DE69831138T2 - System zur darstellung eines zweidimensionalen ultraschallbildes in einer dreidimensionalen bildbetrachtungsumgebung - Google Patents

System zur darstellung eines zweidimensionalen ultraschallbildes in einer dreidimensionalen bildbetrachtungsumgebung Download PDF

Info

Publication number
DE69831138T2
DE69831138T2 DE69831138T DE69831138T DE69831138T2 DE 69831138 T2 DE69831138 T2 DE 69831138T2 DE 69831138 T DE69831138 T DE 69831138T DE 69831138 T DE69831138 T DE 69831138T DE 69831138 T2 DE69831138 T2 DE 69831138T2
Authority
DE
Germany
Prior art keywords
image
dimensional
mobile
generating
surgical instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE69831138T
Other languages
English (en)
Other versions
DE69831138D1 (de
Inventor
Ivan Vesely
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonometrics Corp
Original Assignee
Sonometrics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sonometrics Corp filed Critical Sonometrics Corp
Application granted granted Critical
Publication of DE69831138D1 publication Critical patent/DE69831138D1/de
Publication of DE69831138T2 publication Critical patent/DE69831138T2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • A61B5/287Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/0841Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/14Fixators for body parts, e.g. skull clamps; Constructional details of fixators, e.g. pins
    • A61B90/17Fixators for body parts, e.g. skull clamps; Constructional details of fixators, e.g. pins for soft tissue, e.g. breast-holding devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H5/00Measuring propagation velocity of ultrasonic, sonic or infrasonic waves, e.g. of pressure waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/14Systems for determining distance or velocity not using reflection or reradiation using ultrasonic, sonic, or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/66Sonar tracking systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • G01S15/876Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/5206Two-dimensional coordinated display of distance and direction; B-scan display
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52074Composite displays, e.g. split-screen displays; Combination of multiple images or of images and alphanumeric tabular information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/56Display arrangements
    • G01S7/62Cathode-ray tube displays
    • G01S7/6245Stereoscopic displays; Three-dimensional displays; Pseudo-three dimensional displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2063Acoustic tracking systems, e.g. using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2072Reference field transducer attached to an instrument or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/363Use of fiducial points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3904Markers, e.g. radio-opaque or breast lesions markers specially adapted for marking specified tissue
    • A61B2090/3908Soft tissue, e.g. breast tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3925Markers, e.g. radio-opaque or breast lesions markers ultrasonic
    • A61B2090/3929Active markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3954Markers, e.g. radio-opaque or breast lesions markers magnetic, e.g. NMR or MRI
    • A61B2090/3958Markers, e.g. radio-opaque or breast lesions markers magnetic, e.g. NMR or MRI emitting a signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0443Modular apparatus
    • A61B2560/045Modular apparatus with a separable interface unit, e.g. for communication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/043Arrangements of multiple sensors of the same type in a linear array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4519Muscles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4528Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/11Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M2025/0166Sensors, electrodes or the like for guiding the catheter to a target zone, e.g. image guided or magnetically guided
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S15/101Particularities of the measurement of distance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/86Combinations of sonar systems with lidar systems; Combinations of sonar systems with systems not using wave reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/899Combination of imaging systems with ancillary equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52003Techniques for enhancing spatial resolution of targets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52079Constructional features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/916Ultrasound 3-D imaging

Description

  • GEBIET DER ERFINDUNG
  • Die vorliegende Erfindung betrifft allgemein ein System zur Erzeugung von Bildern, und insbesondere ein System zur Anzeige eines zweidimensionalen Ultraschallbilds in einer dreidimensionalen Ansichtsumgebung.
  • STAND DER TECHNIK
  • Ein große Zahl von diagnostischen und chirurgischen Eingriffen wird mit Unterstützung von konventionellen 2D-Echobildtechniken durchgeführt. D.h., der Arzt manipuliert ein chirurgisches Instrument (z.B. eine Sonde oder einen Katheder) im Körper des Patienten und kippt dabei den Bildkopf des Echogeräts, bis der Ultraschallstrahl das Instrument schneidet und das Instrument auf dem Anzeigebildschirm erscheint. Die Instrumente werden sehr oft erst nach einer erheblichen „Suche" lokalisiert, und der Vorgang selbst ist ziemlich mühsam. Dieses Verfahren wird häufig bei Amniozentesen und Biopsien angewandt. In beiden Fällen werden Nadeln oder „Greifwerkzeuge" mit Ultraschallbildführung eingeführt. Bei der Amniozentese führt ein Arzt eine Nadel durch den Unterleib in den Uterus ein, wobei ein Assistent die Ultraschallsonde festhält, um zu gewährleisten, dass sie die Amniozentesenadel schneidet, wodurch die Nadel sichtbar gemacht werden kann.
  • Die konventionelle 2D-Echokardiographie bietet dem Arzt eine weniger als hinreichende Information, da die Herzstrukturen wie z.B. die Mitralklappe sehr komplex sind und ihre Form mit diesen Bildern schwer zu interpretieren ist. Die 3D-Echokardiographie weist das Potential auf, viele der aktuellen Visualisierungsprobleme der Herzanatomie zu lösen. Mit der Entwicklung des 3D-Echos ist aber eine neue Gruppe von Problemen aufgetreten. Die ersten Probleme betreffen die Möglichkeit, die Daten in einem angemessenen Zeitraum zu erfassen. Das Grundproblem ist die Flugzeit des Ultraschalls. Um das Herz abzubilden, muss Ultraschall bis zu 15 cm tief in das Gewebe und wieder zurück gesendet werden. Da die Schallgeschwindigkeit im Herzgewebe etwa 1500 m/sec beträgt, nimmt dieser Vorgang 0,2 msec in Anspruch. Um ein gutes Bild zu ergeben, sind 200 Zeilen erforderlich. Daher werden für jedes Bild 40 msec benötigt. Dies ergibt eine Bildrate von 25 Hz. Da diese Rate gerade noch hoch genug für 2D ist, hat es einen technologischen Vorstoß gegeben, um Raten von 30 Hz bis 50 Hz zu erreichen. Um 3D-Ultraschallvolumen zu erhalten, müssen etwa 100 der 2D-Bilder erfasst werden. Dies bedeutet, dass bei Verwendung von konventionellen Technologien alle 2 bis 3 Sekunden ein neues Volumen erfasst wird. Dieses Verfahren ist in der Lage, bei den meisten inneren Organen oder statischen Strukturen, wie z.B. der Prostata oder einem Fötus, gute 3D-Bilder zu erzeugen, ist aber nicht auf das Herz anwendbar, das sich ständig bewegt.
  • Andere bekannte Systeme zielen darauf ab, die Datenrate um einen Faktor 100 zu erhöhen, um Volumen statt nur 2D-Bilder erhalten zu können. Solch ein System wird in der US-Patentschrift Nr. 4,949,310 (nachstehend Patent '310 genannt) beschrieben. Dieses System versucht, Echtzeit-3D-Ultraschallbilder durch eine Kompromissschließung und Optimierung zahlreicher Parameter zu erzeugen, die die Geschwindigkeit der Ultraschallbilderfassung beeinflussen. Einige dieser Ansätze umfassen das Empfangen von Daten aus mehreren Kanälen gleichzeitig durch dynamische Fokussierung und die Reduktion der sowohl räumlichen als auch zeitlichen Auflösung der Bilder.
  • Doch wenn diese 3D-Bildsätze einmal erfasst worden sind, ist das nächste Problem, wie diese Information anzuzeigen ist. Diesbezüglich haben sich „Volume Thresholding" und „Surface Rendering" in Ultraschallbildern als extrem schwierig erwiesen, da sie sehr viel Eigenrauschen aufweisen. 3D-Flächen lassen sich nicht leicht extrahieren, da eine beträchtliche Bildverarbeitung an den Datensätzen durchgeführt werden muss. Solch eine Nachverarbeitung kann Verfahren wie (i) die Ausdehnung von Seed-Points, (ii) die Skelettierung größerer Strukturen, und (iii) die Kontinuitätsprüfung und Ausfüllung beinhalten, um korrekt aussehende 3D-Flächen zu erhalten. Nichts davon kann gegenwärtig in Echtzeit durchgeführt werden, selbst wenn es möglich ist, die 3D-Ultraschalldaten mit der im Patent '310 beschriebenen Technologie zu erfassen.
  • Das im Patent '310 beschriebene System verwendet eine Anzeige mit mehrfachen Ebenen. Das heißt, die Echtzeit-Volumendatensätze werden durch eine Anzahl von Ebenen geschnitten, und der Schnittpunkt des Volumendatensatzes mit dieser Ebene wird auf diese Ebene „abgebildet". Wenn die Ebene in eine Richtung orthogonal zu den Datensatzachsen angeordnet wird, dann ist die Abbildung der Datenebene auf die Visualisierungsebene relativ einfach. Das heißt, eine geeignete 2D-Pixelmatrix wird aus einem 3D-Satz extrahiert. Wenn die Ebene den Originalachsen gegenüber geneigt ist, dann muss die Bildextraktion und Interpolation von Pixeln durchgeführt werden. Für diese Verfahren gibt es eine Anzahl von bestehenden Algorithmen. Das System des Patents '310 verwendet daher mehrfache Ansichtsebenen, die durch den 3D-Datensatz geführt werden, auf welche die entsprechenden 2D-Bilder mit der geeigneten Graphikhardware „texturabgebildet" werden. Solch eine Texture Mapping-Hardware ist in vielen hochwertigen Computern zu finden, z.B. von Silicon Graphics, Inc.
  • Die internationale PCT-Veröffentlichung Nr. WO91/03792 beschreibt ein System und Verfahren, um zweidimensionale Signale von einem handgeführten Sektorwandler in dreidimensionale Signale umzuwandeln, um die Berechnung der Fläche oder des Volumens des Objekts zu erleichtern. Wie im Patent '310 verwendet dieses System ein Ultraschallbild-Subsystem, um Signale zu erzeugen, die für die Sektorbilder des anzuzeigenden Objekts stehen. Informationen, die für die Bildsignale, die Wandlerposition und Ausrichtung des Wandlers stehen, die bei der Abtastung eines zugehörigen Objektsektors erhalten wurden, werden abgeleitet und in Pixelwert-Arrays gespeichert, und solche Pixelwert-Arrays werden dann in Voxel-Speicherstellen projiziert.
  • Eine simplere Alternative zum Echtzeit-3D-Ultraschallsystem ist eine, bei der die Bilder über einen großen Zeitraum hinweg aufgebaut werden und dann so wiedergegeben werden, dass der Datensatz visualisiert wird. Im Falle des Herzens können hochauflösende Bilder des schlagenden Herzens über viele Herzzyklen hinweg erfasst werden. Wenn ein Volumendatensatz um 100 Bildscheiben des Herzens enthalten soll, können diese Bildscheiben in 100 Herzschlägen erfasst werden, unter der Annahme, dass das 2D-Ultraschallsystem 30 mal pro Sekunde Daten erfasst, und dass jeder Herzschlag eine Sekunde lang dauert. Während des ersten Herzschlags ist der Ultraschall-Bildwandler an einer Ansichtsposition angeordnet, wie z.B. die Herzspitze, und nimmt während des Herzschlags 30 Bilder auf.
  • Dadurch wird eine Bildscheibe des Herzens erhalten, die während des Herzschlags 30 mal abgebildet wird. Beim nächsten Herzschlag wird der Ultraschall-Bildwandler in einer Bildebene angeordnet, die leicht entfernt neben der ersten Bildebene liegt, und während des zweiten Herzschlags werden weitere 30 Bilder erhalten. Dieser Vorgang wird wiederholt, bis 100 angrenzende Bildebenen über 100 Herzzyklen hinweg erfasst worden sind. In jedem Fall beschreibt jeder Satz aus 30 Bildern die Herzbewegung an dieser jeweiligen Bildscheibenposition. Insgesamt wird das ganze Herz in 100 Abschnitten abgebildet, über 30 Zeitpunkte im Herzzyklus hinweg. Diese Bilder werden dann so umformatiert, dass sie nicht als 100 Datensätze aus 30 Bildern ausgedrückt werden, sondern vielmehr als 30 Sätze aus 100 Bildern. Jeder Bildsatz ist ein Schnappschuss des 3D-Volumens an einem bestimmten Zeitpunkt im Herzzyklus, und es sind nun 30 Kopien dieses 3D-Datensatzes vorhanden, während er sich durch den Herzzyklus hindurch verändert. Dieser eine Herzzyklus kann dann in einem geeigneten Format auf dem Computersystem wiedergegeben werden.
  • Wie im System des oben erläuterten Patents '310 ist das Format, das oft gewählt wird, die Projektion eines Teils des Datensatzes auf eine Ebene, die den Datensatz schneidet, und die wiederholte Wiedergabe des Herzzyklus.
  • Die US-Patentschriften Nr. 5,454,371 und 5,562,095 beschreiben ein Mittel zum Erfassen und Anzeigen von 3D-Ultraschallbildern. Das System zum Anzeigen von 3D-Bildern weist die folgende Arbeitsweise auf. Ein Datenwürfel wird perspektivisch auf einen Computerbildschirm angezeigt, wobei auf jeder der 6 Flächen die entsprechende Ebene von Ultraschallbilddaten abgebildet ist. Diese Flächen können durch Bewegen einer Computermaus auf interaktive Weise in den Würfel hinein geschoben werden. Wenn die Würfelfläche nach innen verschoben wird, wird eine der Position der Fläche entsprechende neue Schnittebene des Datensatzes berechnet, und das geeignete Bild wird auf diese Ebene abgebildet. Während dieses Vorgangs stellen die sichtbaren Würfelflächen die sich bewegenden Ultraschallbilder dar, wobei der ganze 3D-Datensatz immer wieder über den einzigen Herzzyklus hinweg wiedergegeben wird, der aus den vielen Originalherzzyklen rekonstruiert wurde. Wie das System des oben beschriebenen Patents '310 verwendet dieser Ansatz die Abbildung einer gegebenen Bildebene eines vorher erfassten Datensatzes auf eine bestimmte Ebene, deren Visualisierung Darstellung gerade vom Benutzer gewählt ist. Die Drahtmodellbox, die die Position und Ausrichtung des Original-3D-Datensatzes und der aktuellen Ebene beschreibt, ist sehr nützlich, um den Systembenutzer über die anatomische Lage des angezeigten Bilds zu informieren. In dieser Hinsicht veranschaulicht 1A eine orthogonale Bildscheibe, und 1B veranschaulicht eine schräge Bildscheibe.
  • Einer der Nachteile dieses Systems ist, dass es nur eine Wiedergabe des zuvor erfassten Ultraschalldatensatzes zeigen kann. Es ist auch hervorzuheben, dass solch eine Visualisierungsmethode nur eine Bildebene auf einmal ermöglicht. Der Benutzer wählt die Bildebene und betrachtet die Wiedergabe des Datensatzes. Obwohl ein Benutzer die Bildebene vor- und zurückschieben und seitlich neigen kann, um andere Bildebenen zu betrachten, wird nur eine Bildebene auf einmal angezeigt. Der Nutzen dieses Anzeigeformats ist, dass der Benutzer die Information darüber zurückbehält, wo die vorherige Bildebene sich befand, und wie die Strukturen sich verändern, wenn die Bildebene verschoben und geneigt wird. Schließlich wird das 3D-Modell der Struktur im Geist des Benutzers aufgebaut, wenn der Benutzer die 2D-Ebenen manipuliert und auf interaktive Weise genügend Information in seinem Kopf aufbaut. Denn tatsächlich wird nicht der Gesamtumfang der Informationen benötigt, sondern nur die Möglichkeit, an einem gegebenen Zeitpunkt eine beliebige Ebene betrachten zu können (siehe 2).
  • Es ist bekannt, dass es durch Nutzung des Flugzeitprinzips von Hochfrequenzschallwellen möglich ist, Distanzen in einem wässrigen Medium genau zu messen, wie z.B. während eines chirurgischen Eingriffs im Körper eines Lebewesens. Hochfrequenzschall, oder Ultraschall, wird als eine Schwingungsenergie definiert, deren Frequenz zwischen 100 kHz und 10 MHz liegt. Das Gerät, das benutzt wird, um mit Schallwellen dreidimensionale Messungen zu erhalten, ist als Sonomikrometer bekannt. Ein Sonomikrometer besteht typischerweise aus einem Paar piezoelektrischer Wandler (d.h., ein Wandler wirkt als Sender, während der andere Wandler als Empfänger wirkt). Die Wandler werden in ein Medium implantiert und mit elektronischen Schaltungen verbunden. Zur Messung der Distanz zwischen den Wandlern wird der Sender unter Strom gesetzt, um Ultraschall zu erzeugen. Die resultierende Schallwelle breitet sich dann durch das Medium aus, bis sie vom Empfänger erkannt wird.
  • Der Sender nimmt typischerweise die Form eines piezoelektrischen Kristalls an, der durch eine Hochspannungsspitze oder Impulsfunktion mit einer Dauer von unter einer Mikrosekunde erregt wird. Dies bewirkt die Schwingung des piezoelektrischen Kristalls bei seiner eigenen charakteristischen Resonanzfrequenz. Die Hüllkurve des Sendersignals fällt mit der Zeit schnell ab, wobei gewöhnlich eine Folge von sechs oder mehr Zyklen erzeugt wird, die sich vom Sender weg durch das wässrige Medium ausbreiten. Auch die Schallenergie wird bei jeder Grenzfläche abgeschwächt, welcher sie begegnet.
  • Auch der Empfänger nimmt typischerweise die Form eines piezoelektrischen Kristalls an (dessen Eigenschaften denen des piezoelektrischen Kristalls des Senders gleichen), der die vom Sender erzeugte Schallenergie erkennt und darauf ansprechend zu schwingen beginnt. Diese Schwingung erzeugt ein elektronisches Signal in der Größenordnung von Millivolts, das durch geeignete Verstärkerschaltungen verstärkt werden kann.
  • Die Ausbreitungsgeschwindigkeit von Ultraschall in einem wässrigen Medium ist gut dokumentiert. Die Distanz, die von einem Ultraschallimpuls zurückgelegt wird, kann deshalb einfach gemessen werden, indem die Zeitverzögerung zwischen dem Augenblick, an dem der Schall gesendet wird, und dem, wann er empfangen wird, aufgezeichnet wird. Anhand der Distanzmessung können dreidimensionale Koordinaten bestimmt werden. Die US-Patentschrift Nr. 5,515,853 beschreibt ein Verfahren und eine Vorrichtung zur simultanen Messung von mehrfachen Distanzen durch vernetzte piezoelektrische Wandler. Diese Vorrichtung definiert die Ausbreitungsverzögerung zwischen der Aktivierung eines Ultraschallwandlers und dem Empfang durch entsprechende Wandler durch Verwendung von Hochfrequenz-Digitalzählern. Die Vorrichtung verfolgt und trianguliert die dreidimensionalen Positionen jedes Wandlers, indem sie den Betriebszyklus zwischen Sende- und Empfangsmodus alterniert.
  • Die vorliegende Erfindung wendet die obigen Prinzipien an, um die Nachteile der zweidimensionalen Echobildsysteme nach dem Stand der Technik zu überwinden und ein System bereitzustellen, das die Manipulation von 2D-Ultraschallbildern im 3D-Raum erlaubt, innerhalb eines Koordinatensystems, das einen Bezugsrahmen bereitstellt. Dies ermöglicht dem Benutzer, sich auf interaktive Weise ein geistiges Bild der analysierten Struktur aufzubauen.
  • ZUSAMMENFASSUNG DER ERFINDUNG
  • Der vorliegenden Erfindung gemäß wird ein Echobildsystem zur Anzeige eines zweidimensionalen Ultraschallbilds in einer dreidimensionalen Ansichtsumgebung bereitgestellt.
  • Eine Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines Echobildsystems, wobei der Anwender die Möglichkeit hat, die Position und Fortbewegung von chirurgischen Instrumenten zu visualisieren.
  • Eine andere Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines Echobildsystems, das ein Bild-Feedback und eine Bestätigung erlaubt, dass an der beabsichtigten Körperstruktur operiert wird.
  • Noch eine andere Aufgabe der vorliegenden Erfindung ist die Bereitstellung einer abnehmbaren Vorrichtung, um einen konventionellen zweidimensionalen Ultraschall-Bildkopf so zu modifizieren, dass er eine 3D-Verfolgungsfähigkeit aufweist.
  • Wiederum eine andere Aufgabe der vorliegenden Erfindung ist die Bereitstellung einer Vorrichtung, die an einen konventionellen zweidimensionalen Ultraschall-Bildkopf angebracht werden kann, um die 3D-Position des 2D-Ultraschallbilds zu erhalten.
  • Weitere Aufgaben und Vorteile der Erfindung gehen für den Fachmann aus der folgenden ausführlichen Beschreibung, den beiliegenden Zeichnungen und Ansprüchen im Angang hervor.
  • In einem Aspekt der Erfindung wird ein Verfahren zur Erzeugung eines zweidimensionalen Ultraschallbildes in einer dreidimensionalen Ansichtsumgebung bereitgestellt, das Verfahren umfassend das Befestigen einer Mehrzahl von mobilen Wandlermitteln an einem auf die Erzeugung einer zweidimensionalen Echobildebene eingerichteten Ultraschallbildwandlermittel, die Befestigung einer Mehrzahl von Bezugswandlermitteln an einer entsprechenden Mehrzahl von Messorten, das Erzeugen von dreidimensionalen Koordinaten für die mobilen Wandlermittel relativ zu einem durch die Mehrzahl von Bezugswandlermitteln eingerichteten Bezugsrahmen, das Einpassen der zweidimensionalen Echobildebene in die dreidimensionalen Koordinaten, das Anzeigen der zweidimensionalen Echobildebene an den dreidimensionalen Koordinaten relativ zu dem von der Mehrzahl von Bezugswandlermitteln eingerichteten Bezugsrahmen, das Befestigen einer Mehrzahl von mobilen Wandlermitteln an einem chirurgischen Instrumentmittel, das Erzeugen von dreidimensionalen Koordinaten für die an dem chirurgischen Instrumentmittel befestigten mobilen Wandlermittel relativ zu dem von der Mehrzahl von Bezugswandlermitteln eingerichteten Bezugsrahmen, das Erzeugen eines Umrissbildes des chirurgischen Instrumentsmittels anhand der dreidimensionalen Koordinaten der an dem chirurgischen Instrumentmittel befestigten mobilen Wandlermittel, und das Anzeigen des Umrissbildes des Instrumentmittels relativ zu dem von der Mehrzahl von Bezugswandlermitteln eingerichteten Bezugsrahmen.
  • In einem anderen Aspekt der Erfindung wird ein System zur Erzeugung eines zweidimensionalen Ultraschallbildes in einer dreidimensionalen Ansichtsumgebung bereitgestellt, wobei das System zur Erzeugung eines zweidimensionalen Ultraschallbildes in einer dreidimensionalen Ansichtsumgebung, wobei das System Bildwandlermittel zum Erzeugen einer 2-D-Echobildebene, an den Bildwandlermitteln befestigte mobile Wandlermittel, eine Mehrzahl von an einer entsprechenden Mehrzahl von Messorten angeordnete Bezugswandlermittel beinhaltet, wobei die Mehrzahl von Bezugswandlermitteln einen Bezugsrahmen bilden; wobei das System umfasst: Koordinatenerzeugungsmittel zum Erzeugen von dreidimensionalen Koordinaten für die mobilen Wandlermittel relativ zum Bezugsrahmen, Einpassungsmittel zum Einpassen der zweidimensionalen Echobildebene in die dreidimensionalen Koordinaten, Anzeigemittel zum Anzeigen der zweidimensionalen Echobildebene an den dreidimensionalen Koordinaten relativ zum Bezugsrahmen, eine Mehrzahl von mobilen Wandlermitteln, die auf die Befestigung an einem zugeordneten chirurgischen Instrumentmittel eingerichtet sind, Koordinatenerzeugungsmittel zum Erzeugen von dreidimensionalen Koordinaten für mindestens eines aus der Mehrzahl von mobilen Wandlermitteln, die an dem chirurgischen Instrumentmittel befestigt sind, relativ zu dem durch die Mehrzahl von Bezugswandlermitteln eingerichteten Bezugsrahmen, und Umrisserzeugungsmittel zum Erzeugen eines Umrissbildes des chirurgischen Instrumentmittels anhand der an dem chirurgischen Instrumentmittel-befestigten mobilen Wandlermittel und zum Anzeigen des Umrissbildes des chirurgischen Instrumentmittels auf dem Anzeigemittel relativ zum Bezugsrahmen.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • Die Erfindung kann in gewissen Teilen und Teileanordnungen eine physikalische Form annehmen, deren bevorzugte Ausführungsform und Verfahren in dieser Patentschrift ausführlich beschrieben werden und in den beiliegenden Zeichnungen veranschaulicht werden, die Bestandteil davon sind, und wobei:
  • 1A und 1B beispielhafte Anzeigen sind, die von einem konventionellen 3D-Ultraschallsystem erzeugt werden;
  • 2 eine beispielhafte Anzeige der Nutzinformation ist, die von einem konventionellen 3D-Ultraschallsystem erzeugt wird;
  • 3 ein Blockdiagramm eines 3D-Ultraschall-Verfolgungs- und Abbildungssystems nach einer bevorzugten Ausführungsform der vorliegenden Erfindung ist;
  • 4 eine perspektivische Ansicht eines Ultraschall-Bildkopfs mit einem daran befestigten abnehmbaren Verfolgungsclip nach einer bevorzugten Ausführungsform der Erfindung ist;
  • 5 eine auseinandergezogene Ansicht des Ultraschall-Bildkopfs und daran befestigten abnehmbaren Verfolgungsclips ist, wie in 4 gezeigt; und
  • 6 eine 3D-Szene ist, die einen Bezugsrahmen, die Position und Richtung eines chirurgischen Instruments und ein Ultraschall-Sektorbild zeigt.
  • AUSFÜHRLICHE BESCHREIBUNG DER ERFINDUNG
  • Wird nun Bezug auf die Zeichnungen genommen, wobei die Darstellungen nur der Veranschaulichung einer bevorzugten Ausführungsform der Erfindung dienen, und nicht ihrer Einschränkung, zeigt 3 ein dreidimensionales (3D) Verfolgungs- und Abbildungssystem 100 zur Verwendung in Verbindung mit dem erfindungsgemäßen Echobildsystem. Das 3D-Verfolgungs- und Abbildungssystem 100 besteht allgemein aus einem Computersystem 110, mobilen Wandlern 132, Bezugswandlern 134, einem Instrument 130 und einem optionalen Robotersubsystem 140.
  • Das Computersystem 110 besteht allgemein aus einem 3D-Verfolgungssystem 112, einem Abbildungsmodalitätssystem 114, einem Bildeinpassungssystem 116, einem Bildverziehungs- und -geometrieumwandlungssystem 118 („Warp-System"), einer Benutzerschnittstelle 120 und einer Anzeige 122. Es ist anzumerken, dass das 3D-Verfolgungssystem 112 die Form eines Systems auf Schallbasis oder auf elektromagnetischer Basis annehmen kann. Sowohl Flugzeit- als auch Phasenbeziehungen können zur Bestimmung der Entfernung verwendet werden. Bevorzugt nimmt das 3D-Verfolgungssystem 112 die Form des 3D-Ultraschall-Verfolgungssystems an, das in der US-Patentschrift Nr. 5,515,853 und der PCT-Anmeldung Nr. WO96/31753 beschrieben wird.
  • Das Instrument 130 kann die Form eines Katheders, einer Sonde, eines Sensors, einer Nadel, eines Skalpells, einer Pinzette oder sonstiger Vorrichtungen oder Instrumente annehmen, die in einem chirurgischen oder diagnostischen Eingriff verwendet werden. Mobile Wandler 132 und Bezugswandler 134 können die Form eines Ultraschallwandlers oder eines elektronischen Wandlers annehmen. Doch zur Veranschaulichung einer bevorzugten Ausführungsform der vorliegenden Erfindung nehmen die Wandler 132 und 134 die Form eines Ultraschallwandlers (d.h., piezoelektrischer Kristalle) an.
  • Eine Mehrzahl von mobilen Wandlern 132 sind am Instrument 130 befestigt. Ein oder mehrere Bezugswandler 134 stellen eine Bezugsposition in Bezug auf die mobilen Wandler 132 bereit. Das heißt, Bezugswandler 134 können angeordnet sein, um einen inneren Bezugsrahmen innerhalb des Körpers eines Patienten herzustellen, oder auf der Oberfläche des Körpers eines Patienten, um einen äußeren Bezugsrahmen herzustellen.
  • Wie oben angegeben, können Bezugswandler 134 Sender, Sender-Empfänger oder Empfänger sein, die Ultraschall oder elektromagnetische Strahlung erzeugen können, welche von mobilen Wandlern 132 erkannt werden kann.
  • Das 3D-Verfolgungssystem 112 wandelt die mehrfachen Distanzmessungen zwischen jedem der Wandler 132, 134 in XYZ-Koordinaten in Bezug auf eine Bezugsachse um, wie oben ausführlich beschrieben. Es ist anzumerken, dass der Bezugsrahmen, der von den Bezugswandlern 134 hergestellt wird, selbstbestimmend sein muss, das heißt, wenn der Bezugsrahmen verzerrt wird, muss diese Verzerrung von den Bezugswandlern 134 erkannt werden. Die Erkennung erfolgt typischerweise durch Sender-Empfänger, die die Entfernung zwischen jeder Kombination aus zwei Wandlern bestimmen können, und daher ihre relativen räumlichen Koordinaten im 3D-Raum. Das heißt, die Position der Wandler wird in 3D aus den Bildern erhalten, die von der Körperstruktur (z.B. Gewebe/Organ) erfasst wurden, die „Punkte" zeigen, an denen die Wandler angeordnet sind, und auch von den Wandlern selbst, wenn sie in der Körperstruktur angeordnet sind. Wenn eine Diskrepanz in den Entfernungen zwischen allen Wandlerkombinationen auftritt, muss die Körperstruktur sich verformt (d.h. „verzogen") haben, nachdem die Bilder erfasst wurden. Ein mathematische Koordinatentransformation kann angewandt werden, um genau zu spezifizieren, wie der Bildsatz zu korrigieren ist und die Verziehung zu berücksichtigen ist. Die Entfernung zwischen jeder Kombination aus zwei Wandlern wird bestimmt, indem jeder Wandler veranlasst wird, ein Signal an alle anderen Wandler zu senden. Auf diese Weise ist jede Entfernung zwischen den Wandlern bekannt. von diesen Entfernungen ausgehend können XYZ-Koordinaten berechnet werden, die sich auf einen Wandler als dem Ursprung beziehen.
  • Das Abbildungsmodalitätssystem 114 erfasst 2D-, 3D- oder 4D-Bilddatensätze aus einer Bildquelle wie z.B. einem MRI-(Magnetresonanztomographie), CT-(Computertomographie) oder 2D- oder 3D-Ultraschallgerät, um eine „Vorlage" zu erzeugen, durch oder gegenüber der die Form, Position und Bewegung des verfolgten Instruments 130 angezeigt werden kann. Die Vorlage nimmt typischerweise die Form eines Bilds der Umgebung an, die das Instrument umgibt, (z.B. einer Körperstruktur). Es ist anzumerken, dass ein 4D-Bild (d.h., ein 3D-Bild, das sich mit der Zeit verändert) erhalten wird, wenn mehrfache (3D) Volumen in verschiedenen Zeitintervallen erfasst werden.
  • Das Bildeinpassungssystem 116 passt die Position des Instruments 130 in die räumlichen Koordinaten des Bilddatensatzes ein, der vom Abbildungsmodalitätssystem 114 hergestellt wird. Die Position des Instruments 130 wird vom 3D-Verfolgungssystem 112 erhalten. Das Bildeinpassungssystem 116 sorgt für eine Anzeige des Instruments 130 an seiner korrekten 3D-Position innerhalb der Körperstruktur und Ausrichtung relativ zur Körperstruktur selbst. Es ist anzumerken, dass das Einpassungssystem 116 benutzerunterstützt sein kann, oder vollautomatisch, wenn Bildverarbeitungsalgorithmen implementiert werden, um die räumlichen Positionen der Wandler (typischerweise der Bezugswandler) im Bilddatensatz automatisch zu erkennen.
  • Das Warp-System 118 ist ein System auf Softwarebasis, das die Bilddatensätze um die geeigneten Werte umwandelt oder „verzieht", die einer Formänderung im Bezugsrahmen entsprechen, die zwischen dem Zeitpunkt, an dem der Bilddatensatz erfasst wurde, und dem Zeitpunkt aufgetreten ist, an dem der chirurgische Eingriff durchgeführt werden soll. Daher besteht das Warp-System 118 typischerweise aus einer Matrix-Transformationsroutine, die die verformte Geometrie auf dem Originalbilddatensatz abbildet und ihn auf geeignete Weise verzieht.
  • Die Benutzerschnittstelle 120 erlaubt einem Benutzer, auf das Computersystem 110 einzuwirken, einschließlich der Programmierung des Computersystems 110, um eine gewünschte Funktion auszuführen. Zum Beispiel kann eine bestimmte Ansicht zur Anzeige gewählt werden. Instrumente 130 (z.B. Sonden oder Katheder) können mit der Benutzerschnittstelle 120 aktiviert werden. Die Anzeige 122 zeigt dem Benutzer eingepasste Bilder an, die vom Bildeinpassungssystem 116 erzeugt wurden.
  • Das optionale Robotersystem 140 besteht allgemein aus einem Robotersteuersystem 142 und einem Robotermanipulatorsystem 144. Das Robotersteuersystem 142 steuert das Robotermanipulatorsystem 144, um einem programmierten Weg zu folgen, der während des chirurgischen Eingriffs auf der Basis der Verschiebung, Verzerrung oder von Formveränderungen der Körperstruktur auf geeignete Weise geändert werden kann. Das Robotermanipulatorsystem 144 sorgt für die physikalische Bewegung des Instruments 130 den Anweisungen des Robotersteuersystem 142 entsprechend.
  • Die vorliegende Erfindung betrifft ein Echobildsystem, das ein 2D-Ultraschallbild in einer 3D-Ansichtsumgebung anzeigt. Zu diesem Zweck werden mehrere Bezugswandler am Rücken und/oder Unterleib des Patienten angebracht, und es wird ein einfaches Koordinatensystem erzeugt, das die Kopf- und Fußrichtung, die linke und rechte Seite des Patienten und die Vorder- und Rückseite anzeigt. Anfangs erscheint dies auf der Anzeige als eine leere Box mit einfachen Graphiken oder Pfeilen, sowie den Oberflächenwandlern, die graphisch dargestellt sind. Eine Mehrzahl von mobilen „Positionswandlern" wird am Ultraschall-Bildkopf einer Bildsonde angebracht. Wenn die Bildsonde auf der Brust oder dem Unterleib angeordnet ist, kann daher der Ort und der Winkel der Bildebene, die vom Bildwandler des Bildkopfes erfasst wird, in einer 3D-Umgebung angezeigt werden. Diese 3D-Szene kann durch einfaches Bewegen der Maus und durch Drehen der optischen Szene auf der Computeranzeige von jedem Standpunkt aus betrachtet werden.
  • Eine bevorzugte Ausführungsform eines erfindungsgemäßen Echobildsystems wird nun Bezug nehmend auf 35 im einzelnen beschrieben. Ein typischer Echogerät-Ultraschall-Bildkopf 200 weist eine handgeführte Kunststoffkomponente mit einem Kabel 210 auf, das mit einer Haupteinheit (nicht gezeigt) verbunden ist. Der Bildkopf 200 weist ein Fenster auf, durch welches Ultraschall von einem Ultraschallwandler gesendet und empfangen wird. Der Ultraschall-Bildkopf 200 ist mit einem Wandlergehäuse 220 versehen, das die Form eines abnehmbaren Abtast-Clips annimmt, der am Bildkopf 200 angebracht werden kann. Eine auseinandergezogene Ansicht wird in 5 gezeigt.
  • Das Wandlergehäuse 220 nimmt drei oder mehr Positionswandler 222 auf, die eine Ebene orthogonal zum Abbildungsstrahl formen. Daher liegen die Positionswandler 222 zwischen dem Bildkopf 200 und der Haut, mit welcher der Bildkopf 200 in Kontakt ist. Es ist anzumerken, dass nur drei Positionswandler 222 erforderlich sind, um alle Winkel zu messen, auch wenn in 4 und 5 vier Positionswandler 222 dargestellt sind. Bezugswandler 224 (siehe 6) sind auf der Haut des Patienten (z.B. Rücken und Brust) angebracht.
  • Wenn der Bildkopf 200 gekippt und angewinkelt wird, während er gegen den Unterleib gepresst wird, definieren die Koordinaten der Positionswandler 222 eine Ebene, die senkrecht zum Ultraschallabbildungsstrahl liegt. Demnach werden die 3D-Koordinaten der Bildebene von den Koordinaten der Positionswandler 222 ausgehend bestimmt. Es ist anzumerken, dass das Wandlergehäuse 220 mit dem Unterleib in Kontakt ist. Alternativ dazu kann der Bildkopf relativ zur Wandlerebene über einen Kardanring gelenkig verbunden sein, der mit elektronischen Potentiometern versehen ist, die den Winkel der Bildebene mit der Wandlerebene in Bezug bringen können, die flach entlang der Haut des Patienten gleitet. Sobald die Position und Ausrichtung der Bildebene im 3D-Raum relativ zum Koordinatensystem des Patienten bekannt ist, kann die typische tortenförmige Sektorabtastung, die vom Ultraschall-Bildkopf 200 erzeugt wird, in die 3D-Szene des Patienten eingefügt werden. Da die 3D-Szene dadurch eine perspektivische Wiedergabe des Patientenbezugsrahmens enthält, wird das tortenförmige Ultraschall-Sektorabtastbild korrekt in der 3D-Szene ausgerichtet, wie in 6 gezeigt.
  • Das Ultraschallbild kann in Echtzeit perspektivisch angezeigt werden, indem das Videosignal auf ein tortenförmiges Vieleck texturabgebildet wird, das in die 3D-Szene eingezeichnet ist. Graphikcomputer der aktuellen Generation erlauben diese Art von Echtzeitbildumwandlung. Es ist auch anzumerken, dass die Position aller Wandler relativ zueinander auf die oben erörterte Weise bestimmt werden kann. Eine der Wandlerpositionen wird als Ursprung gewählt, ein anderer als die X-Achse, und ein dritter als die Y-Achse, und ein vierter als die Z-Achse. Das Koordinatensystem kann vom Benutzer definiert werden. Die Ausrichtung der Bildebene wird anhand des Winkels der vier Bildkopf-Positionswandler 222 berechnet, und des Koordinatensystems, das von den Bezugswandlern definiert wird, die am Körper des Patienten angebracht sind.
  • Durch Visualisierung der Position der Bildebene relativ zum eingeführten chirurgischen Instrument kann der Bildkopf 200 schneller gehandhabt und angewinkelt werden, bis er das chirurgische Instrument (z.B. eine Amniozentesenadel) schneidet. Zu diesem Zweck werden mobile Wandler am chirurgischen Instrument befestigt, um eine Umrissgrafik des Instruments und seine aktuelle Position relativ zu den Bezugswandlern zu erhalten. Überdies wird der Schatten des chirurgischen Instruments im Echtzeit-Ultraschallbild mit Texturabbildung sichtbar, die Umrissgrafik des Instruments kann dort im Ultraschallbild hervorstechen, wo sein Schatten sichtbar ist. Dadurch kann ein Arzt sofort bestimmen, in welche Richtung der Bildkopf 200 anzuwinkeln ist oder das chirurgische Instrument zu bewegen ist, um eine korrekte Ausrichtung in der optischen Szene zu erhalten (6). Daher gewährleistet die vorliegende Erfindung sicherere, schnellere und präzisere chirurgische Eingriffe.
  • Der Erfindung wurde Bezug nehmend auf eine bevorzugte Ausführungsform beschrieben. Es ist selbstverständlich, dass anderen nach dem Durchlesen und Verständnis dieser Patentschrift Modifikationen und Abänderungen einfallen werden. Zum Beispiel können Schallwellen als Mittel zur Positionsbestimmung durch elektromagnetische Wellen ersetzt werden. Dementsprechend können die Ultraschallwandler durch geeignete elektromagnetische Wandler ersetzt werden. Es ist beabsichtigt, dass jede dieser Modifikationen und Änderungen umfasst ist, sofern sie in den Rahmen der beigefügten Ansprüche oder ihrer Äquivalente fällt.

Claims (11)

  1. Verfahren zur Erzeugung eines zweidimensionalen Ultraschallbildes in einer dreidimensionalen Ansichtsumgebung, das Verfahren umfassend das Befestigen einer Mehrzahl von mobilen Wandlermitteln (132) an einem auf die Erzeugung einer zweidimensionalen Echobildebene eingerichteten Ultraschallbildwandlermittel (204); die Befestigung einer Mehrzahl von Bezugswandlermitteln (134/224) an einer entsprechenden Mehrzahl von Messorten; das Erzeugen von dreidimensionalen Koordinaten für die mobilen Wandlermittel (132) relativ zu einem durch die Mehrzahl von Bezugswandlermitteln (134/224) eingerichteten Bezugsrahmen; das Einpassen der zweidimensionalen Echobildebene in die dreidimensionalen Koordinaten; das Anzeigen der zweidimensionalen Echobildebene an den dreidimensionalen Koordinaten relativ zu dem von der Mehrzahl von Bezugswandlermitteln (134/224) eingerichteten Bezugsrahmen; das Befestigen einer Mehrzahl von mobilen Wandlermitteln (132) an einem chirurgischen Instrumentmittel (130); das Erzeugen von dreidimensionalen Koordinaten für die an dem chirurgischen Instrumentmittel (130) befestigten mobilen Wandlermittel (132) relativ zu dem von der Mehrzahl von Bezugswandlermitteln (134/224) eingerichteten Bezugsrahmen; das Erzeugen eines Umrissbildes des chirurgischen Instrumentsmittels (130) anhand der dreidimensionalen Koordinaten der an dem chirurgischen Instrumentmittel (130) befestigten mobilen Wandlermittel (132); und das Anzeigen des Umrissbildes des Instrumentmittels (130) relativ zu dem von der Mehrzahl von Bezugswandlermitteln (134/224) eingerichteten Bezugsrahmen.
  2. Verfahren nach Anspruch 1, wobei einer aus der Mehrzahl von Messorten der Rücken eines Patienten und ein weiterer aus der Mehrzahl von Messorten der Unterleib eines Patienten ist.
  3. Verfahren nach Anspruch 1, wobei der Schritt des Anzeigens des Umrissbildes des Instrumentmittels (130) gleichzeitig das Umrissbild des chirurgischen Instrumentmittels (130) im gleichen Koordinatenrahmen wie die zweidimensionale Echobildebene anzeigt.
  4. System (100) zur Erzeugung eines zweidimensionalen Ultraschallbildes in einer dreidimensionalen Ansichtsumgebung, wobei das System Bildwandlermittel (204) zum Erzeugen einer 2-D-Echobildebene, an den Bildwandlermitteln (204) befestigte mobile Wandlermittel (132), eine Mehrzahl von an einer entsprechenden Mehrzahl von Messorten angeordnete Bezugswandlermittel (134/224) beinhaltet, wobei die Mehrzahl von Bezugswandlermitteln (134/224) einen Bezugsrahmen bilden; wobei das System (100) umfasst: Koordinatenerzeugungsmittel (112) zum Erzeugen von dreidimensionalen Koordinaten für die mobilen Wandlermittel (132) relativ zum Bezugsrahmen; Einpassungsmittel (116) zum Einpassen der zweidimensionalen Echobildebene in die dreidimensionalen Koordinaten; Anzeigemittel (122) zum Anzeigen der zweidimensionalen Echobildebene an den dreidimensionalen Koordinaten relativ zum Bezugsrahmen; eine Mehrzahl von mobilen Wandlermitteln (132), die auf die Befestigung an einem zugeordneten chirurgischen Instrumentmittel (130) eingerichtet sind; Koordinatenerzeugungsmittel (112) zum Erzeugen von dreidimensionalen Koordinaten für mindestens eines aus der Mehrzahl von mobilen Wandlermitteln (132), die an dem chirurgischen Instrumentmittel (130) befestigt sind, relativ zu dem durch die Mehrzahl von Bezugswandlermitteln (132/224) eingerichteten Bezugsrahmen; und Umrisserzeugungsmittel zum Erzeugen eines Umrissbildes des chirurgischen Instrumentmittels (130) anhand der an dem chirurgischen Instrumentmittel (130) befestigten mobilen Wandlermittel (132) und zum Anzeigen des Umrissbildes des chirurgischen Instrumentmittels (130) auf dem Anzeigemittel (122) relativ zum Bezugsrahmen.
  5. System (100) nach Anspruch 4, wobei eine aus der Mehrzahl von Messorten der Rücken eines Patienten und ein weiterer aus der Mehrzahl von Messorten der Unterleib eines Patienten ist.
  6. System (100) nach Anspruch 4, wobei die mobilen Wandlermittel (132) an einem abnehmbaren Gehäusemittel (220) angeordnet sind, das an dem chirurgischen Instrumentmittel (130) befestigt ist.
  7. System (100) nach Anspruch 4, wobei die mobilen Wandlermittel (132) aus mindestens drei Wandlern (222) zur Erzeugung der dreidimensionalen Koordinaten einer Ebene bestehen, die senkrecht zu einem von dem Bildwandlermittel (204) erzeugten Bildstrahl verläuft.
  8. System (100) nach Anspruch 7, wobei das Bildwandlermittel (204) beinhaltet: einen Bildkopf (200), der relativ zu den mobilen Wandlermitteln (132) gelenkig bewegt werden kann; und Potentiometermittel, mit denen der Winkel des Bildkopfes (200) relativ zu den dreidimensionalen Koordinaten der durch die mobilen Wandlermittel (132) erzeugten Ebene eingestellt wird.
  9. System (100) nach Anspruch 4, wobei die Mehrzahl der Bezugswandlermittel (132/224) mindestens drei Ultraschallwandler beinhaltet.
  10. System (100) nach Anspruch 4, wobei die Mehrzahl der Bezugswandlermittel (132/224) mindestens vier Ultraschallwandler beinhaltet.
  11. System (100) nach Anspruch 4, wobei das Umrisserzeugungsmittel das Umrissbild auf dem Anzeigemittel (122) im gleichen Koordinatenrahmen zur gleichen Zeit wie die zweidimensionale Echobildebene anzeigt.
DE69831138T 1997-03-11 1998-03-11 System zur darstellung eines zweidimensionalen ultraschallbildes in einer dreidimensionalen bildbetrachtungsumgebung Expired - Lifetime DE69831138T2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US815386 1997-03-11
US08/815,386 US5817022A (en) 1995-03-28 1997-03-11 System for displaying a 2-D ultrasound image within a 3-D viewing environment
PCT/IB1998/000519 WO1998040760A1 (en) 1997-03-11 1998-03-11 System for displaying a 2-d ultrasound image within a 3-d viewing environment

Publications (2)

Publication Number Publication Date
DE69831138D1 DE69831138D1 (de) 2005-09-15
DE69831138T2 true DE69831138T2 (de) 2006-04-13

Family

ID=25217640

Family Applications (1)

Application Number Title Priority Date Filing Date
DE69831138T Expired - Lifetime DE69831138T2 (de) 1997-03-11 1998-03-11 System zur darstellung eines zweidimensionalen ultraschallbildes in einer dreidimensionalen bildbetrachtungsumgebung

Country Status (7)

Country Link
US (1) US5817022A (de)
EP (1) EP0966691B1 (de)
AT (1) ATE301840T1 (de)
AU (1) AU6416898A (de)
DE (1) DE69831138T2 (de)
ES (1) ES2246529T3 (de)
WO (1) WO1998040760A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007046700A1 (de) * 2007-09-28 2009-04-16 Siemens Ag Ultraschallvorrichtung

Families Citing this family (227)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285898B1 (en) 1993-07-20 2001-09-04 Biosense, Inc. Cardiac electromechanics
US6983179B2 (en) 1993-07-20 2006-01-03 Biosense, Inc. Method for mapping a heart using catheters having ultrasonic position sensors
AU722539B2 (en) * 1995-07-16 2000-08-03 Ultra-Guide Ltd. Free-hand aiming of a needle guide
US6256529B1 (en) * 1995-07-26 2001-07-03 Burdette Medical Systems, Inc. Virtual reality 3D visualization for surgical procedures
US6915149B2 (en) 1996-01-08 2005-07-05 Biosense, Inc. Method of pacing a heart using implantable device
GB2329708B (en) * 1997-09-24 2002-05-08 Roke Manor Research Catheter localisation system
US7637948B2 (en) 1997-10-10 2009-12-29 Senorx, Inc. Tissue marking implant
US8668737B2 (en) 1997-10-10 2014-03-11 Senorx, Inc. Tissue marking implant
US6129670A (en) * 1997-11-24 2000-10-10 Burdette Medical Systems Real time brachytherapy spatial registration and visualization system
CA2333583C (en) 1997-11-24 2005-11-08 Everette C. Burdette Real time brachytherapy spatial registration and visualization system
ATE449581T1 (de) 1997-12-29 2009-12-15 The Cleveland Clinic Foundation System zur minimalinvasiven einführung einer herzklappen- bioprothese
US6126450A (en) * 1998-02-04 2000-10-03 Mitsubishi Denki Kabushiki Kaisha Medical simulator system and medical simulator notifying apparatus
US6012458A (en) * 1998-03-20 2000-01-11 Mo; Larry Y. L. Method and apparatus for tracking scan plane motion in free-hand three-dimensional ultrasound scanning using adaptive speckle correlation
US6161034A (en) * 1999-02-02 2000-12-12 Senorx, Inc. Methods and chemical preparations for time-limited marking of biopsy sites
US5934288A (en) * 1998-04-23 1999-08-10 General Electric Company Method and apparatus for displaying 3D ultrasound data using three modes of operation
US6363940B1 (en) 1998-05-14 2002-04-02 Calypso Medical Technologies, Inc. System and method for bracketing and removing tissue
US6950689B1 (en) 1998-08-03 2005-09-27 Boston Scientific Scimed, Inc. Dynamically alterable three-dimensional graphical model of a body region
US6117081A (en) * 1998-10-01 2000-09-12 Atl Ultrasound, Inc. Method for correcting blurring of spatially compounded ultrasonic diagnostic images
US6254601B1 (en) 1998-12-08 2001-07-03 Hysterx, Inc. Methods for occlusion of the uterine arteries
US7756304B2 (en) * 1998-12-30 2010-07-13 Siemens Medical Solutions Usa, Inc. Medical diagnostic ultrasonic imaging method and system for displaying multi-phase, multi-frame images
US6725083B1 (en) 1999-02-02 2004-04-20 Senorx, Inc. Tissue site markers for in VIVO imaging
US7983734B2 (en) 2003-05-23 2011-07-19 Senorx, Inc. Fibrous marker and intracorporeal delivery thereof
US8361082B2 (en) 1999-02-02 2013-01-29 Senorx, Inc. Marker delivery device with releasable plug
US8498693B2 (en) 1999-02-02 2013-07-30 Senorx, Inc. Intracorporeal marker and marker delivery device
US20090030309A1 (en) 2007-07-26 2009-01-29 Senorx, Inc. Deployment of polysaccharide markers
US9820824B2 (en) 1999-02-02 2017-11-21 Senorx, Inc. Deployment of polysaccharide markers for treating a site within a patent
US6862470B2 (en) 1999-02-02 2005-03-01 Senorx, Inc. Cavity-filling biopsy site markers
US7651505B2 (en) 2002-06-17 2010-01-26 Senorx, Inc. Plugged tip delivery for marker placement
US6106464A (en) * 1999-02-22 2000-08-22 Vanderbilt University Apparatus and method for bone surface-based registration of physical space with tomographic images and for guiding an instrument relative to anatomical sites in the image
US7575550B1 (en) 1999-03-11 2009-08-18 Biosense, Inc. Position sensing based on ultrasound emission
US7590441B2 (en) * 1999-03-11 2009-09-15 Biosense, Inc. Invasive medical device with position sensing and display
US7558616B2 (en) * 1999-03-11 2009-07-07 Biosense, Inc. Guidance of invasive medical procedures using implantable tags
US7549960B2 (en) * 1999-03-11 2009-06-23 Biosense, Inc. Implantable and insertable passive tags
ES2260901T3 (es) * 1999-03-17 2006-11-01 Synthes Ag Chur Dispositivo de planificacion y guia in situ de un injerto de ligamentos.
US8944070B2 (en) 1999-04-07 2015-02-03 Intuitive Surgical Operations, Inc. Non-force reflecting method for providing tool force information to a user of a telesurgical system
AU4601500A (en) * 1999-05-18 2000-12-05 Sonometrics Corporation System for incorporating sonomicrometer functions into medical instruments and implantable biomedical devices
US6575991B1 (en) 1999-06-17 2003-06-10 Inrad, Inc. Apparatus for the percutaneous marking of a lesion
US6443894B1 (en) * 1999-09-29 2002-09-03 Acuson Corporation Medical diagnostic ultrasound system and method for mapping surface data for three dimensional imaging
US6315724B1 (en) 1999-10-19 2001-11-13 Biomedicom Ltd 3-dimensional ultrasonic imaging
DE60040383D1 (de) * 1999-10-29 2008-11-13 Anges Mg Inc Gentherapie für diabetische ischämie
GB9928695D0 (en) * 1999-12-03 2000-02-02 Sinvent As Tool navigator
EP1110507A3 (de) * 1999-12-21 2001-10-31 EchoTech GmbH Verfahren sowie System zur Generierung von diagnostisch verwertbaren dreidimensionalen Ultraschallbilddatensätzen
US6506156B1 (en) 2000-01-19 2003-01-14 Vascular Control Systems, Inc Echogenic coating
US6515657B1 (en) 2000-02-11 2003-02-04 Claudio I. Zanelli Ultrasonic imager
US6550482B1 (en) 2000-04-21 2003-04-22 Vascular Control Systems, Inc. Methods for non-permanent occlusion of a uterine artery
US7223279B2 (en) 2000-04-21 2007-05-29 Vascular Control Systems, Inc. Methods for minimally-invasive, non-permanent occlusion of a uterine artery
US6558325B1 (en) 2000-07-13 2003-05-06 Acuson Corporation Medical diagnostic ultrasonic imaging method and system for displaying multi-phase, multi-frame images
EP1311226A4 (de) 2000-08-23 2008-12-17 Micronix Pty Ltd Katheterortungsvorrichtung und gebrauchsmethode
US6635065B2 (en) 2000-11-16 2003-10-21 Vascular Control Systems, Inc. Doppler directed suture ligation device and method
US6638286B1 (en) 2000-11-16 2003-10-28 Vascular Control Systems, Inc. Doppler directed suture ligation device and method
ATE456332T1 (de) 2000-11-17 2010-02-15 Calypso Medical Inc System zur lokalisierung und definition einer zielposition in einem menschlichen körper
EP1919388B1 (de) 2000-11-20 2012-12-26 Senorx, Inc. Gewebestellemarker für in vivo bilddarstellungen
DE10058538B4 (de) * 2000-11-24 2012-12-06 Mri Devices Daum Gmbh Vorrichtung für MRT-bildgesteuerte Prostata-Biopsie
US20020090119A1 (en) * 2001-01-08 2002-07-11 Motoaki Saito Displaying multiple slice images
DE10115341A1 (de) * 2001-03-28 2002-10-02 Philips Corp Intellectual Pty Verfahren und bildgebendes Ultraschallsystem zur Besimmung der Position eines Katheters
US7354444B2 (en) 2001-03-28 2008-04-08 Vascular Control Systems, Inc. Occlusion device with deployable paddles for detection and occlusion of blood vessels
WO2002078549A2 (en) 2001-03-28 2002-10-10 Vascular Control Systems, Inc. Method and apparatus for the detection and ligation of uterine arteries
US7327862B2 (en) * 2001-04-30 2008-02-05 Chase Medical, L.P. System and method for facilitating cardiac intervention
US7526112B2 (en) * 2001-04-30 2009-04-28 Chase Medical, L.P. System and method for facilitating cardiac intervention
US20020193685A1 (en) 2001-06-08 2002-12-19 Calypso Medical, Inc. Guided Radiation Therapy System
US7135978B2 (en) 2001-09-14 2006-11-14 Calypso Medical Technologies, Inc. Miniature resonating marker assembly
US6895267B2 (en) 2001-10-24 2005-05-17 Scimed Life Systems, Inc. Systems and methods for guiding and locating functional elements on medical devices positioned in a body
US6795732B2 (en) * 2001-10-30 2004-09-21 Medtronic, Inc. Implantable medical device employing sonomicrometer output signals for detection and measurement of cardiac mechanical function
US20050027323A1 (en) * 2001-10-30 2005-02-03 Medtronic, Inc. Implantable medical device for monitoring cardiac blood pressure and chamber dimension
EP1460938A4 (de) 2001-11-05 2006-07-26 Computerized Med Syst Inc Vorrichtung und verfahren zum anzeigen, führen und abzielen einer externen strahlentherapie
US8175680B2 (en) * 2001-11-09 2012-05-08 Boston Scientific Scimed, Inc. Systems and methods for guiding catheters using registered images
US6838990B2 (en) 2001-12-20 2005-01-04 Calypso Medical Technologies, Inc. System for excitation leadless miniature marker
US6812842B2 (en) 2001-12-20 2004-11-02 Calypso Medical Technologies, Inc. System for excitation of a leadless miniature marker
US6822570B2 (en) 2001-12-20 2004-11-23 Calypso Medical Technologies, Inc. System for spatially adjustable excitation of leadless miniature marker
US7207996B2 (en) * 2002-04-04 2007-04-24 Vascular Control Systems, Inc. Doppler directed suturing and compression device and method
US8244330B2 (en) * 2004-07-23 2012-08-14 Varian Medical Systems, Inc. Integrated radiation therapy systems and methods for treating a target in a patient
US7187800B2 (en) 2002-08-02 2007-03-06 Computerized Medical Systems, Inc. Method and apparatus for image segmentation using Jensen-Shannon divergence and Jensen-Renyi divergence
US20060036158A1 (en) 2003-11-17 2006-02-16 Inrad, Inc. Self-contained, self-piercing, side-expelling marking apparatus
US20040097961A1 (en) * 2002-11-19 2004-05-20 Vascular Control System Tenaculum for use with occlusion devices
US7172603B2 (en) * 2002-11-19 2007-02-06 Vascular Control Systems, Inc. Deployable constrictor for uterine artery occlusion
US7289839B2 (en) 2002-12-30 2007-10-30 Calypso Medical Technologies, Inc. Implantable marker with a leadless signal transmitter compatible for use in magnetic resonance devices
US6889833B2 (en) * 2002-12-30 2005-05-10 Calypso Medical Technologies, Inc. Packaged systems for implanting markers in a patient and methods for manufacturing and using such systems
WO2004068406A2 (en) * 2003-01-30 2004-08-12 Chase Medical, L.P. A method and system for image processing and contour assessment
US20050043609A1 (en) * 2003-01-30 2005-02-24 Gregory Murphy System and method for facilitating cardiac intervention
US7404821B2 (en) * 2003-01-30 2008-07-29 Vascular Control Systems, Inc. Treatment for post partum hemorrhage
US7651511B2 (en) 2003-02-05 2010-01-26 Vascular Control Systems, Inc. Vascular clamp for caesarian section
US7796789B2 (en) * 2003-03-27 2010-09-14 Koninklijke Philips Electronics N.V. Guidance of invasive medical devices by three dimensional ultrasonic imaging
EP1611457B1 (de) * 2003-03-27 2014-09-10 Koninklijke Philips N.V. Steuerung von invasiven medizinischen Vorrichtungen durch dreidimensionale Breitsicht Ultraschall-Bilderzeugung
US7333844B2 (en) 2003-03-28 2008-02-19 Vascular Control Systems, Inc. Uterine tissue monitoring device and method
US20040202694A1 (en) * 2003-04-11 2004-10-14 Vascular Control Systems, Inc. Embolic occlusion of uterine arteries
US7877133B2 (en) 2003-05-23 2011-01-25 Senorx, Inc. Marker or filler forming fluid
US20050273002A1 (en) 2004-06-04 2005-12-08 Goosen Ryan L Multi-mode imaging marker
US7325546B2 (en) * 2003-11-20 2008-02-05 Vascular Control Systems, Inc. Uterine artery occlusion device with cervical receptacle
US7686817B2 (en) 2003-11-25 2010-03-30 Vascular Control Systems, Inc. Occlusion device for asymmetrical uterine artery anatomy
US20070014452A1 (en) * 2003-12-01 2007-01-18 Mitta Suresh Method and system for image processing and assessment of a state of a heart
US8196589B2 (en) 2003-12-24 2012-06-12 Calypso Medical Technologies, Inc. Implantable marker with wireless signal transmitter
US20050154282A1 (en) * 2003-12-31 2005-07-14 Wenguang Li System and method for registering an image with a representation of a probe
US7966058B2 (en) * 2003-12-31 2011-06-21 General Electric Company System and method for registering an image with a representation of a probe
US20050154279A1 (en) * 2003-12-31 2005-07-14 Wenguang Li System and method for registering an image with a representation of a probe
US20050154286A1 (en) * 2004-01-02 2005-07-14 Neason Curtis G. System and method for receiving and displaying information pertaining to a patient
US7333643B2 (en) * 2004-01-30 2008-02-19 Chase Medical, L.P. System and method for facilitating cardiac intervention
US8494612B2 (en) * 2004-03-03 2013-07-23 Deutsches Krebsforschungszentrum Incremental real-time recording of tracked instruments in tubular organ structures inside the human body
US20050209524A1 (en) * 2004-03-10 2005-09-22 General Electric Company System and method for receiving and storing information pertaining to a patient
US20050228251A1 (en) * 2004-03-30 2005-10-13 General Electric Company System and method for displaying a three-dimensional image of an organ or structure inside the body
US20050222509A1 (en) * 2004-04-02 2005-10-06 General Electric Company Electrophysiology system and method
US20050228252A1 (en) * 2004-04-02 2005-10-13 General Electric Company Electrophysiology system and method
US20060015144A1 (en) * 2004-07-19 2006-01-19 Vascular Control Systems, Inc. Uterine artery occlusion staple
US7875036B2 (en) 2004-10-27 2011-01-25 Vascular Control Systems, Inc. Short term treatment for uterine disorder
US7976518B2 (en) 2005-01-13 2011-07-12 Corpak Medsystems, Inc. Tubing assembly and signal generator placement control device and method for use with catheter guidance systems
US10357328B2 (en) 2005-04-20 2019-07-23 Bard Peripheral Vascular, Inc. and Bard Shannon Limited Marking device with retractable cannula
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US8398541B2 (en) 2006-06-06 2013-03-19 Intuitive Surgical Operations, Inc. Interactive user interfaces for robotic minimally invasive surgical systems
CN101193603B (zh) 2005-06-06 2010-11-03 直观外科手术公司 腹腔镜的超声机器人外科手术系统
US11259870B2 (en) 2005-06-06 2022-03-01 Intuitive Surgical Operations, Inc. Interactive user interfaces for minimally invasive telesurgical systems
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
EP1932477A4 (de) * 2005-10-04 2010-07-21 Hitachi Medical Corp Ultraschallsonde und ultraschall-diagnosevorrichtung damit
CA2562580C (en) 2005-10-07 2014-04-29 Inrad, Inc. Drug-eluting tissue marker
CN101291635B (zh) * 2005-10-20 2013-03-27 直观外科手术操作公司 医用机器人系统中的计算机显示屏上的辅助图像显示和操纵
US9060678B2 (en) 2006-06-13 2015-06-23 Intuitive Surgical Operations, Inc. Minimally invasive surgical system
WO2007110076A1 (en) * 2006-03-24 2007-10-04 B-K Medical Aps Biopsy system
US20090192523A1 (en) 2006-06-29 2009-07-30 Intuitive Surgical, Inc. Synthetic representation of a surgical instrument
US9718190B2 (en) 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US10258425B2 (en) 2008-06-27 2019-04-16 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US10008017B2 (en) 2006-06-29 2018-06-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US8152726B2 (en) 2006-07-21 2012-04-10 Orthosoft Inc. Non-invasive tracking of bones for surgery
US20080021317A1 (en) * 2006-07-24 2008-01-24 Siemens Medical Solutions Usa, Inc. Ultrasound medical imaging with robotic assistance for volume imaging
US7728868B2 (en) 2006-08-02 2010-06-01 Inneroptic Technology, Inc. System and method of providing real-time dynamic imagery of a medical procedure site using multiple modalities
US8197494B2 (en) 2006-09-08 2012-06-12 Corpak Medsystems, Inc. Medical device position guidance system with wireless connectivity between a noninvasive device and an invasive device
US7889912B2 (en) * 2006-09-15 2011-02-15 The General Electric Company Method for real-time tracking of cardiac structures in 3D echocardiography
US8064987B2 (en) 2006-10-23 2011-11-22 C. R. Bard, Inc. Breast marker
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US9579077B2 (en) 2006-12-12 2017-02-28 C.R. Bard, Inc. Multiple imaging mode tissue marker
ES2432572T3 (es) 2006-12-18 2013-12-04 C.R. Bard, Inc. Marcador de biopsia con propiedades de obtención de imágenes generadas in situ
US9089256B2 (en) 2008-06-27 2015-07-28 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US9084623B2 (en) 2009-08-15 2015-07-21 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US9138129B2 (en) 2007-06-13 2015-09-22 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US8620473B2 (en) 2007-06-13 2013-12-31 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US9469034B2 (en) 2007-06-13 2016-10-18 Intuitive Surgical Operations, Inc. Method and system for switching modes of a robotic system
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US9456766B2 (en) 2007-11-26 2016-10-04 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
EP2992825B1 (de) 2007-11-26 2017-11-01 C.R. Bard Inc. Integriertes system zur intravaskulären platzierung eines katheters
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
WO2009094646A2 (en) 2008-01-24 2009-07-30 The University Of North Carolina At Chapel Hill Methods, systems, and computer readable media for image guided ablation
US20090287089A1 (en) * 2008-01-31 2009-11-19 The University Of Vermont And State Agriculture College Methods, devices and apparatus for imaging for reconstructing a 3-D image of an area of interest
WO2009099767A2 (en) 2008-01-31 2009-08-13 C.R. Bard, Inc. Biopsy tissue marker
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
US8340379B2 (en) 2008-03-07 2012-12-25 Inneroptic Technology, Inc. Systems and methods for displaying guidance data based on updated deformable imaging data
US20090238404A1 (en) * 2008-03-18 2009-09-24 Fredrik Orderud Methods for using deformable models for tracking structures in volumetric data
US20150223774A1 (en) * 2008-04-02 2015-08-13 Hitachi Medical Corporation Ultrasonic probe and ultrasonic diagnostic apparatus employing the same
WO2009149409A1 (en) 2008-06-05 2009-12-10 Calypso Medical Technologies, Inc. Motion compensation for medical imaging and associated systems and methods
US8864652B2 (en) 2008-06-27 2014-10-21 Intuitive Surgical Operations, Inc. Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip
EP2313143B1 (de) 2008-08-22 2014-09-24 C.R. Bard, Inc. Katheteranordnung mit ekg-sensor und magnetischen baugruppen
US9327061B2 (en) 2008-09-23 2016-05-03 Senorx, Inc. Porous bioabsorbable implant
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US20100168557A1 (en) * 2008-12-30 2010-07-01 Deno D Curtis Multi-electrode ablation sensing catheter and system
US8900150B2 (en) * 2008-12-30 2014-12-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Intracardiac imaging system utilizing a multipurpose catheter
WO2010077244A1 (en) 2008-12-30 2010-07-08 C.R. Bard Inc. Marker delivery device for tissue marker placement
US8948476B2 (en) 2010-12-20 2015-02-03 St. Jude Medical, Atrial Fibrillation Division, Inc. Determination of cardiac geometry responsive to doppler based imaging of blood flow characteristics
US9610118B2 (en) 2008-12-31 2017-04-04 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for the cancellation of motion artifacts in medical interventional navigation
US8641621B2 (en) 2009-02-17 2014-02-04 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures
US11464578B2 (en) 2009-02-17 2022-10-11 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures
US8554307B2 (en) 2010-04-12 2013-10-08 Inneroptic Technology, Inc. Image annotation in image-guided medical procedures
US8690776B2 (en) 2009-02-17 2014-04-08 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image guided surgery
US9125578B2 (en) 2009-06-12 2015-09-08 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US9339206B2 (en) 2009-06-12 2016-05-17 Bard Access Systems, Inc. Adaptor for endovascular electrocardiography
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
EP2464407A4 (de) 2009-08-10 2014-04-02 Bard Access Systems Inc Vorrichtungen und verfahren für endovaskuläre elektrographie
US9492927B2 (en) 2009-08-15 2016-11-15 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US8918211B2 (en) 2010-02-12 2014-12-23 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
EP2517622A3 (de) 2009-09-29 2013-04-24 C. R. Bard, Inc. Stillete zur Verwendung mit Vorrichtungen zur intravaskulären Positionierung eines Katheters
WO2011044421A1 (en) 2009-10-08 2011-04-14 C. R. Bard, Inc. Spacers for use with an ultrasound probe
US8617150B2 (en) 2010-05-14 2013-12-31 Liat Tsoref Reflectance-facilitated ultrasound treatment
US9242122B2 (en) 2010-05-14 2016-01-26 Liat Tsoref Reflectance-facilitated ultrasound treatment and monitoring
US8956346B2 (en) 2010-05-14 2015-02-17 Rainbow Medical, Ltd. Reflectance-facilitated ultrasound treatment and monitoring
EP4122385A1 (de) 2010-05-28 2023-01-25 C. R. Bard, Inc. Einsatzführungssystem für nadeln und medizinische komponenten
CA2806353A1 (en) 2010-08-09 2012-02-16 C.R. Bard Inc. Support and cover structures for an ultrasound probe head
KR101856267B1 (ko) 2010-08-20 2018-05-09 씨. 알. 바드, 인크. Ecg-기반 카테터 팁 배치의 재확인
US8801693B2 (en) 2010-10-29 2014-08-12 C. R. Bard, Inc. Bioimpedance-assisted placement of a medical device
US20120259209A1 (en) * 2011-04-11 2012-10-11 Harhen Edward P Ultrasound guided positioning of cardiac replacement valves
AU2012278809B2 (en) 2011-07-06 2016-09-29 C.R. Bard, Inc. Needle length determination and calibration for insertion guidance system
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
WO2013036772A1 (en) 2011-09-08 2013-03-14 Corpak Medsystems, Inc. Apparatus and method used with guidance system for feeding and suctioning
WO2013070775A1 (en) 2011-11-07 2013-05-16 C.R. Bard, Inc Ruggedized ultrasound hydrogel insert
WO2013116240A1 (en) 2012-01-30 2013-08-08 Inneroptic Technology, Inc. Multiple medical device guidance
US9707414B2 (en) 2012-02-14 2017-07-18 Rainbow Medical Ltd. Reflectance-facilitated ultrasound treatment and monitoring
WO2013134782A1 (en) 2012-03-09 2013-09-12 The Johns Hopkins University Photoacoustic tracking and registration in interventional ultrasound
US9498182B2 (en) 2012-05-22 2016-11-22 Covidien Lp Systems and methods for planning and navigation
US9439627B2 (en) 2012-05-22 2016-09-13 Covidien Lp Planning system and navigation system for an ablation procedure
US9439622B2 (en) 2012-05-22 2016-09-13 Covidien Lp Surgical navigation system
US8750568B2 (en) 2012-05-22 2014-06-10 Covidien Lp System and method for conformal ablation planning
US9439623B2 (en) 2012-05-22 2016-09-13 Covidien Lp Surgical planning system and navigation system
CN104837413B (zh) 2012-06-15 2018-09-11 C·R·巴德股份有限公司 检测超声探测器上可移除帽的装置及方法
US9770593B2 (en) 2012-11-05 2017-09-26 Pythagoras Medical Ltd. Patient selection using a transluminally-applied electric current
CN107334525B (zh) 2012-11-05 2019-10-08 毕达哥拉斯医疗有限公司 受控组织消融
US10507066B2 (en) 2013-02-15 2019-12-17 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US10314559B2 (en) 2013-03-14 2019-06-11 Inneroptic Technology, Inc. Medical device guidance
USD715942S1 (en) 2013-09-24 2014-10-21 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD716450S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD716451S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD715442S1 (en) 2013-09-24 2014-10-14 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
ES2811323T3 (es) 2014-02-06 2021-03-11 Bard Inc C R Sistemas para el guiado y la colocación de un dispositivo intravascular
US10478249B2 (en) 2014-05-07 2019-11-19 Pythagoras Medical Ltd. Controlled tissue ablation techniques
US9901406B2 (en) 2014-10-02 2018-02-27 Inneroptic Technology, Inc. Affected region display associated with a medical device
EP3009096A1 (de) * 2014-10-17 2016-04-20 Imactis Verfahren und System zur Anzeige der Position und Orientierung eines navigierten Linearinstruments im Bezug zu einem medizinischen 3D-Bild
US10188467B2 (en) 2014-12-12 2019-01-29 Inneroptic Technology, Inc. Surgical guidance intersection display
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US10806346B2 (en) 2015-02-09 2020-10-20 The Johns Hopkins University Photoacoustic tracking and registration in interventional ultrasound
US10383685B2 (en) 2015-05-07 2019-08-20 Pythagoras Medical Ltd. Techniques for use with nerve tissue
WO2016210325A1 (en) 2015-06-26 2016-12-29 C.R. Bard, Inc. Connector interface for ecg-based catheter positioning system
US9949700B2 (en) 2015-07-22 2018-04-24 Inneroptic Technology, Inc. Medical device approaches
WO2017097682A1 (en) 2015-12-07 2017-06-15 Koninklijke Philips N.V. An apparatus and method for detecting a tool
WO2017108490A1 (en) 2015-12-22 2017-06-29 Koninklijke Philips N.V. Ultrasound based tracking
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US9675319B1 (en) 2016-02-17 2017-06-13 Inneroptic Technology, Inc. Loupe display
WO2017199240A2 (en) 2016-05-18 2017-11-23 Pythagoras Medical Ltd. Helical catheter
US10278778B2 (en) 2016-10-27 2019-05-07 Inneroptic Technology, Inc. Medical device navigation using a virtual 3D space
US10588596B2 (en) * 2017-03-14 2020-03-17 Clarius Mobile Health Corp. Systems and methods for detecting and enhancing viewing of a needle during ultrasound imaging
CA3061132A1 (en) 2017-04-07 2018-10-11 Orthosoft Ulc Non-invasive system and method for tracking bones
US10980509B2 (en) * 2017-05-11 2021-04-20 Siemens Medical Solutions Usa, Inc. Deformable registration of preoperative volumes and intraoperative ultrasound images from a tracked transducer
US11259879B2 (en) 2017-08-01 2022-03-01 Inneroptic Technology, Inc. Selective transparency to assist medical device navigation
US11484365B2 (en) 2018-01-23 2022-11-01 Inneroptic Technology, Inc. Medical image guidance
WO2020033947A1 (en) 2018-08-10 2020-02-13 Covidien Lp Systems for ablation visualization
US11684426B2 (en) 2018-08-31 2023-06-27 Orthosoft Ulc System and method for tracking bones
US10992079B2 (en) 2018-10-16 2021-04-27 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
US11903650B2 (en) 2019-09-11 2024-02-20 Ardeshir Rastinehad Method for providing clinical support for surgical guidance during robotic surgery

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173228A (en) * 1977-05-16 1979-11-06 Applied Medical Devices Catheter locating device
US4304239A (en) * 1980-03-07 1981-12-08 The Kendall Company Esophageal probe with balloon electrode
US4431005A (en) * 1981-05-07 1984-02-14 Mccormick Laboratories, Inc. Method of and apparatus for determining very accurately the position of a device inside biological tissue
US4444195A (en) * 1981-11-02 1984-04-24 Cordis Corporation Cardiac lead having multiple ring electrodes
US4499493A (en) * 1983-02-22 1985-02-12 The Board Of Trustees Of The Leland Stanford Junior University Multiple measurement noise reducing system using artifact edge identification and selective signal processing
US4613866A (en) * 1983-05-13 1986-09-23 Mcdonnell Douglas Corporation Three dimensional digitizer with electromagnetic coupling
US4812976A (en) * 1983-07-22 1989-03-14 Lundy Research Laboratories, Inc. Method and apparatus for characterizing the unknown state of a physical system
US4522212A (en) * 1983-11-14 1985-06-11 Mansfield Scientific, Inc. Endocardial electrode
DE3581545D1 (de) * 1984-02-21 1991-03-07 Travenol Gmbh Verfahren und vorrichtung zum messen des ortes mehrerer messpunkte mit hilfe von ultraschallimpulsen.
US4573473A (en) * 1984-04-13 1986-03-04 Cordis Corporation Cardiac mapping probe
US4697595A (en) * 1984-07-24 1987-10-06 Telectronics N.V. Ultrasonically marked cardiac catheters
US4628937A (en) * 1984-08-02 1986-12-16 Cordis Corporation Mapping electrode assembly
US4649924A (en) * 1984-08-14 1987-03-17 Consiglio Nazionale Delle Ricerche Method for the detection of intracardiac electrical potential fields
US4699147A (en) * 1985-09-25 1987-10-13 Cordis Corporation Intraventricular multielectrode cardial mapping probe and method for using same
US4821731A (en) * 1986-04-25 1989-04-18 Intra-Sonix, Inc. Acoustic image system and method
US4945305A (en) * 1986-10-09 1990-07-31 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
US4940064A (en) * 1986-11-14 1990-07-10 Desai Jawahar M Catheter for mapping and ablation and method therefor
US4922912A (en) * 1987-10-21 1990-05-08 Hideto Watanabe MAP catheter
FR2622098B1 (fr) * 1987-10-27 1990-03-16 Glace Christian Procede et sonde azimutale pour reperer le point d'emergence des tachycardies ventriculaires
US4932414A (en) * 1987-11-02 1990-06-12 Cornell Research Foundation, Inc. System of therapeutic ultrasound and real-time ultrasonic scanning
US4777955A (en) * 1987-11-02 1988-10-18 Cordis Corporation Left ventricle mapping probe
GB2212267B (en) * 1987-11-11 1992-07-29 Circulation Res Ltd Methods and apparatus for the examination and treatment of internal organs
US4899750A (en) * 1988-04-19 1990-02-13 Siemens-Pacesetter, Inc. Lead impedance scanning system for pacemakers
US5000190A (en) * 1988-06-22 1991-03-19 The Cleveland Clinic Foundation Continuous cardiac output by impedance measurements in the heart
US5054496A (en) * 1988-07-15 1991-10-08 China-Japan Friendship Hospital Method and apparatus for recording and analyzing body surface electrocardiographic peak maps
US5025786A (en) * 1988-07-21 1991-06-25 Siegel Sharon B Intracardiac catheter and method for detecting and diagnosing myocardial ischemia
CA1292572C (en) * 1988-10-25 1991-11-26 Fernando C. Lebron Cardiac mapping system simulator
US5159931A (en) * 1988-11-25 1992-11-03 Riccardo Pini Apparatus for obtaining a three-dimensional reconstruction of anatomic structures through the acquisition of echographic images
DE3904914A1 (de) * 1989-02-17 1990-08-23 Wolfgang Brunner Verfahren und vorrichtung zur fehlerverminderung bei der messung raeumlicher bewegung von messpunkten mittels ultraschallsignalen
US5016173A (en) * 1989-04-13 1991-05-14 Vanguard Imaging Ltd. Apparatus and method for monitoring visually accessible surfaces of the body
US5056517A (en) * 1989-07-24 1991-10-15 Consiglio Nazionale Delle Ricerche Biomagnetically localizable multipurpose catheter and method for magnetocardiographic guided intracardiac mapping, biopsy and ablation of cardiac arrhythmias
US5104393A (en) * 1989-08-30 1992-04-14 Angelase, Inc. Catheter
US5315512A (en) * 1989-09-01 1994-05-24 Montefiore Medical Center Apparatus and method for generating image representations of a body utilizing an ultrasonic imaging subsystem and a three-dimensional digitizer subsystem
US5220924A (en) * 1989-09-28 1993-06-22 Frazin Leon J Doppler-guided retrograde catheterization using transducer equipped guide wire
EP0419729A1 (de) * 1989-09-29 1991-04-03 Siemens Aktiengesellschaft Ortung eines Katheters mittels nichtionisierender Felder
US5012814A (en) * 1989-11-09 1991-05-07 Instromedix, Inc. Implantable-defibrillator pulse detection-triggered ECG monitoring method and apparatus
DE4029829A1 (de) * 1990-09-20 1992-04-02 Dornier Medizintechnik Dreidimensionale darstellung von ultraschall-bildern
US5154501A (en) * 1990-10-19 1992-10-13 Angelase, Inc. Process for identification of an active site of ventricular tachycardia and for electrode attachment of an endocardial defibrilator
US5172699A (en) * 1990-10-19 1992-12-22 Angelase, Inc. Process of identification of a ventricular tachycardia (VT) active site and an ablation catheter system
US5054492A (en) * 1990-12-17 1991-10-08 Cardiovascular Imaging Systems, Inc. Ultrasonic imaging catheter having rotational image correlation
US5156151A (en) * 1991-02-15 1992-10-20 Cardiac Pathways Corporation Endocardial mapping and ablation system and catheter probe
US5161536A (en) * 1991-03-22 1992-11-10 Catheter Technology Ultrasonic position indicating apparatus and methods
DE4119150A1 (de) * 1991-06-11 1992-12-17 Brunner Wolfgang Messanordnung fuer die ganganalyse
US5246016A (en) * 1991-11-08 1993-09-21 Baxter International Inc. Transport catheter and multiple probe analysis method
US5222501A (en) * 1992-01-31 1993-06-29 Duke University Methods for the diagnosis and ablation treatment of ventricular tachycardia
US5295484A (en) * 1992-05-19 1994-03-22 Arizona Board Of Regents For And On Behalf Of The University Of Arizona Apparatus and method for intra-cardiac ablation of arrhythmias
US5341807A (en) * 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
US5297549A (en) * 1992-09-23 1994-03-29 Endocardial Therapeutics, Inc. Endocardial mapping system
US5550726A (en) * 1992-10-08 1996-08-27 Ushio U-Tech Inc. Automatic control system for lighting projector
US5357956A (en) * 1992-11-13 1994-10-25 American Cardiac Ablation Co., Inc. Apparatus and method for monitoring endocardial signal during ablation
US5517990A (en) * 1992-11-30 1996-05-21 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
US5379769A (en) * 1992-11-30 1995-01-10 Hitachi Medical Corporation Ultrasonic diagnostic apparatus for displaying an image in a three-dimensional image and in a real time image and a display method thereof
CA2110148C (en) * 1992-12-24 1999-10-05 Aaron Fenster Three-dimensional ultrasound imaging system
US5391199A (en) * 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5398691A (en) * 1993-09-03 1995-03-21 University Of Washington Method and apparatus for three-dimensional translumenal ultrasonic imaging
US5558091A (en) * 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
ES2144123T3 (es) * 1994-08-19 2000-06-01 Biosense Inc Sistemas medicos de diagnosis, de tratamiento y de imagen.
FR2735966B1 (fr) * 1994-11-10 1998-02-06 By Heart Procede echographique et dispositif de mise en oeuvre pour echographie tridimensionnelle du coeur
US5485842A (en) * 1994-11-30 1996-01-23 Advanced Technology Laboratories, Inc. Ultrasonic diagnostic scan conversion for three dimensional display processing
US5515853A (en) * 1995-03-28 1996-05-14 Sonometrics Corporation Three-dimensional digital ultrasound tracking system
US5582173A (en) * 1995-09-18 1996-12-10 Siemens Medical Systems, Inc. System and method for 3-D medical imaging using 2-D scan data

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007046700A1 (de) * 2007-09-28 2009-04-16 Siemens Ag Ultraschallvorrichtung
US8535230B2 (en) 2007-09-28 2013-09-17 Siemens Aktiengesellschaft Ultrasound device

Also Published As

Publication number Publication date
EP0966691A1 (de) 1999-12-29
US5817022A (en) 1998-10-06
EP0966691B1 (de) 2005-08-10
JP3576565B2 (ja) 2004-10-13
JP2000512188A (ja) 2000-09-19
WO1998040760A1 (en) 1998-09-17
ES2246529T3 (es) 2006-02-16
ATE301840T1 (de) 2005-08-15
DE69831138D1 (de) 2005-09-15
AU6416898A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
DE69831138T2 (de) System zur darstellung eines zweidimensionalen ultraschallbildes in einer dreidimensionalen bildbetrachtungsumgebung
DE19531419B4 (de) Verfahren zur Erzeugung anatomischer M-Modus-Anzeigebilder
DE60010309T2 (de) Verfahren zur echtzeitdarstellung von medizinischen bildern
DE69721045T2 (de) Vorrichtung und verfahren zur darstellung von ultraschallbildern
DE60212313T2 (de) Vorrichtung zur Ultraschall-Bilddarstelllung einer Biopsiekanüle
DE60316584T2 (de) Ultraschallabbildungssystem und verfahren für eine benutzergeführte dreidimensionale volumenscansequenz
DE102005037806A1 (de) Verfahren und Vorrichtung zur Vergrösserung des Sichtfelds bei der Ultraschallbildgebung
DE4344312C2 (de) Dreidimensionales Ultraschall-Abbildungssystem
US7433504B2 (en) User interactive method for indicating a region of interest
DE102016105690A1 (de) Dreidimensionales Volumen von Interesse für die Ultraschall-Bildgebung
CN105407811A (zh) 用于超声图像的3d获取的方法和系统
EP1110102B1 (de) Verfahren und vorrichtung zur aufnahme von ultraschallbildern
DE102009026110A1 (de) Vorrichtung und Verfahren zur Darstellung eines Ultraschallmesskopfes relativ zu einem Objekt
DE4419551A1 (de) Hochauflösendes und kontrastreiches Ultraschallmammografie-System mit Herzmonitor und Grenzgruppenabtaster zur elektronischen Abtastung
DE202004021722U1 (de) Vorrichtung zum Gewinnen eines Volumenscans eines sich periodisch bewegenden Objekts
DE112014005949T5 (de) System zur automatischen Erkennung einer Nadelneukalibrierung
DE102010049324A1 (de) Fötus-Rendering in der medizinischen diagnostischen Ultraschallbildgebung
DE19819892A1 (de) Verfahren und Einrichtung zum Segmentieren von B-Mode-Intensitätsdaten unter Verwendung von Doppler-Verschiebungsdaten bei dreidimensionaler Ultraschall-Bildgebung
US20150320391A1 (en) Ultrasonic diagnostic device and medical image processing device
CN106030657B (zh) 医学4d成像中的运动自适应可视化
DE4029829C2 (de)
DE19819793A1 (de) Verfahren und Einrichtung zum Segmentieren von Farbströmungs-Mode-Daten unter Verwendung von Geschwindigkeitsinformation bei der dreidimensionalen Ultraschall-Bildgebung
EP1833023B1 (de) Verfahren und Vorrichtung zur Rekonstruktion und Darstellung von mehrdimensionalen Objekten aus ein- oder zweidimensionalen Bilddaten
DE10254907B4 (de) Verfahren zur Oberflächenkonturierung eines dreidimensionalen Abbildes
DE102014009733A1 (de) Animation zum Übertragen von räumlichen Beziehungen bei einer multiplanaren Rekonstruktion

Legal Events

Date Code Title Description
8364 No opposition during term of opposition