DE4225112C1 - Instrument position relative to processing object measuring apparatus - has measuring device for measuring position of instrument including inertia sensor unit - Google Patents

Instrument position relative to processing object measuring apparatus - has measuring device for measuring position of instrument including inertia sensor unit

Info

Publication number
DE4225112C1
DE4225112C1 DE4225112A DE4225112A DE4225112C1 DE 4225112 C1 DE4225112 C1 DE 4225112C1 DE 4225112 A DE4225112 A DE 4225112A DE 4225112 A DE4225112 A DE 4225112A DE 4225112 C1 DE4225112 C1 DE 4225112C1
Authority
DE
Germany
Prior art keywords
instrument
measuring
sensor unit
coordinate system
inertial sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE4225112A
Other languages
German (de)
Inventor
Norbert Dipl Phys Dr Stelte
Max Dipl Phys Dr Rer Nat Seidl
Michael Dipl Phys Dr Raab
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STELTE, NORBERT, DR., 88662 UEBERLINGEN, DE
Original Assignee
Bodenseewerk Geratetechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bodenseewerk Geratetechnik GmbH filed Critical Bodenseewerk Geratetechnik GmbH
Priority to DE4225112A priority Critical patent/DE4225112C1/en
Application granted granted Critical
Publication of DE4225112C1 publication Critical patent/DE4225112C1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/12Devices for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2048Tracking techniques using an accelerometer or inertia sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2072Reference field transducer attached to an instrument or patient

Abstract

The position measurement apparatus includes a computer (32) with memory (34) for storage layered images of the processing object (10) with a first coordinate system. A measuring device (16, 18, 20, 22, 24, 26) measures the position of the instrument (12) in a second coordinate system. A further measuring device (20, 22, 24) measures the position of predefined points in the first coordinate system of the processing object in the second coordinate system. The computer has a coordinate transformation program. The layered image and the instrument in the other coordinate system are displayed on a screen (36). The measuring device for measuring the position of the instrument contains an inertia sensor unit (26). USE/ADVANTAGE - For use during surgery for example. Enables free handling of instrument and guarantees constant availability of position information.

Description

Die Erfindung geht aus von einer Einrichtung zum Messen der Position eines Instruments relativ zu einem Behandlungsobjekt, gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a device for measuring the Position of an instrument relative to a treatment object, according to the preamble of claim 1.

Eine solche Einrichtung ist bekannt durch die DE 37 17 871 C2. Diese Druckschrift beschreibt ein Verfahren zur optischen Darstellung der Lage eines chirurgischen Instruments bei einem chirurgischen Eingriff. In einem Speicher eines Datenverarbeitungssystems werden Schichtbilder eines Körperteils abgelegt. Dabei sind bei der Herstellung der Schichtbilder an dem Körperteil Meßpunkte markiert oder festgelegt, die in den Schichtbildern erscheinen. Die Koordinaten dieser Meßpunkte in den Schichtbildern werden ermittelt. Bei dem chirurgischen Eingriff werden solche Schichtbilder auf einem Bildschirm dargestellt. Während des Eingriffs wird mittels einer Abtasteinrichtung die Lage und Orientierung des Instruments in einem durch die Abtasteinrichtung bestimmten Koordinatensystem bestimmt. Dementsprechend wird eine die Lage und Orientierung des Instruments wiedergebendes Bild ebenfalls auf dem Bildschirm dargestellt und der jeweiligen Schichtaufnahme überlagert.Such a device is known from DE 37 17 871 C2. This document describes a method for optical  Representation of the position of a surgical instrument in a surgical intervention. In a memory of a data processing system become slice images of a body part filed. They are involved in the production of the layer images the body part marked or fixed measuring points in the Slice images appear. The coordinates of these measuring points in the slice images are determined. With the surgical Such slice images are manipulated on a screen shown. During the procedure, a Scanning device the position and orientation of the instrument in a coordinate system determined by the scanner certainly. Accordingly, the location and orientation image of the instrument also on the Screen shown and the respective slice image overlaid.

Die Darstellung der Schichtbilder auf dem Bildschirm ist auf ein erstes "Schichtbilder"-Koordinatensystem bezogen. Die Abtasteinrichtung liefert die Lage und Orientierung des Instruments in dem durch die Abtastvorrichtung bestimmten zweiten Koordinatensystem. Die Beziehung zwischen den beiden Koordinatensystemen ist zunächst unbekannt. Diese Beziehung wird ermittelt, indem nacheinander die Meßpunkte an dem zu behandelnden Körperteil angefahren und deren Koordinaten in dem zweiten "Abtastvorrichtungs"-Koordinatensystem bestimmt werden. Es kann dann eine Koordinatentransformation aus dem ersten in das zweite Koordinatensystem erfolgen, derart, daß die Meßpunkte auf dem Bildschirm in den durch das Anfahren bestimmten Punkten liegen und mit dem Bild des Instruments oder der Instrumentenspitze zur Deckung kommen.The representation of the layer images on the screen is on obtained a first "slice image" coordinate system. The Scanning device provides the location and orientation of the Instruments in that determined by the scanner second coordinate system. The relationship between the two Coordinate systems are initially unknown. This relationship is determined by successively measuring points on the to approached body part and their coordinates in the second "scanner" coordinate system will. A coordinate transformation from the first in the second coordinate system, such that the measuring points on the screen in the by starting certain points and with the image of the instrument or cover the instrument tip.

Der Operateur kann dann während der Operation laufend die Lage und Orientierung seines Instrumens in dem Körperteil verfolgen. Das geschieht anhand von Schichtbilder, die vor dem Eingriff gemacht worden sind. Es kann dafür gesorgt werden, daß stets jeweils die Schichtaufnahme auf dem Bildschirm dargestellt wird, die den Ort der Instrumentenspitze enthält. The surgeon can then continuously monitor the situation during the operation and track its instrument's orientation in the body part. This is done with the help of slice images that appear before the Intervention. It can be ensured that the slice image is always shown on the screen that contains the location of the instrument tip.  

Bei der DE 37 17 871 C2 ist die Abtastvorrichtung zum Messen der Koordinaten des Instruments eine Art passiver Roboterarm, an dem das Instrument sitzt, wobei die Lage des Instruments aus den Winkeln an den verschiedenen Gelenken des Roboterarmes bestimmt wird. Es wird in der DE 37 17 871 C2 aber auch auf die Möglichkeit hingewiesen, eine berührungslose Abtastvorrichtung mit drei räumlich angeordneten Sonden vorzusehen.In DE 37 17 871 C2, the scanning device is for measuring the coordinates of the instrument a kind of passive robot arm, on which the instrument sits, the position of the instrument from the angles on the different joints of the robot arm is determined. It is also in DE 37 17 871 C2 on the Possibility pointed out a non-contact scanning device to be provided with three spatially arranged probes.

Eine mechanische Abtastvorrichtung zur Bestimmung der Lage (Koordinaten) und der Orientierung des Instruments behindert die Handhabung des Instruments. Der Benutzer hält nicht nur das Instrument, sondern muß auch den "Roboterarm" der mechanischen Abtastvorrichtung tragen. Der dabei wirksame Gewichtsanteil des Roboterarmes hängt von der jeweiligen Lage des Instruments ab. Eine berührungslose Abtastung des Instruments z. B. mit drei Videokameras birgt das Risiko in sich, daß durch Abdeckung eines oder mehrerer Sonden während des chirurgischen Eingriffs die Lage- und Orientierungsinformation vorübergehend verlorengeht. Eine solche Situation kann schwerwiegende Folgen haben.A mechanical scanner to determine the position (Coordinates) and the orientation of the instrument the handling of the instrument. The user doesn't just stop the instrument, but also the "robotic arm" of the mechanical scanning device. The effective one The proportion by weight of the robot arm depends on the respective position of the instrument. A contactless scanning of the Instruments e.g. B. with three video cameras carries the risk yourself that by covering one or more probes during the position and orientation information of the surgical intervention temporarily lost. Such a situation can have serious consequences.

Die DE 31 14 918 A1 beschreibt eine Vorrichtung zur quantitativen Lagebestimmung eines Körpers im Raum. An dem Körper sind Markierungspunkte angebracht. Die Markierungspunkte werden von einer Videokamera erfaßt. Aus den Videobildern werden mittels eines Rechners Translation und Rotation des Körpers in einem raumfesten Koordinatensystem bestimmt. Die ermittelten Koordinaten werden mit abgespeicherten Werten verglichen. Der Körper wird in seine Soll-Lage zurückgeführt.DE 31 14 918 A1 describes a device for quantitative orientation of a body in space. To the Markers are attached to bodies. The Marking points are captured by a video camera. Out The video images are translated and translated using a computer Rotation of the body in a fixed coordinate system certainly. The determined coordinates are with stored values compared. The body becomes in its Target position returned.

Der Erfindung liegt die Aufgabe zugrunde, bei einer Einrichtung der eingangs genannten Art einerseits eine freie Handhabung des Instruments zu ermöglichen und andererseits die ständige Verfügbarkeit der Lageinformation zu gewährleisten.The invention has for its object in a device of the type mentioned on the one hand a free one To enable handling of the instrument and on the other hand to ensure the permanent availability of the location information.

Diese Aufgabe wird mit der Einrichtung nach dem Patentanspruch 1 gelöst, d. h. durch den Einsatz einer Trägheitssensoreinheit.This object is achieved with the device according to the claim 1 solved, d. H. by using a Inertia sensor unit.

Trägheitssensoreinheiten lassen sich insbesondere unter Anwendung der Mikrosystemtechnik kompakt und leicht herstellen. Sie liefern die Lage eines Instruments, ohne daß durch Abdecken einer Sonde ein Signalverlust eintreten kann. Eine mechanische Abtasteinrichtung kann entfallen.Inertia sensor units can be found in particular under Application of microsystem technology compact and easy to manufacture. They deliver the location of an instrument without going through  Covering a probe can result in a loss of signal. A mechanical scanning device can be omitted.

Die Unteransprüche sind auf Ausführungsformen der Einrichtung nach dem Anspruch 1 gerichtet.The dependent claims are on embodiments of the device directed according to claim 1.

Die Trägheitssensoreinheit kann Sensordaten nach Maßgabe von Lage und Orientierung des Instruments liefern. Vorteilhaft ist es, wenn die Trägheitssensoreinheit redundante Sensordaten liefert. Weiterhin können Mittel zur Interpolation zwischen den redundanten Sensordaten der Trägheitssensoreinheit zur Erzeugung interpolierter Sensordaten vorgesehen sein. Auf diese Weise wird die Zuverlässigkeit und Genauigkeit der inertialen Bestimmung von Lage und Orientierung des Instruments verbessert.The inertial sensor unit can sensor data according to Provide the position and orientation of the instrument. It is advantageous it when the inertial sensor unit redundant sensor data delivers. Furthermore, means for interpolation between the redundant sensor data of the inertial sensor unit Generation of interpolated sensor data can be provided. On this way the reliability and accuracy of the inertial determination of the position and orientation of the Instruments improved.

An dem Instrument kann ein Sender zur drahtlosen Übertragung der Sensordaten auf einen mit Signalverarbeitungsmitteln verbundenen Empfänger vorgesehen sein. Zur Erhöhung der Zuverlässigkeit ist es zweckmäßig, wennn an dem Instrument mehr als ein Sender vorgesehen ist und die Sender mit je einem oder mehreren Empfängern zusammenwirken. Weiterhin können die Sender und Empfänger mit unterschiedlichen physikalischen Trägern arbeiten, beispielsweise mit Infrarot und Radiofrequenzen. Die Trägheitssensoreinheit kann von einer in die Trägheitssensoreinheit eingebauten Batterie gespeist werden.A transmitter for wireless transmission can be attached to the instrument the sensor data on one with signal processing means connected receiver may be provided. To increase the Reliability is useful if more on the instrument is provided as a transmitter and the transmitter with one or interact with several recipients. Furthermore, the Sender and receiver with different physical Carriers work, for example with infrared and Radio frequencies. The inertial sensor unit can be of one in the inertial sensor unit built-in battery powered will.

Es ergibt sich so ein Instrument, dessen Lage und Orientierung berührungslos gemessen und auf die Signalauswertung für die Anzeige des Instruments auf dem Bildschirm übertragen wird.The result is an instrument, its location and orientation measured without contact and on the signal evaluation for the Display of the instrument is transmitted on the screen.

Zusätzlich kann eine berührungslose, optische Abtasteinrichtung zur Bestimmung der Lage und Orientierung des Instruments vorgesehen sein. Dabei kann die Trägheitssensoreinheit von der optischen Abtasteinrichtung gestützt sein. Trägheitssensoreinheit und optische Abtasteinrichtung ergänzen sich dabei vorteilhaft: Die optische Abtasteinrichtung stützt die inertiale Messung der Lage und Orientierung des Instruments. Es kann insbesondere auch die Drift der inertialen Sensoren bestimmt und bei der Berechnung der Lage und Orientierung aus den Sensorsignalen berücksichtigt werden. Andererseits liefert die Trägheitssensoreinheit Signale auch dann, wenn die Sensoren der optischen Abtasteinrichtung vorübergehend abgedeckt sind.In addition, a contactless, optical scanning device to determine the location and orientation of the Instruments can be provided. The inertial sensor unit supported by the optical scanner be. Inertia sensor unit and optical scanner complement each other advantageously: the optical scanning device supports the inertial measurement of the position and Orientation of the instrument. In particular, it can also  Drift of inertial sensors determined and in the calculation the position and orientation from the sensor signals are taken into account will. On the other hand, the inertial sensor unit delivers Signals even when the sensors of the optical scanner are temporarily covered.

Ein Ausführungsbeispiel der Erfindung ist nachstehend unter Bezugnahme auf die zugehörigen Zeichnungen näher erläutert.An embodiment of the invention is below Reference to the accompanying drawings explained in more detail.

Fig. 1 ist eine schematisch-perspektivische Darstellung einer Einrichtung zur Bestimmung der Lage eines Instruments relativ zu einem Behandlungsobjekt, das hier als Kopf eines Patienten schematisch angedeutet ist. Fig. 1 is a schematic perspective view of a device for determining the position of an instrument, which is indicated here schematically as a head of a patient relative to a treatment object.

Fig. 2 ist ein Blockdiagramm der Trägheitssensoreinheit. Fig. 2 is a block diagram of the inertial sensor unit.

In Fig. 1 ist mit 10 ein Behandlungsobjekt bezeichnet. Das "Behandlungsobjekt" ist hier als Kopf eines Patienten angedeutet, an dem ein chirurgischer Eingriff vorgenommen werden soll. Solche medizinischen Anwendungen dürften die häufigsten Anwendungsfälle der vorliegenden Einrichtung sein. Behandlungsobjekt kann aber auch ein Werkstück od. dgl. sein, das in bestimmterr Weise an nicht einsehbaren Stellen bearbeitet werden soll. Die Behandlung erfolgt mittels eines Instruments 12. Das Instrument 12 hat einen Schaft 14. An dem Schaft 14 sitzen zwei oder mehr infrarotemittierende Leuchtdioden 16 und 18. Die Leuchtdioden werden mit unterschiedlichen Zeittakten angesteuert und leuchten dementsprechend mit unterschiedlichen Zeittakten auf. Die Leuchtdioden 16 und 18 werden von drei bilderfassenden Sensoren 20, 22 und 24 beobachtet. Die bilderfassenden Sensoren 20, 22 und 24 können Bilder nach Art einer Videokamera erzeugen. Aus den durch die unterschiedlichen Zeittakte unterscheidbaren Bildern der Leuchtdioden 16 und 18, wie sie von den drei Sensoren 20, 22 und 24 gesehen werden, können Lage und Orientierung des Instruments 12 in einem durch die Sensoren 20, 22 und 24 bestimmten Koordinatensystem bestimmt werden.In Fig. 1, 10 denotes a treatment object. The “treatment object” is indicated here as the head of a patient on whom a surgical intervention is to be carried out. Such medical applications are believed to be the most common uses of the facility. However, the object to be treated can also be a workpiece or the like, which is to be machined in a certain way at hidden locations. Treatment is carried out using an instrument 12 . The instrument 12 has a shaft 14 . Two or more infrared-emitting light-emitting diodes 16 and 18 are seated on the shaft 14 . The light emitting diodes are activated with different time cycles and accordingly light up with different time cycles. The light emitting diodes 16 and 18 are observed by three image-capturing sensors 20, 22 and 24 . The image-sensing sensors 20, 22 and 24 can generate images in the manner of a video camera. The position and orientation of the instrument 12 in a coordinate system determined by the sensors 20, 22 and 24 can be determined from the images of the light-emitting diodes 16 and 18 , which can be distinguished by the different time cycles, as seen by the three sensors 20, 22 and 24 .

An dem Instrument 12 sitzt außerdem eine Trägheitssensoreinheit 26. Die Trägheitssensoreinheit 26 enthält Winkelgeschwindigkeits- Sensoren und Beschleunigungsmesser. Die Winkelgeschwindigkeits-Sensoren und Beschleunigungsmesser liefern Sensordaten, aus denen durch Integration in üblicher Weise die Lage und die Orientierung der Trägheitssensoreinheit und damit des Instruments berechnet werden können. Die Sensordaten werden durch einen Sender, der in der Trägheitssensoreinheit 26 vorgesehen ist, auf einen stationären Empfänger 28 übertragen. Das ist in Fig. 1 durch die Welle 30 angedeutet. Der Empfänger 28 ist mit einem Rechner 32 verbunden. Auf den Rechner 32 sind weiterhin die bilderfassenden Sensoren 20, 22 und 24 sowie ein Speicher 34 aufgeschaltet. In dem Speicher 34 sind die vor dem chirurgischen Eingriff durch Computertomographie oder Kernspintomographie hergestellten Schichtbilder gespeichert. Der Rechner 32 liefert auf einem Bildschirm 36, wie in Fig. 1 angedeutet, ein Bild mit der Schichtaufnahme der Schicht des Behandlungsobjektes 10, in deren Bereich sich die Spitze des Instruments 12 befindet. Diese Spitze ist in dem Bild durch ein Fadenkreuz 38 dargestellt.An inertial sensor unit 26 is also located on the instrument 12 . The inertial sensor unit 26 includes angular rate sensors and accelerometers. The angular velocity sensors and accelerometers provide sensor data from which the position and orientation of the inertial sensor unit and thus of the instrument can be calculated in the usual way by integration. The sensor data are transmitted to a stationary receiver 28 by a transmitter, which is provided in the inertial sensor unit 26 . This is indicated in Fig. 1 by the shaft 30 . The receiver 28 is connected to a computer 32 . The image-capturing sensors 20, 22 and 24 and a memory 34 are also connected to the computer 32 . The slice images produced before the surgical intervention by computer tomography or magnetic resonance imaging are stored in the memory 34 . The computer 32 provides, on a screen 36 , as indicated in FIG. 1, an image with the layer recording of the layer of the treatment object 10 , in the area of which the tip of the instrument 12 is located. This tip is represented in the picture by a crosshair 38 .

Wie aus Fig. 2 ersichtlich ist, enthält die Trägheitssensoreinheit 26 zwei Gruppen von im wesentlichen übereinstimmenden Sensoren 40 und 42. Eine Schaltung 44 bewirkt eine Interpolation zwischen den Sensordaten, die von den beiden Gruppen geliefert werden. Aus den zwei Sätzen von Sensordaten können Rückschlüsse auf die Zuverlässigkeit der Sensordaten gezogen werden. Außerdem wird die Genauigkeit der am Ausgang erhaltenen, interpolierten Sensordaten verbessert. Die interpolierten Sensordaten sind auf einen mit infraroter Strahlung arbeitenden Sender 46 und einen mit Radiofrequenz arbeitenden Sender 48 geschaltet. Der Empfänger 28 enthält einen Empfängerteil, der auf die infrarote Strahlung anspricht, und einen Empfängerteil, der auf die Radiofrequenz anspricht.As can be seen from FIG. 2, the inertial sensor unit 26 contains two groups of essentially matching sensors 40 and 42 . A circuit 44 interpolates between the sensor data provided by the two groups. Conclusions regarding the reliability of the sensor data can be drawn from the two sets of sensor data. In addition, the accuracy of the interpolated sensor data obtained at the output is improved. The interpolated sensor data are connected to a transmitter 46 working with infrared radiation and a transmitter 48 working with radio frequency. The receiver 28 includes a receiver part which is responsive to the infrared radiation and a receiver part which is responsive to the radio frequency.

Die Trägheitssensoreinheit 26 ist von einer eingebauten Batterie 50 gespeist.The inertial sensor unit 26 is powered by a built-in battery 50 .

An dem Behandlungsobjekt sind vier Marken 52 angebracht, die auf den Schichtbildern erscheinen. Am Ort dieser Marken sind bei der Behandlung, also während des chirurgischen Eingriffs, Leuchtdioden angebracht. Diese Leuchtdioden werden von den bilderfassenden Sensoren 20, 22 und 24 ebenfalls erfaßt und liefern so den Ort der Marken 52 in dem zweiten "Abtasteinrichtung"-Koordinatensystem.Four marks 52 , which appear on the slice images, are attached to the treatment object. At the location of these marks, LEDs are attached during treatment, i.e. during the surgical procedure. These light-emitting diodes are also detected by the image-capturing sensors 20, 22 and 24 and thus supply the location of the marks 52 in the second “scanner” coordinate system.

Die beschriebene Einrichtung arbeitet wie folgt:The described device works as follows:

Vor dem chirurgischen Eingriff wird ein Computertomogramm oder ein Kernspintomogramm des zu behandelnden Körperteils, z. B. des Kopfes des Patienten erstellt. Dabei werden an dem Körperteil vier Marken angebracht, die auch auf dem erhaltenen Schichtbildern sichtbar sind. Der Ort dieser Marken in einem schichtbildfesten ersten Koordinatensystem wird bestimmt, indem die Schichtbilder auf dem Bildschirm dargestellt und die darin erscheinenden Bilder der Marken mit einer "Maus" angefahren werden.Before the surgical procedure, a computer tomogram or a magnetic resonance tomogram of the body part to be treated, e.g. B. of the patient's head. Thereby on the Body part attached four marks, which are also preserved on the Layer images are visible. The location of these brands in one layer-fixed first coordinate system is determined by displaying the slice images on the screen and the pictures of the brands appearing with a "mouse" be approached.

Bei dem chirurgischen Eingriff, der "Behandlung", werden die am Ort der Marken 52 angebrachten Leuchtdioden durch die Sensoren 20, 22 und 24 erfaßt. Damit werden die Koordinaten der Marken 52 in dem zweiten Koordinatensystem ermittelt. Aus den vorher ermittelten Koordinaten der Marken 52 im schichtbildfesten ersten Koordinatensystem und den durch die Sensoren 20, 22 und 24 ermittelten Koordinaten der Marken im zweiten Koordinatensystem können die Transformationsparameter für die Koordinatentransformation aus einem Koordinatensystem in das andere bestimmt werden. During the surgical intervention, the "treatment", the light-emitting diodes attached to the location of the marks 52 are detected by the sensors 20, 22 and 24 . The coordinates of the marks 52 are thus determined in the second coordinate system. The transformation parameters for the coordinate transformation from one coordinate system to the other can be determined from the previously determined coordinates of the marks 52 in the first coordinate system which is fixed in the layer image and the coordinates of the marks in the second coordinate system determined by the sensors 20, 22 and 24 .

Die Ermittlung der Koordinaten im zweiten Koordinatensystem aus den Sensordaten der Sensoren 20, 22 und 24 und die Bestimmung der Transformationsparameter für die Koordinatentransformation erfolgt in dem Rechner 32. Auf den Rechner 32 sind die Sensordaten von den Sensoren 20, 22 und 24 aufgeschaltet.The determination of the coordinates in the second coordinate system from the sensor data of the sensors 20, 22 and 24 and the determination of the transformation parameters for the coordinate transformation takes place in the computer 32 . The sensor data from the sensors 20, 22 and 24 are connected to the computer 32 .

Der Rechner 32 bestimmt auch aus der Lage der Leuchtdioden 16 und 18 die Lage und Orientierung des Instruments 12 in dem zweiten "Abtasteinrichtungs"-Koordinatensystem. Mittels der Koordinatentransformation werden diese Lage und Orientierung in das schichtbildfeste, erste Koordinatensystem transformiert und in der Darstellung auf dem Bildschirm in die jeweiligen Schichtbilder eingeblendet.The computer 32 also determines the position and orientation of the instrument 12 in the second “scanner” coordinate system from the position of the light-emitting diodes 16 and 18 . By means of the coordinate transformation, this position and orientation are transformed into the first coordinate system which is fixed in the layer image and are shown in the respective layer images in the representation on the screen.

Bei der Handhabung des Instruments können die Leuchtdioden vorübergehend abgedeckt werden, so daß sie von den Sensoren 20, 22 und 24 nicht erfaßt werden, oder nicht alle Sensoren 20, 22 und 24 die Leuchtdioden erfassen. Aus diesem Grunde ist eine zweite Lage- und Orientierungs-Meßeinheit in Form der Trägheitssensoreinheit 26 vorgesehen. Die Trägheitssensoreinheit 26 liefert über die Sender 46 und 48 und den Empfänger 28 weitere Sätze von Lage- und Orientierungsdaten, die in gleicher Weise wie die Sensordaten von den Sensoren 20, 22 und 24 die Lage und Orientierung des Instruments in dem zweiten Koordinatensystem angeben und zur Darstellung des Instruments 12 auf dem Bildschirm 36 dienen können. Die Lage- und Orientierungsdaten von der Trägheitssensoreinheit werden normalerweise laufend gestützt von den aus den Sensordaten der Sensoren 20, 22 und 24 gewonnenen Lage- und Orientierungsdaten. Insbesondere wird auch die Drift der Trägheitssensoren bestimmt und bei der Berechnung der Koordinaten berücksichtigt.When handling the instrument, the LEDs can be temporarily covered so that they are not detected by sensors 20, 22 and 24 , or not all sensors 20, 22 and 24 detect the LEDs. For this reason, a second position and orientation measuring unit in the form of the inertial sensor unit 26 is provided. The inertial sensor unit 26 supplies, via the transmitters 46 and 48 and the receiver 28, further sets of position and orientation data which, in the same way as the sensor data from the sensors 20, 22 and 24, indicate and provide the position and orientation of the instrument in the second coordinate system Representation of the instrument 12 on the screen 36 can serve. The position and orientation data from the inertial sensor unit are normally continuously supported by the position and orientation data obtained from the sensor data of the sensors 20, 22 and 24 . In particular, the drift of the inertial sensors is also determined and taken into account when calculating the coordinates.

Claims (13)

1. Einrichtung zum Messen der Position eines Instruments (12) relativ zu einem Behandlungsobjekt (10), umfassend
  • (a) einen Rechner (32) mit einem Speicher (34) zur Speicherung von Schichtbildern des Behandlungsobjektes (10) in einem ersten, schichtbildfesten Koordinatensystem,
  • (b) eine Meßvorrichtung (16, 18, 20, 22, 24, 26) zum Messen der Position des Instruments (12) in einem zweiten Koordinatensystem,
  • (c) eine Meßvorrichtung (20, 22, 24) zum Messen der Position von in dem ersten Koordinatensystem vorgegebenen Meßpunkten (52) des Behandlungsobjektes (10) in dem zweiten Koordinatensystem,
  • (d) den Rechner (32) mit einem Koordinatentransformationsprogramm zur Transformation der Positionsdaten aus einem der Koordinatensysteme in das andere,
  • (e) einen Bildschirm (36) zur Darstellung der Schichtbilder und des Instruments (12) in dem anderen Koordinatensystem,
1. Device for measuring the position of an instrument ( 12 ) relative to a treatment object ( 10 ), comprising
  • (a) a computer ( 32 ) with a memory ( 34 ) for storing slice images of the treatment object ( 10 ) in a first coordinate system fixed to the slice image,
  • (b) a measuring device ( 16, 18, 20, 22, 24, 26 ) for measuring the position of the instrument ( 12 ) in a second coordinate system,
  • (c) a measuring device ( 20, 22, 24 ) for measuring the position of measuring points ( 52 ) of the treatment object ( 10 ) predetermined in the first coordinate system in the second coordinate system,
  • (d) the computer ( 32 ) with a coordinate transformation program for transforming the position data from one of the coordinate systems into the other,
  • (e) a screen ( 36 ) for displaying the slice images and the instrument ( 12 ) in the other coordinate system,
dadurch gekennzeichnet, daß
  • (f) die Meßvorrichtung zum Messen der Position des Instruments (12) eine Trägheitssensoreinheit (26) enthält.
characterized in that
  • (f) the measuring device for measuring the position of the instrument ( 12 ) contains an inertial sensor unit ( 26 ).
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Trägheitssensoreinheit (26) Sensordaten über die Lage und die Orientierung des Instruments (12) liefert. 2. Device according to claim 1, characterized in that the inertial sensor unit ( 26 ) provides sensor data on the position and orientation of the instrument ( 12 ). 3. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Trägheitssensoreinheit (26) redundante Sensordaten liefert.3. Device according to claim 1 or 2, characterized in that the inertial sensor unit ( 26 ) supplies redundant sensor data. 4. Einrichtung nach Anspruch 3, gekennzeichnet durch den Rechner (32) mit einem Programm (44) zur Interpolation zwischen den Sensordaten der Trägheitssensoreinheit (26) zur Erzeugung interpolierter Sensordaten.4. Device according to claim 3, characterized by the computer ( 32 ) with a program ( 44 ) for interpolation between the sensor data of the inertial sensor unit ( 26 ) for generating interpolated sensor data. 5. Einrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß an dem Instrument (12) ein Sender (46, 48) zur drahtlosen Übertragung der Sensordaten auf einen mit dem Rechner (32) verbundenen Empfänger (28) vorgesehen sind.5. Device according to one of claims 1 to 4, characterized in that on the instrument ( 12 ) a transmitter ( 46, 48 ) for wireless transmission of the sensor data to a with the computer ( 32 ) connected to the receiver ( 28 ) are provided. 6. Einrichtung nach Anspruch 5, dadurch gekennzeichnet, daß an dem Instrument (12) mehr als ein Sender (46, 48) vorgesehen ist und die Sender (46, 48) mit je einem oder mehreren Empfängern zusammenwirken.6. Device according to claim 5, characterized in that on the instrument ( 12 ) more than one transmitter ( 46, 48 ) is provided and the transmitter ( 46, 48 ) cooperate with one or more receivers each. 7. Einrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Sender (46, 48) und Empfänger mit unterschiedlichen physikalischen Trägern arbeiten.7. Device according to claim 6, characterized in that the transmitter ( 46, 48 ) and receiver work with different physical carriers. 8. Einrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Trägheitssensoreinheit (26) von einer in die Trägheitssensoreinheit (26) eingebauten Batterie energetisch versorgt wird.8. Device according to one of claims 1 to 7, characterized in that the inertial sensor unit ( 26 ) is energized by a built-in in the inertial sensor unit ( 26 ) battery. 9. Einrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß zusätzlich eine berührungslose, optische Abtasteinrichtung (16, 18, 20, 20, 22, 24) zum Messen der Lage und der Orientierung des Instruments (12) vorgesehen ist. 9. Device according to one of claims 1 to 8, characterized in that in addition a non-contact, optical scanning device ( 16, 18, 20, 20, 22, 24 ) is provided for measuring the position and orientation of the instrument ( 12 ). 10. Einrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die Trägheitssensoreinheit (26) von der optischen Abtasteinrichtung (16, 18, 20, 22, 24) gestützt ist.10. The device according to claim 9, characterized in that the inertial sensor unit ( 26 ) is supported by the optical scanning device ( 16, 18, 20, 22, 24 ). 11. Einrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Meßvorrichtung (20, 22, 24) zum Messen der Position der vorgegebenen Meßpunkte (52) des Behandlungsobjekts (10) in dem zweiten Koordinatensystem von Leuchtdioden gebildet sind, die in den Meßpunkten an dem Behandlungsobjekt (10) angebracht sind, und von einer auf diese Leuchtdioden ansprechenden optischen Abtasteinrichtung (20, 22, 24).11. Device according to one of claims 1 to 10, characterized in that the measuring device ( 20, 22, 24 ) for measuring the position of the predetermined measuring points ( 52 ) of the treatment object ( 10 ) in the second coordinate system are formed by light-emitting diodes which in the measuring points are attached to the treatment object ( 10 ), and by an optical scanning device ( 20, 22, 24 ) which responds to these light-emitting diodes. 12. Einrichtung nach Anspruch 11, dadurch gekennzeichnet, daß die Leuchtdioden zur Unterscheidung voneinander mit unterschiedlichen Zeittakten ansteuerbar sind.12. The device according to claim 11, characterized in that the LEDs to distinguish them from each other can be controlled at different times.
DE4225112A 1992-07-30 1992-07-30 Instrument position relative to processing object measuring apparatus - has measuring device for measuring position of instrument including inertia sensor unit Expired - Fee Related DE4225112C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4225112A DE4225112C1 (en) 1992-07-30 1992-07-30 Instrument position relative to processing object measuring apparatus - has measuring device for measuring position of instrument including inertia sensor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4225112A DE4225112C1 (en) 1992-07-30 1992-07-30 Instrument position relative to processing object measuring apparatus - has measuring device for measuring position of instrument including inertia sensor unit

Publications (1)

Publication Number Publication Date
DE4225112C1 true DE4225112C1 (en) 1993-12-09

Family

ID=6464406

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4225112A Expired - Fee Related DE4225112C1 (en) 1992-07-30 1992-07-30 Instrument position relative to processing object measuring apparatus - has measuring device for measuring position of instrument including inertia sensor unit

Country Status (1)

Country Link
DE (1) DE4225112C1 (en)

Cited By (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672389A2 (en) * 1994-03-17 1995-09-20 Roke Manor Research Limited Video-based system for computer assisted surgery and localisation
EP0788329A1 (en) * 1994-10-24 1997-08-13 TRANSSCAN RESEARCH & DEVELOPMENT CO. LTD. Impedance imaging devices and multi-element probe
EP0793945A1 (en) * 1996-03-08 1997-09-10 The University of Hull Surgical positioning apparatus and methods
WO1998038919A2 (en) * 1997-03-04 1998-09-11 Biotrack, Inc. Medical sensing and imaging system
WO1999033406A1 (en) * 1997-12-31 1999-07-08 Surgical Navigation Technologies, Inc. Wireless probe system for use with a stereotactic surgical device
WO1999060939A1 (en) * 1998-05-28 1999-12-02 Orthosoft, Inc. Interactive computer-assisted surgical system and method thereof
DE19843408A1 (en) * 1998-09-22 2000-03-30 Siemens Ag Catheter positioning method
WO2000053115A1 (en) * 1999-03-05 2000-09-14 Northern Digital Inc. Active instrument for determining a position in navigation systems for assisting surgical interventions
DE20002604U1 (en) * 2000-02-15 2001-06-21 Ao Entwicklungsinstitut Davos Laser pointer
US6308097B1 (en) 1994-10-24 2001-10-23 Transscan Medical Ltd. Tissue characterization based on impedance images and on impedance measurements
EP1177773A1 (en) 2000-08-03 2002-02-06 Robert Drosten Method and device for determination and calibration of coordinates of a surgical instrument
US6370224B1 (en) 1998-06-29 2002-04-09 Sofamor Danek Group, Inc. System and methods for the reduction and elimination of image artifacts in the calibration of x-ray imagers
US6381485B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies, Inc. Registration of human anatomy integrated for electromagnetic localization
US6402762B2 (en) 1999-10-28 2002-06-11 Surgical Navigation Technologies, Inc. System for translation of electromagnetic and optical localization systems
WO2002067800A2 (en) * 2001-02-27 2002-09-06 Smith & Nephew, Inc. Surgical navigation systems and processes for high tibial osteotomy
US6491702B2 (en) 1992-04-21 2002-12-10 Sofamor Danek Holdings, Inc. Apparatus and method for photogrammetric surgical localization
US6535756B1 (en) 2000-04-07 2003-03-18 Surgical Navigation Technologies, Inc. Trajectory storage apparatus and method for surgical navigation system
US6560480B1 (en) 1994-10-24 2003-05-06 Transscan Medical Ltd. Localization of anomalies in tissue and guidance of invasive tools based on impedance imaging
DE10225077A1 (en) * 2002-06-05 2003-12-24 Vr Magic Gmbh Operating theater object tracking system has moveable optical sensors with position measured in fixed reference system
US6725080B2 (en) 2000-03-01 2004-04-20 Surgical Navigation Technologies, Inc. Multiple cannula image guided tool for image guided procedures
US6731966B1 (en) 1997-03-04 2004-05-04 Zachary S. Spigelman Systems and methods for targeting a lesion
WO2004030560A3 (en) * 2002-10-01 2004-06-17 Vr Magic Gmbh Multi-camera tracking system
DE10259250A1 (en) * 2002-12-17 2004-07-01 "Stiftung Caesar" (Center Of Advanced European Studies And Research) System to navigate dental tool for treatment on human or animal body has LEDs that signal to operator deviation of position and direction of instrument head from planning data
WO2006058633A1 (en) * 2004-12-01 2006-06-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for navigating and positioning an object relative to a patient
DE102007009543A1 (en) * 2007-02-27 2008-08-28 Leica Microsystems (Schweiz) Ag Microscope device with position detection
EP1068607A4 (en) * 1998-04-03 2009-07-08 Image Guided Technologies Inc Wireless optical instrument for position measurement and method of use therefor
EP2078590A2 (en) 2008-01-09 2009-07-15 C. & E. FEIN GmbH Screwing device and method for monitoring screwing processes
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7751865B2 (en) 2003-10-17 2010-07-06 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7763035B2 (en) 1997-12-12 2010-07-27 Medtronic Navigation, Inc. Image guided spinal surgery guide, system and method for use thereof
US7787936B2 (en) 2004-01-23 2010-08-31 Traxyz Medical, Inc. Methods and apparatus for performing procedures on target locations in the body
US7797032B2 (en) 1999-10-28 2010-09-14 Medtronic Navigation, Inc. Method and system for navigating a catheter probe in the presence of field-influencing objects
US7831082B2 (en) 2000-06-14 2010-11-09 Medtronic Navigation, Inc. System and method for image based sensor calibration
US7835778B2 (en) 2003-10-16 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US7835784B2 (en) 2005-09-21 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for positioning a reference frame
US7840253B2 (en) 2003-10-17 2010-11-23 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7862570B2 (en) 2003-10-03 2011-01-04 Smith & Nephew, Inc. Surgical positioners
USRE42194E1 (en) 1997-09-24 2011-03-01 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US7925328B2 (en) 2003-08-28 2011-04-12 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
US7953471B2 (en) 2004-05-03 2011-05-31 Medtronic Navigation, Inc. Method and apparatus for implantation between two vertebral bodies
US7974677B2 (en) 2003-01-30 2011-07-05 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
US7996064B2 (en) 1999-03-23 2011-08-09 Medtronic Navigation, Inc. System and method for placing and determining an appropriately sized surgical implant
US7998062B2 (en) 2004-03-29 2011-08-16 Superdimension, Ltd. Endoscope structures and techniques for navigating to a target in branched structure
US8057407B2 (en) 1999-10-28 2011-11-15 Medtronic Navigation, Inc. Surgical sensor
US8060185B2 (en) 2002-11-19 2011-11-15 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US8074662B2 (en) 1999-10-28 2011-12-13 Medtronic Navigation, Inc. Surgical communication and power system
WO2011128766A3 (en) * 2010-04-13 2011-12-22 Picard Frederic Methods and systems for object tracking
US8112292B2 (en) 2006-04-21 2012-02-07 Medtronic Navigation, Inc. Method and apparatus for optimizing a therapy
US8165658B2 (en) 2008-09-26 2012-04-24 Medtronic, Inc. Method and apparatus for positioning a guide relative to a base
USRE43328E1 (en) 1997-11-20 2012-04-24 Medtronic Navigation, Inc Image guided awl/tap/screwdriver
US8175681B2 (en) 2008-12-16 2012-05-08 Medtronic Navigation Inc. Combination of electromagnetic and electropotential localization
US8200314B2 (en) 1992-08-14 2012-06-12 British Telecommunications Public Limited Company Surgical navigation
US8239001B2 (en) 2003-10-17 2012-08-07 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
WO2012171555A1 (en) 2011-06-15 2012-12-20 Brainlab Ag Method and device for determining the mechanical axis of a bone
WO2012171577A1 (en) 2011-06-17 2012-12-20 Brainlab Ag Method, system and device for positioning an implant
USRE43952E1 (en) 1989-10-05 2013-01-29 Medtronic Navigation, Inc. Interactive system for local intervention inside a non-homogeneous structure
US8452068B2 (en) 2008-06-06 2013-05-28 Covidien Lp Hybrid registration method
US8473032B2 (en) 2008-06-03 2013-06-25 Superdimension, Ltd. Feature-based registration method
US8473026B2 (en) 1994-09-15 2013-06-25 Ge Medical Systems Global Technology Company System for monitoring a position of a medical instrument with respect to a patient's body
US8494614B2 (en) 2009-08-31 2013-07-23 Regents Of The University Of Minnesota Combination localization system
US8494613B2 (en) 2009-08-31 2013-07-23 Medtronic, Inc. Combination localization system
US8611984B2 (en) 2009-04-08 2013-12-17 Covidien Lp Locatable catheter
US8644907B2 (en) 1999-10-28 2014-02-04 Medtronic Navigaton, Inc. Method and apparatus for surgical navigation
US8660635B2 (en) 2006-09-29 2014-02-25 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
US8663088B2 (en) 2003-09-15 2014-03-04 Covidien Lp System of accessories for use with bronchoscopes
US8768437B2 (en) 1998-08-20 2014-07-01 Sofamor Danek Holdings, Inc. Fluoroscopic image guided surgery system with intraoperative registration
US8764725B2 (en) 2004-02-09 2014-07-01 Covidien Lp Directional anchoring mechanism, method and applications thereof
US8838199B2 (en) 2002-04-04 2014-09-16 Medtronic Navigation, Inc. Method and apparatus for virtual digital subtraction angiography
US8888786B2 (en) 2003-06-09 2014-11-18 OrthAlign, Inc. Surgical orientation device and method
US8905920B2 (en) 2007-09-27 2014-12-09 Covidien Lp Bronchoscope adapter and method
US8911447B2 (en) 2008-07-24 2014-12-16 OrthAlign, Inc. Systems and methods for joint replacement
US8932207B2 (en) 2008-07-10 2015-01-13 Covidien Lp Integrated multi-functional endoscopic tool
WO2015022084A1 (en) * 2013-08-13 2015-02-19 Brainlab Ag Medical registration apparatus and method for registering an axis
US8974467B2 (en) 2003-06-09 2015-03-10 OrthAlign, Inc. Surgical orientation system and method
US8974468B2 (en) 2008-09-10 2015-03-10 OrthAlign, Inc. Hip surgery systems and methods
US9055881B2 (en) 2004-04-26 2015-06-16 Super Dimension Ltd. System and method for image-based alignment of an endoscope
DE19901334B4 (en) * 1999-01-15 2015-06-18 C. & E. Fein Gmbh Device for detecting the position of a hand-held tool
US9168102B2 (en) 2006-01-18 2015-10-27 Medtronic Navigation, Inc. Method and apparatus for providing a container to a sterile environment
WO2015172826A1 (en) * 2014-05-14 2015-11-19 Brainlab Ag Method for determining the spatial position of objects
US9271756B2 (en) 2009-07-24 2016-03-01 OrthAlign, Inc. Systems and methods for joint replacement
US9339226B2 (en) 2010-01-21 2016-05-17 OrthAlign, Inc. Systems and methods for joint replacement
US9549742B2 (en) 2012-05-18 2017-01-24 OrthAlign, Inc. Devices and methods for knee arthroplasty
US9575140B2 (en) 2008-04-03 2017-02-21 Covidien Lp Magnetic interference detection system and method
US9649160B2 (en) 2012-08-14 2017-05-16 OrthAlign, Inc. Hip replacement navigation system and method
US9675424B2 (en) 2001-06-04 2017-06-13 Surgical Navigation Technologies, Inc. Method for calibrating a navigation system
US9757087B2 (en) 2002-02-28 2017-09-12 Medtronic Navigation, Inc. Method and apparatus for perspective inversion
WO2017220832A2 (en) 2016-06-20 2017-12-28 Erle Robotics, S.L. Robot configuration method
WO2018172593A2 (en) 2018-05-25 2018-09-27 Erle Robotics, S.L Method for integrating new modules into modular robots, and robot component of same
US10363149B2 (en) 2015-02-20 2019-07-30 OrthAlign, Inc. Hip replacement navigation system and method
US10418705B2 (en) 2016-10-28 2019-09-17 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10426555B2 (en) 2015-06-03 2019-10-01 Covidien Lp Medical instrument with sensor for use in a system and method for electromagnetic navigation
US10446931B2 (en) 2016-10-28 2019-10-15 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10470724B2 (en) 2015-04-13 2019-11-12 Precisionrad Llc Laser and accelerometer guided medical device
US10478254B2 (en) 2016-05-16 2019-11-19 Covidien Lp System and method to access lung tissue
US10517505B2 (en) 2016-10-28 2019-12-31 Covidien Lp Systems, methods, and computer-readable media for optimizing an electromagnetic navigation system
US10555781B2 (en) 2017-11-15 2020-02-11 Stryker Corporation High bandwidth and low latency hybrid communication techniques for a navigation system
US10575906B2 (en) 2012-09-26 2020-03-03 Stryker Corporation Navigation system and method for tracking objects using optical and non-optical sensors
US10582834B2 (en) 2010-06-15 2020-03-10 Covidien Lp Locatable expandable working channel and method
US10615500B2 (en) 2016-10-28 2020-04-07 Covidien Lp System and method for designing electromagnetic navigation antenna assemblies
US10638952B2 (en) 2016-10-28 2020-05-05 Covidien Lp Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system
US10722311B2 (en) 2016-10-28 2020-07-28 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US10751126B2 (en) 2016-10-28 2020-08-25 Covidien Lp System and method for generating a map for electromagnetic navigation
US10792106B2 (en) 2016-10-28 2020-10-06 Covidien Lp System for calibrating an electromagnetic navigation system
US10863995B2 (en) 2017-03-14 2020-12-15 OrthAlign, Inc. Soft tissue measurement and balancing systems and methods
US10869771B2 (en) 2009-07-24 2020-12-22 OrthAlign, Inc. Systems and methods for joint replacement
US10918499B2 (en) 2017-03-14 2021-02-16 OrthAlign, Inc. Hip replacement navigation systems and methods
US10952593B2 (en) 2014-06-10 2021-03-23 Covidien Lp Bronchoscope adapter
US11006914B2 (en) 2015-10-28 2021-05-18 Medtronic Navigation, Inc. Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient
US11219489B2 (en) 2017-10-31 2022-01-11 Covidien Lp Devices and systems for providing sensors in parallel with medical tools
US11331150B2 (en) 1999-10-28 2022-05-17 Medtronic Navigation, Inc. Method and apparatus for surgical navigation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3114918A1 (en) * 1981-04-13 1983-02-03 Brockmann, W., Dr., 2000 Hamburg Method and device for the video-optical determination of the position, and positioning of a rigid body in a space
DE3717871C2 (en) * 1987-05-27 1989-11-30 Georg Prof. Dr. 5106 Roetgen De Schloendorff

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3114918A1 (en) * 1981-04-13 1983-02-03 Brockmann, W., Dr., 2000 Hamburg Method and device for the video-optical determination of the position, and positioning of a rigid body in a space
DE3717871C2 (en) * 1987-05-27 1989-11-30 Georg Prof. Dr. 5106 Roetgen De Schloendorff

Cited By (225)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43952E1 (en) 1989-10-05 2013-01-29 Medtronic Navigation, Inc. Interactive system for local intervention inside a non-homogeneous structure
US6491702B2 (en) 1992-04-21 2002-12-10 Sofamor Danek Holdings, Inc. Apparatus and method for photogrammetric surgical localization
US8200314B2 (en) 1992-08-14 2012-06-12 British Telecommunications Public Limited Company Surgical navigation
EP0672389A2 (en) * 1994-03-17 1995-09-20 Roke Manor Research Limited Video-based system for computer assisted surgery and localisation
EP0672389A3 (en) * 1994-03-17 1996-12-27 Roke Manor Research Video-based system for computer assisted surgery and localisation.
US8473026B2 (en) 1994-09-15 2013-06-25 Ge Medical Systems Global Technology Company System for monitoring a position of a medical instrument with respect to a patient's body
US6560480B1 (en) 1994-10-24 2003-05-06 Transscan Medical Ltd. Localization of anomalies in tissue and guidance of invasive tools based on impedance imaging
EP0788329A4 (en) * 1994-10-24 1999-11-10 Transscan Res & Dev Co Ltd Impedance imaging devices and multi-element probe
US6421559B1 (en) 1994-10-24 2002-07-16 Transscan Medical Ltd. Tissue characterization based on impedance images and on impedance measurements
US6308097B1 (en) 1994-10-24 2001-10-23 Transscan Medical Ltd. Tissue characterization based on impedance images and on impedance measurements
EP0788329A1 (en) * 1994-10-24 1997-08-13 TRANSSCAN RESEARCH & DEVELOPMENT CO. LTD. Impedance imaging devices and multi-element probe
EP0793945A1 (en) * 1996-03-08 1997-09-10 The University of Hull Surgical positioning apparatus and methods
WO1998038919A3 (en) * 1997-03-04 1998-12-30 Biotrack Inc Medical sensing and imaging system
WO1998038919A2 (en) * 1997-03-04 1998-09-11 Biotrack, Inc. Medical sensing and imaging system
US6119033A (en) * 1997-03-04 2000-09-12 Biotrack, Inc. Method of monitoring a location of an area of interest within a patient during a medical procedure
US6731966B1 (en) 1997-03-04 2004-05-04 Zachary S. Spigelman Systems and methods for targeting a lesion
USRE42194E1 (en) 1997-09-24 2011-03-01 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE42226E1 (en) 1997-09-24 2011-03-15 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE44305E1 (en) 1997-09-24 2013-06-18 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE46409E1 (en) 1997-11-20 2017-05-23 Medtronic Navigation, Inc. Image guided awl/tap/screwdriver
USRE46422E1 (en) 1997-11-20 2017-06-06 Medtronic Navigation, Inc. Image guided awl/tap/screwdriver
USRE43328E1 (en) 1997-11-20 2012-04-24 Medtronic Navigation, Inc Image guided awl/tap/screwdriver
US8105339B2 (en) 1997-12-12 2012-01-31 Sofamor Danek Holdings, Inc. Image guided spinal surgery guide system and method for use thereof
US7763035B2 (en) 1997-12-12 2010-07-27 Medtronic Navigation, Inc. Image guided spinal surgery guide, system and method for use thereof
WO1999033406A1 (en) * 1997-12-31 1999-07-08 Surgical Navigation Technologies, Inc. Wireless probe system for use with a stereotactic surgical device
DE19882935B4 (en) * 1997-12-31 2005-02-10 Surgical Navigation Technologies Inc., Broomfield Systems for displaying a position of an object during an operation
EP1068607A4 (en) * 1998-04-03 2009-07-08 Image Guided Technologies Inc Wireless optical instrument for position measurement and method of use therefor
WO1999060939A1 (en) * 1998-05-28 1999-12-02 Orthosoft, Inc. Interactive computer-assisted surgical system and method thereof
US6533737B1 (en) 1998-05-28 2003-03-18 Orthosoft, Inc. Interactive computer-assisted surgical system and method thereof
EP1437100A1 (en) * 1998-05-28 2004-07-14 Orthosoft Inc. Interactive user interface for a computer system to assist in surgery
US6450978B1 (en) 1998-05-28 2002-09-17 Orthosoft, Inc. Interactive computer-assisted surgical system and method thereof
US6370224B1 (en) 1998-06-29 2002-04-09 Sofamor Danek Group, Inc. System and methods for the reduction and elimination of image artifacts in the calibration of x-ray imagers
US8768437B2 (en) 1998-08-20 2014-07-01 Sofamor Danek Holdings, Inc. Fluoroscopic image guided surgery system with intraoperative registration
DE19843408C2 (en) * 1998-09-22 2000-10-26 Siemens Ag Method for reproducing x-ray images when positioning a catheter inserted into a vessel and device for carrying out the method
DE19843408A1 (en) * 1998-09-22 2000-03-30 Siemens Ag Catheter positioning method
DE19901334B4 (en) * 1999-01-15 2015-06-18 C. & E. Fein Gmbh Device for detecting the position of a hand-held tool
WO2000053115A1 (en) * 1999-03-05 2000-09-14 Northern Digital Inc. Active instrument for determining a position in navigation systems for assisting surgical interventions
US7996064B2 (en) 1999-03-23 2011-08-09 Medtronic Navigation, Inc. System and method for placing and determining an appropriately sized surgical implant
US8290572B2 (en) 1999-10-28 2012-10-16 Medtronic Navigation, Inc. Method and system for navigating a catheter probe in the presence of field-influencing objects
US8644907B2 (en) 1999-10-28 2014-02-04 Medtronic Navigaton, Inc. Method and apparatus for surgical navigation
US8548565B2 (en) 1999-10-28 2013-10-01 Medtronic Navigation, Inc. Registration of human anatomy integrated for electromagnetic localization
US8057407B2 (en) 1999-10-28 2011-11-15 Medtronic Navigation, Inc. Surgical sensor
US9504530B2 (en) 1999-10-28 2016-11-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US6402762B2 (en) 1999-10-28 2002-06-11 Surgical Navigation Technologies, Inc. System for translation of electromagnetic and optical localization systems
US6381485B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies, Inc. Registration of human anatomy integrated for electromagnetic localization
US7797032B2 (en) 1999-10-28 2010-09-14 Medtronic Navigation, Inc. Method and system for navigating a catheter probe in the presence of field-influencing objects
US11331150B2 (en) 1999-10-28 2022-05-17 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7657300B2 (en) 1999-10-28 2010-02-02 Medtronic Navigation, Inc. Registration of human anatomy integrated for electromagnetic localization
US8074662B2 (en) 1999-10-28 2011-12-13 Medtronic Navigation, Inc. Surgical communication and power system
DE20002604U1 (en) * 2000-02-15 2001-06-21 Ao Entwicklungsinstitut Davos Laser pointer
US6725080B2 (en) 2000-03-01 2004-04-20 Surgical Navigation Technologies, Inc. Multiple cannula image guided tool for image guided procedures
US10898153B2 (en) 2000-03-01 2021-01-26 Medtronic Navigation, Inc. Multiple cannula image guided tool for image guided procedures
US7881770B2 (en) 2000-03-01 2011-02-01 Medtronic Navigation, Inc. Multiple cannula image guided tool for image guided procedures
US8634897B2 (en) 2000-04-07 2014-01-21 Medtronic Navigation, Inc. Trajectory storage apparatus and method for surgical navigation systems
US6535756B1 (en) 2000-04-07 2003-03-18 Surgical Navigation Technologies, Inc. Trajectory storage apparatus and method for surgical navigation system
US7853305B2 (en) 2000-04-07 2010-12-14 Medtronic Navigation, Inc. Trajectory storage apparatus and method for surgical navigation systems
US7831082B2 (en) 2000-06-14 2010-11-09 Medtronic Navigation, Inc. System and method for image based sensor calibration
US8320653B2 (en) 2000-06-14 2012-11-27 Medtronic Navigation, Inc. System and method for image based sensor calibration
EP1177773A1 (en) 2000-08-03 2002-02-06 Robert Drosten Method and device for determination and calibration of coordinates of a surgical instrument
DE10037840A1 (en) * 2000-08-03 2002-02-21 Robert Drosten Method and device for determining and aligning the spatial coordinates of a surgical instrument
WO2002067784A2 (en) * 2001-02-27 2002-09-06 Smith & Nephew, Inc. Surgical navigation systems and processes for unicompartmental knee
WO2002067783A3 (en) * 2001-02-27 2003-04-24 Smith & Nephew Inc Total knee arthroplasty systems and processes
WO2002067800A2 (en) * 2001-02-27 2002-09-06 Smith & Nephew, Inc. Surgical navigation systems and processes for high tibial osteotomy
WO2002067783A2 (en) * 2001-02-27 2002-09-06 Smith & Nephew, Inc. Total knee arthroplasty systems and processes
WO2002067800A3 (en) * 2001-02-27 2002-10-31 Smith & Nephew Inc Surgical navigation systems and processes for high tibial osteotomy
WO2002067784A3 (en) * 2001-02-27 2003-02-13 Smith & Nephew Inc Surgical navigation systems and processes for unicompartmental knee
US6827723B2 (en) 2001-02-27 2004-12-07 Smith & Nephew, Inc. Surgical navigation systems and processes for unicompartmental knee arthroplasty
US6923817B2 (en) 2001-02-27 2005-08-02 Smith & Nephew, Inc. Total knee arthroplasty systems and processes
US9675424B2 (en) 2001-06-04 2017-06-13 Surgical Navigation Technologies, Inc. Method for calibrating a navigation system
US9757087B2 (en) 2002-02-28 2017-09-12 Medtronic Navigation, Inc. Method and apparatus for perspective inversion
US8838199B2 (en) 2002-04-04 2014-09-16 Medtronic Navigation, Inc. Method and apparatus for virtual digital subtraction angiography
US8696548B2 (en) 2002-04-17 2014-04-15 Covidien Lp Endoscope structures and techniques for navigating to a target in branched structure
US8696685B2 (en) 2002-04-17 2014-04-15 Covidien Lp Endoscope structures and techniques for navigating to a target in branched structure
US10743748B2 (en) 2002-04-17 2020-08-18 Covidien Lp Endoscope structures and techniques for navigating to a target in branched structure
US9642514B2 (en) 2002-04-17 2017-05-09 Covidien Lp Endoscope structures and techniques for navigating to a target in a branched structure
DE10225077A1 (en) * 2002-06-05 2003-12-24 Vr Magic Gmbh Operating theater object tracking system has moveable optical sensors with position measured in fixed reference system
DE10225077B4 (en) * 2002-06-05 2007-11-15 Vr Magic Gmbh Object tracking device for medical operations
WO2004030560A3 (en) * 2002-10-01 2004-06-17 Vr Magic Gmbh Multi-camera tracking system
US8046052B2 (en) 2002-11-19 2011-10-25 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US8060185B2 (en) 2002-11-19 2011-11-15 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US8467853B2 (en) 2002-11-19 2013-06-18 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US8401616B2 (en) 2002-11-19 2013-03-19 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
DE10259250A1 (en) * 2002-12-17 2004-07-01 "Stiftung Caesar" (Center Of Advanced European Studies And Research) System to navigate dental tool for treatment on human or animal body has LEDs that signal to operator deviation of position and direction of instrument head from planning data
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
US9867721B2 (en) 2003-01-30 2018-01-16 Medtronic Navigation, Inc. Method and apparatus for post-operative tuning of a spinal implant
US11707363B2 (en) 2003-01-30 2023-07-25 Medtronic Navigation, Inc. Method and apparatus for post-operative tuning of a spinal implant
US7974677B2 (en) 2003-01-30 2011-07-05 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
US11684491B2 (en) 2003-01-30 2023-06-27 Medtronic Navigation, Inc. Method and apparatus for post-operative tuning of a spinal implant
US11903597B2 (en) 2003-06-09 2024-02-20 OrthAlign, Inc. Surgical orientation system and method
US8888786B2 (en) 2003-06-09 2014-11-18 OrthAlign, Inc. Surgical orientation device and method
US8974467B2 (en) 2003-06-09 2015-03-10 OrthAlign, Inc. Surgical orientation system and method
US11179167B2 (en) 2003-06-09 2021-11-23 OrthAlign, Inc. Surgical orientation system and method
US7925328B2 (en) 2003-08-28 2011-04-12 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
US8663088B2 (en) 2003-09-15 2014-03-04 Covidien Lp System of accessories for use with bronchoscopes
US10383509B2 (en) 2003-09-15 2019-08-20 Covidien Lp System of accessories for use with bronchoscopes
US9089261B2 (en) 2003-09-15 2015-07-28 Covidien Lp System of accessories for use with bronchoscopes
US7862570B2 (en) 2003-10-03 2011-01-04 Smith & Nephew, Inc. Surgical positioners
US7835778B2 (en) 2003-10-16 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US8706185B2 (en) 2003-10-16 2014-04-22 Medtronic Navigation, Inc. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US8549732B2 (en) 2003-10-17 2013-10-08 Medtronic Navigation, Inc. Method of forming an electromagnetic sensing coil in a medical instrument
US7840253B2 (en) 2003-10-17 2010-11-23 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7751865B2 (en) 2003-10-17 2010-07-06 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8239001B2 (en) 2003-10-17 2012-08-07 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7971341B2 (en) 2003-10-17 2011-07-05 Medtronic Navigation, Inc. Method of forming an electromagnetic sensing coil in a medical instrument for a surgical navigation system
US8271069B2 (en) 2003-10-17 2012-09-18 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7818044B2 (en) 2003-10-17 2010-10-19 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8359730B2 (en) 2003-10-17 2013-01-29 Medtronic Navigation, Inc. Method of forming an electromagnetic sensing coil in a medical instrument
US7787936B2 (en) 2004-01-23 2010-08-31 Traxyz Medical, Inc. Methods and apparatus for performing procedures on target locations in the body
US8764725B2 (en) 2004-02-09 2014-07-01 Covidien Lp Directional anchoring mechanism, method and applications thereof
US7998062B2 (en) 2004-03-29 2011-08-16 Superdimension, Ltd. Endoscope structures and techniques for navigating to a target in branched structure
US9055881B2 (en) 2004-04-26 2015-06-16 Super Dimension Ltd. System and method for image-based alignment of an endoscope
US10321803B2 (en) 2004-04-26 2019-06-18 Covidien Lp System and method for image-based alignment of an endoscope
US7953471B2 (en) 2004-05-03 2011-05-31 Medtronic Navigation, Inc. Method and apparatus for implantation between two vertebral bodies
WO2006058633A1 (en) * 2004-12-01 2006-06-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for navigating and positioning an object relative to a patient
US7835784B2 (en) 2005-09-21 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for positioning a reference frame
US8467851B2 (en) 2005-09-21 2013-06-18 Medtronic Navigation, Inc. Method and apparatus for positioning a reference frame
US9168102B2 (en) 2006-01-18 2015-10-27 Medtronic Navigation, Inc. Method and apparatus for providing a container to a sterile environment
US10597178B2 (en) 2006-01-18 2020-03-24 Medtronic Navigation, Inc. Method and apparatus for providing a container to a sterile environment
US8112292B2 (en) 2006-04-21 2012-02-07 Medtronic Navigation, Inc. Method and apparatus for optimizing a therapy
US8660635B2 (en) 2006-09-29 2014-02-25 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
US9597154B2 (en) 2006-09-29 2017-03-21 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
DE102007009543A1 (en) * 2007-02-27 2008-08-28 Leica Microsystems (Schweiz) Ag Microscope device with position detection
US10390686B2 (en) 2007-09-27 2019-08-27 Covidien Lp Bronchoscope adapter and method
US8905920B2 (en) 2007-09-27 2014-12-09 Covidien Lp Bronchoscope adapter and method
US9668639B2 (en) 2007-09-27 2017-06-06 Covidien Lp Bronchoscope adapter and method
US10980400B2 (en) 2007-09-27 2021-04-20 Covidien Lp Bronchoscope adapter and method
US9986895B2 (en) 2007-09-27 2018-06-05 Covidien Lp Bronchoscope adapter and method
EP2078590A2 (en) 2008-01-09 2009-07-15 C. & E. FEIN GmbH Screwing device and method for monitoring screwing processes
DE102008004572A1 (en) 2008-01-09 2009-07-16 C. & E. Fein Gmbh Screwing device and method for monitoring screwing operations
US9575140B2 (en) 2008-04-03 2017-02-21 Covidien Lp Magnetic interference detection system and method
US9659374B2 (en) 2008-06-03 2017-05-23 Covidien Lp Feature-based registration method
US11074702B2 (en) 2008-06-03 2021-07-27 Covidien Lp Feature-based registration method
US8473032B2 (en) 2008-06-03 2013-06-25 Superdimension, Ltd. Feature-based registration method
US9117258B2 (en) 2008-06-03 2015-08-25 Covidien Lp Feature-based registration method
US10096126B2 (en) 2008-06-03 2018-10-09 Covidien Lp Feature-based registration method
US11783498B2 (en) 2008-06-03 2023-10-10 Covidien Lp Feature-based registration method
US9271803B2 (en) 2008-06-06 2016-03-01 Covidien Lp Hybrid registration method
US11931141B2 (en) 2008-06-06 2024-03-19 Covidien Lp Hybrid registration method
US10285623B2 (en) 2008-06-06 2019-05-14 Covidien Lp Hybrid registration method
US8467589B2 (en) 2008-06-06 2013-06-18 Covidien Lp Hybrid registration method
US8452068B2 (en) 2008-06-06 2013-05-28 Covidien Lp Hybrid registration method
US10478092B2 (en) 2008-06-06 2019-11-19 Covidien Lp Hybrid registration method
US10674936B2 (en) 2008-06-06 2020-06-09 Covidien Lp Hybrid registration method
US8932207B2 (en) 2008-07-10 2015-01-13 Covidien Lp Integrated multi-functional endoscopic tool
US10070801B2 (en) 2008-07-10 2018-09-11 Covidien Lp Integrated multi-functional endoscopic tool
US11234611B2 (en) 2008-07-10 2022-02-01 Covidien Lp Integrated multi-functional endoscopic tool
US11241164B2 (en) 2008-07-10 2022-02-08 Covidien Lp Integrated multi-functional endoscopic tool
US10912487B2 (en) 2008-07-10 2021-02-09 Covidien Lp Integrated multi-function endoscopic tool
US8998910B2 (en) 2008-07-24 2015-04-07 OrthAlign, Inc. Systems and methods for joint replacement
US8911447B2 (en) 2008-07-24 2014-12-16 OrthAlign, Inc. Systems and methods for joint replacement
US11871965B2 (en) 2008-07-24 2024-01-16 OrthAlign, Inc. Systems and methods for joint replacement
US10864019B2 (en) 2008-07-24 2020-12-15 OrthAlign, Inc. Systems and methods for joint replacement
US9572586B2 (en) 2008-07-24 2017-02-21 OrthAlign, Inc. Systems and methods for joint replacement
US11547451B2 (en) 2008-07-24 2023-01-10 OrthAlign, Inc. Systems and methods for joint replacement
US11684392B2 (en) 2008-07-24 2023-06-27 OrthAlign, Inc. Systems and methods for joint replacement
US9855075B2 (en) 2008-07-24 2018-01-02 OrthAlign, Inc. Systems and methods for joint replacement
US10206714B2 (en) 2008-07-24 2019-02-19 OrthAlign, Inc. Systems and methods for joint replacement
US9192392B2 (en) 2008-07-24 2015-11-24 OrthAlign, Inc. Systems and methods for joint replacement
US10321852B2 (en) 2008-09-10 2019-06-18 OrthAlign, Inc. Hip surgery systems and methods
US11179062B2 (en) 2008-09-10 2021-11-23 OrthAlign, Inc. Hip surgery systems and methods
US8974468B2 (en) 2008-09-10 2015-03-10 OrthAlign, Inc. Hip surgery systems and methods
US9931059B2 (en) 2008-09-10 2018-04-03 OrthAlign, Inc. Hip surgery systems and methods
US11540746B2 (en) 2008-09-10 2023-01-03 OrthAlign, Inc. Hip surgery systems and methods
US8165658B2 (en) 2008-09-26 2012-04-24 Medtronic, Inc. Method and apparatus for positioning a guide relative to a base
US8175681B2 (en) 2008-12-16 2012-05-08 Medtronic Navigation Inc. Combination of electromagnetic and electropotential localization
US8731641B2 (en) 2008-12-16 2014-05-20 Medtronic Navigation, Inc. Combination of electromagnetic and electropotential localization
US9113813B2 (en) 2009-04-08 2015-08-25 Covidien Lp Locatable catheter
US10154798B2 (en) 2009-04-08 2018-12-18 Covidien Lp Locatable catheter
US8611984B2 (en) 2009-04-08 2013-12-17 Covidien Lp Locatable catheter
US9271756B2 (en) 2009-07-24 2016-03-01 OrthAlign, Inc. Systems and methods for joint replacement
US9775725B2 (en) 2009-07-24 2017-10-03 OrthAlign, Inc. Systems and methods for joint replacement
US10869771B2 (en) 2009-07-24 2020-12-22 OrthAlign, Inc. Systems and methods for joint replacement
US11633293B2 (en) 2009-07-24 2023-04-25 OrthAlign, Inc. Systems and methods for joint replacement
US10238510B2 (en) 2009-07-24 2019-03-26 OrthAlign, Inc. Systems and methods for joint replacement
US8494614B2 (en) 2009-08-31 2013-07-23 Regents Of The University Of Minnesota Combination localization system
US8494613B2 (en) 2009-08-31 2013-07-23 Medtronic, Inc. Combination localization system
US9339226B2 (en) 2010-01-21 2016-05-17 OrthAlign, Inc. Systems and methods for joint replacement
US9341704B2 (en) 2010-04-13 2016-05-17 Frederic Picard Methods and systems for object tracking
WO2011128766A3 (en) * 2010-04-13 2011-12-22 Picard Frederic Methods and systems for object tracking
US10582834B2 (en) 2010-06-15 2020-03-10 Covidien Lp Locatable expandable working channel and method
WO2012171555A1 (en) 2011-06-15 2012-12-20 Brainlab Ag Method and device for determining the mechanical axis of a bone
US10342619B2 (en) 2011-06-15 2019-07-09 Brainlab Ag Method and device for determining the mechanical axis of a bone
WO2012171577A1 (en) 2011-06-17 2012-12-20 Brainlab Ag Method, system and device for positioning an implant
US9949665B2 (en) 2011-06-17 2018-04-24 Brainlab Ag Method, system and device for positioning an implant
US10716580B2 (en) 2012-05-18 2020-07-21 OrthAlign, Inc. Devices and methods for knee arthroplasty
US9549742B2 (en) 2012-05-18 2017-01-24 OrthAlign, Inc. Devices and methods for knee arthroplasty
US11653981B2 (en) 2012-08-14 2023-05-23 OrthAlign, Inc. Hip replacement navigation system and method
US9649160B2 (en) 2012-08-14 2017-05-16 OrthAlign, Inc. Hip replacement navigation system and method
US11911119B2 (en) 2012-08-14 2024-02-27 OrthAlign, Inc. Hip replacement navigation system and method
US10603115B2 (en) 2012-08-14 2020-03-31 OrthAlign, Inc. Hip replacement navigation system and method
US10575906B2 (en) 2012-09-26 2020-03-03 Stryker Corporation Navigation system and method for tracking objects using optical and non-optical sensors
US11529198B2 (en) 2012-09-26 2022-12-20 Stryker Corporation Optical and non-optical sensor tracking of objects for a robotic cutting system
US11246719B2 (en) 2013-08-13 2022-02-15 Brainlab Ag Medical registration apparatus and method for registering an axis
WO2015022084A1 (en) * 2013-08-13 2015-02-19 Brainlab Ag Medical registration apparatus and method for registering an axis
WO2015172826A1 (en) * 2014-05-14 2015-11-19 Brainlab Ag Method for determining the spatial position of objects
US10952593B2 (en) 2014-06-10 2021-03-23 Covidien Lp Bronchoscope adapter
US10363149B2 (en) 2015-02-20 2019-07-30 OrthAlign, Inc. Hip replacement navigation system and method
US11020245B2 (en) 2015-02-20 2021-06-01 OrthAlign, Inc. Hip replacement navigation system and method
US10470724B2 (en) 2015-04-13 2019-11-12 Precisionrad Llc Laser and accelerometer guided medical device
US10426555B2 (en) 2015-06-03 2019-10-01 Covidien Lp Medical instrument with sensor for use in a system and method for electromagnetic navigation
US11801024B2 (en) 2015-10-28 2023-10-31 Medtronic Navigation, Inc. Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient
US11006914B2 (en) 2015-10-28 2021-05-18 Medtronic Navigation, Inc. Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient
US11160617B2 (en) 2016-05-16 2021-11-02 Covidien Lp System and method to access lung tissue
US11786317B2 (en) 2016-05-16 2023-10-17 Covidien Lp System and method to access lung tissue
US10478254B2 (en) 2016-05-16 2019-11-19 Covidien Lp System and method to access lung tissue
WO2017220832A2 (en) 2016-06-20 2017-12-28 Erle Robotics, S.L. Robot configuration method
US11786314B2 (en) 2016-10-28 2023-10-17 Covidien Lp System for calibrating an electromagnetic navigation system
US10722311B2 (en) 2016-10-28 2020-07-28 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US10517505B2 (en) 2016-10-28 2019-12-31 Covidien Lp Systems, methods, and computer-readable media for optimizing an electromagnetic navigation system
US10615500B2 (en) 2016-10-28 2020-04-07 Covidien Lp System and method for designing electromagnetic navigation antenna assemblies
US11672604B2 (en) 2016-10-28 2023-06-13 Covidien Lp System and method for generating a map for electromagnetic navigation
US10418705B2 (en) 2016-10-28 2019-09-17 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10792106B2 (en) 2016-10-28 2020-10-06 Covidien Lp System for calibrating an electromagnetic navigation system
US10751126B2 (en) 2016-10-28 2020-08-25 Covidien Lp System and method for generating a map for electromagnetic navigation
US11759264B2 (en) 2016-10-28 2023-09-19 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US10638952B2 (en) 2016-10-28 2020-05-05 Covidien Lp Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system
US10446931B2 (en) 2016-10-28 2019-10-15 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US11786261B2 (en) 2017-03-14 2023-10-17 OrthAlign, Inc. Soft tissue measurement and balancing systems and methods
US11547580B2 (en) 2017-03-14 2023-01-10 OrthAlign, Inc. Hip replacement navigation systems and methods
US10863995B2 (en) 2017-03-14 2020-12-15 OrthAlign, Inc. Soft tissue measurement and balancing systems and methods
US10918499B2 (en) 2017-03-14 2021-02-16 OrthAlign, Inc. Hip replacement navigation systems and methods
US11219489B2 (en) 2017-10-31 2022-01-11 Covidien Lp Devices and systems for providing sensors in parallel with medical tools
US10555781B2 (en) 2017-11-15 2020-02-11 Stryker Corporation High bandwidth and low latency hybrid communication techniques for a navigation system
WO2018172593A2 (en) 2018-05-25 2018-09-27 Erle Robotics, S.L Method for integrating new modules into modular robots, and robot component of same

Similar Documents

Publication Publication Date Title
DE4225112C1 (en) Instrument position relative to processing object measuring apparatus - has measuring device for measuring position of instrument including inertia sensor unit
EP2227703B1 (en) Method for detecting motion
DE69531994T2 (en) SYSTEM FOR POSITION DETECTION BY MEANS OF A REFERENCE UNIT ATTACHED TO A PATIENT'S HEAD FOR USE IN THE MEDICAL AREA
DE60106913T2 (en) DEVICE FOR POSITIONING A SURGICAL INSTRUMENT
DE60317358T2 (en) System for positioning a medical device
DE69721045T2 (en) DEVICE AND METHOD FOR REPRESENTING ULTRASONIC IMAGES
EP0488987B1 (en) Method for representing moving bodies
EP0652726B1 (en) Process for imaging the interior of bodies
EP0682919B1 (en) Method for correlating several coordinate systems in computer aided stereotactic surgery
DE102011114333B4 (en) A method of registering an X-ray volume with a position sensing system using a registration phantom
EP2850388B1 (en) Registration method and registration device for a position detection system
DE19817039A1 (en) Arrangement for image guided surgery
DE102008025151A1 (en) Image generation apparatus and method for nuclear imaging
DE19807884C2 (en) Method for calibrating a recording device for determining spatial coordinates of anatomical target objects and device for carrying out the method
DE102010035155A1 (en) Position determination by means of RFID tags
DE102010042278A1 (en) Operation navigation system with structured light
DE102015212352A1 (en) Method, arrangement and computer program product for the position detection of an object to be examined
EP0028398B1 (en) Device for measuring the position, the situation and/or a change in position or situation of the lower jaw of a patient
DE102008009266B4 (en) Method and device for calibrating an instrument localization device with an imaging device
DE3406179C1 (en) Device for the measurement of the position and movement of at least one measurement point
WO2007110289A1 (en) Method, device and use of a fibre-optic flexion sensor for determining a shape of at least one part of a spinal column
DE102021115214A1 (en) Distortion correction for electromagnetic fields with inside-out tracking
DE102017100885B4 (en) METHOD AND DEVICE FOR GENERATING AND PROJECTING A 3D THERMOGRAM COMPLETE WITH DATA ON THE RECORDING CONDITIONS
WO2016012556A1 (en) Image generating apparatus and method with combination of functional imaging and ultrasound imaging
DE102020215559A1 (en) Method for operating a visualization system in a surgical application and visualization system for a surgical application

Legal Events

Date Code Title Description
8100 Publication of the examined application without publication of unexamined application
D1 Grant (no unexamined application published) patent law 81
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: STELTE, NORBERT, DR., 88662 UEBERLINGEN, DE

8339 Ceased/non-payment of the annual fee