DE4224401A1 - New biodegradable homo- and co-polymer(s) for pharmaceutical use - produced by polycondensation of prod. from heterolytic cleavage of aliphatic polyester with functionalised (cyclo)aliphatic cpd. - Google Patents

New biodegradable homo- and co-polymer(s) for pharmaceutical use - produced by polycondensation of prod. from heterolytic cleavage of aliphatic polyester with functionalised (cyclo)aliphatic cpd.

Info

Publication number
DE4224401A1
DE4224401A1 DE19924224401 DE4224401A DE4224401A1 DE 4224401 A1 DE4224401 A1 DE 4224401A1 DE 19924224401 DE19924224401 DE 19924224401 DE 4224401 A DE4224401 A DE 4224401A DE 4224401 A1 DE4224401 A1 DE 4224401A1
Authority
DE
Germany
Prior art keywords
aliphatic
substituted
cycloaliphatics
aliphatic polyester
biodegradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19924224401
Other languages
German (de)
Inventor
Gerald Dr Rafler
Bernd Prof Dr Mueller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pharmatech GmbH
Original Assignee
Pharmatech GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pharmatech GmbH filed Critical Pharmatech GmbH
Priority to DE19924224401 priority Critical patent/DE4224401A1/en
Publication of DE4224401A1 publication Critical patent/DE4224401A1/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/664Polyesters containing oxygen in the form of ether groups derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids

Abstract

New biodegradable homo- and co-polymers (I) are produced by: (a) heterolytically cleaving an aliphatic polyester with an aliphatic or cycloaliphatic cpd. contg. at least 2 functional substits.; and (b) polycondensing the prod. while eliminating low mol. wt. reaction prods.. USE/ADVANTAGE - (I) are useful as matrix materials for depot and controlled release drug formulations (e.g. of peptides, steroids, cytostatics and antibiotics) in human and veterinary medicine and for resorbable surgical sutures, etc.. The method does not have the limitations of prior art processes (e.g. described in DE3430852 and DE4308852). In partic., a wider range of linear polymers having partic. solubility properties can be produced.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung neuer modifizierter biologisch abbaubarer Homo- und Copolymere. Diese Polymere können vorzugsweise als Matrixmaterialien in parenteralen Langzeitabgabesystemen für spezielle Phar­ maka, wie Peptide, Steroide, Cytostatika und Antibiotika, in der Human- und Veterinärmedizin sowie für diverse re­ sorbierbare medizinische Hilfsmittel, insbesondere in der chirurgischen Praxis, eingesetzt werden.The invention relates to a method for producing new modified biodegradable homo- and copolymers. These polymers can preferably be used as matrix materials in long-term parenteral delivery systems for special pharmaceuticals maka, such as peptides, steroids, cytostatics and antibiotics, in human and veterinary medicine as well as for various re sorbable medical aids, especially in the surgical practice.

Der Einsatz biologisch abbaubarer Polymere in Depotarznei­ formen mit retardierter bzw. kontrollierter Wirkstoff­ freisetzung wird vor allem durch ihr in vivo Freisetzungs- und Resorptionsverhalten bestimmt. Beides hängt in kom­ plexer Weise von der chemischen Struktur des Wirkstoffs und des polymeren Matrixmaterials, von Molmasse und Mol­ massenverteilung des Polymeren sowie von seiner Morpholo­ gie ab. Biologisch abbaubare Polymere für die Arzneistoff­ galenik sind vor allem aus der Gruppe der aliphatischen Polyester und - in wesentlich geringerem Umfang - der aliphatischen Polyamide bekannt. Die medikamentöse Thera­ pie mit solchen Depotarzneiformen erfordert ein breites Spektrum unterschiedlichen Freisetzungsverhaltens, das man vor allem über die chemische Struktur zu steuern sucht.The use of biodegradable polymers in depot drugs mold with delayed or controlled active ingredient Release is primarily due to their in vivo release and Absorption behavior determined. Both depend in com plexer way of the chemical structure of the active ingredient and the polymeric matrix material, molar mass and mol mass distribution of the polymer and its morpholo cast off. Biodegradable polymers for the drug galenics are mainly from the group of aliphatic Polyester and - to a much lesser extent - the aliphatic polyamides known. The drug Thera Pie with such depot pharmaceuticals requires a wide range  Spectrum of different release behavior, the one mainly to control the chemical structure is looking for.

Üblicherweise werden für diese pharmazeutischen Applika­ tionen binäre Copolyester, beispielsweise der Glykol- und der Milchsäure eingesetzt (G.W. Hastings, P. Dualaque, Macromolecular Materials, CRC Press, Boca Raton, Florida 1984). Auch andere Kombinationen von α- bzw. ω-Hydroxycar­ bonsäuren werden in der Fachliteratur beschrieben (vgl. beispielsweise R. Mank, G. Rafler, B. Nerlich, Pharmazie 46 (1991), 9). Wie in der DE-OS 34 30 852 beschrieben, läßt sich die Palette der aliphatischen Polyester durch Verwendung von binären oder ternären Copolymeren, die neben Milch- oder Glykolester bzw. Milch- und Glykolsäure hydroxylgruppenhaltige Verbindungen, vor allem Monsaccha­ ride bzw. ihre Reduktionsprodukte enthalten, beträchtlich erweitern.Usually for these pharmaceutical applications binary copolyesters, for example the glycol and lactic acid (G.W. Hastings, P. Dualaque, Macromolecular Materials, CRC Press, Boca Raton, Florida 1984). Other combinations of α- or ω-hydroxycar bonic acids are described in the specialist literature (cf. for example R. Mank, G. Rafler, B. Nerlich, Pharmacy 46: 9 (1991). As described in DE-OS 34 30 852, the range of aliphatic polyesters can be Use of binary or ternary copolymers that in addition to lactic or glycolic ester or lactic and glycolic acid compounds containing hydroxyl groups, especially monsaccha ride or their reduction products, considerable expand.

Die Homo- und Copolymeren der α- bzw. ω-Hydroxycarbonsäu­ ren können durch Ringöffnungspolymerisation der cyclischen Diester (Lactide bzw. Lactone) oder durch Polykondensation der Hydroxycarbonsäuren selbst synthetisiert werden. Im Fall der α-Hydroxycarbonsäuren führt die Polykondensation aufgrund der thermodynamischen Stabilität ihrer cyclischen Ester und des Ringkettengleichgewichts jedoch nur zu rela­ tiv niedermolekularen Produkten mit einem mittleren Mole­ kulargewicht n 5000. Hochmolekulare Polyester der α-Hy­ droxycarbonsäuren erhält man ausschließlich durch Ring­ öffnungspolymerisation der cyclischen Diester. Sowohl bei der Polykondensationsreaktion als auch der Ringöffnungs­ polymerisation werden Stern-Polymere gebildet, d. h. ein Polyolrest als Zentralstelle ist von mehreren Säurerest- Ketten umgeben.The homo- and copolymers of α- and ω-hydroxycarboxylic acids can be synthesized by ring-opening polymerization of the cyclic diesters (lactides and lactones) or by polycondensation of the hydroxycarboxylic acids themselves. In the case of α-hydroxycarboxylic acids, however, due to the thermodynamic stability of their cyclic esters and the ring chain equilibrium, the polycondensation only leads to relatively low-molecular-weight products with an average molecular weight n 5000. High-molecular-weight polyesters of α-hydroxycarboxylic acids are obtained exclusively by ring-opening polymerization of the cyclic diesters . Star polymers are formed in both the polycondensation reaction and the ring opening polymerization, ie a polyol residue as the central point is surrounded by several acid residue chains.

Insbesondere für die Darstellung modifizierter Polylactide bzw. Poly(glycolid-co-lactid)e bedeuten die bekannten Syntheseverfahren Ringöffnungspolymerisation für höher- und hochmolekulare und Polykondensation für niedermoleku­ lare Materialien eine erhebliche Beschränkung hinsichtlich Art und Konzentration der Modifizierungskomponenten, wie dies aus der DE-OS 43 08 852 auch ersichtlich ist. Werden die modifizierten Polylactide oder Poly(lactid-co-glyco­ lid)e wie üblich durch Ringöffnungspolymerisation synthe­ tisiert, so wirken die hydroxylhaltigen Comonomeren als Coinitiatoren in der Initiierungsreaktion, und sie können deshalb infolge der bekannten Zusammenhänge zwischen mitt­ leren Molekulargewicht und Coinitiatorkonzentration nur in geringen Mengen von weniger als 1 Mol% zugesetzt werden (vgl. beispielsweise H.-G. Elias: "Makromoleküle", Basel/ Heidelberg: Hüthig & Wepf, 1975). Dementsprechend werden in der DE-OS 43 08 852 im allgemeinen auch nur 0,2% an Modifizierungskomponente im Vergleich zu Dilactid bzw. Dilactid-Diglycolid-Gemischen zugesetzt. Derartige geringe Mengen an Modifizierungskomponente können den chemischen Charakter, der von der Natur der im Makromolekül vorhande­ nen Bindungen determiniert wird, nicht signifikant gegen­ über dem unmodifizierten Polymeren verändern. Möglich sind nur gewisse Beeinflussungen des Löse- bzw. Quellverhaltens durch die Bildung vernetzter Strukturen mit der hydroxyl­ gruppenhaltigen Komponente als Ausgangsstelle der Verzwei­ gung. Werden, wie galenisch häufig gewünscht, größere Mengen an Modifizierungskomponente eingesetzt, so werden in Übereinstimmung mit den bekannten Gesetzmäßigkeiten zum Einfluß von Coinitiatoren auf den Verlauf von Polymerisa­ tionsprozessen auch nur niedermolekulare Produkte mit Molmassen unter 3500 g/Mol erhalten, wie in der DE-OS 43 08 852 ausgeführt.Especially for the representation of modified polylactides  or poly (glycolide-co-lactide) s mean the known ones Synthesis process ring opening polymerization for higher and high molecular and polycondensation for low molecular weight materials have a significant limitation in terms of Type and concentration of the modification components, such as this is also evident from DE-OS 43 08 852. Will the modified polylactides or poly (lactide-co-glyco lid) e as usual by ring opening polymerization tized, the hydroxyl-containing comonomers act as Coinitiators in the initiation reaction and they can therefore due to the known relationships between mitt molecular weight and coinitiator concentration only in small amounts of less than 1 mol% are added (see, for example, H.-G. Elias: "Macromolecules", Basel / Heidelberg: Hüthig & Wepf, 1975). Accordingly in DE-OS 43 08 852 in general only 0.2% Modification component compared to dilactide or Dilactid-diglycolide mixtures added. Such minor Amounts of modification component can be chemical Character that is inherent in the macromolecule ties are determined, not significantly against change over the unmodified polymer. Possible are only certain influences on the dissolving or swelling behavior through the formation of cross-linked structures with the hydroxyl group-containing component as the starting point of the branch supply. Become larger, as is often desired by galenics Amounts of modification component are used in accordance with the known laws on Influence of coinitiators on the course of Polymerisa processes with only low molecular weight products Molar masses below 3500 g / mol obtained, as in DE-OS 43 08 852 executed.

Weiterhin ist bei dem Einsatz von Coinitiatoren als Modi­ fizierungskomponente nicht nur die Konzentration begrenzt, sondern vor allem auch die chemische Struktur der Kompo­ nente. Gefordert ist Kompatibilität mit dem Initiator und den der jeweiligen Polymerisation zugrundeliegenden Wachs­ tumsreaktionen. Im Falle der Ringöffnungspolymerisation können nur hydroxylgruppenhaltige Verbindungen eingesetzt werden, da nur sie als Coinitiatoren wirken (vgl. auch F.E. Kohn et al., J. Appl. Polymer Sci. 29(1984) 3265).Furthermore, when using coinitiators as modes processing component not only limits the concentration, but above all the chemical structure of the compo  nente. Compatibility with the initiator and the wax on which the respective polymerization is based growth reactions. In the case of ring opening polymerization can only use compounds containing hydroxyl groups because only they act as coinitiators (see also F.E. Kohn et al., J. Appl. Polymer sci. 29 (1984) 3265).

Auch für die Darstellung durch Polykondensation gelten erhebliche Einschränkungen. Hier muß vor allem die Stö­ chiometrie der Endgruppen durch den Comonomereinsatz ge­ wahrt bleiben. Bei Verwendung von höherfunktionellen Mono­ meren besteht darüber hinaus bereits bei relativ niedrigen Umsetzungsgraden die Gefahr der Vernetzung im Reaktions­ verlauf. Derartige Materialien sind unlöslich und schwer schmelzbar und können daher nach den üblichen Methoden nicht mit Arzneistoffen beladen und zu einer applizier­ baren Arzneiform verarbeitet werden.Also apply to the representation by polycondensation significant restrictions. Above all, the interference chiometry of the end groups through the use of comonomers stay true. When using more functional mono Meren also exists at relatively low Implementation levels the risk of cross-linking in the reaction course. Such materials are insoluble and heavy fusible and can therefore be made according to the usual methods not loaded with drugs and applied to an cash drug form can be processed.

Aufgabe der Erfindung ist die Entwicklung eines Verfahrens für parenteral applizierbare Polymere, das von resorbier­ baren Polyestern ausgehend die Darstellung beliebiger biologisch abbaubarer Copolymerer mit Heterokettenstruktur gestattet. Das Verfahren soll bezüglich der Struktur und der Konzentration der Modifizierungskomponente nicht den Einschränkungen der bekannten Verfahren, wie z. B. Ringöff­ nungspolymerisation und Gleichgewichtspolykondensation, unterliegen.The object of the invention is to develop a method for parenterally applicable polymers, that of resorbier possible polyesters based on the representation of any biodegradable copolymer with heterochain structure allowed. The procedure is intended in terms of structure and the concentration of the modification component not the Limitations of the known methods, such as. B. ring opening polymerization and equilibrium polycondensation, subject to.

Weitere Aufgabe der Erfindung ist die Darstellung neuer, speziell modifizierter biologisch abbaubarer Polymere, die als Matrixmaterialien für pharmazeutische Depotarzneifor­ men bzw. für Systeme mit gesteuerter Wirkstofffreisetzung angewendet werden können.Another object of the invention is to present new, specially modified biodegradable polymers that as matrix materials for pharmaceutical depot medicines men or for systems with controlled drug release can be applied.

Unter "biologisch abbaubar" ist im Zusammenhang mit der biomedizinischen Applikation von Polymeren die Biokompati­ bilität der Polymeren und ihrer Abbauprodukte sowie die vollständige Resorbierbarkeit des Polymeren in einem über­ schaubaren Zeitraum von einigen Tagen bis zu einigen Mona­ ten zu verstehen. Die erfindungsgemäß als Ausgangsstoffe eingesetzten aliphatischen Homo- und Copolyester weisen sowohl die erforderliche Biokompatibilität als auch die rückstandsfreie Resorbierbarkeit auf, wie umfangreiche klinische Studien sowie der jahrelange erfolgreiche Ein­ satz als resorbierbare chirurgische Nahtmaterialien ge­ zeigt haben.Under "biodegradable" is in connection with the biomedical application of polymers the biocompati  bility of the polymers and their degradation products and the complete resorbability of the polymer in an over manageable period from a few days to a few months to understand. According to the invention as starting materials aliphatic homo- and copolyesters used both the required biocompatibility and the residue-free absorbability on how extensive clinical trials and years of successful use set as resorbable surgical sutures shows.

Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß hoch­ molekulare biologisch abbaubare Homo- und Copolyester zunächst mit einer bi- bzw. höherfunktionellen Verbindung alkoholytisch, aminolytisch oder acidolytisch gespalten und anschließend in einem zweiten Reaktionsschritt unter Einbau der Modifizierungskomponente wieder zu einem hoch­ molekularen Heterokettenpolymeren, wie Polyestern, Poly­ esteramiden, Polyetherestern oder Polyesteranhydriden, polykondensiert werden.According to the invention the object is achieved in that high molecular biodegradable homo- and copolyesters initially with a bi- or higher-functional connection split alcoholic, aminolytic or acidolytic and then in a second reaction step Installation of the modification component back to a high molecular hetero-chain polymers, such as polyesters, poly ester amides, polyether esters or polyester anhydrides, be polycondensed.

Als bi- bzw. höherfunktionelle Modifizierungskomponente eignen sich alle Stoffe, die als funktionelle Gruppen Hydroxyl-, Amino- oder Carboxylgruppen allein oder in beliebiger Kombination enthalten. Beispiele für solche Modifizierungskomponenten sind Polyole, wie z. B. Diole, Triole und Hexole (Zuckeralkohole), Diamine, Aminoalkoho­ le, Dicarbonsäuren, Hydroxycarbonsäuren, Hydroxypolycar­ bonsäuren sowie bi- und trifunktionelle Aminosäuren.As a bi- or higher functional modification component all substances are suitable as functional groups Hydroxyl, amino or carboxyl groups alone or in any combination included. Examples of such Modification components are polyols, such as. B. diols, Triols and hexols (sugar alcohols), diamines, amino alcohol le, dicarboxylic acids, hydroxycarboxylic acids, hydroxypolycar bonic acids and bi- and trifunctional amino acids.

Bevorzugte Polyole sind die Hexole, besonders bevorzugt sind die Hexole Mannit und Sorbit. Bevorzugte Aminosäuren sind bi- und trifunktionelle Aminosäuren, hier vor allem die α-Aminosäuren, insbesondere die α-L-Aminosäuren. Ganz besonders bevorzugt sind die natürlich vorkom­ menden α-L-Aminosäuren, wie zum Beispiel L-Glycin, L-Ala­ nin, L-Glutaminsäure, L-Lysin. Bevorzugte Hydroxycarbon­ säuren sind Milch-, Glykol-, Hydroxybutter- und Hydroxyca­ pronsäure sowie als polyfunktionelle Vertreter Wein- und Zitronensäure. Als reine Dicarbonsäuren können als Modifi­ zierungskomponenten Bernstein- und Sebacinsäure eingesetzt werden.Preferred polyols are the hexols, particularly preferred are the hexols mannitol and sorbitol. Preferred amino acids are bifunctional and trifunctional amino acids, especially here the α-amino acids, especially the α-L-amino acids. All naturally occurring are particularly preferred α-L-amino acids such as L-glycine, L-Ala  nin, L-glutamic acid, L-lysine. Preferred hydroxycarbon Acids are milk, glycol, hydroxy butter and hydroxyca pronic acid and as a polyfunctional representative wine and Citric acid. As pure dicarboxylic acids can as Modifi Decorative components used succinic and sebacic acid become.

Erfindungsgemäß geeignete biologisch abbaubare Polymere sind z. B. Polyester, wie z. B. Polyglycolid, Polylactid, Polyhydroxybuttersäure und Polycaprolacton sowie alle Copolymeren dieser Polyester in beliebiger Zusammenset­ zung. Besonders geeignete biologisch abbaubare Polymere sind die die Homo- und Copolyester der Glykol und der D-, L- bzw. L-Milchsäure.Biodegradable polymers suitable according to the invention are z. B. polyester, such as. B. polyglycolide, polylactide, Polyhydroxybutyric acid and polycaprolactone and all Copolymers of these polyesters in any composition tongue. Particularly suitable biodegradable polymers are the homo- and copolyesters of glycol and D-, L- or L-lactic acid.

Gegenstand der Erfindung sind auch die bei der Alkoholyse der Aminolyse bzw. der Acidolyse der Polymeren gemäß den Reaktionsgleichungen (1) bis (3) gebildeten, die Modifi­ zierungskomponente als terminale Endgruppe enthaltenden Reaktionsprodukte I bis III.The invention also relates to those in alcoholysis the aminolysis or the acidolysis of the polymers according to the Reaction equations (1) to (3) formed, the Modifi ornamental component containing terminal end group Reaction products I to III.

R₁ = Polyesterrest mit einer mittleren Molmasse von 500 g/mol n 50 000 g/mol mit einer Methylengruppenzahl der Monomereinheit von nCH₂=1 bis nCH₂= 5, wobei eine CH₂-Gruppe durch einen Alkylrest substituiert sein kann.
R₂ = R₂ weist die gleiche chemische Struktur wie R₁ auf, unterscheidet sich jedoch - ausgenommen den speziellen Fall R₁=R₂ bei gleicher Kettenlänge - in der mittleren Molmasse.
R₃ = mono- bzw. polyfunktioneller hydroxy-, amino- oder/und carboxysubstituierter aliphatischer oder cycloaliphatischer Rest.
R₁ = polyester radical with an average molecular weight of 500 g / mol n 50,000 g / mol with a number of methylene groups in the monomer unit from n CH₂ = 1 to n CH₂ = 5, where a CH₂ group can be substituted by an alkyl radical.
R₂ = R₂ has the same chemical structure as R₁, but differs - except for the special case R₁ = R₂ with the same chain length - in the average molecular weight.
R₃ = mono- or polyfunctional hydroxy-, amino- and / or carboxy-substituted aliphatic or cycloaliphatic radical.

R₁, R₂, R₃ entsprechend Gleichung (1)R₁, R₂, R₃ according to equation (1)

R₁, R₂ entsprechend Gleichung (1), R₃ aliphatischer oder cycloaliphatischer RestR₁, R₂ according to equation (1), R₃ aliphatic or cycloaliphatic radical

Die mittleren Molekulargewichte der primären Spaltungs­ produkte sind der Konzentration der Modifizierungskompo­ nente und ihrer Funktionalität direkt porportional. Die Molekulargewichte der kettenverknüpfend behandelten primä­ ren Spaltungsprodukte sind vor allem von der Art der funk­ tionellen Gruppen und ihrer Reaktivität sowie dem Grad der Desorption der flüchtigen Reaktionsprodukte abhängig.The average molecular weights of the primary cleavage products are the concentration of the modification compo elements and their functionality are directly proportional. The Molecular weights of the chain-linking treated primary Their fission products are primarily of the type of radio tional groups and their reactivity as well as the degree of Desorption of the volatile reaction products dependent.

Nicht nur die bekannte polykondensationsfähige Kombination von Carboxyl- und Hydroxylgruppen ergibt hochmolekulare Kondensationsprodukte (Reaktionsgleichungen (4) und (6)), sondern auch die ether- und aminhaltigen Polymeren weisen hohe Molekulargewichte auf (Reaktionsgleichungen 5, 7 und 8). Not just the well-known combination capable of polycondensation of carboxyl and hydroxyl groups results in high molecular weight Condensation products (reaction equations (4) and (6)), but also have the ether and amine-containing polymers high molecular weights (reaction equations 5, 7 and 8th).  

R₁, R₂, R₃ jeweils entsprechend Gleichung (1)R₁, R₂, R₃ each according to equation (1)

Die erfindungsgemäßen Verfahren erlauben die Herstellung biologisch abbaubarer Polymere mit einem beliebigen Gehalt einer Modifizierungskomponente. Vorzugsweise beträgt der Gehalt der Modifizierungskomponente 0,005 bis 0,1 mol pro mol Monomereinheit. Auf diese Weise läßt sich das Abbau­ verhalten gezielt der gewünschten Anwendung anpassen und in beliebiger Weise steuern.The methods according to the invention allow production biodegradable polymers with any content a modification component. The is preferably Content of the modification component 0.005 to 0.1 mol per mol of monomer unit. In this way, the breakdown adapt the behavior to the desired application and control in any way.

Die erfindungsgemäßen Polymere zeichnen sich dadurch aus, daß sie die Modifizierungskomponente oder -komponenten statistisch über die Polymerketten verteilt enthalten. Es handelt sich um lineare Moleküle und nicht um Stern-Poly­ mere, wie sie aus dem Stand der Technik bekannt sind.The polymers according to the invention are notable for that they are the modification component or components included statistically over the polymer chains. It are linear molecules and not star poly mere, as they are known from the prior art.

Durch die Wahl der Art und Menge der Modifizierungskom­ ponente läßt sich das Löslichkeitsverhalten der biologisch abbaubaren Polymere in bisher nicht gekannter Breite be­ einflussen. Auf diese Weise werden Polymere zugänglich, die - im Gegensatz zu den bekannten Polymeren - in physio­ logisch unbedenklichen Lösungsmitteln löslich sind, so daß die Verwendung chlorierter Kohlenwasserstoffe bei der Beladung mit Arzneistoffen vermieden werden kann. Diese Eigenschaft macht die erfindungsgemäßen Polymere besonders als Matrix für lösungsmittelempfindliche Arzneistoffe interessant.By choosing the type and amount of Modificationkom component, the solubility behavior of the biological degradable polymers in a previously unknown width influence. In this way, polymers become accessible which - in contrast to the known polymers - in physio logically harmless solvents are soluble, so that the use of chlorinated hydrocarbons in the Loading with drugs can be avoided. This Properties make the polymers according to the invention special as a matrix for solvent-sensitive drugs Interesting.

Im folgenden wird die Erfindung anhand von Beispielen erläutert.In the following the invention will be explained with the aid of examples.

AusführungsbeispieleEmbodiments Mannithaltige PolylactidePolylactides containing mannitol Beispiel 1example 1 1.1 Spaltungsreaktion: Alkoholyse von Poly-D,L-Lactid mit Mannit1.1 Cleavage reaction: alcoholysis of poly-D, L-lactide with Mannitol

14,4 g Poly-D,L-Lactid mit einer relativen Lösungs­ viskosität von ηrel = 1,62 (wenn nicht anders ange­ geben, beziehen sich alle ηrel-Werte auf eine 0,5%ige Lösung in Dimethylformamid (DMF) bei 20°C) werden bei 180°C unter Stickstoff und intensivem Rühren mit 0,182 g Mannit umgesetzt. Nach vier Stunden wird die Reaktion beendet und das Reaktionsprodukt in Dime­ thylformamid gelöst, in Ethanol gefällt und im Vakuum bei Raumtemperatur getrocknet. Das Material weist ei­ ne relative Lösungsviskosität von ηrel = 1,43 auf. Das membranosmometrisch ermittelte Molekulargewicht n beträgt 40 500 g/mol.14.4 g poly-D, L-lactide with a relative solution viscosity of η rel = 1.62 (unless stated otherwise, all η rel values refer to a 0.5% solution in dimethylformamide (DMF) at 20 ° C) are reacted with 0.182 g mannitol at 180 ° C under nitrogen and vigorous stirring. After four hours, the reaction is ended and the reaction product is dissolved in dimethylformamide, precipitated in ethanol and dried in vacuo at room temperature. The material has a relative solution viscosity of η rel = 1.43. The molecular weight n determined by membrane osmometry is 40,500 g / mol.

1.2 Polykondensation des mannithaltigen Reaktionsproduk­ tes entsprechend Gleichung (5)1.2 Polycondensation of the mannitol-containing reaction product tes according to equation (5)

Das entsprechend (1.1) hergestellte primäre Spal­ tungsprodukt wird bei 180°C und 0,1 bis 0,2 Torr unter intensiver Durchmischung der Schmelze zwei Stunden lang polykondensiert. Nach beendeter Polykon­ densation wird in DMF gelöst, in Ethanol gefällt und im Vakuum getrocknet. Das mannithaltige Poly-D,L- Lactid weist eine relative Lösungsviskosität von ηrel = 1,58 auf. The primary cleavage product prepared in accordance with (1.1) is polycondensed at 180 ° C. and 0.1 to 0.2 torr with intensive mixing of the melt for two hours. When the polycondensation is complete, it is dissolved in DMF, precipitated in ethanol and dried in vacuo. The mannitol-containing poly-D, L-lactide has a relative solution viscosity of η rel = 1.58.

Beispiele 2 bis 4Examples 2 to 4

Entsprechend Beispiel 1 werden Poly-D,L-Lactide (PLA) unterschiedlicher Molekulargewichte alkoholysiert und die mannithaltigen primären Spaltungsprodukte wieder polykon­ densiert.According to Example 1, poly-D, L-lactides (PLA) of different molecular weights and the alcohol mannitol-containing primary cleavage products again polycon densifies.

Tabelle 1: Mannithaltige Poly-D,L-Lactide Table 1: Mannitol-containing poly-D, L-lactides

Sorbithaltige Poly-D,L-LactideSorbitol-containing poly-D, L-lactides Beispiele 5 und 6Examples 5 and 6

28,8 g D,L-PLA mit einer relativen Lösungsviskosität von ηrel = 1,62 werden mit 1,82 g Sorbit innerhalb von einer Stunde gespalten und anschließend im Vakuum bei 180°C polykondensiert. Das sorbithaltige Polylactid wird in DMF gelöst, in Ethanol gefällt und im Vakuum getrocknet. In Abhängigkeit von den Polykondensationszeiten werden die in Tabelle 2 zusammengestellten relativen Lösungsviskositäten erhalten. 28.8 g of D, L-PLA with a relative solution viscosity of η rel = 1.62 are split with 1.82 g of sorbitol within one hour and then polycondensed in vacuo at 180 ° C. The sorbitol-containing polylactide is dissolved in DMF, precipitated in ethanol and dried in vacuo. Depending on the polycondensation times, the relative solution viscosities shown in Table 2 are obtained.

Tabelle 2: Sorbithaltige Poly-D,L-Lactide Table 2: Sorbitol-containing poly-D, L-lactides

Beispiel 7Example 7 Sorbithaltiges Poly(glycolid(50)-co-lactid(50))Sorbitol-containing poly (glycolide (50) -co-lactide (50))

26,0 g Poly(glycolid(50)-co-lactid(50)) mit einer relati­ ven Lösungsviskosität von ηrel = 1,35 werden entsprechend Beispiel 1 mit 1,82 g Sorbit gespalten und anschließend entsprechend Beispiel 2 polykondensiert. Die Reaktionszeit für die heterolytische Spaltung beträgt 1 h und für die anschließende Polykondensation 2 h. Der sorbithaltige äqui­ molar zusammengesetzte Copolyester weist eine relative Lösungsviskosität von ηrel = 1,29 auf.26.0 g of poly (glycolide (50) -co-lactide (50)) with a relative solution viscosity of η rel = 1.35 are cleaved in accordance with Example 1 with 1.82 g of sorbitol and then polycondensed as in Example 2. The reaction time for the heterolytic cleavage is 1 h and for the subsequent polycondensation 2 h. The sorbitol-containing equimolar copolyester has a relative solution viscosity of η rel = 1.29.

Aminosäurehaltige PolylactideAmino acid polylactides Beispiel 8Example 8 Glycinhaltiges PolylactidPolylactide containing glycine

28,8 g D,L-PLA mit einer relativen Lösungsviskosität von ηrel = 1,78 werden analog Beispiel 1 mit 0,75 g L-Glycin bei 180°C umgesetzt und aufgearbeitet. Das Reaktions­ produkt weist in DMF einen ηrel-Wert von 1,38 auf. Nach Polykondensation analog Beispiel 2 wird ein glycinhaltiges Polylactid mit einem ηrel-Wert von 1,69 erhalten. Die Reak­ tionszeit für die heterolytische Spaltung beträgt 1 h und für die anschließende Polykondensation 2 h.28.8 g of D, L-PLA with a relative solution viscosity of η rel = 1.78 are reacted with 0.75 g of L-glycine at 180 ° C. and worked up as in Example 1. The reaction product has a η rel value of 1.38 in DMF. After polycondensation as in Example 2, a glycine-containing polylactide with an η rel value of 1.69 is obtained. The reaction time for the heterolytic cleavage is 1 h and for the subsequent polycondensation 2 h.

Beispiele 9 bis 11Examples 9 to 11

Analog Beispiel 8 werden zur Modifizierung von Polylactid bi- und trifunktionelle Aminosäuren eingesetzt. Die erhal­ tenen aminosäure-terminierten bzw. aminosäurehaltigen Produkte sind in Tabelle 3 beschrieben.Analogous to Example 8 for the modification of polylactide bi- and trifunctional amino acids used. The receive ten amino acid-terminated or amino acid-containing Products are described in Table 3.

Tabelle 3: Aminosäurehaltige Poly-D,L-Lactide Table 3: Amino acid-containing poly-D, L-lactides

Beispiel 12Example 12 Sorbithaltige Poly-β-hydroxybuttersäure (PHB)Sorbitol-containing poly-β-hydroxybutyric acid (PHB)

17,2 g PHB mit einer relativen Lösungsviskosität von = 2,60 werden entsprechend Beispiel 1 mit 0,364 g Sorbit umgesetzt und anschließend entsprechend Beispiel 2 poly­ kondensiert und aufgearbeitet. Die Reaktionszeit für die heterocyclische Spaltung beträgt 1 Stunde und für die an­ schließende Polykondensation 2 Stunden. Die sorbithaltige PHB weist eine relative Lösungsviskosität von ηrel = 1,88 auf. 17.2 g of PHB with a relative solution viscosity of = 2.60 are reacted with 0.364 g of sorbitol as in Example 1 and then polycondensed and worked up as in Example 2. The reaction time for the heterocyclic cleavage is 1 hour and for the subsequent polycondensation 2 hours. The sorbitol-containing PHB has a relative solution viscosity of η rel = 1.88.

Beispiel 13Example 13

Die entsprechend Beispiel 1 bis 12 hergestellten biolo­ gisch abbaubaren Polymeren weisen in Abhängigkeit von der Art und der Konzentration der Modifizierungskomponente in organischen Lösungsmitteln unterschiedliche Löslichkeiten auf. Damit lassen sich die Polymeren den vom jeweiligen Arzneistoff geforderten günstigsten Verformungsbedingun­ gen, beispielsweise zu Mikrosphären oder zu Filmen optimal anpassen.The biolo prepared according to Examples 1 to 12 Degradable polymers show depending on the Type and concentration of the modification component in organic solvents different solubilities on. This allows the polymers to be modified by the respective Drug required the most favorable deformation conditions conditions, for example to microspheres or films to adjust.

Tabelle 4 Table 4

Löslichkeit der biologisch abbaubaren Polymere in organischen Lösungsmitteln Solubility of biodegradable polymers in organic solvents

Beispiel 14Example 14

Zur Charakterisierung des Quell- und Abbauverhaltens wurden aus den erfindungsgemäß hergestellten Polymeren durch Lösungsmittelverdamp­ fung Mikropartikel hergestellt und diese in einer Phosphatpufferlö­ sung von pH = 7 bei 37°C gelagert. Für diese Untersuchungen wurde ein Verhältnis der Pufferlösung zum Polymeren von 200 : 1 gewählt.To characterize the swelling and degradation behavior, the Polymers produced according to the invention by solvent evaporation microparticles and these in a phosphate buffer solution solution of pH = 7 stored at 37 ° C. For these examinations a ratio of the buffer solution to the polymer of 200: 1 was chosen.

14.1: Mannithaltiges Poly-D,L-Lactid 14.1: Mannitol-containing poly-D, L-lactide

(Beispiel 1, Alkoholyseprodukt) (Example 1, alcoholysis product)

14.2: Mannithaltiges Poly-D,L-Lactid 14.2: Mannitol-containing poly-D, L-lactide

(Beispiel 1, Polykondensationsprodukt) (Example 1, polycondensation product)

14.3: Mannithaltiges Poly-L-lactid 14.3: Mannitol-containing poly-L-lactide

(Molverhältnis: 0, 0125) (Molar ratio: 0.0125)

14.4: Sorbithaltiges Poly(glycolid(50)-co-lactid(50)) 14.4: Sorbitol-containing poly (glycolide (50) -co-lactide (50))

(Beispiel 7) (Example 7)

14.5: Cyclodextrinhaltiges Poly-L-lactid (0,9 Masse-%) 14.5: Cyclodextrin-containing poly-L-lactide (0.9% by mass)

Claims (28)

1. Biologisch abbaubare Heterokettenpolymere, dadurch gekenn­ zeichnet, daß sie durch heterolytische Spaltung aliphatischer Polyester mit bi- oder höherfunktionell substituierten Alipha­ ten oder Cycloaliphaten und anschließende Polykondensation unter Abspaltung niedermolekularer Reaktionsprodukte herstell­ bar sind.1. Biodegradable hetero-chain polymers, characterized in that they can be produced by heterolytic cleavage of aliphatic polyesters with bifunctional or higher-functional aliphatic or cycloaliphatics and subsequent polycondensation with elimination of low-molecular reaction products. 2. Biologisch abbaubares Heterokettenpolymer nach Anspruch 1, dadurch gekennzeichnet, daß der Gehalt des/der bi- oder höher­ funktionell substituierten Aliphaten oder Cycloaliphaten 0,005 bis 0,1 Mol pro Mol Monomereinheit beträgt.2. Biodegradable hetero chain polymer according to claim 1, characterized in that the content of the bi- or higher functionally substituted aliphatics or cycloaliphatics 0.005 is up to 0.1 mole per mole of monomer unit. 3. Biologisch abbaubares Heterokettenpolymer gemäß einem der An­ sprüche 1 bis 2, dadurch gekennzeichnet, daß der oder die substituierte(n) Aliphat(en) oder Cycloaliphat(en) nach hete­ rolytischer Spaltung als terminale Endgruppe(n) und/oder Kettenbaustein(e) im Polymeren enthalten ist (sind).3. Biodegradable hetero chain polymer according to one of the An sayings 1 to 2, characterized in that the or substituted aliphatic (s) or cycloaliphatic (s) according to hete rolytic cleavage as terminal end group (s) and / or Chain building block (s) is (are) contained in the polymer. 4. Biologisch abbaubares Heterokettenpolymer gemäß einem der An­ sprüche 1 bis 3, dadurch gekennzeichnet, daß der oder die substituierte(n) Aliphat(en) oder Cycloaliphat(en) Hydroxyl- und/oder Amino- und/oder Carboxylgruppen enthält.4. Biodegradable hetero chain polymer according to one of the An sayings 1 to 3, characterized in that the or substituted aliphatic (s) or cycloaliphatic (s) Contains hydroxyl and / or amino and / or carboxyl groups. 5. Verfahren zur Herstellung biologisch abbaubarer Heterokettenpolymere, dadurch gekennzeichnet, daß aliphatische Polyester mit bi- oder höherfunktionell substituierten Alipha­ ten oder Cycloaliphaten heterolytisch gespalten und anschlie­ ßend unter Abspaltung niedermolekularer Reaktionsprodukte wieder polykondensiert werden.5. Process for making biodegradable Hetero-chain polymers, characterized in that aliphatic Polyester with alipha substituted by bi- or higher functionality or cycloaliphatics heterolytically cleaved and then ß with elimination of low molecular reaction products be polycondensed again. 6. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, daß als substituierte Aliphaten oder Cycloaliphaten Polyole verwendet werden. 6. The method according to claim 5, characterized in that as substituted aliphatic or cycloaliphatic polyols used become.   7. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, daß als substituierte Aliphaten oder Cycloaliphaten Diole verwendet werden.7. The method according to claim 5, characterized in that as substituted aliphatics or cycloaliphatics diols are used become. 8. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, daß als substituierte Aliphaten oder Cycloaliphaten Triole verwendet werden.8. The method according to claim 5, characterized in that as substituted aliphatics or cycloaliphatics triols used become. 9. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, daß als substituierte Aliphaten oder Cycloaliphaten Hexole (Zuckeral­ kohole) verwendet werden.9. The method according to claim 5, characterized in that as substituted aliphatics or cycloaliphatics hexols (sugar general kohole) can be used. 10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, daß die Hexole Mannit oder/und Sorbit verwendet werden.10. The method according to claim 9, characterized in that the Hexols mannitol and / or sorbitol can be used. 11. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, daß als substituierte Aliphaten oder Cycloaliphaten bi- oder trifunk­ tionelle Aminosäuren eingesetzt werden.11. The method according to claim 5, characterized in that as substituted aliphatics or cycloaliphatics bi- or trifunk tional amino acids are used. 12. Verfahren gemäß Anspruch 11, dadurch gekennzeichnet, daß als Aminosäuren α-Aminosäuren eingesetzt werden.12. The method according to claim 11, characterized in that as Amino acids are used. 13. Verfahren gemäß Anspruch 11, dadurch gekennzeichnet, daß als Aminosäuren die natürlich vorkommenden α-L-Aminosäuren einge­ setzt werden.13. The method according to claim 11, characterized in that as Amino acids include the naturally occurring α-L amino acids be set. 14. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, daß als substituierte Aliphaten oder Cycloaliphaten hydroxy-, amino- oder carboxysubstituierte Verbindungen eingesetzt werden, wobei die funktionellen Gruppen allein oder in beliebiger Kombination vorliegen können.14. The method according to claim 5, characterized in that as substituted aliphatics or cycloaliphatics hydroxy-, amino- or carboxy-substituted compounds are used, with the functional groups alone or in any Combination. 15. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, daß als substituierte Aliphaten oder Cycloaliphaten Hydroxycarbonsäu­ ren eingesetzt werden. 15. The method according to claim 5, characterized in that as substituted aliphatic or cycloaliphatic hydroxycarboxylic acid be used.   16. Verfahren gemäß Anspruch 15, dadurch gekennzeichnet, daß als Hydroxycarbonsäuren Milch- oder/und Glykol- oder/und Hydroxy­ butter- oder/und Hydroxycapronsäure eingesetzt werden.16. The method according to claim 15, characterized in that as Hydroxycarboxylic acids milk or / and glycol or / and hydroxy Butter- and / or hydroxycaproic acid can be used. 17. Verfahren gemäß Anspruch 15, dadurch gekennzeichnet, daß als Hydroxycarbonsäuren Wein- oder/und Zitronensäure eingesetzt werden.17. The method according to claim 15, characterized in that as Hydroxycarboxylic acids tartaric and / or citric acid used become. 18. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, daß als substituierte Aliphaten oder Cycloaliphaten Dicarbonsäuren eingesetzt werden.18. The method according to claim 5, characterized in that as substituted aliphatics or cycloaliphatics dicarboxylic acids be used. 19. Verfahren gemäß Anspruch 18, dadurch gekennzeichnet, daß als Dicarbonsäuren Bernstein- oder/und Sebacinsäure eingesetzt werden.19. The method according to claim 18, characterized in that as Dicarboxylic acids succinic and / or sebacic acid used become. 20. Verfahren nach einem der Ansprüche 5 bis 19, dadurch gekenn­ zeichnet, daß der aliphatische Polyester ein Copolymer der Glykol- und der Milchsäure ist.20. The method according to any one of claims 5 to 19, characterized records that the aliphatic polyester is a copolymer of Is glycolic and lactic acid. 21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß der aliphatische Polyester ein Copolymer der Glykol- und der Milchsäure im Verhältnis 1 : 1 ist.21. The method according to claim 20, characterized in that the aliphatic polyester a copolymer of the glycol and Lactic acid in a ratio of 1: 1. 22. Verfahren nach einem der Ansprüche 5 bis 19, dadurch gekenn­ zeichnet, daß der Polyester ein Polylactid ist.22. The method according to any one of claims 5 to 19, characterized records that the polyester is a polylactide. 23. Verfahren nach einem der Ansprüche 5 bis 19, dadurch gekenn­ zeichnet, daß der aliphatische Polyester ein Polyglycolid ist.23. The method according to any one of claims 5 to 19, characterized records that the aliphatic polyester is a polyglycolide. 24. Verfahren nach einem der Ansprüche 5 bis 19, dadurch gekenn­ zeichnet, daß der aliphatische Polyester Poly-β-hydroxybutter­ säure ist. 24. The method according to any one of claims 5 to 19, characterized records that the aliphatic polyester poly-β-hydroxybutter is acid.   25. Verfahren nach einem der Ansprüche 5 bis 19, dadurch gekenn­ zeichnet, daß der aliphatische Polyester ein Polycaprolacton ist.25. The method according to any one of claims 5 to 19, characterized records that the aliphatic polyester is a polycaprolactone is. 26. Verfahren nach einem der Ansprüche 5 bis 19, dadurch gekenn­ zeichnet, daß der aliphatische Polyester ein Copolymer aus Polylactid und/oder Polyglycolid und/oder Polyhydroxybutter­ säure und/oder Polycaprolacton ist.26. The method according to any one of claims 5 to 19, characterized characterized in that the aliphatic polyester is a copolymer Polylactide and / or polyglycolide and / or polyhydroxy butter acid and / or polycaprolactone. 27. Verfahren nach einem der Ansprüche 5 bis 26, dadurch gekenn­ zeichnet, daß pro Mol Monomereinheit 0,005 bis 0,1 Mol des/der bi- oder höherfunktionell substituierten Aliphaten oder Cy­ cloaliphaten verwendet werden.27. The method according to any one of claims 5 to 26, characterized records that per mole of monomer unit 0.005 to 0.1 mole of the / bi- or higher functional aliphatic or Cy cloaliphates can be used. 28. Verwendung von biologisch abbaubaren Heterokettenpolymeren gemäß einem der Ansprüche 1 bis 4 als Matrixmaterialien für pharmazeutische Depotarzneiformen oder für Systeme mit gesteu­ erter Wirkstofffreisetzung.28. Use of biodegradable hetero chain polymers according to one of claims 1 to 4 as matrix materials for pharmaceutical depot forms or for systems with tax first drug release.
DE19924224401 1992-07-21 1992-07-21 New biodegradable homo- and co-polymer(s) for pharmaceutical use - produced by polycondensation of prod. from heterolytic cleavage of aliphatic polyester with functionalised (cyclo)aliphatic cpd. Ceased DE4224401A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19924224401 DE4224401A1 (en) 1992-07-21 1992-07-21 New biodegradable homo- and co-polymer(s) for pharmaceutical use - produced by polycondensation of prod. from heterolytic cleavage of aliphatic polyester with functionalised (cyclo)aliphatic cpd.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19924224401 DE4224401A1 (en) 1992-07-21 1992-07-21 New biodegradable homo- and co-polymer(s) for pharmaceutical use - produced by polycondensation of prod. from heterolytic cleavage of aliphatic polyester with functionalised (cyclo)aliphatic cpd.

Publications (1)

Publication Number Publication Date
DE4224401A1 true DE4224401A1 (en) 1994-01-27

Family

ID=6463961

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19924224401 Ceased DE4224401A1 (en) 1992-07-21 1992-07-21 New biodegradable homo- and co-polymer(s) for pharmaceutical use - produced by polycondensation of prod. from heterolytic cleavage of aliphatic polyester with functionalised (cyclo)aliphatic cpd.

Country Status (1)

Country Link
DE (1) DE4224401A1 (en)

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696605A1 (en) 1994-08-10 1996-02-14 Peter Neuenschwander Biocompatible block copolymer
US5610241A (en) * 1996-05-07 1997-03-11 Cornell Research Foundation, Inc. Reactive graft polymer with biodegradable polymer backbone and method for preparing reactive biodegradable polymers
EP0815853A2 (en) * 1996-06-26 1998-01-07 Takeda Chemical Industries, Ltd. Sustained-release preparation for bioactive substance having an acidic group
WO2002018477A2 (en) * 2000-08-30 2002-03-07 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
EP1498147A1 (en) * 2003-07-16 2005-01-19 Eidgenössische Technische Hochschule Zürich Absorbable biocompatible block copolymer
US7304122B2 (en) 2001-08-30 2007-12-04 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
AU2006204654B2 (en) * 2000-08-30 2008-06-05 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US7648725B2 (en) 2002-12-12 2010-01-19 Advanced Cardiovascular Systems, Inc. Clamp mandrel fixture and a method of using the same to minimize coating defects
US7648727B2 (en) 2004-08-26 2010-01-19 Advanced Cardiovascular Systems, Inc. Methods for manufacturing a coated stent-balloon assembly
US7682669B1 (en) 2001-07-30 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for covalently immobilizing anti-thrombogenic material into a coating on a medical device
US7691401B2 (en) 2000-09-28 2010-04-06 Advanced Cardiovascular Systems, Inc. Poly(butylmethacrylate) and rapamycin coated stent
US7699889B2 (en) 2004-12-27 2010-04-20 Advanced Cardiovascular Systems, Inc. Poly(ester amide) block copolymers
US7713637B2 (en) 2006-03-03 2010-05-11 Advanced Cardiovascular Systems, Inc. Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
US7735449B1 (en) 2005-07-28 2010-06-15 Advanced Cardiovascular Systems, Inc. Stent fixture having rounded support structures and method for use thereof
US7749263B2 (en) 2004-10-29 2010-07-06 Abbott Cardiovascular Systems Inc. Poly(ester amide) filler blends for modulation of coating properties
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7766884B2 (en) 2004-08-31 2010-08-03 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrophilic monomers
US7772359B2 (en) 2003-12-19 2010-08-10 Advanced Cardiovascular Systems, Inc. Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US7775178B2 (en) 2006-05-26 2010-08-17 Advanced Cardiovascular Systems, Inc. Stent coating apparatus and method
US7776926B1 (en) 2002-12-11 2010-08-17 Advanced Cardiovascular Systems, Inc. Biocompatible coating for implantable medical devices
US7785647B2 (en) 2005-07-25 2010-08-31 Advanced Cardiovascular Systems, Inc. Methods of providing antioxidants to a drug containing product
US7785512B1 (en) 2003-07-31 2010-08-31 Advanced Cardiovascular Systems, Inc. Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices
US7794743B2 (en) 2002-06-21 2010-09-14 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of making the same
US7795467B1 (en) 2005-04-26 2010-09-14 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyurethanes for use in medical devices
US7803406B2 (en) 2002-06-21 2010-09-28 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US7803394B2 (en) 2002-06-21 2010-09-28 Advanced Cardiovascular Systems, Inc. Polycationic peptide hydrogel coatings for cardiovascular therapy
US7807211B2 (en) 1999-09-03 2010-10-05 Advanced Cardiovascular Systems, Inc. Thermal treatment of an implantable medical device
US7807210B1 (en) 2000-10-31 2010-10-05 Advanced Cardiovascular Systems, Inc. Hemocompatible polymers on hydrophobic porous polymers
US7820732B2 (en) 2004-04-30 2010-10-26 Advanced Cardiovascular Systems, Inc. Methods for modulating thermal and mechanical properties of coatings on implantable devices
US7823533B2 (en) 2005-06-30 2010-11-02 Advanced Cardiovascular Systems, Inc. Stent fixture and method for reducing coating defects
US7892592B1 (en) 2004-11-30 2011-02-22 Advanced Cardiovascular Systems, Inc. Coating abluminal surfaces of stents and other implantable medical devices
US7976891B1 (en) 2005-12-16 2011-07-12 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method of using focused acoustic energy
US7985440B2 (en) 2001-06-27 2011-07-26 Advanced Cardiovascular Systems, Inc. Method of using a mandrel to coat a stent
US7985441B1 (en) 2006-05-04 2011-07-26 Yiwen Tang Purification of polymers for coating applications
US8007775B2 (en) 2004-12-30 2011-08-30 Advanced Cardiovascular Systems, Inc. Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same
US8017140B2 (en) 2004-06-29 2011-09-13 Advanced Cardiovascular System, Inc. Drug-delivery stent formulations for restenosis and vulnerable plaque
US8021676B2 (en) 2005-07-08 2011-09-20 Advanced Cardiovascular Systems, Inc. Functionalized chemically inert polymers for coatings
US8029816B2 (en) 2006-06-09 2011-10-04 Abbott Cardiovascular Systems Inc. Medical device coated with a coating containing elastin pentapeptide VGVPG
US8052912B2 (en) 2003-12-01 2011-11-08 Advanced Cardiovascular Systems, Inc. Temperature controlled crimping
US8062350B2 (en) 2006-06-14 2011-11-22 Abbott Cardiovascular Systems Inc. RGD peptide attached to bioabsorbable stents
US8067025B2 (en) 2006-02-17 2011-11-29 Advanced Cardiovascular Systems, Inc. Nitric oxide generating medical devices
US8067023B2 (en) 2002-06-21 2011-11-29 Advanced Cardiovascular Systems, Inc. Implantable medical devices incorporating plasma polymerized film layers and charged amino acids
US8069814B2 (en) 2006-05-04 2011-12-06 Advanced Cardiovascular Systems, Inc. Stent support devices
US8110211B2 (en) 2004-09-22 2012-02-07 Advanced Cardiovascular Systems, Inc. Medicated coatings for implantable medical devices including polyacrylates
US8109904B1 (en) 2007-06-25 2012-02-07 Abbott Cardiovascular Systems Inc. Drug delivery medical devices
US8147769B1 (en) 2007-05-16 2012-04-03 Abbott Cardiovascular Systems Inc. Stent and delivery system with reduced chemical degradation
US8173199B2 (en) 2002-03-27 2012-05-08 Advanced Cardiovascular Systems, Inc. 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US8192752B2 (en) 2003-11-21 2012-06-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
US8293890B2 (en) 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
US8304012B2 (en) 2006-05-04 2012-11-06 Advanced Cardiovascular Systems, Inc. Method for drying a stent
US8303651B1 (en) 2001-09-07 2012-11-06 Advanced Cardiovascular Systems, Inc. Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
US8357391B2 (en) 2004-07-30 2013-01-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8506617B1 (en) 2002-06-21 2013-08-13 Advanced Cardiovascular Systems, Inc. Micronized peptide coated stent
US8568764B2 (en) 2006-05-31 2013-10-29 Advanced Cardiovascular Systems, Inc. Methods of forming coating layers for medical devices utilizing flash vaporization
US8586069B2 (en) 2002-12-16 2013-11-19 Abbott Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
US8597673B2 (en) 2006-12-13 2013-12-03 Advanced Cardiovascular Systems, Inc. Coating of fast absorption or dissolution
US8603634B2 (en) 2004-10-27 2013-12-10 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
US8609123B2 (en) 2004-11-29 2013-12-17 Advanced Cardiovascular Systems, Inc. Derivatized poly(ester amide) as a biobeneficial coating
US8647655B2 (en) 2002-12-11 2014-02-11 Abbott Cardiovascular Systems Inc. Biocompatible polyacrylate compositions for medical applications
US8652504B2 (en) 2005-09-22 2014-02-18 Medivas, Llc Solid polymer delivery compositions and methods for use thereof
US8673334B2 (en) 2003-05-08 2014-03-18 Abbott Cardiovascular Systems Inc. Stent coatings comprising hydrophilic additives
US8685431B2 (en) 2004-03-16 2014-04-01 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
US8703169B1 (en) 2006-08-15 2014-04-22 Abbott Cardiovascular Systems Inc. Implantable device having a coating comprising carrageenan and a biostable polymer
US8703167B2 (en) 2006-06-05 2014-04-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US8741378B1 (en) 2001-06-27 2014-06-03 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device
US8778014B1 (en) 2004-03-31 2014-07-15 Advanced Cardiovascular Systems, Inc. Coatings for preventing balloon damage to polymer coated stents
US8778375B2 (en) 2005-04-29 2014-07-15 Advanced Cardiovascular Systems, Inc. Amorphous poly(D,L-lactide) coating
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
US9056155B1 (en) 2007-05-29 2015-06-16 Abbott Cardiovascular Systems Inc. Coatings having an elastic primer layer
US9102830B2 (en) 2005-09-22 2015-08-11 Medivas, Llc Bis-(α-amino)-diol-diester-containing poly (ester amide) and poly (ester urethane) compositions and methods of use
US9114198B2 (en) 2003-11-19 2015-08-25 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US9339592B2 (en) 2004-12-22 2016-05-17 Abbott Cardiovascular Systems Inc. Polymers of fluorinated monomers and hydrocarbon monomers
US9364498B2 (en) 2004-06-18 2016-06-14 Abbott Cardiovascular Systems Inc. Heparin prodrugs and drug delivery stents formed therefrom
US9517203B2 (en) 2000-08-30 2016-12-13 Mediv As, Llc Polymer particle delivery compositions and methods of use
US9561351B2 (en) 2006-05-31 2017-02-07 Advanced Cardiovascular Systems, Inc. Drug delivery spiral coil construct
US9561309B2 (en) 2004-05-27 2017-02-07 Advanced Cardiovascular Systems, Inc. Antifouling heparin coatings
US9580558B2 (en) 2004-07-30 2017-02-28 Abbott Cardiovascular Systems Inc. Polymers containing siloxane monomers
US9873765B2 (en) 2011-06-23 2018-01-23 Dsm Ip Assets, B.V. Biodegradable polyesteramide copolymers for drug delivery
US9873764B2 (en) 2011-06-23 2018-01-23 Dsm Ip Assets, B.V. Particles comprising polyesteramide copolymers for drug delivery
US10076591B2 (en) 2010-03-31 2018-09-18 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device
US10434071B2 (en) 2014-12-18 2019-10-08 Dsm Ip Assets, B.V. Drug delivery system for delivery of acid sensitivity drugs

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2234265A1 (en) * 1971-07-22 1973-02-01 Stamicarbon HYDROXYL-TERMINATED POLYLACTONE
DE3345314A1 (en) * 1982-12-17 1984-07-05 Sandoz-Patent-GmbH, 7850 Lörrach OLIGOMERS HYDROXYCARBONIC ACID DERIVATIVES, THEIR PRODUCTION AND USE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2234265A1 (en) * 1971-07-22 1973-02-01 Stamicarbon HYDROXYL-TERMINATED POLYLACTONE
DE3345314A1 (en) * 1982-12-17 1984-07-05 Sandoz-Patent-GmbH, 7850 Lörrach OLIGOMERS HYDROXYCARBONIC ACID DERIVATIVES, THEIR PRODUCTION AND USE

Cited By (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696605A1 (en) 1994-08-10 1996-02-14 Peter Neuenschwander Biocompatible block copolymer
US5665831A (en) * 1994-08-10 1997-09-09 Peter Neuenschwander Biocompatible block copolymer
US5610241A (en) * 1996-05-07 1997-03-11 Cornell Research Foundation, Inc. Reactive graft polymer with biodegradable polymer backbone and method for preparing reactive biodegradable polymers
US6696500B2 (en) 1996-06-26 2004-02-24 Takeda Chemical Industries, Ltd. Sustained-release preparation
EP0815853A3 (en) * 1996-06-26 1998-12-02 Takeda Chemical Industries, Ltd. Sustained-release preparation for bioactive substance having an acidic group
US6264970B1 (en) 1996-06-26 2001-07-24 Takeda Chemical Industries, Ltd. Sustained-release preparation
EP0815853A2 (en) * 1996-06-26 1998-01-07 Takeda Chemical Industries, Ltd. Sustained-release preparation for bioactive substance having an acidic group
US7807211B2 (en) 1999-09-03 2010-10-05 Advanced Cardiovascular Systems, Inc. Thermal treatment of an implantable medical device
WO2002018477A2 (en) * 2000-08-30 2002-03-07 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
WO2002018477A3 (en) * 2000-08-30 2002-05-30 Cornell Res Foundation Inc Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US6503538B1 (en) 2000-08-30 2003-01-07 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US9517203B2 (en) 2000-08-30 2016-12-13 Mediv As, Llc Polymer particle delivery compositions and methods of use
AU2006204654B2 (en) * 2000-08-30 2008-06-05 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US7691401B2 (en) 2000-09-28 2010-04-06 Advanced Cardiovascular Systems, Inc. Poly(butylmethacrylate) and rapamycin coated stent
US7807210B1 (en) 2000-10-31 2010-10-05 Advanced Cardiovascular Systems, Inc. Hemocompatible polymers on hydrophobic porous polymers
US10064982B2 (en) 2001-06-27 2018-09-04 Abbott Cardiovascular Systems Inc. PDLLA stent coating
US8741378B1 (en) 2001-06-27 2014-06-03 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device
US7985440B2 (en) 2001-06-27 2011-07-26 Advanced Cardiovascular Systems, Inc. Method of using a mandrel to coat a stent
US7682669B1 (en) 2001-07-30 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for covalently immobilizing anti-thrombogenic material into a coating on a medical device
US7304122B2 (en) 2001-08-30 2007-12-04 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US8303651B1 (en) 2001-09-07 2012-11-06 Advanced Cardiovascular Systems, Inc. Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
US8961588B2 (en) 2002-03-27 2015-02-24 Advanced Cardiovascular Systems, Inc. Method of coating a stent with a release polymer for 40-O-(2-hydroxy)ethyl-rapamycin
US8173199B2 (en) 2002-03-27 2012-05-08 Advanced Cardiovascular Systems, Inc. 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US7875286B2 (en) 2002-06-21 2011-01-25 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US7901703B2 (en) 2002-06-21 2011-03-08 Advanced Cardiovascular Systems, Inc. Polycationic peptides for cardiovascular therapy
US8067023B2 (en) 2002-06-21 2011-11-29 Advanced Cardiovascular Systems, Inc. Implantable medical devices incorporating plasma polymerized film layers and charged amino acids
US8506617B1 (en) 2002-06-21 2013-08-13 Advanced Cardiovascular Systems, Inc. Micronized peptide coated stent
US7803394B2 (en) 2002-06-21 2010-09-28 Advanced Cardiovascular Systems, Inc. Polycationic peptide hydrogel coatings for cardiovascular therapy
US9084671B2 (en) 2002-06-21 2015-07-21 Advanced Cardiovascular Systems, Inc. Methods of forming a micronized peptide coated stent
US7794743B2 (en) 2002-06-21 2010-09-14 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of making the same
US7803406B2 (en) 2002-06-21 2010-09-28 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US8871883B2 (en) 2002-12-11 2014-10-28 Abbott Cardiovascular Systems Inc. Biocompatible coating for implantable medical devices
US8986726B2 (en) 2002-12-11 2015-03-24 Abbott Cardiovascular Systems Inc. Biocompatible polyacrylate compositions for medical applications
US8871236B2 (en) 2002-12-11 2014-10-28 Abbott Cardiovascular Systems Inc. Biocompatible polyacrylate compositions for medical applications
US7776926B1 (en) 2002-12-11 2010-08-17 Advanced Cardiovascular Systems, Inc. Biocompatible coating for implantable medical devices
US8647655B2 (en) 2002-12-11 2014-02-11 Abbott Cardiovascular Systems Inc. Biocompatible polyacrylate compositions for medical applications
US7648725B2 (en) 2002-12-12 2010-01-19 Advanced Cardiovascular Systems, Inc. Clamp mandrel fixture and a method of using the same to minimize coating defects
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8586069B2 (en) 2002-12-16 2013-11-19 Abbott Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
US9175162B2 (en) 2003-05-08 2015-11-03 Advanced Cardiovascular Systems, Inc. Methods for forming stent coatings comprising hydrophilic additives
US8673334B2 (en) 2003-05-08 2014-03-18 Abbott Cardiovascular Systems Inc. Stent coatings comprising hydrophilic additives
US8362159B2 (en) 2003-07-16 2013-01-29 Eidgenossische Technische Hochschule Zurich Degradable biocompatible block copolymer
WO2005007210A1 (en) * 2003-07-16 2005-01-27 Eidgenössische Technische Hochschule Zürich Degradable biocompatible block copolymer
EP1498147A1 (en) * 2003-07-16 2005-01-19 Eidgenössische Technische Hochschule Zürich Absorbable biocompatible block copolymer
US7785512B1 (en) 2003-07-31 2010-08-31 Advanced Cardiovascular Systems, Inc. Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices
US9114198B2 (en) 2003-11-19 2015-08-25 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US8192752B2 (en) 2003-11-21 2012-06-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
US8052912B2 (en) 2003-12-01 2011-11-08 Advanced Cardiovascular Systems, Inc. Temperature controlled crimping
USRE45744E1 (en) 2003-12-01 2015-10-13 Abbott Cardiovascular Systems Inc. Temperature controlled crimping
US7772359B2 (en) 2003-12-19 2010-08-10 Advanced Cardiovascular Systems, Inc. Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US8685431B2 (en) 2004-03-16 2014-04-01 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
US8778014B1 (en) 2004-03-31 2014-07-15 Advanced Cardiovascular Systems, Inc. Coatings for preventing balloon damage to polymer coated stents
US9101697B2 (en) 2004-04-30 2015-08-11 Abbott Cardiovascular Systems Inc. Hyaluronic acid based copolymers
US7820732B2 (en) 2004-04-30 2010-10-26 Advanced Cardiovascular Systems, Inc. Methods for modulating thermal and mechanical properties of coatings on implantable devices
US8293890B2 (en) 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
US9561309B2 (en) 2004-05-27 2017-02-07 Advanced Cardiovascular Systems, Inc. Antifouling heparin coatings
US9364498B2 (en) 2004-06-18 2016-06-14 Abbott Cardiovascular Systems Inc. Heparin prodrugs and drug delivery stents formed therefrom
US9375445B2 (en) 2004-06-18 2016-06-28 Abbott Cardiovascular Systems Inc. Heparin prodrugs and drug delivery stents formed therefrom
US8017140B2 (en) 2004-06-29 2011-09-13 Advanced Cardiovascular System, Inc. Drug-delivery stent formulations for restenosis and vulnerable plaque
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US9580558B2 (en) 2004-07-30 2017-02-28 Abbott Cardiovascular Systems Inc. Polymers containing siloxane monomers
US8357391B2 (en) 2004-07-30 2013-01-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US8758801B2 (en) 2004-07-30 2014-06-24 Abbott Cardiocascular Systems Inc. Coatings for implantable devices comprising poly(hydroxy-alkanoates) and diacid linkages
US8586075B2 (en) 2004-07-30 2013-11-19 Abbott Cardiovascular Systems Inc. Coatings for implantable devices comprising poly(hydroxy-alkanoates) and diacid linkages
US7648727B2 (en) 2004-08-26 2010-01-19 Advanced Cardiovascular Systems, Inc. Methods for manufacturing a coated stent-balloon assembly
US7766884B2 (en) 2004-08-31 2010-08-03 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrophilic monomers
US8110211B2 (en) 2004-09-22 2012-02-07 Advanced Cardiovascular Systems, Inc. Medicated coatings for implantable medical devices including polyacrylates
US9067000B2 (en) 2004-10-27 2015-06-30 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
US8603634B2 (en) 2004-10-27 2013-12-10 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
US7749263B2 (en) 2004-10-29 2010-07-06 Abbott Cardiovascular Systems Inc. Poly(ester amide) filler blends for modulation of coating properties
US8609123B2 (en) 2004-11-29 2013-12-17 Advanced Cardiovascular Systems, Inc. Derivatized poly(ester amide) as a biobeneficial coating
US7892592B1 (en) 2004-11-30 2011-02-22 Advanced Cardiovascular Systems, Inc. Coating abluminal surfaces of stents and other implantable medical devices
US9339592B2 (en) 2004-12-22 2016-05-17 Abbott Cardiovascular Systems Inc. Polymers of fluorinated monomers and hydrocarbon monomers
US7699889B2 (en) 2004-12-27 2010-04-20 Advanced Cardiovascular Systems, Inc. Poly(ester amide) block copolymers
US8007775B2 (en) 2004-12-30 2011-08-30 Advanced Cardiovascular Systems, Inc. Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same
US7795467B1 (en) 2005-04-26 2010-09-14 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyurethanes for use in medical devices
US8778375B2 (en) 2005-04-29 2014-07-15 Advanced Cardiovascular Systems, Inc. Amorphous poly(D,L-lactide) coating
US7823533B2 (en) 2005-06-30 2010-11-02 Advanced Cardiovascular Systems, Inc. Stent fixture and method for reducing coating defects
US8021676B2 (en) 2005-07-08 2011-09-20 Advanced Cardiovascular Systems, Inc. Functionalized chemically inert polymers for coatings
US7785647B2 (en) 2005-07-25 2010-08-31 Advanced Cardiovascular Systems, Inc. Methods of providing antioxidants to a drug containing product
US7735449B1 (en) 2005-07-28 2010-06-15 Advanced Cardiovascular Systems, Inc. Stent fixture having rounded support structures and method for use thereof
US9102830B2 (en) 2005-09-22 2015-08-11 Medivas, Llc Bis-(α-amino)-diol-diester-containing poly (ester amide) and poly (ester urethane) compositions and methods of use
US8652504B2 (en) 2005-09-22 2014-02-18 Medivas, Llc Solid polymer delivery compositions and methods for use thereof
US7976891B1 (en) 2005-12-16 2011-07-12 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method of using focused acoustic energy
US8067025B2 (en) 2006-02-17 2011-11-29 Advanced Cardiovascular Systems, Inc. Nitric oxide generating medical devices
US7713637B2 (en) 2006-03-03 2010-05-11 Advanced Cardiovascular Systems, Inc. Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
US8304012B2 (en) 2006-05-04 2012-11-06 Advanced Cardiovascular Systems, Inc. Method for drying a stent
US8069814B2 (en) 2006-05-04 2011-12-06 Advanced Cardiovascular Systems, Inc. Stent support devices
US7985441B1 (en) 2006-05-04 2011-07-26 Yiwen Tang Purification of polymers for coating applications
US7775178B2 (en) 2006-05-26 2010-08-17 Advanced Cardiovascular Systems, Inc. Stent coating apparatus and method
US8568764B2 (en) 2006-05-31 2013-10-29 Advanced Cardiovascular Systems, Inc. Methods of forming coating layers for medical devices utilizing flash vaporization
US9561351B2 (en) 2006-05-31 2017-02-07 Advanced Cardiovascular Systems, Inc. Drug delivery spiral coil construct
US8703167B2 (en) 2006-06-05 2014-04-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US8029816B2 (en) 2006-06-09 2011-10-04 Abbott Cardiovascular Systems Inc. Medical device coated with a coating containing elastin pentapeptide VGVPG
US8778376B2 (en) 2006-06-09 2014-07-15 Advanced Cardiovascular Systems, Inc. Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating
US8118863B2 (en) 2006-06-14 2012-02-21 Abbott Cardiovascular Systems Inc. RGD peptide attached to bioabsorbable stents
US8114150B2 (en) 2006-06-14 2012-02-14 Advanced Cardiovascular Systems, Inc. RGD peptide attached to bioabsorbable stents
US8062350B2 (en) 2006-06-14 2011-11-22 Abbott Cardiovascular Systems Inc. RGD peptide attached to bioabsorbable stents
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
US8703169B1 (en) 2006-08-15 2014-04-22 Abbott Cardiovascular Systems Inc. Implantable device having a coating comprising carrageenan and a biostable polymer
US8597673B2 (en) 2006-12-13 2013-12-03 Advanced Cardiovascular Systems, Inc. Coating of fast absorption or dissolution
US8147769B1 (en) 2007-05-16 2012-04-03 Abbott Cardiovascular Systems Inc. Stent and delivery system with reduced chemical degradation
US9056155B1 (en) 2007-05-29 2015-06-16 Abbott Cardiovascular Systems Inc. Coatings having an elastic primer layer
US8109904B1 (en) 2007-06-25 2012-02-07 Abbott Cardiovascular Systems Inc. Drug delivery medical devices
US10076591B2 (en) 2010-03-31 2018-09-18 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device
US9873764B2 (en) 2011-06-23 2018-01-23 Dsm Ip Assets, B.V. Particles comprising polyesteramide copolymers for drug delivery
US9896544B2 (en) 2011-06-23 2018-02-20 Dsm Ip Assets, B.V. Biodegradable polyesteramide copolymers for drug delivery
US9963549B2 (en) 2011-06-23 2018-05-08 Dsm Ip Assets, B.V. Biodegradable polyesteramide copolymers for drug delivery
US9873765B2 (en) 2011-06-23 2018-01-23 Dsm Ip Assets, B.V. Biodegradable polyesteramide copolymers for drug delivery
US10434071B2 (en) 2014-12-18 2019-10-08 Dsm Ip Assets, B.V. Drug delivery system for delivery of acid sensitivity drugs
US10888531B2 (en) 2014-12-18 2021-01-12 Dsm Ip Assets B.V. Drug delivery system for delivery of acid sensitivity drugs
US11202762B2 (en) 2014-12-18 2021-12-21 Dsm Ip Assets B.V. Drug delivery system for delivery of acid sensitivity drugs

Similar Documents

Publication Publication Date Title
DE4224401A1 (en) New biodegradable homo- and co-polymer(s) for pharmaceutical use - produced by polycondensation of prod. from heterolytic cleavage of aliphatic polyester with functionalised (cyclo)aliphatic cpd.
DE69818693T2 (en) NEW POLYMER COMPOSITIONS
DE60221009T2 (en) BIODEGRADABLE COPOLYMERS BONDED TO A SEGMENT WITH MULTIPLE FUNCTIONAL GROUPS
EP0270987B1 (en) Process for preparation of catalyst-free resorbable homopolymers and copolymers.
DE69736186T2 (en) METHOD AND COMPOSITIONS FOR PREVENTING OR AVOIDING POST-OPERATIONAL ADHESION FORMATION
DE60316115T3 (en) DL-LACTIDE-CO-E-CAPROLACTONE COPOLYMERS
EP1907023B1 (en) Resorbable polyether esters and use thereof for producing medical implants
DE69937576T2 (en) BIOABCANABLE LOW-MOLECULAR TRIBLOCK POLYESTER POLYETHYLENE GLYCOL COPOLYMERS WITH REVERSED THERMAL GELING
EP0797609A1 (en) Polyesters
DE112006000685B4 (en) Temperature- and pH-sensitive block copolymer and polymer hydrogels prepared therefrom
EP0696605A1 (en) Biocompatible block copolymer
DE10055742B4 (en) New polyesters, processes for their preparation and depot dosage forms prepared from the polyesters
DE60220796T2 (en) POSITIVELY LOADED AMPHIPHILES BLOCK COPOLYMER AS A DRUG DISTRIBUTOR AND COMPLEX THEREOF WITH A NEGATIVELY LOADED MEDICAMENT
EP1498147A1 (en) Absorbable biocompatible block copolymer
DE19545327C2 (en) Process for the preparation of hydrophobized resorbable polyesters and their use
EP0426055A2 (en) Copolymers from lactic acid and tartaric acid, their preparation and their use
EP0245840B1 (en) Biodegradable polymers for retarding preparations with controlled release
DE4444948C2 (en) Semi-crystalline block copolyester polyamides and use
DE69723818T2 (en) POLYESTERANHYDRIDE AND ITS INTERIM PRODUCTS
EP0439846B2 (en) Biodegradable polymers, a process for their preparation, and the use thereof for depot formulations with controlled delivery of active ingredient
US6815469B1 (en) Biodegradable, injectable oligomer-polymer composition
DE19809913A1 (en) Biodegradable polymers based on natural and renewable raw materials, especially isosorbitol
EP0573024B2 (en) Process for the preparation of biodegradable polyester
AT397804B (en) BIODEGRADABLE POLYMERS FOR DEPOT PREPARATIONS WITH CONTROLLED ACTIVE SUBSTANCE DELIVERY, METHOD FOR THEIR PRODUCTION AND THEIR USE
DD301436A7 (en) PROCESS FOR CLEANING 1,4-DIOXANE-2,5-DION OR D, L- BZW. L, L-3,6-dimethyl-1,4-dioxane-2,5-dione

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection