jeweilige Phasenwinkel zur Oszillatorphase ermittelt. Aus den Werten für den
-to-- VPA 82 P 32 2 8 OE
Realanteil (a) und den Imaginäranteil (b) der Impedanz sowie für die Frequenz (f) wird dann, beispielsweise mittels eines Rechners 13, die Konzentration bestimmt.
Unter Verwendung einer Raney-Platin-Elektrode als Meßelektrode wurde in einer Reihe von Versuchen (1) die Konzentration von Glucose in Tyrodelösung (eine mit Blut isotonische Lösung) in Gegenwart von Harnstoff bestimmt. Die Impedanz der Meßelektrode, der keine Membran vorgelagert war, wurde bei Frequenzen von 100 Hz bis 0,1 Hz für jeweils eine Frequenz bei jeder Potentialstufe gemessen. Der Potentialbereich lag zwischen 0 und 1650 mV, gemessen gegen die reversible Wasserstoffelektrode j jede Potentialstufe betrug 30 mV (Dauer einer Stufe: 10 bis 60 s). Bei diesen Messungen zeigte sich, daß eine GlucosebeStimmung möglich ist, auch in Gegenwart von Harnstoff im normalen physiologischen Konzentrationsbereich. Entsprechendes gilt für die Anwesenheit physiologischer Mengen von Aminosäuren.
Bei den vorstehend beschriebenen Versuchen (1) betrug die Meßzeit etwa 30 min. Eine Reduzierung der Meßzeit auf ca. 6 min gelingt unter folgenden Bedingungen! - Vergrößerung der Potentialstufen auf 150 mV (bei einer Dauer von ca. 20 s);
- Frequenz 1 Hz;
- Amplitude 14 mV;
- Verwendung einer Membran vor der Platinelektrode
(die Membran bestand aus gegraftetem Polytetrafluor-
äthylen und wies eine Dicke von 25 /um auf). Auch bei diesen Versuchen (2) ergab sich, daß Glucose in Gegenwart wechselnder Mengen an Harnstoff und Aminosäuren (im physiologischen Konzentrationsbereich) zuverlässig bestimmt werden kann; die Messungen
• « * ί
-r\- VPA 82 P 32 2 8 DE
erfolgten im Potentialbereich von O bis 1650 mV. Die Aminosäuren gelangten dabei jeweils als Gemischsämtlicher physiologischer Verbindungen zur Anwendung.
Bei den vorstehend beschriebenen Versuchen (2) war der Elektrolyt, d.h. die Tyrodelösung, mit einem Ng/COp-Gemisch (95:5) gesättigt worden. Wird dieses Gemisch durch ein Preßluft/COg-Gemisch ersetzt, d.h. durch ein Gemisch aus Og, Ng und COg, so zeigt sich, daß sich durch den Sauerstoffeinfluß Veränderungen im Potentialverlauf der a- und b-Werte ergeben. Es ist dadurch aber andererseits auch möglich, den Sauerstoffgehalt zu bestimmen.
Bei bestimmten Uberwachungssystemen, beispielsweise in Vorrichtungen zur Eliminierung von Harnstoff (vgl.: DE-OS 30 40 470), ist es erforderlich, den Sauerstoff- und/oder Chlorgehalt zu ermitteln. Auch dies ist mit Hilfe des erfindungsgemäßen Verfahrens möglich. Dazu werden Real- und Imaginäranteil der Impedanz von zwei Frequenzen an einer platinierten Platinelektrode bei einer mit Wechselstrom überlagerten Potentialtreppe unter folgenden Bedingungen gemessen (die Messungen erfolgen ohne die Verwendung einer Membran):
Potential: 250 mV A HgrQV < 1450 mV; Potentialstufe: 120 mV (Dauer: 12 s); Amplitude: 14 mV;
Frequenz: 3 Hz und 1 kHz (jeweils bei jeder
Potentialstufe).
Durch Auswertung der a- und b-Werte erhält man die Sauerstoff- bzw. Chlorkonzentration; Meßdauer: 5 min. Dabei zeigte sich, daß der maximale Fehler bei der Sauerstoffbestimmung 0,1 mg/dl beträgt, und zwar im Bereich von 0 bis 4,1 mg/dl, und derjenige bei der Chlorbestimmung 2 mg/dl, im Bereich von 0 bis 23 mg/dl
11
-1£- VPA 82 P 32 2 8 DE
(Elektrolyt: gepufferte 1 η KCl-Lösung).
Das erfindungsgemäße Verfahren bietet somit die Möglichkeit, die Konzentration von elektrochemisch an einer Elektrode umsetzbaren Stoffen zu bestimmen. Dabei kann die Bestimmung - aufgrund der vielen Variationsmöglichkeiten - gut an das jeweilige System angepaßt werden. So ist eine Änderung der Spannungsgeschwindigkeit ebenso möglich wie eine (zusätzliche) Änderung der Meßfrequenz. Ferner kann die Impedanz bei einem Potential kurzzeitig nacheinander mit verschiedenen Frequenzen gemessen werden. Es besteht dann nämlich die Möglichkeit, bei geeigneter Wahl der Frequenzen den Membranwiderstand und den Durchtrittswiderstand voneinander zu trennen. Auf diese Weise könnte bei der Auswertung eine im Lauf der Zeit erfolgende Veränderung des ohmschen Widerstandes der Membran berücksichtigt werden. Die Lage des Potentialintervalls richtet sich beim erfindungsgemäßen Verfahren im übrigen nach dem untersuchten System, und sie kann durch zyklische voltametrische Untersuchungen leicht bestimmt werden. Die Höhe der Potentialstufen wird sich im allgemeinen nach dem Abstand der einzelnen Potentiale voneinander und nach der für einen vollen Meßzyklus angestrebten Zeit richten.
5 Patentansprüche
2 Figuren
Leer seite

Claims (4)

  1. -t3- VPA 82 P 32 2 8 DE
    Patentansprüche
    ( 1 .^Verfahren zur Bestimmung der Konzentration von elektrochemisch umsetzbaren Stoffen in einer Lösung mittels einer eine Meßelektrode aufweisenden Meßzelle, dadurch gekennzeichnet, daß der Meßelektrode ein innerhalb eines Potentialintervalls zeitlich variierendes Potential aufgeprägt wird, daß diesem Potential eine Wechselspannung vorgegebener Amplitude und Frequenz überlagert wird, und daß wenigstens für eine Potentialstufe der Real- und/oder der Imaginäranteil der Impedanz ermittelt und daraus die Konzentration bestimmt wird.
  2. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet , daß bei mehreren Potentialstufen der Real- und der Imaginäranteil der Impedanz ermittelt wird.
  3. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet , daß das Potential bei wenigstens einer Potentialstufe mit Wechselspannung verschiedener Frequenzen überlagert wird.
  4. 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß eine Meßelektrode aus Platin verwendet wird.
    5· Verfahren nach einem oder mehreren der Ansprüche bis 4, dadurch gekennzeichnet, daß vor der Meßelektrode eine Membran angeordnet wird.
DE19823228542 1982-07-30 1982-07-30 Verfahren zur bestimmung der konzentration elektrochemisch umsetzbarer stoffe Withdrawn DE3228542A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE19823228542 DE3228542A1 (de) 1982-07-30 1982-07-30 Verfahren zur bestimmung der konzentration elektrochemisch umsetzbarer stoffe
AT83107037T ATE40753T1 (de) 1982-07-30 1983-07-18 Verfahren zur bestimmung der konzentration elektrochemisch umsetzbarer stoffe.
DE8383107037T DE3379178D1 (en) 1982-07-30 1983-07-18 Method of determining the concentration of electrochemically transformable substances
EP83107037A EP0101880B1 (de) 1982-07-30 1983-07-18 Verfahren zur Bestimmung der Konzentration elektrochemisch umsetzbarer Stoffe
US06/945,065 US4919770A (en) 1982-07-30 1986-12-19 Method for determining the concentration of electro-chemically convertible substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19823228542 DE3228542A1 (de) 1982-07-30 1982-07-30 Verfahren zur bestimmung der konzentration elektrochemisch umsetzbarer stoffe

Publications (1)

Publication Number Publication Date
DE3228542A1 true DE3228542A1 (de) 1984-02-02

Family

ID=6169750

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19823228542 Withdrawn DE3228542A1 (de) 1982-07-30 1982-07-30 Verfahren zur bestimmung der konzentration elektrochemisch umsetzbarer stoffe
DE8383107037T Expired DE3379178D1 (en) 1982-07-30 1983-07-18 Method of determining the concentration of electrochemically transformable substances

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE8383107037T Expired DE3379178D1 (en) 1982-07-30 1983-07-18 Method of determining the concentration of electrochemically transformable substances

Country Status (4)

Country Link
US (1) US4919770A (de)
EP (1) EP0101880B1 (de)
AT (1) ATE40753T1 (de)
DE (2) DE3228542A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2721713A1 (fr) * 1994-06-23 1995-12-29 Siemens Ag Détecteur électrocatalytique de glucose.
DE19515524A1 (de) * 1995-04-27 1996-11-07 Private Uni Witten Herdecke Gm Verfahren und Vorrichtung zum fortlaufenden Nachweis wenigstens einer Substanz in einem gasförmigen oder flüssigen Gemisch mittels einer Sensorelektrode
WO1997034140A1 (de) * 1996-03-14 1997-09-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Detektion von molekülen und molekülkomplexen
DE4030873C2 (de) * 1990-09-29 2000-05-04 Conducta Endress & Hauser Verfahren zur Konzentrationsbestimmung von elektrochemisch umsetzbaren Gasen
US7018843B2 (en) 2001-11-07 2006-03-28 Roche Diagnostics Operations, Inc. Instrument
EP2085779A1 (de) 1997-12-22 2009-08-05 Roche Diagnostics Operations, Inc. Messgerät

Families Citing this family (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8622748D0 (en) * 1986-09-22 1986-10-29 Ici Plc Determination of biomass
GB9204689D0 (en) * 1992-03-04 1992-04-15 Univ Wales Analytical method & apparatus
US5569591A (en) * 1990-08-03 1996-10-29 University College Of Wales Aberystwyth Analytical or monitoring apparatus and method
DE59207763D1 (de) * 1991-10-29 1997-02-06 Siemens Ag Elektrokatalytischer Glucosesensor
AUPM506894A0 (en) * 1994-04-14 1994-05-05 Memtec Limited Novel electrochemical cells
AUPN239395A0 (en) * 1995-04-12 1995-05-11 Memtec Limited Method of defining an electrode area
US6413410B1 (en) * 1996-06-19 2002-07-02 Lifescan, Inc. Electrochemical cell
AUPN363995A0 (en) 1995-06-19 1995-07-13 Memtec Limited Electrochemical cell
US6638415B1 (en) * 1995-11-16 2003-10-28 Lifescan, Inc. Antioxidant sensor
US6521110B1 (en) 1995-11-16 2003-02-18 Lifescan, Inc. Electrochemical cell
US6863801B2 (en) 1995-11-16 2005-03-08 Lifescan, Inc. Electrochemical cell
AUPN661995A0 (en) 1995-11-16 1995-12-07 Memtec America Corporation Electrochemical cell 2
US5954685A (en) * 1996-05-24 1999-09-21 Cygnus, Inc. Electrochemical sensor with dual purpose electrode
US6632349B1 (en) * 1996-11-15 2003-10-14 Lifescan, Inc. Hemoglobin sensor
AUPO855897A0 (en) * 1997-08-13 1997-09-04 Usf Filtration And Separations Group Inc. Automatic analysing apparatus II
US8071384B2 (en) 1997-12-22 2011-12-06 Roche Diagnostics Operations, Inc. Control and calibration solutions and methods for their use
US7390667B2 (en) * 1997-12-22 2008-06-24 Roche Diagnostics Operations, Inc. System and method for analyte measurement using AC phase angle measurements
US7494816B2 (en) 1997-12-22 2009-02-24 Roche Diagnostic Operations, Inc. System and method for determining a temperature during analyte measurement
US7407811B2 (en) * 1997-12-22 2008-08-05 Roche Diagnostics Operations, Inc. System and method for analyte measurement using AC excitation
US6475360B1 (en) 1998-03-12 2002-11-05 Lifescan, Inc. Heated electrochemical cell
US6878251B2 (en) * 1998-03-12 2005-04-12 Lifescan, Inc. Heated electrochemical cell
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
GB2347746A (en) * 1999-03-05 2000-09-13 Azur Env Ltd Detecting analytes, particularly nucleic acids, in a sample
RU2278612C2 (ru) * 2000-07-14 2006-06-27 Лайфскен, Инк. Иммуносенсор
US6444115B1 (en) 2000-07-14 2002-09-03 Lifescan, Inc. Electrochemical method for measuring chemical reaction rates
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
KR100955587B1 (ko) 2001-10-10 2010-04-30 라이프스캔, 인코포레이티드 전기화학 전지
ES2581779T3 (es) * 2002-02-10 2016-09-07 Agamatrix, Inc Método para ensayo de propiedades electroquímicas
US20030180814A1 (en) * 2002-03-21 2003-09-25 Alastair Hodges Direct immunosensor assay
US20060134713A1 (en) 2002-03-21 2006-06-22 Lifescan, Inc. Biosensor apparatus and methods of use
AT411627B (de) * 2002-08-23 2004-03-25 Hoffmann La Roche Vorrichtung zur überprüfung der positionierung und der blasenfreiheit einer medizinischen mikroprobe in einer durchflussmesszelle
US20040108226A1 (en) * 2002-10-28 2004-06-10 Constantin Polychronakos Continuous glucose quantification device and method
EP1467206A1 (de) * 2003-04-08 2004-10-13 Roche Diagnostics GmbH Biosensor Vorrichtung
US7645421B2 (en) 2003-06-20 2010-01-12 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8206565B2 (en) 2003-06-20 2012-06-26 Roche Diagnostics Operation, Inc. System and method for coding information on a biosensor test strip
WO2004113910A1 (en) 2003-06-20 2004-12-29 Roche Diagnostics Gmbh Devices and methods relating to electrochemical biosensors
US7604721B2 (en) 2003-06-20 2009-10-20 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7452457B2 (en) 2003-06-20 2008-11-18 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US8148164B2 (en) 2003-06-20 2012-04-03 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US20070264721A1 (en) * 2003-10-17 2007-11-15 Buck Harvey B System and method for analyte measurement using a nonlinear sample response
US7718439B2 (en) 2003-06-20 2010-05-18 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7488601B2 (en) 2003-06-20 2009-02-10 Roche Diagnostic Operations, Inc. System and method for determining an abused sensor during analyte measurement
CN1839314B (zh) 2003-06-20 2012-02-08 霍夫曼-拉罗奇有限公司 用于在生物传感器测试条上编码信息的系统和方法
US8058077B2 (en) 2003-06-20 2011-11-15 Roche Diagnostics Operations, Inc. Method for coding information on a biosensor test strip
US7645373B2 (en) 2003-06-20 2010-01-12 Roche Diagnostic Operations, Inc. System and method for coding information on a biosensor test strip
US7597793B2 (en) 2003-06-20 2009-10-06 Roche Operations Ltd. System and method for analyte measurement employing maximum dosing time delay
CA2553632A1 (en) 2004-02-06 2005-08-25 Bayer Healthcare Llc Oxidizable species as an internal reference for biosensors and method of use
US7601299B2 (en) 2004-06-18 2009-10-13 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7569126B2 (en) 2004-06-18 2009-08-04 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip
US7556723B2 (en) 2004-06-18 2009-07-07 Roche Diagnostics Operations, Inc. Electrode design for biosensor
CA2590265A1 (en) * 2004-07-22 2006-03-02 Bioprospect Technologies Co., Ltd. Method and apparatus for electrochemical detection
GB0509919D0 (en) * 2005-05-16 2005-06-22 Ralph Ellerker 1795 Ltd Improvements to door closure system
BRPI0613592A2 (pt) 2005-07-20 2011-01-18 Bayer Healthcare Llc amperometria conectada por porta
EP3483598A1 (de) 2005-09-30 2019-05-15 Ascensia Diabetes Care Holdings AG Gesteuerte voltammetrie
US20090143658A1 (en) * 2006-02-27 2009-06-04 Edwards Lifesciences Corporation Analyte sensor
US8529751B2 (en) * 2006-03-31 2013-09-10 Lifescan, Inc. Systems and methods for discriminating control solution from a physiological sample
US8398443B2 (en) * 2006-04-21 2013-03-19 Roche Diagnostics Operations, Inc. Biological testing system and connector therefor
MX347099B (es) * 2006-10-24 2017-04-12 Ascensia Diabetes Care Holdings Ag Amperimetria de decadencia transitoria.
US7751864B2 (en) * 2007-03-01 2010-07-06 Roche Diagnostics Operations, Inc. System and method for operating an electrochemical analyte sensor
US8778168B2 (en) 2007-09-28 2014-07-15 Lifescan, Inc. Systems and methods of discriminating control solution from a physiological sample
WO2009076302A1 (en) 2007-12-10 2009-06-18 Bayer Healthcare Llc Control markers for auto-detection of control solution and methods of use
US8097674B2 (en) * 2007-12-31 2012-01-17 Bridgestone Corporation Amino alkoxy-modified silsesquioxanes in silica-filled rubber with low volatile organic chemical evolution
US8603768B2 (en) 2008-01-17 2013-12-10 Lifescan, Inc. System and method for measuring an analyte in a sample
US20100072062A1 (en) * 2008-05-05 2010-03-25 Edwards Lifesciences Corporation Membrane For Use With Amperometric Sensors
US8551320B2 (en) 2008-06-09 2013-10-08 Lifescan, Inc. System and method for measuring an analyte in a sample
US8900431B2 (en) 2008-08-27 2014-12-02 Edwards Lifesciences Corporation Analyte sensor
JP2012507371A (ja) * 2008-10-31 2012-03-29 エドワーズ ライフサイエンシーズ コーポレイション 非作用電極層を伴った分析物センサー
US8394246B2 (en) 2009-02-23 2013-03-12 Roche Diagnostics Operations, Inc. System and method for the electrochemical measurement of an analyte employing a remote sensor
US8608937B2 (en) 2009-03-30 2013-12-17 Roche Diagnostics Operations, Inc. Biosensor with predetermined dose response curve and method of manufacturing
US20110054284A1 (en) * 2009-08-28 2011-03-03 Edwards Lifesciences Corporation Anti-Coagulant Calibrant Infusion Fluid Source
US20110168575A1 (en) * 2010-01-08 2011-07-14 Roche Diaagnostics Operations, Inc. Sample characterization based on ac measurement methods
EP2656060B1 (de) 2010-12-20 2021-03-10 Roche Diabetes Care GmbH Gesteuerter anstiegsratenübergang für elektrochemische analyse
WO2012084194A1 (en) 2010-12-22 2012-06-28 Roche Diagnostics Gmbh Systems and methods to compensate for sources of error during electrochemical testing
US9903830B2 (en) 2011-12-29 2018-02-27 Lifescan Scotland Limited Accurate analyte measurements for electrochemical test strip based on sensed physical characteristic(s) of the sample containing the analyte
US9494555B2 (en) 2012-09-24 2016-11-15 Cilag Gmbh International System and method for measuring an analyte in a sample and calculating glucose results to account for physical characteristics of the sample
EP2972268B1 (de) 2013-03-15 2017-05-24 Roche Diabetes Care GmbH Verfahren zur ausfallsicherung elektrochemischer messungen eines analyts sowie vorrichtungen, einrichtungen und systeme damit
WO2014140164A1 (en) 2013-03-15 2014-09-18 Roche Diagnostics Gmbh Methods of using information from recovery pulses in electrochemical analyte measurements as well as devices, apparatuses and systems incorporating the same
CN105164523B (zh) 2013-03-15 2017-09-12 豪夫迈·罗氏有限公司 缩放用于构造生物传感器算法的数据的方法以及合并所述方法的设备、装置和系统
WO2014140177A2 (en) 2013-03-15 2014-09-18 Roche Diagnostics Gmbh Methods of detecting high antioxidant levels during electrochemical measurements and failsafing an analyte concentration therefrom as well as devices, apparatuses and systems incorporting the same
EP2994536B1 (de) 2013-05-08 2017-06-14 Roche Diabetes Care GmbH Stabilisierung von enzymen durch nikotinsäure
US9835578B2 (en) 2013-06-27 2017-12-05 Lifescan Scotland Limited Temperature compensation for an analyte measurement determined from a specified sampling time derived from a sensed physical characteristic of the sample containing the analyte
US9435764B2 (en) 2013-06-27 2016-09-06 Lifescan Scotland Limited Transient signal error trap for an analyte measurement determined from a specified sampling time derived from a sensed physical characteristic of the sample containing the analyte
US9435762B2 (en) 2013-06-27 2016-09-06 Lifescan Scotland Limited Fill error trap for an analyte measurement determined from a specified sampling time derived from a sensed physical characteristic of the sample containing the analyte
US9459231B2 (en) 2013-08-29 2016-10-04 Lifescan Scotland Limited Method and system to determine erroneous measurement signals during a test measurement sequence
US9243276B2 (en) 2013-08-29 2016-01-26 Lifescan Scotland Limited Method and system to determine hematocrit-insensitive glucose values in a fluid sample
US9828621B2 (en) 2013-09-10 2017-11-28 Lifescan Scotland Limited Anomalous signal error trap for an analyte measurement determined from a specified sampling time derived from a sensed physical characteristic of the sample containing the analyte
EP2927319A1 (de) 2014-03-31 2015-10-07 Roche Diagnostics GmbH Hochlastenzymimmobilisierung mittels Quervernetzung
CN106164054B (zh) 2014-04-14 2019-05-07 豪夫迈·罗氏有限公司 吩嗪介导剂
JP6659669B2 (ja) 2014-08-22 2020-03-04 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft レドックス指示薬
JP6639479B2 (ja) 2014-08-25 2020-02-05 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 干渉補償型の2電極テストストリップ
US20160091450A1 (en) 2014-09-25 2016-03-31 Lifescan Scotland Limited Accurate analyte measurements for electrochemical test strip to determine analyte measurement time based on measured temperature, physical characteristic and estimated analyte value and their temperature compensated values
US20160091451A1 (en) 2014-09-25 2016-03-31 Lifescan Scotland Limited Accurate analyte measurements for electrochemical test strip to determine analyte measurement time based on measured temperature, physical characteristic and estimated analyte value
WO2016073395A1 (en) 2014-11-03 2016-05-12 Roche Diabetes Care, Inc. Electrode arrangements for electrochemical test elements and methods of use thereof
US9423374B2 (en) 2015-01-26 2016-08-23 Lifescan Scotland Limited Reference electrode error trap determined from a specified sampling time and a pre-determined sampling time
CN109804240A (zh) 2016-10-05 2019-05-24 豪夫迈·罗氏有限公司 用于多分析物诊断测试元件的检测试剂和电极布置以及其使用方法
WO2019147225A1 (en) * 2018-01-24 2019-08-01 Hewlett-Packard Development Company, L.P. Fluidic property determination from fluid impedances
WO2023110190A1 (en) 2021-12-13 2023-06-22 Heraeus Medical Gmbh Tests and methods for detecting bacterial infection

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2618392A1 (de) * 1975-04-28 1976-11-11 Mitsubishi Chem Ind Voltammetrieanordnung
FR2351412A1 (fr) * 1976-05-14 1977-12-09 Minemet Rech Sa Procede de polarographie differentielle a impulsions
JPS5460996A (en) * 1977-10-22 1979-05-16 Mitsubishi Chem Ind Method of measuring amount of sugar
DE2817363C2 (de) * 1978-04-20 1984-01-26 Siemens AG, 1000 Berlin und 8000 München Verfahren zur Konzentrationsbestimmung von Zucker und dafür geeigneter elektrokatalytischer Zuckersensor
US4340458A (en) * 1980-06-02 1982-07-20 Joslin Diabetes Center, Inc. Glucose sensor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4030873C2 (de) * 1990-09-29 2000-05-04 Conducta Endress & Hauser Verfahren zur Konzentrationsbestimmung von elektrochemisch umsetzbaren Gasen
FR2721713A1 (fr) * 1994-06-23 1995-12-29 Siemens Ag Détecteur électrocatalytique de glucose.
DE19515524A1 (de) * 1995-04-27 1996-11-07 Private Uni Witten Herdecke Gm Verfahren und Vorrichtung zum fortlaufenden Nachweis wenigstens einer Substanz in einem gasförmigen oder flüssigen Gemisch mittels einer Sensorelektrode
DE19515524C2 (de) * 1995-04-27 1999-09-09 Private Uni Witten Herdecke Gm Verfahren und Vorrichtung zum fortlaufenden Nachweis wenigstens einer Substanz in einem gasförmigen oder flüssigen Gemisch mittels einer Sensorelektrode
US6224745B1 (en) 1995-04-27 2001-05-01 Private Universitat Process and device for continuously detecting at least one substance in a gaseous or liquid mixture by means of a sensor electrode
WO1997034140A1 (de) * 1996-03-14 1997-09-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Detektion von molekülen und molekülkomplexen
EP2085779A1 (de) 1997-12-22 2009-08-05 Roche Diagnostics Operations, Inc. Messgerät
EP2085778A1 (de) 1997-12-22 2009-08-05 Roche Diagnostics Operations, Inc. Messgerät
US7018843B2 (en) 2001-11-07 2006-03-28 Roche Diagnostics Operations, Inc. Instrument
US7923258B2 (en) 2001-11-07 2011-04-12 Roche Diagnostics Operations, Inc. Instrument
US7927882B2 (en) 2001-11-07 2011-04-19 Roche Diagnostics Operations, Inc. Instrument

Also Published As

Publication number Publication date
ATE40753T1 (de) 1989-02-15
DE3379178D1 (en) 1989-03-16
EP0101880A3 (en) 1984-12-27
EP0101880B1 (de) 1989-02-08
EP0101880A2 (de) 1984-03-07
US4919770A (en) 1990-04-24

Similar Documents

Publication Publication Date Title
EP0101880B1 (de) Verfahren zur Bestimmung der Konzentration elektrochemisch umsetzbarer Stoffe
EP0103109B1 (de) Verfahren zur Bestimmung der Zuckerkonzentration
EP1977225B1 (de) Elektrochemisches biosensor-analysesystem
DE60114159T2 (de) Messung von stoffen in flüssigkeiten
DE3405431C2 (de)
AT411627B (de) Vorrichtung zur überprüfung der positionierung und der blasenfreiheit einer medizinischen mikroprobe in einer durchflussmesszelle
EP0084874B1 (de) Vorrichtung zur Bestimmung des Hämatokritwertes
DE69727485T2 (de) Elektrochemischer sensor
DE69434836T2 (de) Biosensor mit ausfallgesichertem Betriebsverfahren zur Vermeidung von falschen Anzeigen
CH660922A5 (de) In vitro verfahren sowie implantierbare vorrichtung zur glucosekonzentrationserfassung in biologischen fluiden.
DE2911943A1 (de) Elektrochemisches durchflussystem
DE3411501A1 (de) Vorrichtung zur feststellung eines stoffes unter messung seiner konzentration
DE3805773A1 (de) Enzymelektrodensensoren
CH640055A5 (de) Verfahren und vorrichtung zur bestimmung des dielektrischen durchbruches und der groesse von als umhuellung eine membran aufweisenden partikeln.
DE4223228C2 (de) Verfahren zur Bestimmung von Persäuren
DE2826517C2 (de) Vorrichtung zum Messen und Aufzeichnen der Frequenzabhängigkeit der Gesamtkapazität und des Gesamtleitwertes einer Membran
EP1719447A1 (de) Verfahren und Vorrichtung zur Bestimmung der Glucose-Konzentration in Gewebflüssigkeit
DE2921058A1 (de) Vorrichtung zur transkutanen messung des sauerstoffpartialdruckes im arteriellen blut
EP0262582B1 (de) Verfahren zur Bestimmung des Konzentrationsverhältnisses von Lithiumionen zu Natriumionen und Vorrichtung zur Durchführung dieses Verfahrens
DE2212015A1 (de) Vorrichtung zur Überwachung von Verschmutzungskomponenten
EP1632776B1 (de) Verfahren zur Detektion einer Gasblase in einer wässrigen Flüssigkeit
EP1591778A1 (de) Elektrochemischer Gas-Sensor mit hydrophiler Membranbeschichtung
EP0479033A2 (de) Verfahren zur Konzentrationsbestimmung von elektrochemisch umsetzbaren Gasen
DE2900720A1 (de) Elektrotechnisches messystem
DE2552654C3 (de) Verfahren zur kontinuierlichen Messung komplexer Lösungen

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee