DE4027990C1 - Laser ranging device - uses modulated semiconductor laser and phase sensitive rectifier - Google Patents

Laser ranging device - uses modulated semiconductor laser and phase sensitive rectifier

Info

Publication number
DE4027990C1
DE4027990C1 DE19904027990 DE4027990A DE4027990C1 DE 4027990 C1 DE4027990 C1 DE 4027990C1 DE 19904027990 DE19904027990 DE 19904027990 DE 4027990 A DE4027990 A DE 4027990A DE 4027990 C1 DE4027990 C1 DE 4027990C1
Authority
DE
Germany
Prior art keywords
phase
transmission signal
range finder
laser
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE19904027990
Other languages
German (de)
Inventor
Walter Dipl.-Phys. Dr. 8011 Kirchseeon De Hermann
Franz Dipl.-Ing. 8881 Villenbach De Refle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROSCHIWAL + PARTNER INGENIEUR GMBH AUGSBURG, 86179
Original Assignee
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Bolkow Blohm AG filed Critical Messerschmitt Bolkow Blohm AG
Priority to DE19904027990 priority Critical patent/DE4027990C1/en
Application granted granted Critical
Publication of DE4027990C1 publication Critical patent/DE4027990C1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal

Abstract

The phase-sensitive rectifier comprises 2 synchronous rectifier stages (G1,G2). The transmission signal (10) provided by the laser (11) is interrupted after a given number of periods of the primary modulation frequency, for a defined number of periods, via a switch element (12). Two intergrating amplifiers (V3,V4) are coupled to the outputs of the synchronous rectifiers (G1,G2) via analogue circuits (S2,S3) during the interruption interval. ADVANTAGE - Increased measuring range.

Description

Die Erfindung bezieht sich auf einen Entfernungsmesser der mit cw-moduliertem Halbleiterlaser und phasenempfindlichem Gleichrichter arbeitet gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a range finder with cw-modulated Semiconductor laser and phase sensitive rectifier works according to the preamble of claim 1.

Durch die DE 35 27 918 C2 der Anmelderin sind solche nach dem Phasenwinkelverfahren arbeitende Entfernungsmesser bekannt geworden, bei denen ein ununterbrochener Wellenzug ausgestrahlt wird. Eine Ausführungsform dieses Standes der Technik ist in der Fig. 1 der Zeichnung dargestellt. Der Meßbereich ist jedoch auf Entfernungen begrenzt, bei denen der Phasenwinkel kleiner als 360° bleibt. Von da ab beginnt das Meßergebnis wieder periodisch beim Wert Null. Das bringt über große Entfernungsbereiche eine Mehrdeutigkeit der Messung. Nun kann allerdings der Meßbereich durch Herabsetzung der Modulationsfrequenz erweitert werden, doch wird dann infolge diverser technischer Schwierigkeiten die Meßgenauigkeit reduziert. Um diesen Nachteil zu minimieren, ist bereits vorgeschlagen worden, eine hohe Modulationsfrequenz mit einer zweiten, wesentlich niedrigeren Frequenz zu modulieren und damit einen Meßbereich weit über den 360°-Bereich der Messung mit der hohen primären Frequenz zu erzielen. Diese Ausführungsformen haben sich bewährt, allerdings ist der elektronische Aufwand noch relativ hoch und damit auch die Montagezeit, der Raumbedarf und die laufenden Funktionsüberprüfungen. Auch die Verwendungsmöglichkeiten sind eingeschränkt.From DE 35 27 918 C2 of the applicant, such rangefinders operating according to the phase angle method are known, in which an uninterrupted wave train is emitted. An embodiment of this prior art is shown in Fig. 1 of the drawing. However, the measuring range is limited to distances at which the phase angle remains less than 360 °. From then on, the measurement result periodically starts again at zero. This brings an ambiguity of the measurement over large distance ranges. However, the measuring range can now be expanded by reducing the modulation frequency, but the measuring accuracy is then reduced due to various technical difficulties. In order to minimize this disadvantage, it has already been proposed to modulate a high modulation frequency with a second, substantially lower frequency and thus to achieve a measuring range far beyond the 360 ° range of the measurement with the high primary frequency. These embodiments have proven themselves, but the electronic effort is still relatively high and thus also the assembly time, the space requirement and the ongoing functional checks. The possible uses are also limited.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Entfernungsmesser der eingangs genannten Art zu schaffen, dessen Einsatzmöglichkeiten und dessen Meßbereiche vergrößert sind, dessen Meßgenauigkeit optimiert ist, der primäre Wellenzug nur kurzzeitig unterbrochen wird und die Untermodulation in einfacher Weise der geforderten maximalen Meßentfernung anpaßbar ist.The present invention has for its object a rangefinder of the type mentioned at the beginning to create its possible uses and the measuring ranges are enlarged, the measuring accuracy is optimized, the primary wave train is only briefly interrupted and the sub-modulation in a simple manner the required maximum Measuring distance is adjustable.

Diese Aufgabe wird durch die im Anspruch 1 aufgezeigten Maßnahmen gelöst. In den Unteransprüchen sind Weiterbildungen und Ausgestaltungen angegeben und in der nachfolgenden Beschreibung ist ein Ausführungsbeispiel erläutert sowie in den Fig. der Zeichnung skizziert. Es zeigen:This object is achieved by the measures indicated in claim 1. Further developments and refinements are specified in the subclaims and an exemplary embodiment is explained in the following description and outlined in the figures of the drawing. Show it:

Fig. 1 ein Schaltbild eines Entfernungsmessers mit cw-moduliertem Laser nach dem Stand der Technik mit einfachem Meßbereich, Fig. 1 is a circuit diagram of a range finder with cw-modulated laser according to the prior art with a simple measurement range,

Fig. 2 ein Schemabild für die Untermodulation des Sendesignals und der zeitlichen Verschiebung des Empfangssignals sowie der Schließzeiten der Schalter S₂ und S₃, Fig. 2 is a schematic diagram for the sub-modulation of the transmission signal and the time shift of the received signal and the closing times of the switches S₂ and S₃,

Fig. 3 ein Schaltbild des vorgeschlagenen Ausführungsbeispiels eines Entfernungsmessers mit erweitertem Meßbereich, Fig. 3 is a diagram of the proposed embodiment of a distance measuring device with an extended measuring range,

Fig. 4 ein Blockschaltbild des Digitalteils des vorgeschlagenen Ausführungsbeispiels gemäß Fig. 3. FIG. 4 shows a block diagram of the digital part of the proposed exemplary embodiment according to FIG. 3.

In den Fig. 2 und 3 der Zeichnung ist das Prinzip und die Realisierung eines Ausführungsbeispiels von einem Entfernungsmesser der eingangs genannten Art für den angestrebten erweiterten Meßbereich in vereinfachter Form gezeigt. Das Sendesignal 10 wird jeweils nach einer bestimmten, frei wählbaren Anzahl m₁ von Perioden der primären Modulation unterbrochen, vorzugsweise für die Dauer T von einer Anzahl m₂ dieser Perioden. Dies wird durch den Schalter S₁ bewerkstelligt. Während dieser Zeitintervalle T₁, T₂, T₃ usw. werden nun durch die Analogschaltkreise S₂ und S₃ zwei integrierende Verstärker V₃ und V₄ mit den vorhandenen Synchrongleichrichtern G₁ und G₂ verbunden, wobei diese jedoch nicht belastet werden dürfen. Die Integrationszeit dieser Verstärker V₃, V₄ muß groß sein gegenüber den unterbrechenden Zeitintervallen T₁, T₂, usw. Sind nun deren Ausgangsspannungen x und y, so ist die SpannungIn FIGS. 2 and 3 of the drawings, the principle and implementation is shown an embodiment of a rangefinder of the type mentioned for the desired extended range in a simplified form. The transmission signal 10 is interrupted after a certain, freely selectable number m₁ of periods of primary modulation, preferably for the duration T of a number m₂ of these periods. This is accomplished by the switch S₁. During these time intervals T₁, T₂, T₃ etc. two integrating amplifiers V₃ and V₄ are now connected to the existing synchronous rectifiers G₁ and G₂ through the analog circuits S₂ and S₃, but these must not be loaded. The integration time of these amplifiers V₃, V₄ must be large compared to the interrupting time intervals T₁, T₂, etc. If their output voltages are x and y, the voltage is

ein Maß für die zeitliche Verzögerung des Empfangswellenzuges gegenüber dem Sendewellenzug und damit für die Entfernung D zum Ziel. "A" wird ermittelt ausa measure of the time delay of the reception wave train compared the transmission wave train and thus for the distance D to the destination. "A" is determined out

Wegen der kürzeren Meßzeit ist "v" naturgemäß mit einer höheren Ungenauigkeit behaftet als die Komponenten A · sin ϕ und A · cos ϕ.Because of the shorter measuring time, "v" is naturally more inaccurate afflicted as the components A · sin ϕ and A · cos ϕ.

Bei sehr gutem Signal/Rauschverhältnis des Empfangssignals kann zur Vereinfachung die FormelWith a very good signal / noise ratio of the received signal, this can be simplified the formula

benutzt werden. Durch Einführen dieser Spannung v in den Prozeß zur Entfernungsberechnung kann dieser unter Berücksichtigung der Vorzeichen von sin ϕ und cos ϕ auf Entfernungen oberhalb der "Phasenwinkel-360°- Entfernung" ausgedehnt werden. Hierzu ist noch anzuführen, daß die Modulation des Sendesignals 10 durchaus auch sinusförmig erfolgen kann. Bei der in den Fig. 2 und 3 dargestellten Rechteckmodulation müssen für die Ermittlung von sin ϕ bzw. cos ϕ in der beschriebenen Weise die Oberwellen im Empfänger 13 bzw. dessen Verstärker weitgehend unterdrückt werden. Dies ist durch geeignete Wahl von dessen Frequenzgang der Verstärkung leicht möglich. Die erforderliche zweifache Berechnung von Wurzeln aus Quadratsummen und Division spricht nicht gegen die angesprochene Einfachheit der vorgeschlagenen Ausführung, da nämlich nur eine sehr "bescheidene" Genauigkeit von beispielsweise 6 bit und auch nur eine bescheidene Rechengeschwindigkeit benötigt werden. to be used. By introducing this voltage v into the process for the distance calculation, this can be extended to distances above the "phase angle 360 ° distance" taking into account the signs of sin ϕ and cos ϕ. It should also be mentioned that the modulation of the transmission signal 10 can also be sinusoidal. In the case of the rectangular modulation shown in FIGS. 2 and 3, the harmonics in the receiver 13 or its amplifier must be largely suppressed for the determination of sin ϕ or cos ϕ in the manner described. This is easily possible by a suitable choice of the frequency response of the amplification. The required two-fold calculation of roots from square sums and division does not speak against the mentioned simplicity of the proposed embodiment, since only a very "modest" accuracy of 6 bits, for example, and only a modest computing speed are required.

In der Fig. 4 ist der sogenannte Digitalteil der vorgeschlagenen Einrichtung skizziert. Wie ersichtlich, werden die analog gewonnenen Spannungen A · cos ϕ und A · sin ϕ sowie x und y auf je eine Sample and Hold-Stufe - die nachfolgend als S+H bezeichnet werden - gegeben. Dieser Block aus den S+Hs hält auf einen Befehl des Mikroprozessors den Momentanwert eines jeden Analogsignals zum exakt gleichen Zeitpunkt fest. Danach kann durch Umschalten des Multiplexers jedes einzelne Signal im Analog-Digitalwandler digitalisiert und durch den Mikroprozessor einem Zwischenspeicher zugeführt werden.In FIG. 4, the so-called digital part of the proposed device is sketched. As can be seen, the voltages A · cos ϕ and A · sin ϕ obtained as well as x and y are each given to a sample and hold level - which are referred to below as S + H. On a command from the microprocessor, this block of the S + Hs records the instantaneous value of each analog signal at exactly the same time. Then, by switching the multiplexer, each individual signal can be digitized in the analog-digital converter and fed to a buffer store by the microprocessor.

Dieser Vorgang wiederholt sich für eine feste oder variable Anzahl von Sample & Hold-Zyklen, um durch digitale Filterung - die im einfachsten Falle eine Mitteilung über alle Werte sein kann - der Eingangswerte Rauschanteile zu eliminieren und dadurch im umgekehrten Verhältnis zur Wurzel aus der Meßzeit die Genauigkeit bis zu einem gewissen Grad zu steigern. Im Anschluß an diesen Filterzyklus erfolgt die Auswertung der aufbereiteten Eingangssignale 10′, d. h. die Berechnung der Entfernung D gemäß der in der Fig. 3 angegebenen Formel. Als Ergebnis dieser Berechnung steht dann die Entfernung D zur Weiterverarbeitung und Anzeige zur Verfügung.This process is repeated for a fixed or variable number of sample & hold cycles in order to eliminate noise components by means of digital filtering - which in the simplest case can be a message about all values - and thereby in reverse proportion to the root of the measurement time Increase accuracy to some degree. Following this filter cycle, the processed input signals 10 'are evaluated, ie the distance D is calculated in accordance with the formula given in FIG. 3. As a result of this calculation, the distance D is then available for further processing and display.

Um nicht durch langdauernde Subroutinen zur Division und Multiplikation im Zeitverhalten behindert zu werden, wird empfohlen, einen Mikroprozessor mit internen Multiplikations- und Divisionsbefehlen einzusetzen und sich auf die sog. Integer-Arithmetik zu beschränken. Aus demselben Grund sollten die Quadrier- und Wurzelfunktion mittels einer im Speicher abgelegten Werte-Tabelle (Look up table) ausgeführt werden, ebenso die "arctang-Funktion". Weiterhin kann man in einer Art "Einmeßlauf" oder "Selbsteichung" die im Speicher abgelegte Werte-Tabelle (Look up table) an systemgegebene Besonderheiten - wie beispielsweise Nichtlinearität - anpassen und gegebenenfalls korrigieren.Not through long-lasting subroutines for division and multiplication To be hampered in timing, it is recommended to have a microprocessor with internal multiplication and division commands and restrict yourself to so-called integer arithmetic. For the same reason the squaring and root function should be stored in a memory Value table (look up table) are executed, as is the "arctang function". Furthermore you can in a kind of "calibration run" or "Self calibration" the value table stored in memory (look up table) system-specific features - such as non-linearity - adjust and correct if necessary.

Claims (7)

1. Entfernungsmesser der mit cw-moduliertem Halbleiterlaser und phasenempfindlichen Gleichrichter arbeitet, bei dem zur Erweiterung des Meßbereiches durch eine primäre hohe Modulationsfrequenz mit einer zweiten, niedrigen Frequenz moduliert wird, wobei der phasenempfindliche Gleichrichter aus zwei Synchrongleichrichtern (G₁, G₂) besteht, die direkt bzw. um 90° phasenversetzt mit der primären Modulation angesteuert werden, dadurch gekennzeichnet, daß das Sendesignal (10) des Lasers (11) nach einer bestimmten Anzahl (m₁) von Perioden der primären Modulation für die Dauer (Zeitintervall T) von einer bestimmten Anzahl (m₂) dieser Perioden durch ein Schaltelement (12) unterbrochen wird und während dieser Zeitintervalle (T₁, T₂ . . .) durch Analogschaltkreise (S₂, S₃) zwei integrierende Verstärker (V₃, V₄) mit den Ausgängen der Synchrongleichrichter (G₁, G₂) verbunden werden.1. rangefinder which works with cw-modulated semiconductor laser and phase-sensitive rectifier, which is modulated by a primary high modulation frequency with a second, low frequency to expand the measuring range, the phase-sensitive rectifier consisting of two synchronous rectifiers (G₁, G₂), which are direct or controlled by 90 ° out of phase with the primary modulation, characterized in that the transmission signal ( 10 ) of the laser ( 11 ) after a certain number (m 1) of periods of primary modulation for the duration (time interval T) of a certain number (m₂) of these periods is interrupted by a switching element ( 12 ) and during these time intervals (T₁, T₂...) by analog circuits (S₂, S₃) two integrating amplifiers (V₃, V₄) with the outputs of the synchronous rectifier (G₁, G₂) get connected. 2. Entfernungsmesser nach Anspruch 1, dadurch gekennzeichnet, daß die Verstärker (V₃, V₄) eine Integrationszeitkonstante aufweisen, die groß gegenüber dem Zeitintervall (T) ist.2. Range finder according to claim 1, characterized in that the amplifiers (V₃, V₄) have an integration time constant, which is large compared to the time interval (T). 3. Entfernungsmesser nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß bei Rechteckmodulation des Sendesignals (10) im Empfangsverstärker (13) durch bestimmte Frequenzgang-Auswahl der Verstärkung die Oberwellen unterdrückt werden.3. Distance meter according to claims 1 or 2, characterized in that the harmonics are suppressed by square-wave modulation of the transmission signal ( 10 ) in the receiving amplifier ( 13 ) by a specific frequency response selection of the gain. 4. Entfernungsmesser nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß das Sendesignal (10) sinusförmig moduliert wird.4. Distance meter according to claims 1 or 2, characterized in that the transmission signal ( 10 ) is modulated sinusoidally. 5. Entfernungsmesser nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß ein Mikroprozessor mit Multiplikations- und Divisionsbefehlen verwendet wird. 5. Range finder according to one of claims 1 to 4, characterized characterized in that a microprocessor with multiplication and division commands is used.   6. Entfernungsmesser nach Anspruch 5, dadurch gekennzeichnet, daß die Quadrier- und Wurzelfunktionen mittels einer im Speicher des Mikroprozessors abgelegten Werte-Tabelle durchgeführt werden.6. Range finder according to claim 5, characterized in that the squaring and root functions by means of one in the memory of the microprocessor stored values table. 7. Entfernungsmesser nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Meßbereich durch Hinzunahme noch tieferer Untermodulationsfrequenzen weiter vergrößert wird.7. Range finder according to one of claims 1 to 6, characterized characterized that the measuring range by adding even deeper Submodulation frequencies is further increased.
DE19904027990 1990-09-04 1990-09-04 Laser ranging device - uses modulated semiconductor laser and phase sensitive rectifier Expired - Fee Related DE4027990C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19904027990 DE4027990C1 (en) 1990-09-04 1990-09-04 Laser ranging device - uses modulated semiconductor laser and phase sensitive rectifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19904027990 DE4027990C1 (en) 1990-09-04 1990-09-04 Laser ranging device - uses modulated semiconductor laser and phase sensitive rectifier

Publications (1)

Publication Number Publication Date
DE4027990C1 true DE4027990C1 (en) 1992-02-20

Family

ID=6413553

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19904027990 Expired - Fee Related DE4027990C1 (en) 1990-09-04 1990-09-04 Laser ranging device - uses modulated semiconductor laser and phase sensitive rectifier

Country Status (1)

Country Link
DE (1) DE4027990C1 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001107A1 (en) * 1995-06-20 1997-01-09 Jan Michael Mrosik Fmcw distance measurement process
DE19830359A1 (en) * 1998-07-07 2000-01-20 Helge Zwosta Spatial position and movement determination of body and body parts for remote control of machine and instruments
EP1074855A2 (en) * 1999-08-05 2001-02-07 Leuze electronic GmbH + Co. Method of distance measurement
EP1152259A2 (en) * 2000-05-06 2001-11-07 Leuze electronic GmbH + Co. Optical rangefinder
WO2008067952A1 (en) * 2006-12-06 2008-06-12 Valeo Schalter Und Sensoren Gmbh Method for measuring a physical variable and device for said purpose
DE102008014274A1 (en) 2008-02-01 2009-08-06 Faro Technologies, Inc., Lake Mary Method and apparatus for determining a distance to an object
WO2009144582A2 (en) * 2008-05-28 2009-12-03 Anthony Richards Ranging for wireless radio frequency communication devices
US7702477B2 (en) 2006-07-05 2010-04-20 Aesculap Ag Calibration method and calibration device for a surgical referencing unit
US8384914B2 (en) 2009-07-22 2013-02-26 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699036B2 (en) 2010-07-29 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9074878B2 (en) 2012-09-06 2015-07-07 Faro Technologies, Inc. Laser scanner
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3527918C2 (en) * 1985-08-03 1987-06-19 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3527918C2 (en) * 1985-08-03 1987-06-19 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040898A (en) * 1995-06-20 2000-03-21 Mrosik; Jan Michael FMCW distance measurement process
WO1997001107A1 (en) * 1995-06-20 1997-01-09 Jan Michael Mrosik Fmcw distance measurement process
DE19830359A1 (en) * 1998-07-07 2000-01-20 Helge Zwosta Spatial position and movement determination of body and body parts for remote control of machine and instruments
EP1074855A3 (en) * 1999-08-05 2004-01-02 Leuze electronic GmbH + Co. Method of distance measurement
EP1074855A2 (en) * 1999-08-05 2001-02-07 Leuze electronic GmbH + Co. Method of distance measurement
DE19936954A1 (en) * 1999-08-05 2001-03-15 Leuze Electronic Gmbh & Co Distance measurement method
DE19936954C2 (en) * 1999-08-05 2001-08-09 Leuze Electronic Gmbh & Co Method and device for distance measurement
EP1152259A2 (en) * 2000-05-06 2001-11-07 Leuze electronic GmbH + Co. Optical rangefinder
EP1152259A3 (en) * 2000-05-06 2004-05-26 Leuze electronic GmbH + Co. Optical rangefinder
DE10022054B4 (en) * 2000-05-06 2006-05-24 Leuze Electronic Gmbh & Co Kg Optical distance sensor
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US7702477B2 (en) 2006-07-05 2010-04-20 Aesculap Ag Calibration method and calibration device for a surgical referencing unit
WO2008067952A1 (en) * 2006-12-06 2008-06-12 Valeo Schalter Und Sensoren Gmbh Method for measuring a physical variable and device for said purpose
WO2009095383A1 (en) 2008-02-01 2009-08-06 Faro Technologies Inc. Method and device for determining a distance to an object
JP2011522216A (en) * 2008-02-01 2011-07-28 ファロ テクノロジーズ インコーポレーテッド Objective distance measuring method and apparatus
US8064046B2 (en) * 2008-02-01 2011-11-22 Faro Technologies, Inc. Method and device for determining a distance from an object
DE102008014274B4 (en) 2008-02-01 2020-07-09 Faro Technologies, Inc. Method and device for determining a distance to an object
DE102008014274A1 (en) 2008-02-01 2009-08-06 Faro Technologies, Inc., Lake Mary Method and apparatus for determining a distance to an object
WO2009144582A3 (en) * 2008-05-28 2010-03-25 Anthony Richards Ranging for wireless radio frequency communication devices
WO2009144582A2 (en) * 2008-05-28 2009-12-03 Anthony Richards Ranging for wireless radio frequency communication devices
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8384914B2 (en) 2009-07-22 2013-02-26 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9684078B2 (en) 2010-05-10 2017-06-20 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699036B2 (en) 2010-07-29 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9074878B2 (en) 2012-09-06 2015-07-07 Faro Technologies, Inc. Laser scanner
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US9739886B2 (en) 2012-10-05 2017-08-22 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9746559B2 (en) 2012-10-05 2017-08-29 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10203413B2 (en) 2012-10-05 2019-02-12 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US10739458B2 (en) 2012-10-05 2020-08-11 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US11112501B2 (en) 2012-10-05 2021-09-07 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US11815600B2 (en) 2012-10-05 2023-11-14 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack

Similar Documents

Publication Publication Date Title
DE4027990C1 (en) Laser ranging device - uses modulated semiconductor laser and phase sensitive rectifier
DE4408995C2 (en) Device for determining a distortion point of an optical fiber
DE602005001664T2 (en) Optical rangefinder
DE2553691C2 (en) Method for opto-electronic measurement of the distance between a measuring point and a target point and a distance measuring device for carrying out this method
DE19922249C2 (en) Frequency analysis method and spectrum analyzer
DE2414562C2 (en) Circuit for measuring the delay between an original signal and an echo signal and its application
DE2410500A1 (en) RADAR SYSTEM WITH HIGH DISTANCE RESOLUTION
DE19616038A1 (en) Method and measuring device for determining the position of an object
DE2828171A1 (en) ARRANGEMENT FOR REDUCING ANGLE MEASURING NOISE IN A RADAR SYSTEM
EP0729583B1 (en) Phase-measurement device
DE2237032C3 (en) Protractor
EP0427969A2 (en) Pulse time of flight measurement device
DE2831903A1 (en) DEVICE FOR WIND MEASUREMENT ACCORDING TO THE DOPPLER PRINCIPLE
DE2138612C3 (en) Circuit arrangement for measuring the change in speed or rapidly changing instantaneous values of the speed of rotating or rectilinear moving bodies
DE1960862C3 (en) Radar simulator
DE2756413C3 (en) Device for measuring the distance and the speed of approach or the speed of removal of a moving target
DE19851307B4 (en) System and method for determining at least one physical quantity
DE1290206B (en) Method for approximate distance measurement with a frequency-modulated Doppler radar device
DE2852791C2 (en)
DE2345106C3 (en) Device for measuring the speed of a body, in particular a vehicle
DE1283955B (en) Arrangement for determining the direction of a frequency deviation
DE2704265A1 (en) ARRANGEMENT FOR PROCESSING SIGNALS RECEIVED BY A KOHAER PULSE RADAR
DE3442765C1 (en) Radio-goniometric device for detecting frequency-hopping and direction, in VHF or UHF band
AT397157B (en) Method for evaluating measurement (test) signals which are generated by scanning an incremental scale (roll, graduation) with a scanning unit, and a measuring instrument (heater) for carrying out this method
DE3107651C2 (en) Arrangement for measuring temporal shift quantities between two electrical signals displayed on the screen of an oscilloscope

Legal Events

Date Code Title Description
8100 Publication of the examined application without publication of unexamined application
D1 Grant (no unexamined application published) patent law 81
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: DEUTSCHE AEROSPACE AG, 8000 MUENCHEN, DE

8327 Change in the person/name/address of the patent owner

Owner name: LEUZE ELECTRONIC GMBH + CO, 73277 OWEN, DE

8327 Change in the person/name/address of the patent owner

Owner name: ROSCHIWAL + PARTNER INGENIEUR GMBH, 86179 AUGSBURG

8327 Change in the person/name/address of the patent owner

Owner name: ROSCHIWAL + PARTNER INGENIEUR GMBH AUGSBURG, 86179

8339 Ceased/non-payment of the annual fee