DE4303804A1 - Device for distance measurement (range finding) - Google Patents

Device for distance measurement (range finding)

Info

Publication number
DE4303804A1
DE4303804A1 DE4303804A DE4303804A DE4303804A1 DE 4303804 A1 DE4303804 A1 DE 4303804A1 DE 4303804 A DE4303804 A DE 4303804A DE 4303804 A DE4303804 A DE 4303804A DE 4303804 A1 DE4303804 A1 DE 4303804A1
Authority
DE
Germany
Prior art keywords
light beam
transmitted light
modulation frequencies
distance
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE4303804A
Other languages
German (de)
Other versions
DE4303804C2 (en
Inventor
Walter Dr Rer Nat Hermann
Georg Dipl Ing Moll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leuze Electronic GmbH and Co KG
Original Assignee
Leuze Electronic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leuze Electronic GmbH and Co KG filed Critical Leuze Electronic GmbH and Co KG
Priority to DE19934303804 priority Critical patent/DE4303804C2/en
Publication of DE4303804A1 publication Critical patent/DE4303804A1/en
Application granted granted Critical
Publication of DE4303804C2 publication Critical patent/DE4303804C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal

Abstract

In the case of known devices of this type, the distance measurement is carried out by means of the phase measurement principle using an optical sensor system. The transmitted light beam which is emitted by a laser is in this case amplitude modulated at two different modulation frequencies. It is disadvantageous in this case that the transmitted light intensity and thus the signal to noise ratio are greatly reduced by impressing two modulation frequencies onto the transmitted light beam. In the case of the device 1 according to the invention, the modulation of the transmitted light beam 4 with the modulation frequencies is carried out separately in time. An object is measured by the transmitted light beams 4, which are modulated at the two modulation frequencies, successively. The two measurements (measured values) are compared in an evaluation unit 14 in order to determine the distance of the object from the device 1. <IMAGE>

Description

Die Erfindung betrifft eine Einrichtung zur Entfernungsmessung mit einem Sen­ delicht emittierenden Laser, dessen Sendelichtstrahl mit zwei vorgegebenen Mo­ dulationsfrequenzen amplitudenmoduliert ist, sowie mit einem Empfänger und einem Phasendetektor zur Ermittlung der Phasendifferenz des Sendelichtstrahls und des von einem Objekt reflektierten Empfangslichtstrahls.The invention relates to a device for distance measurement with a Sen delichtemitting laser, the transmitted light beam with two predetermined Mo Dulation frequencies is amplitude modulated, as well as with a receiver and a phase detector for determining the phase difference of the transmitted light beam and the received light beam reflected from an object.

Eine Einrichtung dieser Art ist aus der DE-PS 40 27 990 bekannt. Zur Bestim­ mung der Distanz eines Objekts zur Einrichtung wird der Phasenwinkel zwi­ schen dem Sendelichtstrahl und dem vom Objekt reflektierten Empfangslicht­ strahl ausgewertet. Innerhalb des Winkelbereichs zwischen 0° und 360° ist der Phasenwinkel proportional zur Entfernung des Objekts von der Einrichtung. So­ bald dieser Winkelbereich überschritten wird, können die Phasenwinkel nicht mehr eindeutig einem Entfernungswert zugeordnet werden. Bei der Verwendung einer Modulationsfrequenz zur Modulation des Sendelichtstrahls ist der Meßbe­ reich demnach auf den Bereich einer Wellenlänge der Modulationsfrequenz be­ schränkt.A device of this type is known from DE-PS 40 27 990. For determination Measurement of the distance of an object to the device, the phase angle between between the transmitted light beam and the received light reflected from the object beam evaluated. The is within the angular range between 0 ° and 360 ° Phase angle proportional to the distance of the object from the device. Like this As soon as this angular range is exceeded, the phase angles cannot can be more clearly assigned to a distance value. When using a modulation frequency for modulating the transmitted light beam is the measuring be accordingly be in the range of a wavelength of the modulation frequency limits.

Zur Erweiterung des Meßbereichs der Einrichtung wird der mit einer Modula­ tionsfrequenz modulierte Sendelichtstrahl für die Dauer einer bestimmten An­ zahl von Perioden unterbrochen.To expand the measuring range of the device, the one with a modula tion frequency modulated transmission light beam for the duration of a certain An number of periods interrupted.

Nachteilig hierbei ist, daß durch das Aufprägen der zweiten Modulationsfre­ quenz die über die Dauer der beiden Intervalle gemittelte Sendelichtintensität re­ duziert wird. Dies führt insbesondere bei schnellen Meßvorgängen, bei denen der Sendelichtstrahl nur über wenige Perioden der Modulationsfrequenz ausge­ wertet werden kann, zu einer erheblichen Verminderung des Signal/Rauschver­ hältnisses. Dies kann dazu führen, daß insbesondere Objekte, deren Oberflächen das Sendelicht zur zu einem geringen Anteil reflektieren, nicht mehr vermessen werden können.The disadvantage here is that by impressing the second modulation fre quenz the transmitted light intensity averaged over the duration of the two intervals is induced. This leads particularly in the case of fast measuring processes in which the transmitted light beam is emitted only over a few periods of the modulation frequency can be evaluated, to a significant reduction in the signal / noise ratio. This can lead, in particular, to objects whose surfaces reflect the emitted light to a small extent, no longer measure it can be.

Der Erfindung liegt die Aufgabe zugrunde, eine Meßbereichserweiterung der Phasenmessung zu erzielen, die eine möglichst hohe Meßempfindlichkeit gewährleistet.The invention has for its object to extend the measuring range To achieve phase measurement that ensures the highest possible sensitivity.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Modulationen mit den jeweiligen Modulationsfrequenzen in vorgegebenen Intervallen zeitlich getrennt erfolgen, und daß zur Ermittlung der Distanz eines Objektes zur Ein­ richtung das Objekt mit beiden Modulationsfrequenzen vermessen wird.This object is achieved in that the modulations with the respective modulation frequencies at given intervals done separately, and that to determine the distance of an object to the direction the object is measured with both modulation frequencies.

Dabei werden vorzugsweise die mit den unterschiedlichen Modulationsfrequen­ zen ermittelten Entfernungswerte für ein Objekt in einer Auswerteeinheit mit­ einander verglichen.In this case, those with the different modulation frequencies are preferred distance values determined for an object in an evaluation unit compared to each other.

Der Vorteil dieser Einrichtung besteht darin, daß der Sendelichtstrahl jeweils nur mit einer Modulationsfrequenz moduliert ist und somit die hohe Signalam­ plitude in beiden Intervallen gleichbleibend hoch ist. Das Signal/Rauschverhält­ nis ist dadurch gegenüber einem mit zwei Modulationsfrequenzen modulierten Sendelichtstrahl verbessert.The advantage of this device is that the transmitted light beam in each case is only modulated with a modulation frequency and thus the high signal am plitude is consistently high in both intervals. The signal / noise ratio nis is therefore modulated compared to one with two modulation frequencies Transmitted light beam improved.

Jedes Meßobjekt wird zur Bestimmung der Entfernung zur Vorrichtung nachein­ ander mit beiden Modulationsfrequenzen vermessen. Damit der Entfernungswert korrekt ermittelt wird, darf sich die Position des Objekts zur Vorrichtung wäh­ rend der beiden Einzelmessungen nicht wesentlich ändern. Hierzu ist die Fol­ gefrequenz der Intervalle vorzugsweise wesentlich größer als die Folgefrequenz verschiedener Distanzen von Objekten zur Einrichtung. Je nach Anwendungsfall können die Größen der Intervalle an die maximalen Geschwindigkeiten der Ob­ jekte angepaßt sein.Each measurement object is successively used to determine the distance to the device other measured with both modulation frequencies. So the distance value is correctly determined, the position of the object relative to the device may be selected Do not change significantly between the two individual measurements. The fol frequency of the intervals is preferably much greater than the repetition frequency different distances from objects to setup. Depending on the application can the sizes of the intervals to the maximum speeds of the Ob be adapted.

Bei der Verwendung einer Modulationsfrequenz zur Modulation des Sendelicht­ strahls ist der Meßbereich auf eine Wellenlänge begrenzt. Eine Vermessung weiter entfernt angeordneter Meßobjekte ist prinzipiell nicht möglich, da sich die Entfernungssignale mit der Periode der Modulationsfrequenz identisch wie­ derholen.When using a modulation frequency to modulate the transmitted light the measuring range is limited to one wavelength. A survey In principle, objects located further away are not possible because the distance signals are identical to the period of the modulation frequency  derholen.

Durch die Verwendung zweier Modulationsfrequenzen kann der Meßbereich auf das kleinste gemeinsame Vielfache der beiden Wellenlängen erhöht werden. In diesem Meßbereich wird für jede Entfernung ein eindeutiges Entfernungssignal erhalten.The measuring range can be increased by using two modulation frequencies the smallest common multiple of the two wavelengths can be increased. In this measuring range becomes a unique distance signal for each distance receive.

Bei der erfindungsgemäßen Einrichtung ergibt sich die Eindeutigkeit des Entfer­ nungssignals durch den Vergleich der einzelnen Signale, die mit dem jeweils mit einer Modulationsfrequenz modulierten Sendelichtstrahl erhalten werden.The uniqueness of the distance is obtained in the device according to the invention voltage signal by comparing the individual signals with each transmission light beam modulated with a modulation frequency can be obtained.

Vorteilhafterweise sind die Beträge der Modulationsfrequenzen teilerfremde Zahlen gleicher Größenordnung. Auf diese Weise wird der Meßbereich beson­ ders stark erweitert.The amounts of the modulation frequencies are advantageously non-prime Numbers of the same order of magnitude. In this way, the measuring range is special greatly expanded.

Die erfindungsgemäße Einrichtung kann vorzugsweise zur Ortung von Hinder­ nissen eingesetzt werden. Hierzu ist zweckmäßigerweise der Einrichtung zur Entfernungsmessung eine Ablenkvorrichtung vorgeschaltet, die den Sendelicht­ strahl entlang einer Bahn über einen vorgegebenen Raumbereich führt. Um eine kontinuierliche Ortung zu gewährleisten, wird zweckmäßigerweise die Ablen­ kung des Sendelichtstrahls periodisch wiederholt. Dabei wird für aufeinanderfol­ gendende Ablenkungen abwechslungsweise jeweils eine der beiden Modula­ tionsfrequenzen zur Modulation des Sendelichtstrahls verwendet. Vorzugsweise ist die Geschwindigkeit der Ablenkvorrichtung so groß gewählt, daß die Posi­ tion eines Objekts während zwei aufeinanderfolgender Ablenkungen im wesent­ lichen unverändert ist.The device according to the invention can preferably be used for locating obstacles nits are used. For this purpose, the facility for Distance measurement upstream of a deflecting device, the transmitting light beam along a path over a given area. To one To ensure continuous location, the Ablen Kung the transmitted light beam is repeated periodically. It is for successive Deflections alternately one of the two modules tion frequencies used to modulate the transmitted light beam. Preferably the speed of the deflection device is chosen so large that the posi tion of an object during two successive distractions is unchanged.

Weitere zweckmäßige Ausgestaltungen der Erfindung sind in den Unteransprü­ chen 5 und 6 charakterisiert.Further expedient embodiments of the invention are in the subclaims Chen 5 and 6 characterized.

Die Erfindung wird im nachstehenden anhand der Zeichnungen erläutert. Es zeigen: The invention is explained below with reference to the drawings. It demonstrate:  

Fig. 1 Ein Blockschaltbild der erfindungsgemäßen Einrichtung, Fig. 1 is a block diagram of the device according to the invention,

Fig. 2 eine schematische Darstellung der mit jeweils einer Modulations­ frequenz ermittelten Entfernungswerte, Fig. 2 is a schematic representation of the modulation frequency, each with a determined distance values,

Fig. 3 ein Blockschaltbild der Schaltvorrichtung zum Umschalten der Modulationsfrequenzen. Fig. 3 is a block diagram of the switching device for switching the modulation frequencies.

In Fig. 1 ist die Einrichtung 1 zur Entfernungsmessung schematisch dargestellt. Die Einrichtung 1 ist als optisches Sensorsystem ausgebildet, wobei als Sender 2 ein modulierter Dauerstrich-Laser verwendet wird. Als Empfänger 3 kann vor­ zugsweise eine Fotodiode verwendet werden.In Fig. 1, the device 1 for distance measurement is shown schematically. The device 1 is designed as an optical sensor system, a modulated continuous wave laser being used as the transmitter 2 . A photodiode can preferably be used as the receiver 3 .

Die Entfernungsmessung erfolgt mit Hilfe der Phasenmessung. Hierzu wird der Sendelichtstrahl 4 über einen Oszillator 5 bzw. 6 mit der Frequenz f1 bzw. f2 amplitudenmoduliert. Zur Bestimmung der Entfernung eines in den Zeichnungen nicht dargestellten Objekts zur Einrichtung 1 wird die Phasendifferenz zwischen dem Sendelichtstrahl 4 und dem vom Objekt reflektierten Empfangslichtstrahl 7 gemessen und in einen Entfernungswert X1 bzw. X2 umgerechnet.The distance measurement is carried out with the help of the phase measurement. For this purpose, the transmitted light beam 4 is amplitude-modulated via an oscillator 5 or 6 with the frequency f 1 or f 2 . To determine the distance of an object (not shown in the drawings) to the device 1 , the phase difference between the transmitted light beam 4 and the received light beam 7 reflected by the object is measured and converted into a distance value X 1 or X 2 .

Dem Empfänger 3 ist ein Phasendetektor 8 nachgeschaltet. Dort wird das von dem Oszillator 5 bzw. 6 zum Sender 2 geführten Sendesignal und das am Aus­ gang des Empfängers 3 anstehende Empfangssignal in Signale umgesetzt, die die Phasendifferenz zwischen Sendesignal und Empfangssignal enthalten.A phase detector 8 is connected downstream of the receiver 3 . There, the transmitted signal from the oscillator 5 or 6 to the transmitter 2 and the signal pending at the output of the receiver 3 are converted into signals which contain the phase difference between the transmitted signal and the received signal.

Die Signale enthalten einen Faktor, der die Phasendifferenz enthält, sowie einen Amplitudenfaktor, der ein Maß für die Empfangslichtintensität ist.The signals contain a factor that contains the phase difference and one Amplitude factor, which is a measure of the received light intensity.

Zur Elimination der Amplitudenfaktoren wird das Empfangssignal den phasen­ empfindlichen Gleichrichtern 10, 11 mit jeweils einem nachgeschalteten Tiefpaß 12, 13 zugeführt, wobei die Gleichrichter 10, 11 über einen Phasenschieber 9 um π/2 phasenversetzt sind. To eliminate the amplitude factors, the received signal is fed to the phase-sensitive rectifiers 10 , 11 , each with a downstream low-pass filter 12 , 13 , the rectifiers 10 , 11 being phase-shifted by π / 2 via a phase shifter 9 .

An den Ausgängen der Tiefpässe 12, 13 liegen Signale der Form A sin Δϕ und A cos Δϕ an, wobei A den Amplitudenfaktor und Δϕ die Phasendifferenz von Sende- und Empfangssignal darstellt. In der Auswerteeinheit 14 wird der Quo­ tient tan Δϕ der beiden Signale gebildet, wodurch der Amplitudenfaktor A eli­ miniert wird.Signals of the form A sin Δϕ and A cos Δϕ are present at the outputs of the low-pass filters 12 , 13 , where A represents the amplitude factor and Δϕ the phase difference between the transmit and receive signals. The quotient tan Δϕ of the two signals is formed in the evaluation unit 14 , as a result of which the amplitude factor A is eliminated.

Über die Schaltvorrichtung 15 wird jeweils einer der beiden Oszillatoren 5 oder 6 aktiviert, so daß der Sendelichtstrahl 4 entweder mit der Frequenz f1 oder f2 moduliert ist.One of the two oscillators 5 or 6 is activated via the switching device 15 , so that the transmitted light beam 4 is modulated either with the frequency f 1 or f 2 .

Fig. 2 zeigt die im Bereich von 0-2 π zur Phasendifferenz Δ (proportionalen Entfernungswerte X1 und X2, die mit einem mit der Frequenz f1 bzw. f2 modu­ lierten Sendelichtstrahl 4 für ein Objekt ermittelt wurden. Die Entfernungswerte X1 und X2 weisen jeweils die den Frequenzen f1 und f2 entsprechenden Periodi­ zitäten auf. Die Wiederholrate beim Umschalten der Modulationsfrequenzen ist dabei so groß gewählt, daß sich die Entfernung des Objekts zur Einrichtung 1 zwischen zwei Umschaltungen nicht wesentlich ändert. Demzufolge können zwei mit unterschiedlichen Modulationsfrequenzen ermittelte Entfernungswerte X1 und X2 zur Ermittlung der Distanz des Objekts von der Einrichtung 1 heran­ gezogen werden. Da die Entfernungswerte proportional zur Phasendifferenz Δϕ sind, ergibt sich durch den Vergleich der Entfernungswerte X1 und X2 ein ein­ deutiger Distanzwert in einem Meßbereich, der durch das kleinste gemeinsame Vielfache der Wellenlängen der beiden Modulationsfrequenzen gegeben ist. Fig. 2 shows the in the range of 0-2 π to the phase difference Δ (proportional distance values X 1 and X 2, which were determined with the frequency f 1 and f 2 modu profiled transmitted light beam 4 for an object. Distance values X 1 and X 2 each have the periodicity corresponding to the frequencies f 1 and f 2. The repetition rate when switching the modulation frequencies is chosen so large that the distance of the object to the device 1 does not change significantly between two switches Distance values X 1 and X 2 determined at different modulation frequencies are used to determine the distance of the object from the device 1. Since the distance values are proportional to the phase difference Δϕ, a comparison of the distance values X 1 and X 2 results in a clear distance value in one Measuring range by the smallest common multiple of the wavelengths of the two modulation frequencies en is given.

Fig. 3 zeigt eine zweckmäßige Ausgestaltung der Schaltvorrichtung 15. Die Schaltvorrichtung 15 besteht im wesentlichen aus vier NOR-Gattern 16, 17, 18, 19. Die Gatter 16, 18 sind mit den Oszillatoren 5 und 6 für die Frequenzen f1 und f2 verknüpft. Über den Anschluß "Frequenzwahl" und das Gatter 17 erfolgt die Auswahl einer der Frequenzen f1 oder f2 zur Modulation des Sendelicht­ strahls 4. Fig. 3 shows a practical embodiment of the switching device 15. The switching device 15 essentially consists of four NOR gates 16 , 17 , 18 , 19 . The gates 16 , 18 are linked to the oscillators 5 and 6 for the frequencies f 1 and f 2 . Via the connection "frequency selection" and the gate 17 , one of the frequencies f 1 or f 2 is selected for modulating the transmitted light beam 4 .

Liegt am Anschluß "Frequenzwahl" der Bitwert 0 an, so liegt am Ausgang des Gatters 18 der Bitwert 0, so daß am Ausgang des Gatters 19 die Frequenz f1 an­ steht. Zur Aktivierung der Frequenz f2 wird der Anschluß "Frequenzwahl" auf den Bitwert 1 gesetzt. Dementsprechend liegt am Ausgängen der Gatter 16 der Bitwerte 0 an.Is at the terminal "DTMF" the bit value is 0, is present at the output of the gate 18 the bit value 0, so that at the output of the gate 19, the frequency f 1 is on. To activate the frequency f 2 , the "frequency selection" connection is set to bit value 1 . Accordingly, bit values 0 are present at the outputs of gates 16 .

Claims (7)

1. Einrichtung zur Entfernungsmessung mit einem Sendelicht emittierenden La­ ser, dessen Sendelichtstrahl mit zwei vorgegebenen Modulationsfrequenzen amplitudenmoduliert ist, sowie mit einem Empfänger und einem Phasende­ tektor zur Ermittlung der Phasendifferenz des Sendelichtstrahls und des von einem Objekt reflektierten Empfangslichtstrahls, dadurch gekennzeichnet, daß die Modulationen mit den jeweiligen Modulationsfrequenzen in vorgege­ benen Intervallen zeitlich getrennt erfolgen, und daß zur Ermittlung der Distanz eines Objekts zur Einrichtung (1) das Objekt mit beiden Modula­ tionsfrequenzen vermessen wird.1.Device for distance measurement with a transmitting light-emitting laser, the transmitted light beam is amplitude-modulated with two predetermined modulation frequencies, and with a receiver and a phase detector for determining the phase difference of the transmitted light beam and the received light beam reflected by an object, characterized in that the modulations with the respective modulation frequencies occur at predetermined intervals, and that the object is measured with both modulation frequencies to determine the distance of an object to the device ( 1 ). 2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die mit unter­ schiedlichen Modulationsfrequenzen ermittelten Entfernungswerte für ein Objekt in einer Auswerteeinheit 14 miteinander verglichen werden.2. Device according to claim 1, characterized in that the under different modulation frequencies determined distance values for a Object can be compared with each other in an evaluation unit 14. 3. Einrichtung Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Fol­ gefrequenz der Intervalle größer ist als die Folgefrequenz verschiedener Distanzen von Objekten zur Einrichtung (1).3. Device according to claim 1 or 2, characterized in that the sequence frequency of the intervals is greater than the sequence frequency of different distances from objects to the device ( 1 ). 4. Einrichtung nach einem der Ansprüche 1-3, dadurch gekennzeichnet, daß die Beträge der Modulationsfrequenzen teilerfremde Zahlen gleicher Größen­ ordnung sind.4. Device according to one of claims 1-3, characterized in that the amounts of the modulation frequencies are alien numbers of the same sizes are okay. 5. Einrichtung nach einem der Ansprüche 1-4, dadurch gekennzeichnet, daß zwei Oszillatoren (5, 6) zur Erzeugung der Modulationsfrequenzen abwech­ selnd über eine Schaltvorrichtung (15) aktivierbar sind.5. Device according to one of claims 1-4, characterized in that two oscillators ( 5 , 6 ) for generating the modulation frequencies can be alternately activated via a switching device ( 15 ). 6. Einrichtung nach einen der Ansprüche 1-5, dadurch gekennzeichnet, daß der Phasendetektor (9) aus zwei phasenempfindlichen Gleichrichtern (10, 11) besteht, von denen jeweils einer um 0° und 90° phasenversetzt zur Modula­ tionsfrequenz des Lasers angesteuert wird.6. Device according to one of claims 1-5, characterized in that the phase detector ( 9 ) consists of two phase-sensitive rectifiers ( 10 , 11 ), one of which is each phase-shifted by 0 ° and 90 ° to the modulation frequency of the laser. 7. Verfahren zur Ortung von Hindernissen, dadurch gekennzeichnet, daß der Einrichtung (1) zur Entfernungsmessung eine Ablenkvorrichtung vorgeschal­ tet ist, die den Sendelichtstrahl (4) entlang einer Bahn über einen vorgegebe­ nen Raumbereich führt, wobei die Ablenkung des Sendelichtstrahls (4) periodisch wiederholt wird, und wobei für aufeinanderfolgende Ablenkungen abwechslungsweise jeweils eine der beiden Modulationsfrequenzen zur Modulation des Sendelichtstrahls (4) verwendet wird.7. A method for locating obstacles, characterized in that the device ( 1 ) for distance measurement, a deflection device is pre-switched, which guides the transmitted light beam ( 4 ) along a path over a predetermined spatial area, the deflection of the transmitted light beam ( 4 ) periodically is repeated, and one of the two modulation frequencies for modulating the transmitted light beam ( 4 ) is used alternately for successive deflections.
DE19934303804 1993-02-10 1993-02-10 Distance measuring device Expired - Fee Related DE4303804C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19934303804 DE4303804C2 (en) 1993-02-10 1993-02-10 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19934303804 DE4303804C2 (en) 1993-02-10 1993-02-10 Distance measuring device

Publications (2)

Publication Number Publication Date
DE4303804A1 true DE4303804A1 (en) 1994-08-18
DE4303804C2 DE4303804C2 (en) 1996-06-27

Family

ID=6480024

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19934303804 Expired - Fee Related DE4303804C2 (en) 1993-02-10 1993-02-10 Distance measuring device

Country Status (1)

Country Link
DE (1) DE4303804C2 (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001076692A1 (en) * 2000-04-11 2001-10-18 Oncology Automation, Inc. Positioning systems and related methods
EP1152259A2 (en) * 2000-05-06 2001-11-07 Leuze electronic GmbH + Co. Optical rangefinder
US6369880B1 (en) 1998-12-01 2002-04-09 Robert Bosch Gmbh Device for measuring distance using a semiconductor laser in the visible wavelength range according to the running time method
DE19811550C2 (en) * 1998-03-18 2002-06-27 Bosch Gmbh Robert Method and circuit arrangement for generating frequency signals
DE10235562A1 (en) * 2002-08-03 2004-02-19 Robert Bosch Gmbh Optical distance measurement device has a measurement diode, which is used for reflected signal detection and frequency conversion to a lower frequency, that has high frequency modulated electrode voltages
EP1496373A1 (en) * 2003-07-11 2005-01-12 Leuze electronic GmbH + Co KG Optical sensor
EP1607767A1 (en) * 2004-06-15 2005-12-21 Hokuyo Automatic Co., Ltd. Light wave distance measuring apparatus
EP1847811A1 (en) * 2006-04-21 2007-10-24 Fondazione Torino Wireless A system and method for measuring distances, displacements and mechanical actions
DE102008014274A1 (en) 2008-02-01 2009-08-06 Faro Technologies, Inc., Lake Mary Method and apparatus for determining a distance to an object
DE102011081559B3 (en) * 2011-08-25 2013-01-10 Ifm Electronic Gmbh Receiver for optical rangefinder, has current measurement circuit that is connected with synchronous switch and is designed such that voltage sloping over smoothing capacitors is kept constant by reproaching discharge current
US8384914B2 (en) 2009-07-22 2013-02-26 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102011081564A1 (en) * 2011-08-25 2013-02-28 Ifm Electronic Gmbh Receiver for optical range finder, has synchronous switch formed of two diode bridges, where connection points between two diodes of each bridge form signal outputs and between other two diodes of each bridge are connected to photodiode
DE102011081560A1 (en) * 2011-08-25 2013-02-28 Ifm Electronic Gmbh Time of flight camera system with signal path monitoring
DE102011081567A1 (en) * 2011-08-25 2013-02-28 Ifm Electronic Gmbh Receiver for an optical rangefinder
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
GB2505960A (en) * 2012-09-18 2014-03-19 Guidance Ip Ltd Determining the distance of reflectors to an automated guided vehicle
US8699036B2 (en) 2010-07-29 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102013214677B3 (en) * 2013-07-26 2014-10-30 PMD Technologie GmbH Time of flight camera system
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US9074878B2 (en) 2012-09-06 2015-07-07 Faro Technologies, Inc. Laser scanner
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
JP2016161411A (en) * 2015-03-02 2016-09-05 株式会社トプコン Light wave range finder
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
DE102009024464B4 (en) * 2009-06-10 2017-09-21 Carl Zeiss Ag Evaluation device, measuring arrangement and method for path length measurement
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10107912B2 (en) 2015-03-11 2018-10-23 Kabushiki Kaisha Topcon Electro-optical distance meter
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
EP3599485B1 (en) * 2018-07-23 2024-03-27 MicroVision, Inc. Method and device for optically measuring distances

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10018948B4 (en) * 1999-04-23 2004-02-05 Leuze Electronic Gmbh + Co Kg Optoelectronic device
US6970097B2 (en) * 2001-05-10 2005-11-29 Ge Medical Systems Information Technologies, Inc. Location system using retransmission of identifying information

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2211228A1 (en) * 1971-03-08 1972-09-14 Cubic Corp Optical distance measuring device
DE2229339B2 (en) * 1972-05-02 1980-10-16 Kern & Co Ag, Aarau (Schweiz) Electro-optical rangefinder that switches for fine and coarse measurements
EP0035755A2 (en) * 1980-03-10 1981-09-16 Tokyo Kogaku Kikai Kabushiki Kaisha Electro-optical range finder using three modulation frequencies
WO1990000746A1 (en) * 1988-07-14 1990-01-25 Caterpillar Industrial Inc. Scanning obstacle detection apparatus
DE4027899C2 (en) * 1990-09-03 1996-11-14 Gerhard Prof Dr Ing Wendt Hydraulic servo system for the linear drive of a piston

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2211228A1 (en) * 1971-03-08 1972-09-14 Cubic Corp Optical distance measuring device
DE2229339B2 (en) * 1972-05-02 1980-10-16 Kern & Co Ag, Aarau (Schweiz) Electro-optical rangefinder that switches for fine and coarse measurements
EP0035755A2 (en) * 1980-03-10 1981-09-16 Tokyo Kogaku Kikai Kabushiki Kaisha Electro-optical range finder using three modulation frequencies
WO1990000746A1 (en) * 1988-07-14 1990-01-25 Caterpillar Industrial Inc. Scanning obstacle detection apparatus
DE4027899C2 (en) * 1990-09-03 1996-11-14 Gerhard Prof Dr Ing Wendt Hydraulic servo system for the linear drive of a piston

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19811550C2 (en) * 1998-03-18 2002-06-27 Bosch Gmbh Robert Method and circuit arrangement for generating frequency signals
US6369880B1 (en) 1998-12-01 2002-04-09 Robert Bosch Gmbh Device for measuring distance using a semiconductor laser in the visible wavelength range according to the running time method
US6956196B2 (en) 2000-04-11 2005-10-18 Oncology Automation, Inc. Systems for maintaining the spatial position of an object and related methods
WO2001076692A1 (en) * 2000-04-11 2001-10-18 Oncology Automation, Inc. Positioning systems and related methods
EP1152259A2 (en) * 2000-05-06 2001-11-07 Leuze electronic GmbH + Co. Optical rangefinder
EP1152259A3 (en) * 2000-05-06 2004-05-26 Leuze electronic GmbH + Co. Optical rangefinder
US7224444B2 (en) 2002-08-03 2007-05-29 Robert Bosch Gmbh Method and device for optically measuring distance
DE10235562A1 (en) * 2002-08-03 2004-02-19 Robert Bosch Gmbh Optical distance measurement device has a measurement diode, which is used for reflected signal detection and frequency conversion to a lower frequency, that has high frequency modulated electrode voltages
EP1496373A1 (en) * 2003-07-11 2005-01-12 Leuze electronic GmbH + Co KG Optical sensor
DE10331376B3 (en) * 2003-07-11 2005-02-10 Leuze Electronic Gmbh & Co Kg Optical sensor
US7177014B2 (en) 2004-06-15 2007-02-13 Hokuyo Automatic Co., Ltd. Light wave distance measuring apparatus
EP1607767A1 (en) * 2004-06-15 2005-12-21 Hokuyo Automatic Co., Ltd. Light wave distance measuring apparatus
EP1847811A1 (en) * 2006-04-21 2007-10-24 Fondazione Torino Wireless A system and method for measuring distances, displacements and mechanical actions
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
DE102008014274A1 (en) 2008-02-01 2009-08-06 Faro Technologies, Inc., Lake Mary Method and apparatus for determining a distance to an object
WO2009095383A1 (en) 2008-02-01 2009-08-06 Faro Technologies Inc. Method and device for determining a distance to an object
US8064046B2 (en) * 2008-02-01 2011-11-22 Faro Technologies, Inc. Method and device for determining a distance from an object
DE102008014274B4 (en) 2008-02-01 2020-07-09 Faro Technologies, Inc. Method and device for determining a distance to an object
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
DE102009024464B4 (en) * 2009-06-10 2017-09-21 Carl Zeiss Ag Evaluation device, measuring arrangement and method for path length measurement
US8384914B2 (en) 2009-07-22 2013-02-26 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9684078B2 (en) 2010-05-10 2017-06-20 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699036B2 (en) 2010-07-29 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102011081559B3 (en) * 2011-08-25 2013-01-10 Ifm Electronic Gmbh Receiver for optical rangefinder, has current measurement circuit that is connected with synchronous switch and is designed such that voltage sloping over smoothing capacitors is kept constant by reproaching discharge current
DE102011081560B4 (en) 2011-08-25 2024-03-28 pmdtechnologies ag Time-of-flight camera system with signal path monitoring
DE102011081567B4 (en) 2011-08-25 2023-08-31 pmdtechnologies ag Receiver for an optical range finder
DE102011081564A1 (en) * 2011-08-25 2013-02-28 Ifm Electronic Gmbh Receiver for optical range finder, has synchronous switch formed of two diode bridges, where connection points between two diodes of each bridge form signal outputs and between other two diodes of each bridge are connected to photodiode
DE102011081560A1 (en) * 2011-08-25 2013-02-28 Ifm Electronic Gmbh Time of flight camera system with signal path monitoring
DE102011081564B4 (en) * 2011-08-25 2015-04-02 Ifm Electronic Gmbh Receiver for an optical rangefinder
DE102011081567A1 (en) * 2011-08-25 2013-02-28 Ifm Electronic Gmbh Receiver for an optical rangefinder
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9074878B2 (en) 2012-09-06 2015-07-07 Faro Technologies, Inc. Laser scanner
GB2505960B (en) * 2012-09-18 2015-01-07 Guidance Ip Ltd Determining the position of an automated guided vehicle
GB2505960A (en) * 2012-09-18 2014-03-19 Guidance Ip Ltd Determining the distance of reflectors to an automated guided vehicle
US9746559B2 (en) 2012-10-05 2017-08-29 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US10739458B2 (en) 2012-10-05 2020-08-11 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US9739886B2 (en) 2012-10-05 2017-08-22 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US11815600B2 (en) 2012-10-05 2023-11-14 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US11112501B2 (en) 2012-10-05 2021-09-07 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US10203413B2 (en) 2012-10-05 2019-02-12 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
DE102013214677B3 (en) * 2013-07-26 2014-10-30 PMD Technologie GmbH Time of flight camera system
CN105938197B (en) * 2015-03-02 2021-04-09 株式会社拓普康 Light wave distance measuring instrument
CN105938197A (en) * 2015-03-02 2016-09-14 株式会社拓普康 Light wave rangefinder
EP3064962A1 (en) * 2015-03-02 2016-09-07 Kabushiki Kaisha Topcon Electro-optical distance meter
US10101441B2 (en) 2015-03-02 2018-10-16 Kabushiki Kaisha Topcon Electro-optical distance meter
JP2016161411A (en) * 2015-03-02 2016-09-05 株式会社トプコン Light wave range finder
US10107912B2 (en) 2015-03-11 2018-10-23 Kabushiki Kaisha Topcon Electro-optical distance meter
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
EP3599485B1 (en) * 2018-07-23 2024-03-27 MicroVision, Inc. Method and device for optically measuring distances

Also Published As

Publication number Publication date
DE4303804C2 (en) 1996-06-27

Similar Documents

Publication Publication Date Title
DE4303804A1 (en) Device for distance measurement (range finding)
EP0708928B1 (en) Process for detecting objects in a monitoring region
EP1051640B1 (en) Device for measuring distance using a semiconductor laser in the visible wavelength range according to the running time method
DE3225756C2 (en) Device for modulating light
DE19922411A1 (en) Radar measurement of distances, relative speeds between vehicle, obstruction(s) involves computing intercepts of all lines from 2 chirps at 2 frequency positions in distance-speed diagram
DE2542523C2 (en) Recording medium on which a television signal is stored
DE19721843C1 (en) Interferometric measuring device
DE2008256C3 (en) Laser distance measuring system with pulse compression of the echoes of frequency-modulated laser pulses
DE2656520C3 (en) Method for determining the ratio of the core radius to the cladding radius of a clad optical fiber
DE10146752A1 (en) Optoelectronic device scans light beam over surface of object; receiver signals are evaluated depending on deflection position of the vibrating mirror to generate object detection signals
DE3447721C2 (en)
DE3937851A1 (en) LASER DOPPLER SPEED METER
DE1523179A1 (en) Speed measuring device
DE4443069C2 (en) Method for measuring flow vectors in gas flows
DE19601661C1 (en) Object detection method for surveillance system
DE2265444B1 (en) Device for measuring the distance of an object from a land vehicle
CH676289A5 (en)
DE4142702A1 (en) Laser scanning equipment of three=dimensional objects - has output of laser directed by combination of rotating polygon mirror and oscillating plain mirror onto object
DE3931119C1 (en) Simultaneously measuring size and speed of particles and bubbles - applying pair of crossing beams of different wavelengths and intensity distribution to multiphase carrying stream
DE4129580A1 (en) Doppler effect vehicle speed measuring equipment - has numerically controlled oscillator for sum and difference frequencies from processed Janus aerial system
DE3145987A1 (en) &#34;METHOD AND DEVICE FOR MEASURING THE FLOW VECTORS IN GAS FLOWS&#34;
EP0937229B1 (en) Interferometric measuring device for form measurement on rough surfaces
DE4335773C2 (en) motion detector
DE19511990C2 (en) Measuring device for measuring the transverse speed and length of a measurement object
DE2414419A1 (en) DEVICE FOR MEASURING ANGLE DIFFERENCE BY HETERODYNE DETERMINATION

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee