DE4309056A1 - Method for determining the distance and intensity of scattering of the scattering points - Google Patents

Method for determining the distance and intensity of scattering of the scattering points

Info

Publication number
DE4309056A1
DE4309056A1 DE19934309056 DE4309056A DE4309056A1 DE 4309056 A1 DE4309056 A1 DE 4309056A1 DE 19934309056 DE19934309056 DE 19934309056 DE 4309056 A DE4309056 A DE 4309056A DE 4309056 A1 DE4309056 A1 DE 4309056A1
Authority
DE
Germany
Prior art keywords
distance
scattering
spectrum
interferometer
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19934309056
Other languages
German (de)
Other versions
DE4309056B4 (en
Inventor
Gerd Prof Dr Haeusler
Juergen Herrmann
Jochen Neumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss Meditec AG
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19934309056 priority Critical patent/DE4309056B4/en
Publication of DE4309056A1 publication Critical patent/DE4309056A1/en
Application granted granted Critical
Publication of DE4309056B4 publication Critical patent/DE4309056B4/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02007Two or more frequencies or sources used for interferometric measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02044Imaging in the frequency domain, e.g. by using a spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging

Abstract

Published without abstract.

Description

Gegenstand der Patentanmeldung ist ein optisches Verfahren, mit dem die Entfernung zu einem oder mehreren beleuchteten streuenden Objektpunkten mit hoher Genauigkeit bestimmt werden kann. Solche Verfahren sind wichtig für die automatisierte Vermessung von Objektoberflächen (Form-Messung). Das Verfahren kann aber auch eingesetzt werden, um Volumenstreuer zu vermessen, wenn Licht in das zu vermessende Objekt eindringen kann. Dies ist z. B. in der medizinischen Gewebediagnostik wichtig.The subject of the patent application is an optical method with which is the distance to one or more illuminated scattering Object points can be determined with high accuracy. Such Methods are important for the automated measurement of object surfaces (Shape measurement). The method can also be used to measure volume spreaders when light is in the object to be measured can penetrate. This is e.g. B. in medical Tissue diagnostics important.

Es sind in der Literatur viele Abstandssensoren beschrieben (z. B. zusammenfassend bei T. Strand, "Optics for Machine Vision", Proc, SPIE 456 (1984). Die meisten beruhen auf Triangulation mit strukturierter Beleuchtung entweder inkohärent oder kohärent. Diese Methoden haben den Nachteil, daß abgeschattete Bereiche auftreten, durch den Triangulationswinkel. Von kohärenten Verfahren ist bekannt, daß die Tiefengenauigkeit durch die Beobachtungsapertur begrenzt ist (G. Häusler, "Physical Limits of 3D-Sensing" Proc. SPIE 1822 (1992)). Es sind auch einige Verfahren bekannt, die diese Beschränkung nicht haben (A. Fercher, et al "Rough surface interferometry with a tow-wavelength heterodyne speckle interferometer" Appl. Opt. 24 (1985) p. 2181. T. Dresel, G. Häusler, "Three dimensional sensing of rough surfaces by coherence radar", Appl. Opt. 31 (1992) p. 919).Many distance sensors are described in the literature (e.g. in summary with T. Strand, "Optics for Machine Vision", Proc, SPIE 456 (1984). Most are based on triangulation with structured Illumination either incoherent or coherent. Have these methods the disadvantage that shaded areas occur, by the Triangulation angle. Coherent processes are known to Depth accuracy is limited by the observation aperture (G. Häusler, "Physical Limits of 3D Sensing" Proc. SPIE 1822 (1992)). It are also known some methods that do not have this limitation (A. Fercher, et al "Rough surface interferometry with a tow-wavelength heterodyne speckle interferometer "Appl. Opt. 24 (1985) p. 2181. T. Dresel, G. Häusler, "Three dimensional sensing of rough surfaces by coherence radar ", Appl. Opt. 31 (1992) p. 919).

Eine medizinische Anwendung zur Gewebediagnostik im Volumen wurde beschrieben von D. Huang et al. "Micron resolution ranging of cornea Anterieor chamber by optical reflectometry" Lasers in Surgery and medicine Vol 11. (1991) p. 419. Diese Methoden arbeiten nicht mit kohärentem Licht, erfordern aber komplizierte Heterodyn-Technologie oder mechanische Bewegung, um das Objekt in der Tiefe abzutasten.A medical application for tissue diagnostics in volume was described by D. Huang et al. "Micron resolution ranging of cornea Anterieor chamber by optical reflectometry "Lasers in Surgery and medicine Vol 11. (1991) p. 419. These methods work not with coherent light, but require complicated heterodyne technology or mechanical movement to the object in the Feel depth.

Gegenstand der Anmeldung ist ein Verfahren, das ohne mechanische Abtastung und ohne Heterodyn-Technologie auskommt. Es beruht auf der Weißlichtinterferometrie, wie in der Deutschen Patentschrift von G. Häusler "Verfahren und Einrichtung zur berührungslosen Erfassung der Oberflächengestalt von diffus streuenden Objekten" 4108994 (1991) beschrieben. Die Anordnung ist ein Interferometer. Zur Erklärung wird ein Michelson-Interferometer benutzt, aber auch andere Interferometer sind geeignet. Die Anordnung ist in Fig. 1 skizziert. The subject of the application is a method that does not require mechanical scanning and heterodyne technology. It is based on white light interferometry, as described in the German patent by G. Häusler "Method and device for contactless detection of the surface shape of diffusely scattering objects" 4108994 (1991). The arrangement is an interferometer. A Michelson interferometer is used for explanation, but other interferometers are also suitable. The arrangement is outlined in Fig. 1.

Das Objekt 1 steht in einem Interferometerarm. Es wird über den Teilerspiegel 2 und Linsen 7, 8 mit einer breitbandigen Lichtquelle 3, z. B. einer Glühlampe oder einer Superlumineszenzdiode beleuchtet. Gleichzeitig wird der Referenzarm 4 über den Teilerspiegel 2 beleuchtet. Über den Referenzspiegel 5 und den Teilerspiegel 2 kommt das Referenzlicht zurück und vereinigt sich mit dem vom Objekt 1 rückgestreuten Licht am Ausgang 6 des Interferometers. Dort wird das Licht mit Hilfe eines Spektralapparates 9, 10 in Farben zerlegt. Das Spektrum wird mit Hilfe eines ortsempfindlichen Photoempfängers 11, z. B. einer Photodiodenzeile aufgefangen und in einer Auswerteeinheit 12, z. B. einem Computer, ausgewertet.Object 1 is in an interferometer arm. It is on the divider mirror 2 and lenses 7 , 8 with a broadband light source 3 , z. B. an incandescent lamp or a superluminescent diode. Simultaneously, the reference arm 4 is illuminated via the splitter mirror. 2 The reference light comes back via the reference mirror 5 and the divider mirror 2 and combines with the light backscattered by the object 1 at the output 6 of the interferometer. There the light is broken down into colors with the aid of a spectral apparatus 9 , 10 . The spectrum is with the help of a location-sensitive photo receiver 11 , for. B. a photodiode array and in an evaluation unit 12 , z. B. a computer evaluated.

Aus dem Spektrum läßt sich nun die Entfernung eines oder mehrerer streuender Punkte ermitteln. Es läßt sich sogar die Intensitätsverteilung der Rückstreuung in einem Volumenstreuer ermitteln. Hierzu werden die sog. Müller'schen Streifen ausgewertet.The distance of one or more can now be removed from the spectrum determine scattering points. You can even get the intensity distribution determine the backscatter in a volume spreader. For this purpose, the so-called Müller strips are evaluated.

Zunächst wird die Auswertung für einen Objektpunkt, der in der Entfernung z gegenüber der Referenzebene 13 mit einerr Intensität i(z) streut, erklärt.First of all, the evaluation for an object point that differs in the distance z from the reference plane 13 with an intensity i (z) is explained.

Das Spektrum für diesen Punkt hat eine IntensitätsverteilungThe spectrum for this point has an intensity distribution

I(k,z) = 1+i(z)cos(2kz+ϕ).I (k, z) = 1 + i (z) cos (2kz + ϕ).

Dabei ist k die Wellenzahl im Spektrum, ϕ ist eine Zufallsphase, die darauf beruht, daß man Speckle beobachtet, ϕ hängt aber nur schwach von k ab und kann deshalb hier vernachlässigt werden.Here k is the wave number in the spectrum, ϕ is a random phase that is based on observing speckle, but ϕ just hangs weak from k and can therefore be neglected here.

Das Spektrum ist also mit der Ortsfrequenz "z" moduliert. Die entstehenden hellen und dunklen Streifen bezeichnet man als Müller'sche Streifen. Man braucht also nur die Ortsfrequenz zu bestimmen, um die Entfernung des streuenden Punktes zu bestimmen. Dies ist aber bei rauhen Objekten nur möglich, wenn bestimmte Bedingungen eingehalten werden, die in der Deutschen Patentschrift 4108944 von G. Häusler beschrieben werden: es handelt sich hier nicht um ein konventionelles Interferometer mit spiegelnden Oberflächen, sondern in einem Arm befindet sich ein diffus streuendes Objekt. Daraus folgt: die Lichtquelle muß räumlich so kohärent sein, daß im rückgestreuten Licht Speckle entstehen. Denn nur dann ist Interferenz möglich. Denn nur innerhalb eines Speckles ist die Phase annähernd konstant. Weiterhin darf jede Photodiode des Empfängerarrays nicht größer als der Speckledurchmesser sein, da sonst kein oder nur geringer Interferenzkontrast sichtbar ist.The spectrum is therefore modulated with the spatial frequency "z". The The resulting light and dark stripes are called Müllerian Stripes. So you only need to determine the spatial frequency, to determine the distance of the scattering point. This is only possible with rough objects if certain conditions are observed in the German patent specification 4108944 by G. Häusler: it's about here not a conventional interferometer with reflective surfaces, there is a diffusely scattering object in one arm. It follows: the light source must be spatially so coherent that speckle is created in the backscattered light. Because only then is Interference possible. Because the phase is only within a speckle almost constant. Furthermore, each photodiode of the receiver array may not be larger than the bacon diameter, otherwise none or only a slight interference contrast is visible.

Die Ermittlung der Frequenz "z" der Müller-Streifen erfolgt zweckmäßig durch Fourier-Transformation des Farbspektrums nach der Variablen k. Aber es ist auch eine direkte Bestimmung der Periodenlänge im Photodiodensignal möglich. Dies ist einfacher und schneller, wenn nur wenige Objektpunkte streuen.The frequency "z" of the Müller strips is expediently determined by Fourier transformation of the color spectrum after the Variables k. But it is also a direct determination of the period length possible in the photodiode signal. This is easier and faster, if only a few object points scatter.

Ein enormer Vorteil des Verfahrens ist, daß die Genauigkeit der Abstandsbestimmung unabhängig von der Beobachtungsapertur ist. Dies ist nicht der Fall bei rein kohärenten Methoden und bei fast allen kommerziellen Sensoren.An enormous advantage of the method is that the accuracy of the distance determination  is independent of the observation aperture. This is not the case with purely coherent methods and with almost all commercial sensors.

Das Verfahren kann auch die Entfernung vieler im Volumen liegender Punkte, in verschiedenen Abständen z, bestimmen, die jeweils mit der Intensität i(z) streuen. Auf der Photodiodenzeile in der Spektralebene überlagern sich die Signale aus der gesamten Tiefe. Deshalb sieht die Zeile das SignalThe procedure can also remove many in-volume Determine points, at different distances z, each with scatter the intensity i (z). On the photodiode line in the spectral plane the signals overlap from the entire depth. That's why the line sees the signal

I(k) = ∫ (1+i(z) cos(2kz)) dzI (k) = ∫ (1 + i (z) cos (2kz)) dz

Die "1" im Integranden belastet die Dynamik des Empfängers, ist jedoch für die Messung unwesentlich. Im wesentlichen ist das Spektrum I(k) die Fouriertransformierte von i(z). Durch Fourier-Rück-Transformation des Signals nach k läßt sich i(z) rückgewinnen. Damit ist diese Methode eine echte tomographische Methode.The "1" in the integrand stresses the dynamics of the receiver, but is insignificant for the measurement. The spectrum is essentially I (k) the Fourier transform of i (z). By Fourier re-transformation of the signal after k i (z) can be recovered. This makes this method a real tomographic method.

Das Signal-Rausch-Verhältnis ist günstig, weil das gesamte Signal der Photodiodenzeile nur nach einzelnen Frequenzen durchsucht wird, mit der Fourier-Transformation. Es sind keine mechanisch bewegten Teile nötig. Die Belichtungszeit kann kurz sein und damit biologische Aktivität oder Bewegung ausblenden.The signal-to-noise ratio is favorable because of the entire signal the photodiode array is only searched for individual frequencies with the Fourier transform. They are not mechanically moved Parts needed. The exposure time can be short and therefore Hide biological activity or movement.

Sie ist anwendbar auf industrielle Objekte, z. B. Blick in durchscheinende Keramik, ebenso wie für biologische Objekte, z. B. Untersuchung auf subkutane Hautveränderungen, Brusttumore, etc.It is applicable to industrial objects, e.g. B. Look in translucent Ceramics, as well as for biological objects, e.g. B. Investigation for subcutaneous skin changes, breast tumors, etc.

Das Verfahren ist auch erweiterbar, durch "Lichtquellen" in anderen Spektralbereichen, die das zu untersuchende Material durchdringen können. Zum Beispiel Röntgenquellen, UV-Quellen, Infrarotquellen, Ultraschallquellen.The process is also expandable by "light sources" in others Spectral ranges that penetrate the material to be examined can. For example X-ray sources, UV sources, infrared sources, ultrasound sources.

Das Verfahren läßt sich nicht nur entlang einer Achse 14 anwenden, sondern man kann auch einen Schnitt senkrecht zur Zeichenebene und der Achse 14 der Fig. 1 parallel vermessen. Dazu ist nur notwendig, nicht nur einen Punkt des Objektes zu beleuchten, sondern gleichzeitig eine Linie senkrecht zur Zeichenebene. Dann muß als Empfänger statt eines linienhaften Photodiodenarrays ein flächenhaftes Array verwendet werden.The method can not only be used along an axis 14 , but also a section perpendicular to the drawing plane and the axis 14 of FIG. 1 can be measured in parallel. It is only necessary to not only illuminate a point of the object, but at the same time a line perpendicular to the plane of the drawing. Then an areal array must be used as the receiver instead of a linear photodiode array.

Eine weitere Modifikation ist in Fig. 2 beschrieben. Die Fig. 2 ist ähnlich wie Fig. 1. Aber es ist zusätzlich in einem Interferometerarm (hier als Beispiel der Referenzarm) ein Dispersion einführendes Element, hier beispielsweise eine Planplatte 15, eingefügt. Diese Platte 15 bewirkt, daß das Spektrum am Ausgang des Interferometers eine charakteristische Intensitätsverteilung erhält, die vom Abstand z des Streupunktes abhängt. Die Auswertung der Intensitätsverteilung ergibt mit hoher Genauigkeit den Abstand.Another modification is described in FIG. 2. FIG. 2 is similar to FIG. 1. But an element introducing dispersion, here for example a flat plate 15 , is additionally inserted in an interferometer arm (here the reference arm as an example). This plate 15 has the effect that the spectrum at the output of the interferometer receives a characteristic intensity distribution which depends on the distance z of the scattering point. The evaluation of the intensity distribution gives the distance with high accuracy.

Die Dispersion bewirkt, daß das Interferometer nur für eine bestimmte Wellenzahl k₀ abgeglichen ist, nämlich für die Wellenzahl, bei der die optische Weglänge im Referenzarm und im Objektarm gleich ist. Das Spektrum I(k) hat folgenden Verlauf:The dispersion causes the interferometer only for a certain one  Wavenumber k₀ is adjusted, namely for the wavenumber, where the optical path length in the reference arm and in the object arm is equal to. The spectrum I (k) has the following course:

I(k,k₀) = 1+cos(2da(k²-k × k₀)).I (k, k₀) = 1 + cos (2da (k²-k × k₀)).

Der Verlauf des Spektrums I(k,k₀) ist in Fig. 3 wiedergegeben. Die Wellenzahl, zu der das Spektrum symmetrisch ist, hängt vom Abstand z des Streupunktes ab. Die Symmetrie kann auf einfache Weise, z. B. durch Korrelation mit der gespiegelten Funktion, ermittelt werden.The course of the spectrum I (k, k₀) is shown in Fig. 3. The wave number to which the spectrum is symmetrical depends on the distance z of the scattering point. The symmetry can be done in a simple manner, e.g. B. by correlation with the mirrored function.

Claims (4)

1. Interferometrisches Verfahren zur Ermittlung der Entfernung und der Streuintensität von streuenden Punkten, die von einer breitbandigen, räumlich partiell kohärenten Lichtquelle beleuchtet werden, und die sich in einem Arm eines Interferometers befinden, dadurch gekennzeichnet, daß am Ausgang des Interferometers das Licht in ein Spektrum zerlegt wird und aus der Helligkeitsverteilung im Spektrum die Information über die Entfernung und die Streuintensität ermittelt wird.1. Interferometric method for determining the distance and the scattering intensity of scattering points, which are illuminated by a broadband, spatially partially coherent light source, and which are located in an arm of an interferometer, characterized in that the light in a spectrum at the output of the interferometer is broken down and the information about the distance and the scattering intensity is determined from the brightness distribution in the spectrum. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Ermittlung der Entfernung und der lokalen Streuintensität durch Fouriertransformation des Spektrums nach der Wellenlänge erfolgt.2. The method according to claim 1, characterized in that the determination the distance and the local scattering intensity by Fourier transformation of the spectrum is based on the wavelength. 3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß in einem der beiden Interferometerarme zusätzlich ein Dispersion erzeugendes Element eingefügt ist.3. The method according to claim 1 and 2, characterized in that that in one of the two interferometer arms an additional dispersion generating element is inserted. 4. Verfahren nach Anspruch 1, 2 und 3, dadurch gekennzeichnet, daß die Ermittlung des Abstandes eines Streupunktes dadurch erfolgt, daß die Symmetrieachse des Spektrums bestimmt wird.4. The method according to claim 1, 2 and 3, characterized in that the distance of a scattering point is determined by that the symmetry axis of the spectrum is determined.
DE19934309056 1993-03-20 1993-03-20 Method and device for determining the distance and scattering intensity of scattering points Expired - Lifetime DE4309056B4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19934309056 DE4309056B4 (en) 1993-03-20 1993-03-20 Method and device for determining the distance and scattering intensity of scattering points

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19934309056 DE4309056B4 (en) 1993-03-20 1993-03-20 Method and device for determining the distance and scattering intensity of scattering points

Publications (2)

Publication Number Publication Date
DE4309056A1 true DE4309056A1 (en) 1994-09-22
DE4309056B4 DE4309056B4 (en) 2006-05-24

Family

ID=6483393

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19934309056 Expired - Lifetime DE4309056B4 (en) 1993-03-20 1993-03-20 Method and device for determining the distance and scattering intensity of scattering points

Country Status (1)

Country Link
DE (1) DE4309056B4 (en)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19814057A1 (en) * 1998-03-30 1999-10-07 Zeiss Carl Jena Gmbh Spectral interferometric optical tomography device
US6111645A (en) * 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
US6445939B1 (en) 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
US6485413B1 (en) 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
DE10207186C1 (en) * 2002-02-21 2003-04-17 Alexander Knuettel Low coherence interferometry device for object scanning has variable wavelength selection device used for varying selected wavelengths of detection beam dependent on scanning position
EP1348980A2 (en) * 2002-03-26 2003-10-01 Fuji Photo Film Co. Ltd. Ultrasonic receiving apparatus and ultrasonic receiving method
WO2004043245A1 (en) * 2002-11-07 2004-05-27 Pawel Woszczyk A method of fast imaging of objects by means of spectral optical coherence tomography
WO2004088580A1 (en) * 2003-04-01 2004-10-14 Medizinisches Laserzentrum Luebeck Gmbh Method and device for reading deep barcodes by way of optical interference
WO2004113828A1 (en) * 2003-06-19 2004-12-29 Medizinisches Laserzentrum Luebeck Gmbh Interferometric method for the measurement of plane separations with sub-nanometre accuracy
DE10351319A1 (en) * 2003-10-31 2005-06-16 Medizinisches Laserzentrum Lübeck GmbH Interferometer for optical coherence tomography, e.g. for use with a medical scanning OCT-enabled endoscope, has a deflection mirror for beam deflection in the sample arm of the interferometer
WO2005098398A1 (en) * 2004-04-05 2005-10-20 Robert Bosch Gmbh Interferometric system for use of a special lenses
US6980299B1 (en) 2001-10-16 2005-12-27 General Hospital Corporation Systems and methods for imaging a sample
WO2006015717A1 (en) 2004-08-03 2006-02-16 Carl Zeiss Meditec Ag Fourier-domain oct ray-tracing on the eye
US7106454B2 (en) 2003-03-06 2006-09-12 Zygo Corporation Profiling complex surface structures using scanning interferometry
US7139081B2 (en) 2002-09-09 2006-11-21 Zygo Corporation Interferometry method for ellipsometry, reflectometry, and scatterometry measurements, including characterization of thin film structures
US7271918B2 (en) 2003-03-06 2007-09-18 Zygo Corporation Profiling complex surface structures using scanning interferometry
US7289224B2 (en) 2003-09-15 2007-10-30 Zygo Corporation Low coherence grazing incidence interferometry for profiling and tilt sensing
US7321431B2 (en) 2005-05-19 2008-01-22 Zygo Corporation Method and system for analyzing low-coherence interferometry signals for information about thin film structures
US7324210B2 (en) 2003-10-27 2008-01-29 Zygo Corporation Scanning interferometry for thin film thickness and surface measurements
US7324214B2 (en) 2003-03-06 2008-01-29 Zygo Corporation Interferometer and method for measuring characteristics of optically unresolved surface features
EP1950526A1 (en) 2007-01-26 2008-07-30 Kabushiki Kaisha TOPCON Optical image measurement device
EP1962083A1 (en) 2007-02-23 2008-08-27 Kabushiki Kaisha TOPCON Optical image measurement device
EP2112499A1 (en) 2008-02-28 2009-10-28 Optopol Technology S.A. Method and apparatus for optical coherence tornography
US7643154B2 (en) 2006-12-26 2010-01-05 Kabushiki Kaisha Topcon Optical image measurement device
DE102008063225A1 (en) 2008-12-23 2010-07-01 Carl Zeiss Meditec Ag Device for Swept Source Optical Coherence Domain Reflectometry
US7756311B2 (en) 2005-10-12 2010-07-13 Kabushiki Kaisha Topcon Optical image measuring device, optical image measuring program, fundus observation device, and fundus observation program
US7777893B2 (en) 2006-12-26 2010-08-17 Kabushiki Kaisha Topcon Optical image measurement device
EP2251636A1 (en) 2009-05-15 2010-11-17 Medizinisches Laserzentrum Lübeck GmbH Forward-scanning OCT endoscope
DE102009022598A1 (en) 2009-05-20 2010-11-25 Carl Zeiss Meditec Ag Human eye's absolute measuring value determining method, involves reconstructing medium of eye by local scaling factors such that two-dimensional or three-dimensional representation of medium of eye comprises absolute measuring values
US7859680B2 (en) 2007-01-26 2010-12-28 Kabushiki Kaisha Topcon Optical image measurement device
WO2011134454A1 (en) 2010-04-28 2011-11-03 Medizinisches Laserzentrum Lübeck GmbH Device with an oct system for examining and treating living tissue being heated by absorbing electromagnetic radiation
DE102010044826A1 (en) * 2010-09-09 2012-03-15 Visiocraft Gmbh Detector i.e. two dimensional grid spectrometer, for determining human eye cornea thickness for e.g. operation planning, has lens, where detector is supplied with light for registration of distributions associated to discrete point
DE102010051281A1 (en) 2010-11-12 2012-05-16 Carl Zeiss Meditec Ag Method for the model-based determination of the biometry of eyes
WO2012107307A1 (en) 2011-02-11 2012-08-16 Carl Zeiss Meditec Ag Optimized device for swept source optical coherence domain reflectometry and tomography
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US9646377B2 (en) 2006-01-19 2017-05-09 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9642531B2 (en) 2010-03-05 2017-05-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9664615B2 (en) 2004-07-02 2017-05-30 The General Hospital Corporation Imaging system and related techniques
US9668652B2 (en) 2013-07-26 2017-06-06 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US9763623B2 (en) 2004-08-24 2017-09-19 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US9777053B2 (en) 2006-02-08 2017-10-03 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US9791317B2 (en) 2006-01-19 2017-10-17 The General Hospital Corporation Spectrally-encoded endoscopy techniques and methods
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US9812846B2 (en) 2003-10-27 2017-11-07 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
US9897538B2 (en) 2001-04-30 2018-02-20 The General Hospital Corporation Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
US9951269B2 (en) 2010-05-03 2018-04-24 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US10241028B2 (en) 2011-08-25 2019-03-26 The General Hospital Corporation Methods, systems, arrangements and computer-accessible medium for providing micro-optical coherence tomography procedures
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
WO2019120470A1 (en) 2017-12-18 2019-06-27 Universität Stuttgart Method and assembly for chromatic confocal spectral interferometry or spectral domain oct
US10413175B2 (en) 2006-05-10 2019-09-17 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
USRE47675E1 (en) 2003-06-06 2019-10-29 The General Hospital Corporation Process and apparatus for a wavelength tuning source
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
US10534129B2 (en) 2007-03-30 2020-01-14 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10835110B2 (en) 2008-07-14 2020-11-17 The General Hospital Corporation Apparatus and method for facilitating at least partial overlap of dispersed ration on at least one sample
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US10912462B2 (en) 2014-07-25 2021-02-09 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis
US10939825B2 (en) 2010-05-25 2021-03-09 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US11123047B2 (en) 2008-01-28 2021-09-21 The General Hospital Corporation Hybrid systems and methods for multi-modal acquisition of intravascular imaging data and counteracting the effects of signal absorption in blood
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US11452433B2 (en) 2013-07-19 2022-09-27 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
US11490826B2 (en) 2009-07-14 2022-11-08 The General Hospital Corporation Apparatus, systems and methods for measuring flow and pressure within a vessel
US11490797B2 (en) 2012-05-21 2022-11-08 The General Hospital Corporation Apparatus, device and method for capsule microscopy

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002230842A1 (en) 2000-10-30 2002-05-15 The General Hospital Corporation Optical methods and systems for tissue analysis
US9295391B1 (en) 2000-11-10 2016-03-29 The General Hospital Corporation Spectrally encoded miniature endoscopic imaging probe
AT503309B1 (en) 2001-05-01 2011-08-15 Gen Hospital Corp DEVICE FOR DETERMINING ATHEROSCLEROTIC BEARING BY MEASURING OPTICAL TISSUE PROPERTIES
US7355716B2 (en) 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US7869057B2 (en) 2002-09-09 2011-01-11 Zygo Corporation Multiple-angle multiple-wavelength interferometer using high-NA imaging and spectral analysis
US8054468B2 (en) 2003-01-24 2011-11-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US7567349B2 (en) 2003-03-31 2009-07-28 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
JP2006516739A (en) 2003-01-24 2006-07-06 ザ・ジェネラル・ホスピタル・コーポレイション System and method for identifying tissue using a low coherence interferometer
EP1754016B1 (en) 2004-05-29 2016-05-18 The General Hospital Corporation Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (oct) imaging
KR101332222B1 (en) 2004-08-06 2013-11-22 더 제너럴 하스피탈 코포레이션 Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
JP5334415B2 (en) 2004-08-24 2013-11-06 ザ ジェネラル ホスピタル コーポレイション Process, system and software for measuring mechanical strain and elastic properties of samples
US7365859B2 (en) 2004-09-10 2008-04-29 The General Hospital Corporation System and method for optical coherence imaging
US7366376B2 (en) 2004-09-29 2008-04-29 The General Hospital Corporation System and method for optical coherence imaging
EP2278266A3 (en) 2004-11-24 2011-06-29 The General Hospital Corporation Common-Path Interferometer for Endoscopic OCT
US8922781B2 (en) 2004-11-29 2014-12-30 The General Hospital Corporation Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample
US7884947B2 (en) 2005-01-20 2011-02-08 Zygo Corporation Interferometry for determining characteristics of an object surface, with spatially coherent illumination
US7446882B2 (en) 2005-01-20 2008-11-04 Zygo Corporation Interferometer for determining characteristics of an object surface
KR101410867B1 (en) 2005-04-28 2014-06-23 더 제너럴 하스피탈 코포레이션 Systems, processes and software arrangements for evaluating information associated with an anatomical structure by an optical coherence ranging technique
JP2008542758A (en) 2005-05-31 2008-11-27 ザ ジェネラル ホスピタル コーポレイション System, method and apparatus capable of using spectrally encoded heterodyne interferometry for imaging
EP1889037A2 (en) 2005-06-01 2008-02-20 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
DE602006017558D1 (en) 2005-08-09 2010-11-25 Gen Hospital Corp DEVICE AND METHOD FOR CARRYING OUT POLARIZATION-BASED QUADRATURE DEMODULATION IN OPTICAL COHERENCE TOMOGRAPHY
EP1937137B1 (en) 2005-09-29 2022-06-15 General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
EP1945094B1 (en) 2005-10-14 2018-09-05 The General Hospital Corporation Spectral- and frequency- encoded fluorescence imaging
JP5680826B2 (en) 2006-01-10 2015-03-04 ザ ジェネラル ホスピタル コーポレイション Data generation system using endoscopic technology for encoding one or more spectra
EP2659852A3 (en) 2006-02-01 2014-01-15 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
US7742173B2 (en) 2006-04-05 2010-06-22 The General Hospital Corporation Methods, arrangements and systems for polarization-sensitive optical frequency domain imaging of a sample
WO2007133964A2 (en) 2006-05-12 2007-11-22 The General Hospital Corporation Processes, arrangements and systems for providing a fiber layer thickness map based on optical coherence tomography images
EP2054712B1 (en) 2006-08-25 2015-10-07 The General Hospital Corporation Apparatus and methods for enhancing optical coherence tomography imaging using volumetric filtering techniques
WO2008049118A2 (en) 2006-10-19 2008-04-24 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample and effecting such portion(s)
EP2662674A3 (en) 2007-01-19 2014-06-25 The General Hospital Corporation Rotating disk reflection for fast wavelength scanning of dispersed broadbend light
EP2102583A2 (en) 2007-01-19 2009-09-23 The General Hospital Corporation Apparatus and method for controlling ranging depth in optical frequency domain imaging
US7889355B2 (en) 2007-01-31 2011-02-15 Zygo Corporation Interferometry for lateral metrology
US9176319B2 (en) 2007-03-23 2015-11-03 The General Hospital Corporation Methods, arrangements and apparatus for utilizing a wavelength-swept laser using angular scanning and dispersion procedures
US8045177B2 (en) 2007-04-17 2011-10-25 The General Hospital Corporation Apparatus and methods for measuring vibrations using spectrally-encoded endoscopy
US8115919B2 (en) 2007-05-04 2012-02-14 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with a sample using optical microscopy
JP5917803B2 (en) 2007-07-31 2016-05-18 ザ ジェネラル ホスピタル コーポレイション System and method for emitting a beam scanning pattern for fast Doppler optical frequency domain imaging
US8040608B2 (en) 2007-08-31 2011-10-18 The General Hospital Corporation System and method for self-interference fluorescence microscopy, and computer-accessible medium associated therewith
US8072611B2 (en) 2007-10-12 2011-12-06 Zygo Corporation Interferometric analysis of under-resolved features
WO2009059034A1 (en) 2007-10-30 2009-05-07 The General Hospital Corporation System and method for cladding mode detection
JP5222954B2 (en) 2007-11-13 2013-06-26 ザイゴ コーポレーション Interferometer using polarization scan
EP2232195B1 (en) 2007-12-14 2015-03-18 Zygo Corporation Analyzing surface structure using scanning interferometry
US9332942B2 (en) 2008-01-28 2016-05-10 The General Hospital Corporation Systems, processes and computer-accessible medium for providing hybrid flourescence and optical coherence tomography imaging
WO2009137701A2 (en) 2008-05-07 2009-11-12 The General Hospital Corporation System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy
US8861910B2 (en) 2008-06-20 2014-10-14 The General Hospital Corporation Fused fiber optic coupler arrangement and method for use thereof
US8004688B2 (en) 2008-11-26 2011-08-23 Zygo Corporation Scan error correction in low coherence scanning interferometry
EP2198771A1 (en) 2008-12-02 2010-06-23 Optopol Technology S.A. Method and apparatus for eye movement tracking in spectral optical coherence tomography (SD-OCT)
US8937724B2 (en) 2008-12-10 2015-01-20 The General Hospital Corporation Systems and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling
EP2382456A4 (en) 2009-01-26 2012-07-25 Gen Hospital Corp System, method and computer-accessible medium for providing wide-field superresolution microscopy
JP6053284B2 (en) 2009-02-04 2016-12-27 ザ ジェネラル ホスピタル コーポレイション Apparatus and method for use of a high speed optical wavelength tuning source
US9351642B2 (en) 2009-03-12 2016-05-31 The General Hospital Corporation Non-contact optical system, computer-accessible medium and method for measurement at least one mechanical property of tissue using coherent speckle technique(s)
US9510758B2 (en) 2010-10-27 2016-12-06 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
WO2012149175A1 (en) 2011-04-29 2012-11-01 The General Hospital Corporation Means for determining depth-resolved physical and/or optical properties of scattering media
WO2013013049A1 (en) 2011-07-19 2013-01-24 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
WO2013066631A1 (en) 2011-10-18 2013-05-10 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
US9332902B2 (en) 2012-01-20 2016-05-10 Carl Zeiss Meditec, Inc. Line-field holoscopy
JP6227652B2 (en) 2012-08-22 2017-11-08 ザ ジェネラル ホスピタル コーポレイション System, method, and computer-accessible medium for fabricating a miniature endoscope using soft lithography
WO2015052071A1 (en) 2013-10-09 2015-04-16 Carl Zeiss Meditec Ag Improved line-field imaging systems and methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3318678A1 (en) * 1983-05-21 1984-11-22 Adolf Friedrich Prof. Dr.-Phys. Fercher METHOD AND DEVICE FOR INTERFEROMETRY OF RAUER SURFACES
DE3623265C2 (en) * 1986-07-10 1994-11-03 Siemens Ag Method and arrangement for fiber optic measurement of a path length or a path length change
DE3938317A1 (en) * 1989-11-17 1991-05-23 Siemens Ag Interferometric distance measurement method - using selectable period of interferometer output signal using Echelle filter to derive spectrally filtered light
DE4108944A1 (en) * 1991-03-19 1992-09-24 Haeusler Gerd Contactless measurement of surface shape of diffusely scattering objects e.g. semiconductor wafers - using interferometric arrangement for three=dimensional measurement with minimal coherence length and illumination aperture angle less than observation aperture angle

Cited By (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6485413B1 (en) 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
US6111645A (en) * 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
US6282011B1 (en) 1991-04-29 2001-08-28 Massachusetts Institute Of Technology Grating based phase control optical delay line
US6421164B2 (en) 1991-04-29 2002-07-16 Massachusetts Institute Of Technology Interferometeric imaging with a grating based phase control optical delay line
DE19814057A1 (en) * 1998-03-30 1999-10-07 Zeiss Carl Jena Gmbh Spectral interferometric optical tomography device
DE19814057B4 (en) * 1998-03-30 2009-01-02 Carl Zeiss Meditec Ag Arrangement for optical coherence tomography and coherence topography
US6445939B1 (en) 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
US9897538B2 (en) 2001-04-30 2018-02-20 The General Hospital Corporation Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
US6980299B1 (en) 2001-10-16 2005-12-27 General Hospital Corporation Systems and methods for imaging a sample
DE10207186C1 (en) * 2002-02-21 2003-04-17 Alexander Knuettel Low coherence interferometry device for object scanning has variable wavelength selection device used for varying selected wavelengths of detection beam dependent on scanning position
US7170610B2 (en) 2002-02-21 2007-01-30 Knuettel Alexander Low-coherence inferometric device for light-optical scanning of an object
EP1348980A2 (en) * 2002-03-26 2003-10-01 Fuji Photo Film Co. Ltd. Ultrasonic receiving apparatus and ultrasonic receiving method
EP1348980A3 (en) * 2002-03-26 2004-11-10 Fuji Photo Film Co. Ltd. Ultrasonic receiving apparatus and ultrasonic receiving method
US6881189B2 (en) 2002-03-26 2005-04-19 Fuji Photo Film Co., Ltd. Ultrasonic receiving apparatus and ultrasonic receiving method
US7139081B2 (en) 2002-09-09 2006-11-21 Zygo Corporation Interferometry method for ellipsometry, reflectometry, and scatterometry measurements, including characterization of thin film structures
US7403289B2 (en) 2002-09-09 2008-07-22 Zygo Corporation Interferometry method for ellipsometry, reflectometry, and scatterometry measurements, including characterization of thin film structures
US7315382B2 (en) 2002-09-09 2008-01-01 Zygo Corporation Interferometry method for ellipsometry, reflectometry, and scatterometry measurements, including characterization of thin film structures
WO2004043245A1 (en) * 2002-11-07 2004-05-27 Pawel Woszczyk A method of fast imaging of objects by means of spectral optical coherence tomography
US7106454B2 (en) 2003-03-06 2006-09-12 Zygo Corporation Profiling complex surface structures using scanning interferometry
US7324214B2 (en) 2003-03-06 2008-01-29 Zygo Corporation Interferometer and method for measuring characteristics of optically unresolved surface features
US7239398B2 (en) 2003-03-06 2007-07-03 Zygo Corporation Profiling complex surface structures using height scanning interferometry
US7271918B2 (en) 2003-03-06 2007-09-18 Zygo Corporation Profiling complex surface structures using scanning interferometry
WO2004088580A1 (en) * 2003-04-01 2004-10-14 Medizinisches Laserzentrum Luebeck Gmbh Method and device for reading deep barcodes by way of optical interference
USRE47675E1 (en) 2003-06-06 2019-10-29 The General Hospital Corporation Process and apparatus for a wavelength tuning source
DE10328412B4 (en) * 2003-06-19 2005-11-17 Medizinisches Laserzentrum Lübeck GmbH Method for the interferometric determination of optical plane distances with subnanometer accuracy
DE10328412A1 (en) * 2003-06-19 2005-01-20 Medizinisches Laserzentrum Lübeck GmbH Interferometer for measuring plane distances with subnanometer accuracy
WO2004113828A1 (en) * 2003-06-19 2004-12-29 Medizinisches Laserzentrum Luebeck Gmbh Interferometric method for the measurement of plane separations with sub-nanometre accuracy
US7289224B2 (en) 2003-09-15 2007-10-30 Zygo Corporation Low coherence grazing incidence interferometry for profiling and tilt sensing
US7289225B2 (en) 2003-09-15 2007-10-30 Zygo Corporation Surface profiling using an interference pattern matching template
US7292346B2 (en) 2003-09-15 2007-11-06 Zygo Corporation Triangulation methods and systems for profiling surfaces through a thin film coating
US7298494B2 (en) 2003-09-15 2007-11-20 Zygo Corporation Methods and systems for interferometric analysis of surfaces and related applications
US9812846B2 (en) 2003-10-27 2017-11-07 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
US7324210B2 (en) 2003-10-27 2008-01-29 Zygo Corporation Scanning interferometry for thin film thickness and surface measurements
US7468799B2 (en) 2003-10-27 2008-12-23 Zygo Corporation Scanning interferometry for thin film thickness and surface measurements
DE10351319A1 (en) * 2003-10-31 2005-06-16 Medizinisches Laserzentrum Lübeck GmbH Interferometer for optical coherence tomography, e.g. for use with a medical scanning OCT-enabled endoscope, has a deflection mirror for beam deflection in the sample arm of the interferometer
DE10351319B4 (en) * 2003-10-31 2005-10-20 Med Laserzentrum Luebeck Gmbh Interferometer for optical coherence tomography
WO2005098398A1 (en) * 2004-04-05 2005-10-20 Robert Bosch Gmbh Interferometric system for use of a special lenses
US7999948B2 (en) 2004-04-05 2011-08-16 Robert Bosch Gmbh Interferometric system for the use of special-purpose optical systems
US9664615B2 (en) 2004-07-02 2017-05-30 The General Hospital Corporation Imaging system and related techniques
WO2006015717A1 (en) 2004-08-03 2006-02-16 Carl Zeiss Meditec Ag Fourier-domain oct ray-tracing on the eye
US7695140B2 (en) 2004-08-03 2010-04-13 Carl Zeiss Meditec Ag Fourier-domain OCT ray-tracing on the eye
DE102004037479A1 (en) * 2004-08-03 2006-03-16 Carl Zeiss Meditec Ag Fourier domain OCT ray tracing on the eye
US9763623B2 (en) 2004-08-24 2017-09-19 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US7564566B2 (en) 2005-05-19 2009-07-21 Zygo Corporation Method and system for analyzing low-coherence interferometry signals for information about thin film structures
US7321431B2 (en) 2005-05-19 2008-01-22 Zygo Corporation Method and system for analyzing low-coherence interferometry signals for information about thin film structures
US7756311B2 (en) 2005-10-12 2010-07-13 Kabushiki Kaisha Topcon Optical image measuring device, optical image measuring program, fundus observation device, and fundus observation program
US9646377B2 (en) 2006-01-19 2017-05-09 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US10987000B2 (en) 2006-01-19 2021-04-27 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9791317B2 (en) 2006-01-19 2017-10-17 The General Hospital Corporation Spectrally-encoded endoscopy techniques and methods
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
US9777053B2 (en) 2006-02-08 2017-10-03 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
US10413175B2 (en) 2006-05-10 2019-09-17 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US7982880B2 (en) 2006-12-26 2011-07-19 Kabushiki Kaisha Topcon Optical image measurement device
US7777893B2 (en) 2006-12-26 2010-08-17 Kabushiki Kaisha Topcon Optical image measurement device
US7643154B2 (en) 2006-12-26 2010-01-05 Kabushiki Kaisha Topcon Optical image measurement device
EP1950526A1 (en) 2007-01-26 2008-07-30 Kabushiki Kaisha TOPCON Optical image measurement device
US7859680B2 (en) 2007-01-26 2010-12-28 Kabushiki Kaisha Topcon Optical image measurement device
EP1962083A1 (en) 2007-02-23 2008-08-27 Kabushiki Kaisha TOPCON Optical image measurement device
US10534129B2 (en) 2007-03-30 2020-01-14 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
US11123047B2 (en) 2008-01-28 2021-09-21 The General Hospital Corporation Hybrid systems and methods for multi-modal acquisition of intravascular imaging data and counteracting the effects of signal absorption in blood
EP2112499A1 (en) 2008-02-28 2009-10-28 Optopol Technology S.A. Method and apparatus for optical coherence tornography
US10835110B2 (en) 2008-07-14 2020-11-17 The General Hospital Corporation Apparatus and method for facilitating at least partial overlap of dispersed ration on at least one sample
US8690330B2 (en) 2008-12-23 2014-04-08 Carl Zeiss Meditec Ag Device for swept-source optical coherence domain reflectometry
EP3308694A1 (en) 2008-12-23 2018-04-18 Carl Zeiss Meditec AG Device for swept source optical coherence domain reflectometry
DE102008063225A1 (en) 2008-12-23 2010-07-01 Carl Zeiss Meditec Ag Device for Swept Source Optical Coherence Domain Reflectometry
WO2010072394A1 (en) 2008-12-23 2010-07-01 Carl Zeiss Meditec Ag Device for swept-source optical coherence domain reflectometry
US9044164B2 (en) 2008-12-23 2015-06-02 Carl Zeiss Meditec Ag Device for swept source optical coherence domain reflectometry
EP2251636A1 (en) 2009-05-15 2010-11-17 Medizinisches Laserzentrum Lübeck GmbH Forward-scanning OCT endoscope
DE102009022598A1 (en) 2009-05-20 2010-11-25 Carl Zeiss Meditec Ag Human eye's absolute measuring value determining method, involves reconstructing medium of eye by local scaling factors such that two-dimensional or three-dimensional representation of medium of eye comprises absolute measuring values
US11490826B2 (en) 2009-07-14 2022-11-08 The General Hospital Corporation Apparatus, systems and methods for measuring flow and pressure within a vessel
US9642531B2 (en) 2010-03-05 2017-05-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US10463254B2 (en) 2010-03-05 2019-11-05 The General Hospital Corporation Light tunnel and lens which provide extended focal depth of at least one anatomical structure at a particular resolution
WO2011134454A1 (en) 2010-04-28 2011-11-03 Medizinisches Laserzentrum Lübeck GmbH Device with an oct system for examining and treating living tissue being heated by absorbing electromagnetic radiation
DE102010018679A1 (en) 2010-04-28 2011-11-03 Medizinisches Laserzentrum Lübeck GmbH Device with OCT system for examination and treatment of living tissue under heating by absorption of electromagnetic radiation
US9951269B2 (en) 2010-05-03 2018-04-24 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US10939825B2 (en) 2010-05-25 2021-03-09 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
DE102010044826A1 (en) * 2010-09-09 2012-03-15 Visiocraft Gmbh Detector i.e. two dimensional grid spectrometer, for determining human eye cornea thickness for e.g. operation planning, has lens, where detector is supplied with light for registration of distributions associated to discrete point
DE102010044826B4 (en) 2010-09-09 2018-05-17 Visiocraft Gmbh Detector and measuring device and method for determining the thickness of a sample
US9649024B2 (en) 2010-11-12 2017-05-16 Carl Zeiss Meditec Ag Method for the model-based determination of the biometry of eyes
DE102010051281A1 (en) 2010-11-12 2012-05-16 Carl Zeiss Meditec Ag Method for the model-based determination of the biometry of eyes
WO2012062453A1 (en) 2010-11-12 2012-05-18 Carl Zeiss Meditec Ag Method for the model-based determination of the biometry of eyes
US9492077B2 (en) 2011-02-11 2016-11-15 Carl Zeiss Meditec Ag Optimized device for swept source optical coherence domain reflectometry and tomography
WO2012107307A1 (en) 2011-02-11 2012-08-16 Carl Zeiss Meditec Ag Optimized device for swept source optical coherence domain reflectometry and tomography
DE102011011277A1 (en) 2011-02-11 2012-08-16 Carl Zeiss Meditec Ag Optimized device for swept source Optical Coherence Domain Reflectometry and Tomography
US10241028B2 (en) 2011-08-25 2019-03-26 The General Hospital Corporation Methods, systems, arrangements and computer-accessible medium for providing micro-optical coherence tomography procedures
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US11490797B2 (en) 2012-05-21 2022-11-08 The General Hospital Corporation Apparatus, device and method for capsule microscopy
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US11452433B2 (en) 2013-07-19 2022-09-27 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
US9668652B2 (en) 2013-07-26 2017-06-06 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US10058250B2 (en) 2013-07-26 2018-08-28 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US10912462B2 (en) 2014-07-25 2021-02-09 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis
WO2019120470A1 (en) 2017-12-18 2019-06-27 Universität Stuttgart Method and assembly for chromatic confocal spectral interferometry or spectral domain oct

Also Published As

Publication number Publication date
DE4309056B4 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
DE4309056B4 (en) Method and device for determining the distance and scattering intensity of scattering points
USRE46412E1 (en) Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
Fercher et al. Measurement of intraocular distances by backscattering spectral interferometry
Häusler et al. " Coherence radar" and" spectral radar"-new tools for dermatological diagnosis
US10317656B2 (en) Optical coherence tomography apparatus and method using line confocal filtering
US20100280321A1 (en) Self-interfering tomography system
DE102015113465B4 (en) Method and device for scanning at least one cut surface in the interior of a light-scattering object
CN208837916U (en) A kind of flow imaging system
DE102011011277A1 (en) Optimized device for swept source Optical Coherence Domain Reflectometry and Tomography
JP3688608B2 (en) Optical coherence tomographic image measuring device with spectroscopic function
AT518602B1 (en) Ophthalmic length measurement using a double-beam space-time domain Wavelength Tuning Short-coherence interferometry
CN107233069A (en) Increase the optical coherence tomography system of focal depth range
Wang Scanless Optical Coherence Tomography for High-Speed 3D Biomedical Microscopy
Gelikonov et al. Suppression of image autocorrelation artefacts in spectral domain optical coherence tomography and multiwave digital holography
Faber et al. Optical coherence tomography
Corral et al. Tissue characterization with ballistic photons: counting scattering and/or absorption centres
Izatt Optical coherence tomography for medical diagnostics
Wojtkowski et al. Phase-sensitive interferometry in optical coherence tomography
Gurov et al. Evaluation of the influence of scattered radiation on image quality in spectral optical coherence tomography systems with electronic scanning of objects
Verrier et al. Influence of interfaces reflectivity for central thickness measurement of a contact lens by low coherence interferometry
Kou et al. Low-coherence tomography technique in biological tissues
WO2015155204A1 (en) Method for measuring and reconstructing curved, reflecting surfaces
Hendargo et al. Spectral domain phase microscopy
Yu et al. Time-Dependent Speckle in Coherence Domain Tomography
Adie Interferometric Synthetic Aperture Microscopy

Legal Events

Date Code Title Description
8122 Nonbinding interest in granting licences declared
8141 Disposal/no request for examination
8110 Request for examination paragraph 44
8170 Reinstatement of the former position
8363 Opposition against the patent
8327 Change in the person/name/address of the patent owner

Owner name: CARL ZEISS MEDITEC AG, 07745 JENA, DE

8381 Inventor (new situation)

Inventor name: HERRMANN, JUERGEN, 91522 ANSBACH, DE

Inventor name: NEUMANN, JOCHEN, 90768 FUERTH, DE

Inventor name: H?USLER, GERD,PROF.DR., 91056 ERLANGEN, DE

R071 Expiry of right
R071 Expiry of right