DE929350C - Process for the production of semiconducting material - Google Patents

Process for the production of semiconducting material

Info

Publication number
DE929350C
DE929350C DEN5546A DEN0005546A DE929350C DE 929350 C DE929350 C DE 929350C DE N5546 A DEN5546 A DE N5546A DE N0005546 A DEN0005546 A DE N0005546A DE 929350 C DE929350 C DE 929350C
Authority
DE
Germany
Prior art keywords
tio
bao
air
starting material
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DEN5546A
Other languages
German (de)
Inventor
Pieter Willem Haayman
Hendrik Anne Klasens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Philips Gloeilampenfabrieken NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Gloeilampenfabrieken NV filed Critical Philips Gloeilampenfabrieken NV
Application granted granted Critical
Publication of DE929350C publication Critical patent/DE929350C/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • H01C7/025Perovskites, e.g. titanates

Description

AUSGEGEBEN AM 23. JUNI 1955ISSUED JUNE 23, 1955

N 5546 VIb j8obN 5546 VIb j8ob

Die Erfindung bezieht sich auf ein gesintertes, halbleiteudes Material, insbesondere auf einen elektrischen Widerstand.The invention relates to a sintered, semiconducting material, in particular an electrical one Resistance.

Halbleitende Materialien haben häufig einen hohen negativen Temperaturkoeffizienten des Widerstandes. Xur in einigen Fällen ist es gelungen, solche Materialien mit einem positiven oder einem geringen Temperaturkoeffizienten herzustellen. Semiconducting materials often have a high negative temperature coefficient Resistance. Only in a few cases has it been possible to obtain such materials with a positive or a low temperature coefficient.

Es ist bekannt, daß Widerstände mit positiven Temperaturkoeffizienten hergestellt werden können, indem Erdalkalititanate mit Perowskitstruktur, wie z. B. StiOiitiummetatitanat, bei Temperaturen über 14000, besonders zwischen 1600 und 1800°, reduzierend gebrannt werden. Zwischen 20 und 4000 zeigt ihr Widerstandswert eine Zunahme um einen Faktor 4.2, d. h. daß der Temperaturkoeffizient einen mittleren Wert von + o.8°/o pro Grad Celsius hat.It is known that resistors with positive temperature coefficients can be produced by using alkaline earth titanates with a perovskite structure, such as. B. StiOiitiummetatitanat, be calcined reducing at temperatures above 1400 0 , especially between 1600 and 1800 °. Between 20 and 400 0 their resistance value shows an increase by a factor of 4.2, ie that the temperature coefficient has an average value of + 0.8% per degree Celsius.

Es ist weiter bekannt, daß Widerstände mit einem geringen Temperaturkoeffizienten aus einem Gemisch eines isolierenden Oxyds, wie Magnesiumoxyd, und maximal 3% eines Oxyds eines der Elemente Titan, Vanadium oder Niob hergestellt werden können, indem das Gemisch bei Temperaturen über 17000, vorzugsweise bei 18000, reduzierend gesintert wird.It is also known that resistors with a low temperature coefficient from a mixture of an insulating oxide, such as magnesium oxide, and a maximum of 3% of an oxide of one of the elements titanium, vanadium or niobium can be produced by the mixture at temperatures above 1700 0 , preferably at 1800 0 , is sintered in a reducing manner.

Ein Nachteil dieser beiden bekannten Verfahren ist der, daß sehr hohe Temperaturen angewendet werden müssen. Ein weiterer Nachteil des erstgenannten Vorschlags ist der, daß ein besonders hoher positiverTemperaturkoeffizient nicht erreicht wird.A disadvantage of these two known methods is that very high temperatures are used Need to become. Another disadvantage of the first-mentioned proposal is that a special high positive temperature coefficient is not reached.

Gemäß der Erfindung wird ein halbleitendes Material, d. h. ein Material mit einem spezifischen Widerstand von weniger als io° Qcm hergestellt, indem einer im wesentlichen aus Bariumtitanat bestehenden Masse oder einem Gemisch von Stoffen,According to the invention, a semiconducting material, ie a material with a specific resistance of less than 10 ° Ωcm, is produced by adding a mass consisting essentially of barium titanate or a mixture of substances,

das bei Erhitzung eine solche Masse zu ergeben vermag, mindestens eines der Elemente Yttrium, Wismut, seltene Erdmetalle, Antimon und Wolfram vorzugsweise in Form einer Verbindung zugesetzt wird und indem, nach Formgebung bei einer Temperatur zwischen 1050 und 1500°, vorzugsweise zwischen 1300 und 14000, in einer Atmosphäre gesintert wird1, deren Sauerstoffteildruck bei der Sintertemperatur mindestens 0,05 mm beträgt.which is able to produce such a mass when heated, at least one of the elements yttrium, bismuth, rare earth metals, antimony and tungsten is added, preferably in the form of a compound and by, after shaping at a temperature between 1050 and 1500 °, preferably between 1300 and 1400 0 , is sintered in an atmosphere 1 whose oxygen partial pressure at the sintering temperature is at least 0.05 mm.

Der Wert des spezifischen Widerstandes ist abhängig von der Art und der Menge der zugesetzten Stoffe. Zum Erreichen praktisch brauchbarer Werte des spezifischen Widerstandes und des Temperaturkoeffizienten können Yttrium und Wismut in einer Menge von maximal 1,5 Atomprozent per Mol BaTi O3 und die übrigen erwähnten Elemente in einer Menge von maximal 0,8 Atomprozent zugesetzt werden. Die seltenen Erdmetalle können auch in Form technischer Gemische verwendet werden.The value of the specific resistance depends on the type and amount of substances added. To achieve practically useful values of the specific resistance and the temperature coefficient, yttrium and bismuth can be added in an amount of a maximum of 1.5 atomic percent per mole of BaTi O 3 and the other mentioned elements in an amount of a maximum of 0.8 atomic percent. The rare earth metals can also be used in the form of technical mixtures.

Vollständigkeitshalber sei hier bemerkt, daß Versuche mit den seltenen Erdmetallen La, Ce, Pr, Nd, Sm, Gd und Er gemacht worden sind. Ee kann jedoch angenommen werden, daß auch die übrigen seltenen Erdmetalle eine ähnliche Wirkung haben.For the sake of completeness it should be noted here that experiments with the rare earth metals La, Ce, Pr, Nd, Sm, Gd and Er. Ee can however, it is believed that the other rare earth metals also have a similar effect.

Die Sinteratmosphäre kann z. B. aus Luft oder Kohlensäure oder aber aus Stickstoff oder Edelgasen bestehen, sofern der Sauerstoffteildruck mindestens 0,05 mm beträgt.The sintering atmosphere can, for. B. from air or carbon dioxide or from nitrogen or noble gases exist, provided that the partial pressure of oxygen is at least 0.05 mm.

Auf diese Weise können auf Basis von Bariumtitanat Widerstandsmaterialien hergestellt werden, die einen Temperaturkoeffizienten z. B. von 20fl/o pro Grad Celsius haben.In this way, resistance materials can be produced on the basis of barium titanate, which have a temperature coefficient z. B. of 20 fl / o per degree Celsius.

Selbstverständlich kann die Reinheit der Ausgangsstoffe das Ergebnis beeinflussen. Besonders Kalium und Natrium, aber z. B. auch Kupfer, Mangan und Chrom können sich störend auswirken.Of course, the purity of the raw materials can influence the result. Particularly Potassium and sodium, but e.g. B. also copper, manganese and chromium can have a disruptive effect.

Es ist im allgemeinen vorteilhaft, daß das Ausgangsmaterial, berechnet als Metatitanat, einen Überschuß an Titanoxyd enthält, der bis zu 20 Molprozent, vorzugsweise zwischen 2 und 6 Molprozent betragen kann. Infolge eines großen Überschusses an Titanoxyd steigert sich jedoch die Sintertemperatur. Falls eine Wismutverbindung zugesetzt wird, ist es auch möglich, einen geringen Überschuß z. B. bis zu etwa 1 Molprozent an basischem Oxyd im Ausgangsmaterial zu verwenden.It is generally advantageous that the starting material, calculated as metatitanate, be in excess of titanium oxide, which is up to 20 mol percent, preferably between 2 and 6 mol percent can be. However, as a result of a large excess of titanium oxide, the sintering temperature increases. If a bismuth compound is added, it is also possible to use a small excess, e.g. B. to use up to about 1 mole percent of basic oxide in the starting material.

Im Ausgangsmaterial kann das Barium zur Hälfte durch Strontium, zu einem Drittel durch Calcium und zu einem Sechstel durch Blei ersetzt werden. Weiter kann das Titan zu einem Fünftel durch Silicium, Zirkon oder Zinn und zu einem Zehntel durch Germanium ersetzt werden. Außerdem können Kieselsäure und Borsäure in Mengen bis etwa 20 Molprozent ohne Bedenken zugesetzt werden. Infolge dieser Zusätze wird die Sintertemperatur und zuweilen auch der spezifische Widerstand herabgemindert. Für Gemische der vorerwähnten Zusammensetzung (Ersetzungen, Zusätze) können die maximal zulässigen Gehalte noch etwas von den obenerwähnten Mengen abweichen. Die Ausgangsmaterialien und auch die zugesetzten Stoffe können in Form von Oxyden, zusammengesetzten Oxyden oder Verbindungen, die bei Erhitzung in Oxyde übergehen, z. B. Karbonate, verwendet werden.In the starting material, half of the barium can be made up by strontium, one third by calcium and be replaced by one sixth with lead. Furthermore, one fifth of titanium can be replaced by silicon, Zircon or tin and one-tenth replaced by germanium. Also can Silicic acid and boric acid in amounts of up to about 20 mol percent can be added without concern. As a result of these additives, the sintering temperature and sometimes the specific resistance are reduced. For mixtures of the above-mentioned composition (substitutions, additives), the maximum permissible contents can be slightly different from the the above-mentioned quantities differ. The raw materials and also the added substances can be in the form of oxides, compound oxides or compounds which convert to oxides when heated, e.g. B. carbonates can be used.

Infolge der vorerwähnten Ersetzungen im Ausgangsmaterial und der Zusätze zu diesem kann der Anfang des Temperaturbereiches mit positivem Temperaturkoeffizienten verschoben werden, so daß er z. B. bei Zimmertemperatur oder unterhalb dieser zu liegen kommt. Auch kann infolgedessen eine Abflachung der Widerstandstemperaturkurve auftreten, wodurch sogar praktisch temperaturunabhängige Widerstände entstehen.As a result of the aforementioned substitutions in the starting material and the additions to this, the The beginning of the temperature range can be shifted with a positive temperature coefficient, so that he z. B. comes to lie at room temperature or below this. This can also result in a flattening the resistance temperature curve occur, making it even practically temperature-independent Resistance arises.

Die aus den vorbeschriebenen Materialien hergestellten Widerstände sind besonders wichtig für Stromstabilisierung, Sicherung vor Überlastung, Temperaturregelung usw.The resistors made from the materials described above are particularly important for Current stabilization, protection against overload, temperature control, etc.

Die Erfindung wird an Hand einer Anzahl Beispiele in der nachstehenden Tabelle näher erläutert. In dieser Tabelle ist die Zusammensetzung des Ausgangsmaterials in Molprozent der Oxyde und auch der Zusatz nach der Erfindung angegeben. Weiter sind die Sinterverhältnisse angedeutet und die Widerstandseigenschaften, d. h. der spezifische Widerstand bei Zimmertemperatur, der Temperaturkoeffizient und die Temperaturstrecke, in der er auftritt, angegeben. Schließlich gibt die letzte Spalte Bezugszahlen an, die auf die Widerstandstemperaturkennlinien einiger Präparate hinweisen, die in der Zeichnung dargestellt sind.The invention is explained in more detail using a number of examples in the table below. In this table the composition of the starting material is in mole percent of the oxides and also the addition specified according to the invention. The sintering conditions are also indicated and the Resistance properties, d. H. the specific resistance at room temperature, the temperature coefficient and the temperature range in which it occurs. Finally there is the last one Column references to the resistance temperature characteristics of some of the preparations shown in the drawing.

Alle Präparate sind annähernd auf folgende Weise verarbeitet. Die pulvrigen Ausgangsstoffe wurden mit dem Zusatz in einer Kugelmühle gemischt. Das entstandene Gemisch wurde dann vorzugsweise zunächst auf eine Temperatur von 900 bis 10000 während etwa 1 Stunde vorerliitzt. Darauf wurde die Masse z.T. durch Pressen oder in no einer Strangpresse in in der keramischen Technik üblicher Weise in die erwünschte Form gebracht undAll preparations are processed approximately in the following way. The powdery starting materials were mixed with the additive in a ball mill. The resulting mixture was then preferably initially pre-etched to a temperature of 900 to 1000 0 for about 1 hour. The mass was then brought into the desired shape, partly by pressing or in an extrusion press in the manner customary in ceramic technology

Nummer number

Zusammensetzung
Ausgangsmaterial
composition
Source material

Zusatz
Atomprozent
additive
Atomic percent

Sintertempe ratur Sinterzeit Sintering temperature sintering time

Atmosphäre the atmosphere

Spezifischer
Widerstand
More specific
resistance

cmcm

Temperatur
koeffizient
in Prozent
temperature
coefficient
in percent

per 0Cper 0 C

Temperaturstrecke Temperature range

Kurve Xr.Curve Xr.

49 BaO -f 51 TiO2 49 BaO -f 51 TiO 2

49 BaO + 51 TiO2 49 BaO + 51 TiO 2

50 BaO + 50 TiO2 50 BaO + 50 TiO 2

50,12 BaO -f 49,88 TiO2 50.12 BaO -f 49.88 TiO 2

Y ι Bi o,6 Bi 0,6 Bi 0,6Y ι Bi o, 6 Bi 0.6 Bi 0.6

1320 1320 1320 1320 Luft
Luft
Luft
Luft
1320 1320 1320 1320 air
air
air
air

200200

6060

18001800

20002000

18,0
7»3 3.7
18.0
7 »3 3.7

120 bis 160
125 bis 180
100 bis 180
125 bis 180
120 to 160
125 to 180
100 to 180
125 to 180

Xuminer Xuminer

Zusammensetzung AusgangsmaterialComposition starting material

tempetempe SinterSinter AtmoAtmosphere SpeziSpeci TempeTempe Zusatzadditive raturrature zeitTime sphäresphere fischerfisherman raturrature Atomatom 0C 0 C WiderContrary koeffizientcoefficient prozentpercent Std.Hours. standwas standing in Prozentin percent cmcm per ° Cper ° C

Temperaturstrecke Temperature range

KurveCurve

Nr.No.

5
6
5
6th
ίοίο 77th 88th 99 1515th IO
II
IO
II
1212th 2020th 1414th 1515th

if)if)

l8l8

2020th

2121

23 2423 24

-5-5

26 2726th 27

29
30
29
30th

31
32
31
32

33 34 3533 34 35

49 BaO - 51 TiO2 49 BaO - 51 TiO 2

49,5 BaO - 50,5 TiO2 49.5 BaO - 50.5 TiO 2

49,75 BaO - 50,25 TiO2 49.75 BaO - 50.25 TiO 2

49BaO - 51 TiO2 49BaO - 51 TiO 2

49 BaO - 51 TiO2 49 BaO - 51 TiO 2

48,75 BaO - 51,25 TiO2 48.75 BaO - 51.25 TiO 2

48,75 BaO - 51,25 TiO2 48.75 BaO - 51.25 TiO 2

48,75 BaO - 51,25 TiO2 48.75 BaO - 51.25 TiO 2

49 BaO -r 51 TiO2 49 BaO -r 51 TiO 2

49,5 BaO - 50,5TiO2 49.5 BaO - 50.5 TiO 2

49,75 BaO - 50,25 TiO2 49.75 BaO - 50.25 TiO 2

49,25 BaO ~ 50,75 TiO2 49.25 BaO ~ 50.75 TiO 2

48,25 BaO - 51,75 TiO2 48.25 BaO - 51.75 TiO 2

46,5 BaO - 53,5 TiO2 46.5 BaO - 53.5 TiO 2

43,31 BaO -~ 6,19 SrO -j- 50,5 TiO2 43.31 BaO - ~ 6.19 SrO -j- 50.5 TiO 2

37,13 BaO - 12,37 SrO37.13 BaO - 12.37 SrO

™- 5°,5 TiO2 — 0,5 Gewichtsprozent SiO2 ™ - 5 °, 5 TiO 2 - 0.5 weight percent SiO 2

37,13BaO- 12,37 SrO37.13BaO- 12.37 SrO

- 50,5 TiO2 — 2 Gewichtsprozent SiO., - 50.5 TiO 2 - 2 percent by weight SiO.,

30,63 BaO — 18,37 SrO + 51 TiO2 -f- 2 Gewichtsprozent SiO2 30.63 BaO - 18.37 SrO + 51 TiO 2 -f- 2 weight percent SiO 2

30,63 BaO -4- iS,37 SrO - 51 TiO2 30.63 BaO -4- iS, 37 SrO- 51 TiO 2

- 2 Gewichtsprozent SiO2 - 2 percent by weight SiO 2

42,66BaO - 6,09 CaO42.66BaO - 6.09 CaO

- 51,25 TiO2 - 51.25 TiO 2

32,13 BaO — 17,32 CaO32.13 BaO - 17.32 CaO

- 50,5 TiO2 - 50.5 TiO 2

47,03 BaO - 2,47 PbO47.03 BaO - 2.47 PbO

- 50,5 TiO2 - 50.5 TiO 2

43,88 BaO - 4,87 PbO43.88 BaO - 4.87 PbO

- 51,25 TiO2 - 51.25 TiO 2

49,5 BaO — 48 TiO2 — 2,5 SiO2 .. 49,5 BaO - 43 TiO2 - 7,5 SiO2 49,5 BaO — 48 TiO2 -ί- 2,5 GeO2 .. 49,5 BaO - 48 TiO2 -r 2,5 ZrO2 .. 49,5 BaO -r 43 TiO2 -r 7,5 ZrO2 ..49.5 BaO - 48 TiO 2 - 2.5 SiO 2 .. 49.5 BaO - 43 TiO 2 - 7.5 SiO 2 49.5 BaO - 48 TiO 2 -ί- 2.5 GeO 2 .. 49, 5 BaO - 48 TiO 2 -r 2.5 ZrO 2 .. 49.5 BaO -r 43 TiO 2 - r 7.5 ZrO 2 ..

49,5 BaO - 48 TiO2 -f- 2,5 SnO2 4- 0,5 Gewichtsprozent SiO2 ...49.5 BaO - 48 TiO 2 -f- 2.5 SnO 2 4- 0.5 percent by weight SiO 2 ...

49,5 BaO - 43 TiO2 - 7,5 SnO2 4- 0,5 Gewichtsprozent SiO2 ...49.5 BaO - 43 TiO 2 - 7.5 SnO 2 4- 0.5 percent by weight SiO 2 ...

49,5 BaO ~ 50,5 TiO2 — 0,5 Gewichtsprozent SiO., 49.5 BaO ~ 50.5 TiO 2 - 0.5 weight percent SiO.,

La 0,6La 0.6 13201320 OO Luftair 160160 10,310.3 La 0,5La 0.5 13201320 22 Luftair 20002000 7,57.5 La 0,5La 0.5 13201320 Luftair 300300 5,45.4 Gd 0,6Gd 0.6 13501350 Luftair 5353 12,712.7 Er 0,6He 0.6 13501350 22 Luftair 32503250 11,211.2 Sb 0,35Sb 0.35 13201320 1Z 1 line Luftair 535535 20,020.0 Sb 0,35Sb 0.35 13201320 -j-j CO2 CO 2 710710 4.154.15 Sb 0,35Sb 0.35 13201320 ~y~ y ^2^ 2 500500 4.94.9 Sb 0,54Sb 0.54 13201320 22 Luftair 485485 24,524.5 Sb 0,44Sb 0.44 13201320 -y-y Luftair 13001300 12,012.0 W 0,33W 0.33 13201320 Luftair 350350 7,o7, o W 0,33W 0.33 13201320 22 Luftair 11001100 14,814.8 W 0,33W 0.33 13201320 ff Luftair 28002800 26,026.0 W 0,33W 0.33 14001400 II. Luftair 260260 6,46.4 W 0,33W 0.33 13201320 22 Luftair 25002500 7.67.6 W 0,33W 0.33 14001400 22 Luftair 87508750 5.25.2 W 0,33W 0.33 14001400 22 Luftair 20002000 5,i5, i Bi 0,6Bi 0.6 13201320 Luftair 13001300 5,25.2 La 0,5La 0.5 13201320 -->-> Luftair 1640016400 6,96.9 W 0,33W 0.33 13201320 ■->■ -> Luftair 67006700 9,69.6 La 0,5La 0.5 14001400 -i-i CO2 CO 2 465465 6,36.3 W 0,33W 0.33 13201320 22 Luftair 28002800 18,018.0 W 0,33W 0.33 13201320 Luftair 10001000 17,017.0 W 0,33W 0.33 13201320 -y-y Luftair 12001200 4,754.75 W 0,33W 0.33 13201320 ->-> Luftair 30003000 4,754.75 W 0,33W 0.33 14001400 ->-> Luftair 320320 3,853.85 W 0,33W 0.33 13201320 ->-> Luftair 14001400 4,64.6 La 0,5La 0.5 14001400 22 CO2 CO 2 186186 o,45o, 45 W 0,33W 0.33 13201320 Luftair 600600 4,54.5 W 0,33W 0.33 13201320 22 Luftair S50S50 2,42.4 W 0,33W 0.33 13201320 Luftair 73007300 9,59.5

110 bis 180 iiobisiSo 110 bis 180 120 bis iSo 120 bis 160 100 bis 135 110 bis 180 100 bis 180 115 bis 135 100 bis 150 110 bis 180 ho bis 150 ho bis 130 110 bis 180 70 bis 150110 to 180 iiobisiSo 110 to 180 120 to iSo 120 to 160 100 to 135 110 to 180 100 to 180 115 to 135 100 to 150 110 to 180 ho to 150 ho to 130 110 to 180 70 to 150

40 bis 10040 to 100

40 bis 13040 to 130

20 bis 12020 to 120

(—5) bis 80(-5) to 80

120 bis 160120 to 160

60 bis 14060 to 140

125 bis 150125 to 150

120 bis 180120 to 180

105 bis 180105 to 180

105 bis 180105 to 180

100 bis 180100 to 180

90 bis 18090 to 180

60 bis 14060 to 140

60 bis 18060 to 180

40 bis 18040 to 180

ho bis 180ho to 180

Num
mer
Num
mer
Zusammensetzung
Ausgangsmaterial
composition
Source material
Zusatz
Atom
prozent
additive
atom
percent
Sinter
tempe
ratur
0C
Sinter
tempe
rature
0 C
Sinter
zeit
Std.
Sinter
Time
Hours.
Atmo
sphäre
Atmosphere
sphere
Spezi
fischer
Wider
stand
cm
Speci
fisherman
Contrary
was standing
cm
Tempe
ratur
koeffizient
in Prozent
per 0C
Tempe
rature
coefficient
in percent
per 0 C
Temperatur
strecke
0C
temperature
route
0 C
Kurve
Nr.
Curve
No.
3636 37,13 BaO + 12,37 SrO
+ 50,5 TiO0 + 5 Gewichtsprozent
SiO0 ."
37.13 BaO + 12.37 SrO
+ 50.5 TiO 0 + 5 percent by weight
SiO 0. "
W 0,33
W 0,33
W 0,33
W 0.33
W 0.33
W 0.33
1320
1100
1250
1320
1100
1250
2
2
2
2
2
2
Luft
Luft
Luft
air
air
air
7850
845
245
7850
845
245
6,0
4.15
6,0
6.0
4.15
6.0
45 bis 120
100 bis 180
110 bis 180
45 to 120
100 to 180
110 to 180
37
38
37
38
49,5 BaO + 50,5 TiO2 + 5 Ge
wichtsprozent B2O3
49,5 BaO + 50,5 TiO2 + 2 Ge
wichtsprozent B2O3
49.5 BaO + 50.5 TiO 2 + 5 Ge
weight percent B 2 O 3
49.5 BaO + 50.5 TiO 2 + 2 Ge
weight percent B 2 O 3

Claims (6)

PATENTANSPRÜCHE:PATENT CLAIMS: i. Verfahren zur Herstellung halbleitenden Materials, dadurch gekennzeichnet, daß einer im wesentlichen aus Bariumtitanat bestehenden Masse oder einem Gemisch aus Stoffen, das bei Erhitzen eine solche Masse ergeben kann, per Mol Bariumtitanat mindestens eines der Elemente Yttrium und Wismut in einer Menge von Maximal 1,5 Atomprozent und/oder mindestens eines der seltenen Erdmetalle und der Elemente Antimon und Wolfram in einer Menge von maximal 0,8 Atomprozent, vorzugsweise in Form einer Verbindung, zugesetzt wird und nach Formgebung bei einer Temperatur zwischen 1050 und 15000, vorzugsweise zwischen 1300 und 14000, in einer Atmosphäre gesintert wird, deren Sauerstoffteildruck bei der Sintertemperatur mindestens 0,05 mm beträgt.i. Process for the production of semiconducting material, characterized in that a mass consisting essentially of barium titanate or a mixture of substances which can produce such a mass when heated contains at least one of the elements yttrium and bismuth in an amount of at most 1.5 per mole of barium titanate Atomic percent and / or at least one of the rare earth metals and the elements antimony and tungsten is added in an amount of a maximum of 0.8 atomic percent, preferably in the form of a compound, and after shaping at a temperature between 1050 and 1500 0 , preferably between 1300 and 1400 0 , is sintered in an atmosphere whose oxygen partial pressure at the sintering temperature is at least 0.05 mm. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Ausgangsmaterial verwendet wird, das bis 20 Molprozent, vorzugsweise 2 bis 6 Molprozent, Titanoxyd in Überschuß enthält.2. The method according to claim 1, characterized in that starting material is used is that up to 20 mole percent, preferably 2 to 6 mole percent, titanium oxide in excess contains. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß im Ausgangsmaterial das Barium teilweise durch Strontium, Calzium oder Blei ersetzt wird.3. The method according to claim 1, characterized in that the starting material Barium is partially replaced by strontium, calcium or lead. 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß im Ausgangsmaterial das Titan teilweise durch Silicium, Germanium, Zirkon oder Zinn ersetzt wird.4. The method according to claim 1, characterized in that the starting material Titanium is partially replaced by silicon, germanium, zirconium or tin. 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß dem Ausgangsmaterial Kieselsäure oder Borsäure zugesetzt \vkd.5. The method according to claim 1, characterized in that the starting material Silicic acid or boric acid added \ vkd. 6. Elektrische Widerstände aus einem halbleitenden Material, das gemäß dem Verfahren nach einem der vorangehenden Ansprüche hergestellt ist.6. Electrical resistors made of a semiconducting material produced according to the method is made according to one of the preceding claims. Angezogene Druckschriften: Italienische Patentschrift Nr. 363 989; britische Patentschriften Nr. 625 516, 579868.Cited references: Italian Patent No. 363,989; British Patent Nos. 625,516, 579868. Hierzu 1 Blatt Zeichnungen1 sheet of drawings
DEN5546A 1951-05-23 1952-05-21 Process for the production of semiconducting material Expired DE929350C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL319001X 1951-05-23

Publications (1)

Publication Number Publication Date
DE929350C true DE929350C (en) 1955-06-23

Family

ID=19783910

Family Applications (1)

Application Number Title Priority Date Filing Date
DEN5546A Expired DE929350C (en) 1951-05-23 1952-05-21 Process for the production of semiconducting material

Country Status (6)

Country Link
BE (1) BE511613A (en)
CH (1) CH319001A (en)
DE (1) DE929350C (en)
FR (1) FR1066126A (en)
GB (1) GB714965A (en)
NL (1) NL84015C (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1140628B (en) * 1957-07-15 1962-12-06 Siemens Ag Semiconductor resistor with a positive temperature coefficient and method for its manufacture
DE1147699B (en) * 1955-06-15 1963-04-25 Dr Carl Schusterius Heating element for heat devices
DE1149648B (en) * 1961-06-16 1963-05-30 Bosch Gmbh Robert Pulse generator for electrical signal systems, such as flashing light systems, in particular for indicating the direction of travel of motor vehicles
DE1182131B (en) * 1962-05-09 1964-11-19 Matsushita Electric Ind Co Ltd Ferroelectric ceramic semiconductor
DE1261602B (en) * 1959-04-24 1968-02-22 Int Standard Electric Corp Process for the production of electrical capacitors or rectifiers or similar electrical components with a body made of ceramic material of high DK
DE1286242B (en) * 1958-07-22 1969-01-02 Siemens Ag Electrically heated device that is provided with an electrical resistance element with a positive temperature coefficient for automatic temperature control
DE1288686B (en) * 1964-01-31 1969-02-06 Int Standard Electric Corp Method for creating a ceramic capacitor
US3444101A (en) * 1964-08-19 1969-05-13 Telefunken Patent Barium titanate compositions containing cerium and bismuth
DE1415406B1 (en) * 1958-04-30 1970-08-20 Siemens Ag Ceramic resistor with a high positive temperature coefficient of its total resistance value
DE2349485A1 (en) * 1972-10-10 1974-04-25 Texas Instruments Inc HEATING DEVICE
DE2510322A1 (en) * 1975-02-11 1976-08-19 Bbc Brown Boveri & Cie Cold conductor structural element - contg. current-conducting body of vanadium sesquioxide doped with preg. chromium oxide or aluminium oxide
DE2552127A1 (en) * 1975-08-08 1977-02-10 Tdk Electronics Co Ltd CERAMIC SEMI-CONDUCTORS
DE2809449A1 (en) * 1977-03-07 1978-09-14 Tdk Electronics Co Ltd HEATING ELEMENT
DE3917570A1 (en) * 1989-05-30 1990-12-06 Siemens Ag Electrical ceramic component esp. cold conductor - has over-doped surface giving increased breakdown resistance
US5837164A (en) * 1996-10-08 1998-11-17 Therm-O-Disc, Incorporated High temperature PTC device comprising a conductive polymer composition
US5985182A (en) * 1996-10-08 1999-11-16 Therm-O-Disc, Incorporated High temperature PTC device and conductive polymer composition
US6074576A (en) * 1998-03-24 2000-06-13 Therm-O-Disc, Incorporated Conductive polymer materials for high voltage PTC devices
DE102008036835A1 (en) * 2008-08-07 2010-02-18 Epcos Ag Heating device and method for producing the heating device
US9321689B2 (en) 2008-08-07 2016-04-26 Epcos Ag Molded object, heating device and method for producing a molded object

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2976505A (en) * 1958-02-24 1961-03-21 Westinghouse Electric Corp Thermistors
US3044968A (en) * 1958-05-13 1962-07-17 Westinghouse Electric Corp Positive temperature coefficient thermistor materials
US3211595A (en) * 1959-11-02 1965-10-12 Hughes Aircraft Co P-type alloy bonding of semiconductors using a boron-gold alloy
US2981699A (en) * 1959-12-28 1961-04-25 Westinghouse Electric Corp Positive temperature coefficient thermistor materials
DE1239416B (en) * 1960-04-26 1967-04-27 Siemens Electrogeraete Ges Mit Electric instantaneous water heater with ceramic heating resistor
US3116262A (en) * 1961-05-19 1963-12-31 Gen Electric Ceramic composition
US3299332A (en) * 1961-07-10 1967-01-17 Murata Manufacturing Co Semiconductive capacitor and the method of manufacturing the same
US3458363A (en) * 1962-09-11 1969-07-29 Teledyne Inc Thermoelectric device comprising an oxide base thermoelectric element
US3231522A (en) * 1963-09-26 1966-01-25 American Radiator & Standard Thermistor
US3277020A (en) * 1963-12-19 1966-10-04 Int Resistance Co Glass composition and electrical resistance material made therefrom
US3359133A (en) * 1964-04-06 1967-12-19 American Lava Corp Ceramic dielectrics
US3351568A (en) * 1964-04-13 1967-11-07 Texas Instruments Inc Production of solid state ptc sensors
US3292062A (en) * 1964-06-01 1966-12-13 Bell Telephone Labor Inc Method for preparing stabilized barium titanate, and capacitor
DE1490659B2 (en) * 1964-09-17 1972-01-13 Siemens AG, 1000 Berlin u. 8000 München SINTERED ELECTRIC COLD CONDUCTOR RESISTOR BODY AND PROCESS FOR ITS MANUFACTURING
US3373120A (en) * 1965-12-02 1968-03-12 Matsushita Electric Ind Co Ltd Semiconductive ceramic compositions with positive temperature coefficient of resistance
US3426250A (en) * 1966-08-01 1969-02-04 Sprague Electric Co Controlled reduction and reoxidation of batio3 capacitors and resulting capacitor
JPS5410110B2 (en) * 1974-03-20 1979-05-01
JPS551684B2 (en) * 1974-09-25 1980-01-16
JP5099011B2 (en) * 2006-09-28 2012-12-12 株式会社村田製作所 Barium titanate-based semiconductor ceramic composition and PTC element using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB579868A (en) * 1944-03-15 1946-08-19 Taylor Tunnicliff And Company An improved dielectric composition
GB625516A (en) * 1947-08-06 1949-06-29 Jack Woodcock Improvements in or relating to ceramic dielectrics comprising essentially titania

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB579868A (en) * 1944-03-15 1946-08-19 Taylor Tunnicliff And Company An improved dielectric composition
GB625516A (en) * 1947-08-06 1949-06-29 Jack Woodcock Improvements in or relating to ceramic dielectrics comprising essentially titania

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1147699B (en) * 1955-06-15 1963-04-25 Dr Carl Schusterius Heating element for heat devices
DE1140628B (en) * 1957-07-15 1962-12-06 Siemens Ag Semiconductor resistor with a positive temperature coefficient and method for its manufacture
DE1415406B1 (en) * 1958-04-30 1970-08-20 Siemens Ag Ceramic resistor with a high positive temperature coefficient of its total resistance value
DE1286242B (en) * 1958-07-22 1969-01-02 Siemens Ag Electrically heated device that is provided with an electrical resistance element with a positive temperature coefficient for automatic temperature control
DE1261602B (en) * 1959-04-24 1968-02-22 Int Standard Electric Corp Process for the production of electrical capacitors or rectifiers or similar electrical components with a body made of ceramic material of high DK
DE1149648B (en) * 1961-06-16 1963-05-30 Bosch Gmbh Robert Pulse generator for electrical signal systems, such as flashing light systems, in particular for indicating the direction of travel of motor vehicles
DE1182131B (en) * 1962-05-09 1964-11-19 Matsushita Electric Ind Co Ltd Ferroelectric ceramic semiconductor
DE1288686B (en) * 1964-01-31 1969-02-06 Int Standard Electric Corp Method for creating a ceramic capacitor
US3444101A (en) * 1964-08-19 1969-05-13 Telefunken Patent Barium titanate compositions containing cerium and bismuth
DE2349485A1 (en) * 1972-10-10 1974-04-25 Texas Instruments Inc HEATING DEVICE
DE2510322A1 (en) * 1975-02-11 1976-08-19 Bbc Brown Boveri & Cie Cold conductor structural element - contg. current-conducting body of vanadium sesquioxide doped with preg. chromium oxide or aluminium oxide
DE2552127A1 (en) * 1975-08-08 1977-02-10 Tdk Electronics Co Ltd CERAMIC SEMI-CONDUCTORS
DE2809449A1 (en) * 1977-03-07 1978-09-14 Tdk Electronics Co Ltd HEATING ELEMENT
US4245146A (en) * 1977-03-07 1981-01-13 Tdk Electronics Company Limited Heating element made of PTC ceramic material
DE3917570A1 (en) * 1989-05-30 1990-12-06 Siemens Ag Electrical ceramic component esp. cold conductor - has over-doped surface giving increased breakdown resistance
US5837164A (en) * 1996-10-08 1998-11-17 Therm-O-Disc, Incorporated High temperature PTC device comprising a conductive polymer composition
US5985182A (en) * 1996-10-08 1999-11-16 Therm-O-Disc, Incorporated High temperature PTC device and conductive polymer composition
US6074576A (en) * 1998-03-24 2000-06-13 Therm-O-Disc, Incorporated Conductive polymer materials for high voltage PTC devices
DE102008036835A1 (en) * 2008-08-07 2010-02-18 Epcos Ag Heating device and method for producing the heating device
US9321689B2 (en) 2008-08-07 2016-04-26 Epcos Ag Molded object, heating device and method for producing a molded object
US9363851B2 (en) 2008-08-07 2016-06-07 Epcos Ag Heating device and method for manufacturing the heating device

Also Published As

Publication number Publication date
CH319001A (en) 1957-01-31
BE511613A (en)
NL84015C (en)
FR1066126A (en) 1954-06-02
GB714965A (en) 1954-09-08

Similar Documents

Publication Publication Date Title
DE929350C (en) Process for the production of semiconducting material
DE2904276C3 (en) Ceramic materials made from homologues of barium titanate
DE2800495A1 (en) NONLINEAR RESISTANCE
DE19622690B4 (en) Process for producing a monolithic ceramic capacitor
DE2659016C2 (en) Process for the production of a dielectric with a perovskite structure
DE4436392C2 (en) Metal niobates and / or tantalates, processes for their preparation and their further processing into perovskites
DE102006057691A1 (en) Low-sintering, lead-zirconate-titanate mixed crystal-based piezoelectric material, method for producing the same and a piezoelectric component comprising this material
DE2631035B2 (en) Finely divided powder from a lead titanate / lead magnesium tungstate composition and its use
DE2849293C2 (en)
DE1080465B (en) Metal-ceramic body
DE3011977A1 (en) SINKABLE DIELECTRIC COMPOSITION AT LOWER TEMPERATURE AND THICK FILM CAPACITOR USING THIS
DE4127829A1 (en) Lead zirconate titanate compsn. for e.g. monolithic device prodn. - additionally contg. bismuth oxide, zinc oxide and other metal oxide(s) for low sintering temp.
DE1113407B (en) Process for the production of a ceramic, dielectric material
DE112012000207T5 (en) Piezoceramic composition and process for its preparation
DE3730821C2 (en) Ceramic composition with high dielectric constant
JP2007001821A (en) Zirconia powder, and barium titanate based semiconductor ceramic composition obtained using zirconia powder and method of manufacturing the same
DE1280121B (en) Process for the optional production of a ceramic dielectric or a semiconductor resistor with a positive temperature coefficient
DE1244038B (en) Process for the production of semi-crystalline ceramic bodies with a high dielectric constant
DE2225731A1 (en) Powder composition and its application
DE1182131B (en) Ferroelectric ceramic semiconductor
CH318037A (en) Electrical resistance body and process for its manufacture
DE1646750C3 (en) Semiconducting ceramic materials with a positive temperature coefficient of resistance
DE980100C (en) Ceramic bodies with a high dielectric constant and process for the manufacture of these bodies
DE1806082B2 (en) PIEZOELECTRIC CONVERTER
DE1269023B (en) Ceramic dielectric