EP0000772A1 - Immunologisches Reagenz in Form spezieller, mit einem immunologisch aktiven Material beschichteter Latexteilchen auf Vinylpolymerisatbasis, Verfahren zu dessen Herstellung, Verwendung dieses Reagenzes, Bestimmungsverfahren unter Verwendung dieses Reagenzes und Reagenziengarnitur enthaltend dieses Reagenz - Google Patents

Immunologisches Reagenz in Form spezieller, mit einem immunologisch aktiven Material beschichteter Latexteilchen auf Vinylpolymerisatbasis, Verfahren zu dessen Herstellung, Verwendung dieses Reagenzes, Bestimmungsverfahren unter Verwendung dieses Reagenzes und Reagenziengarnitur enthaltend dieses Reagenz Download PDF

Info

Publication number
EP0000772A1
EP0000772A1 EP78100581A EP78100581A EP0000772A1 EP 0000772 A1 EP0000772 A1 EP 0000772A1 EP 78100581 A EP78100581 A EP 78100581A EP 78100581 A EP78100581 A EP 78100581A EP 0000772 A1 EP0000772 A1 EP 0000772A1
Authority
EP
European Patent Office
Prior art keywords
reagent
latex
particles
immunologically active
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP78100581A
Other languages
English (en)
French (fr)
Inventor
Roncari Dr. Gaetano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of EP0000772A1 publication Critical patent/EP0000772A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/823Immunogenic carrier or carrier per se

Definitions

  • the present invention relates to valuable diagnostic reagents, a process for their preparation and diagnostic methods in which such reagents are used.
  • An antigen is a foreign substance which, when applied to the living being, causes the formation of certain soluble substances, known as antibodies. Any substance such as a protein which is not normally present in a particular living being can cause the formation of antibodies if it is applied to the living being under suitable conditions.
  • the antibodies After their formation, the antibodies react with the antigens and in this way protect against infections in the case of a bacterial or virus foreign body.
  • Immunological test methods are based on the antigen-antibody reaction, which usually manifests itself through insolubility or agglutination.
  • an antigen or an antibody is confirmed or determined by adding the corresponding antibody or antigen to a body fluid of the living being, usually urine, blood serum or a specially treated blood extract.
  • a body fluid of the living being usually urine, blood serum or a specially treated blood extract.
  • other body fluids can also be used.
  • the presence or absence of the antibody or the antigen in the body fluid of the living being is determined by determining the occurrence or non-occurrence of an antigen-antibody reaction.
  • the antibody or antigen was' by means of a carbodiimide via an amide bond to discrete particles of carboxylated latex polymers, such as e.g. of carboxylated copolymers of butadiene and styrene.
  • the present invention now relates to novel polymeric carriers with which the above disadvantages can be avoided and which with a wide range of immunologically active Materials can form a diagnostically usable reagent that is stable, specific, and sensitive, and that enables an easily detectable visual assessment in a very short time.
  • the present invention relates to a water-insoluble reagent for immunological determination with a specific weight approximately equal to that of water in the form of discrete latex particles to which an immunologically active material is bound, characterized in that the latex consists of a dispersion of particles of vinyl polymers which as end groups are groups of the formula: wear, the particles of a core of vinyl and / or diene polymer which carries carboxyl and / or sulfonate functions, and of an outer layer of vinyl polymer which, as end groups, groups of the formula: carries, are formed and have an average diameter between 0.03 and 5 pm.
  • the invention further relates to a method for producing such a reagent, which is characterized in that the latex is reacted with the immunologically active material after diazotization or in the presence of suitable bifunctional reagents.
  • Immunologically active substances include amines, amino acids, peptides, proteins, lipoproteins, glycoproteides, sterols, steroids, lipoids, nucleic acids, enzymes, hormones, vitamins, polysaccharides and alkaloids.
  • Preferred Immunologically active substances are listed in the following table:
  • immunologically active substances are albumin, rheumatoid factor, human immunoglobulin IgG and antibodies against IgG.
  • Vinyl polymers which form the core of the particles are understood to mean homopolymers of monomers, such as styrene and its derivatives: methylstyrenes, ethylstyrenes, vinyltoluene; Vinyl chloride, vinylidene chloride; Vinyl acetate; Acrylic derivatives, such as alkyl acrylates and methacrylates (alkyl having 1 to 10 carbon atoms) which are optionally hydroxylated, such as 2-hydroxyethyl acrylate and methacrylate and 2-hydroxypropyl acrylate and methacrylate; Acrylonitrile and methacrylonitrile; and copolymers of these monomers with one another and / or with modifying vinyl comonomers such as divinylbenzene, acrylamide and methacrylamide and their N-substituted derivatives, such as e.g. Methylolacrylamide; these comonomers represent up to 5% by weight of the copolymer.
  • monomers
  • Diene polymers that form the core are homopolymers of butadiene and its derivatives: chloroprene, isoprene; and the copolymers of these monomers with one another and / or with vinyl monomers, as mentioned above, in all proportions and / or with modifying vinyl monomers, as enumerated above, the amount of which in the copolymer makes up to 5% by weight.
  • the vinyl polymers which form the outer layer of the particles are homopolymers of monomers, such as styrene and its derivatives, for example methylstyrenes, ethylstyrenes and vinyl toluene; optionally hydroxylated alkyl acrylates and alkyl methacrylates (alkyl with 1 to 10 carbon atoms); Acrylonitrile and methacrylonitrile; and copolymers of these monomers with one another and / or with modifying vinyl comonomers, such as divinylbenzene, acrylamide and methacrylamide, and their N-substituted derivatives, such as methylolacrylamide, which can make up up to 5% by weight of the copolymer.
  • monomers such as styrene and its derivatives, for example methylstyrenes, ethylstyrenes and vinyl toluene
  • the core polymer in the particles constitutes 30 to 99.5% by weight, preferably 60 to 99% by weight, and the polymer in the outer layer 70 to 0.5% by weight, preferably 40 to 1% by weight, represents.
  • the polymer particles the particle size distribution of which may be wide or narrow depending on the desired properties of the latex and the applications under consideration, have an average diameter between 0.03 and 5 ⁇ m, preferably between 0.05 and 1 ⁇ m. They represent up to 60% by weight, preferably up to 45% by weight, of the latex. However, the latex can easily be diluted or concentrated.
  • the core polymer can be prepared by emulsion polymerization of the vinyl monomer (s) and / or diene monomer (s) in the presence of at least one ethylenic mono- or polycarboxylic acid which is copolymerizable with the monomer (s) and / or at least one copolymerizable unsaturated alkali metal organosulfonate; then the polymer of the outer layer is prepared by emulsion polymerizing the vinyl monomer (s) in the presence of the latex of the core polymer obtained above and in the presence of a chain transfer agent.
  • the monomers used in the polymerization of the core polymer and in the polymerization of the polymer of the outer layer are the monomers listed above. They are either all used before the polymerization or for Part used before the polymerization, the remaining part being added to the reaction medium in successive fractions or continuously in the course of the polymerization, or all added in successive fractions or continuously in the course of the polymerization.
  • copolymerizable ethylenic mono- or polycarboxylic acids acrylic acid, methacrylic acid, maleic acid, fumaric acid, crotonic acid, sorbic acid, cinnamic acid, itaconic acid, aconitic acid may be mentioned, in amounts between 0.5 and 15% by weight, preferably between 0.5 and 10% by weight. -%, based on the monomer or monomers used.
  • the copolymerizable unsaturated alkali organosulfonates are e.g. Sodium vinyl sulfonate, sodium methallyl sulfonate, sodium 2-sulfoethyl acrylate, sodium 2-sulfoethyl methacrylate, 2-acrylamido-2-methylpropane sulfonate; they are used in amounts between 0.1 and 3% by weight, based on the monomer or monomers.
  • copolymerizable ethylene mono- or polycarboxylic acids and the copolymerizable unsaturated alkali organosulfonates can be used individually or in combination in the amounts specified.
  • the core polymer is prepared in emulsion by any conventional method in the presence of an initiator and an emulsifier.
  • the initiator used is preferably alkali metal sulfates, water-soluble diazo derivatives or redox systems based on hydrogen peroxide, organic peroxides or hydroperoxides in amounts of the order of 0.01 to 5% by weight, preferably 0.03 to 3% by weight, based on the or the monomers.
  • the emulsifier used can be anionic and / or nonionic. These are classic products for emulsion polymerization.
  • Salts of fatty acids may be mentioned as anionic emulsifiers; Alkaline alkyl sulfates, Alkalialkylsulfonate, Alkalialkylarylsulfonate, Alkalialkylsulfosuccinate, Alkalialkylphosphate; Alkyl sulfosuccinate; Sulfonates of alkylphenol polyglycol ethers; Salts of esters of alkylsulfopolycarboxylic acids; Condensation products of fatty acids with oxyalkanesulfonic acids and aminoalkanesulfonic acids; sulfated derivatives of polyglycol ethers; sulfated esters of fatty acids and polyglycols; Alkanolamides of sulfated fatty acids.
  • Suitable nonionic emulsifiers are fatty acid esters of polyalcohols, alkanolamides of fatty acids, polyethylene oxides, copolyethylene oxide / propylene oxide and oxyethylated alkylphenols.
  • the amounts of the emulsifier or emulsifiers to be used are of the order of magnitude of 0.01 to 5% by weight, based on the monomer or monomers, and they are introduced either in total before the polymerization or in part before the polymerization, the remaining part is added in the course of the polymerization in successive fractions or continuously to the reaction medium, or overall in the course of the polymerization in successive fractions or continuously.
  • the amount of water to be used for the polymerization of the core polymer must be such that the concentration of the monomer or monomers does not exceed 60% by weight.
  • any compounds to the reaction medium which are capable of modifying either the ionic strength of the medium and consequently the particle size distribution, such as mineral salts, electrolytes, in an amount of up to 3% by weight, based on the Monomers, or which can modify the pH of the medium, such as buffers, acids, bases.
  • the medium is neutral or acidic.
  • the polymerization temperature which is a function of the initiator used and the polymer to be prepared, is generally between -5 and + 90 ° C.
  • the latices obtained have polymer particles with a diameter between 0.03 and 5 ⁇ m, preferably between 0.05 and 1 ktm. These particles are generally not calibrated, but it is possible to obtain them calibrated using known calibration methods for emulsion polymerization, such as the controlled addition of the emulsifier and / or the monomer (s) and in particular the inoculation. In the latter case, the emulsifier can be contained in the inoculum.
  • the particles are formed from homopolymer or copolymer with a surface of carboxyl and / or sulfonate functions. The presence of these functions can be confirmed by conductometric titration.
  • the preparation of the polymer of the outer layer is carried out in an aqueous emulsion in the presence of the core polymer, chain transfer agent, initiator and, if appropriate, emulsifier.
  • the amount of the core polymer used is between 30 and 99.5% by weight and is preferably 60 to 99% by weight, based on the sum of the core polymer and the monomer or monomers to be polymerized.
  • the chain transfer agent of the aminophenyl disulfide or aminophenyl mercaptan type is in particular o, o'-dithiobisaniline, p, p'-dithiobisaniline, 2-mercaptoaniline, 3-mercaptoaniline, 4-mercaptoaniline.
  • This remedy is generally in solution used in the monomer or monomers, in amounts between 0.1 and 10% by weight, preferably between 0.5 and 5% by weight, based on the monomer or monomers.
  • the initiators required for the polymerization of the outer layer or monomers are diazo initiators, azonitriles such as azo-bis-isobutyronitrile or such as sulfonated azonitriles as described in French Patent No.
  • azobis isobutyronitrile sodium sulfonate
  • azobis a-methylbutyronitrile sodium sulfonate
  • azobis a-methyl- ⁇ -ethoxycarbonylbutyronitrile sodium sulfonate
  • carboxylated azonitriles such as 4,4'-azobis (4-cyanopentanoic acid) and their salts
  • azobis-alkylamidinium salts such as a, a'-azobis-isobutyramidinium chloride, azobis-N, N'-dimethylene-isobutyramidinium chloride.
  • the initiator which is used in an amount of 0.01 to 3% by weight, preferably 0.1 to 2% by weight, based on the monomer or monomers, is used in whole or in part before the polymerization, where the other part is added to the reaction medium in successive fractions or continuously in the course of the polymerization, in particular if the life of the initiator at the polymerization temperature is short.
  • the initiator can also be added continuously to the reaction medium overall in the course of the polymerization.
  • the emulsifier if any, is selected from anionic and / or nonionic emulsifiers which have been specified for the preparation of the core polymer; it can be the same or different from the emulsifier used for the production of the core polymer. It is used in amounts of up to 10% by weight, based on the monomer or monomers, and depending on the average diameter of the latex particles to be obtained, it can be introduced either entirely before the polymerization or partly before the polymerization take place, the remaining part in the course of the polymer tion is added in successive fractions or continuously, or it can be done in the course of the polymerization in successive fractions or continuously.
  • the amount of water to be used in the polymerization of the outer layer must be such that the concentration of core polymer and monomers to be polymerized or polymerized does not exceed 60% by weight, preferably 45% by weight.
  • the polymerization temperature which is a function of the chosen initiator, is generally between 5 and 100 ° C, preferably between 40 and 90 ° C.
  • the latices obtained have polymerization particles whose diameter is between 0.03 and 5 ⁇ m, preferably between 0.05 and 1 ⁇ m; since the amount of the outer layer is not very large, it does not noticeably modify the size of the particles of the core polymer.
  • the particles may or may not be calibrated, but in certain applications it is preferred for reasons of reproducibility that they are calibrated, i.e. that they have a narrow grain size distribution.
  • the latices are mechanical and resistant to storage and electrolytes, i.e. they do not flocculate if you are given mineral salts such as the chlorides, nitrates, borates, phosphates of sodium, calcium, magnesium, potassium are added.
  • the particles are formed from polymers and have a surface with carboxyl and / or sulfonate functions and groups of the formula: on.
  • the outer layer is polymerized on the core polymer, the carboxyl and / or sulfonate functions remain accessible, as can be shown by conductometric titration, and the groups of the formula: are available for further reactions.
  • the immunologically active materials can be bound physically and / or chemically to the latex polymers used according to the invention.
  • the reagent according to the invention is produced by forming an azo bond between the latex and the immunologically active material.
  • the primary aromatic amino groups of the latex are converted into a diazonium salt.
  • an inorganic acid such as hydrochloric acid, sulfuric acid or perchloric acid can be used.
  • Sodium nitrite or potassium nitrite is preferably used as the nitrite.
  • the reaction is preferably carried out at 0-5 C because of the instability of the diazonium salts.
  • the immunologically active material is then reacted with the diazotized carrier in an aqueous medium, preferably between 0.degree. C. and room temperature.
  • the immunologically active material can be bound to the latex used according to the present invention by means of a polyfunctional compound via an intermediate piece.
  • polyfunctional compounds are useful ones which react with the aromatic amino groups of the latex polymer or undergo a substitution reaction at the aromatic ring of the latex polymer and at the same mino- with functional groups of the immunologically active material such as A, mercapto, carbonyl and hydroxyl groups react or undergo a substitution reaction on the aromatic ring of the immunologically active material.
  • Representative representatives of such polyfunctional compounds are azó, isocyano, isothiocyano or aldehyde group-containing compounds such as e.g. Bis-diazobenzidine, bis-diazobenzidine-disulfonic acid, bis-diazo-p-phenyl diamine, phenyl diisocyanate, toluene diisocyanate, glutardialdehyde.
  • the immunologically active material When reacting in the presence of a bifunctional compound, the immunologically active material is reacted with the carrier in an aqueous medium, preferably at room temperature (20 ° C. to 25 ° C.). However, the temperature can also be between 0 ° C and 40 ° C.
  • the amount of the bifunctional compound used depends on the number of amino groups on the latex. A ten- to hundred-fold molar excess of the bifunctional compound compared to the number of amino groups of the latex used is preferably used.
  • the pH of the reaction is important. It should not be chosen to denature a protein reactant. Usually the pH is between 5 and 9. This pH is determined using suitable ones. Buffer systems such as phosphate buffers and the like are maintained.
  • the final product is a water-soluble material which is suspended in an aqueous buffer solution of pH 5.0 to 9, the pH of the solution being different from that in detail used system and depends on the requirements for the stability of the immunologically active material.
  • the specific weight of the product corresponds approximately to that of water (0.97-1.02), whereby a stable suspension of the product is achieved.
  • the products can be isolated, for example, by centrifugation in the form of a white or yellowish precipitate.
  • the amount of immunologically active material which is bound to the immunologically inert latex polymer carrier is usually 0.01 to 15.0% by weight. However, each individual immunologically active material is used in an amount which is most useful in a diagnostic test. For this reason, each material is combined with the carrier in a ratio that best suits the specific requirements.
  • the present invention therefore encompasses the use of such an amount of immunologically active material in combination with an immunologically inert latex polymer carrier which is suitable for providing a reagent useful for such diagnostic purposes.
  • the product can be used in specific diagnostic tests based on immunological principles.
  • the determination of the immunologically active substance can be carried out both in a direct and in an indirect (inhibition) test method.
  • the analytical sample and the latex particles coated with the corresponding immunological reaction partner are mixed to determine an immunologically active substance and the occurrence of agglutination is observed.
  • the test is positive if agglutination is detected.
  • the analytical sample is mixed with a certain amount of the corresponding immunological reaction partner (e.g. antiserum) and latex particles coated with the immunologically active substance to determine an immunologically active substance and the occurrence of agglutination is observed.
  • the test is positive if no agglutination is found.
  • the reagents which can be used in such immunological test methods can advantageously be packaged in a diagnostic test set for commercial purposes.
  • the reagent set for determining an immunologically active substance in a container contains an aqueous suspension of latex particles coated with the corresponding immunological reaction partner.
  • the reagent set for determining an immunologically active substance contains a solution of the corresponding immunological reaction partner (e.g. antiserum) in a first container and in. in a second container an aqueous suspension of latex particles coated with the immunologically active material.
  • the corresponding immunological reaction partner e.g. antiserum
  • the aqueous suspension of the latex-bound immunologically active material or latex-linked immunological reactant can be present in any concentration. However, a concentration of 0.5 to 5% by weight is preferred.
  • the polymerization is carried out at 75 ° C. under a nitrogen atmosphere, the monomers being introduced continuously over a period of 7 hours and the reaction being continued for 8 hours.
  • Electron microscopy shows that the particles have an average diameter of 0.145 ⁇ m; 90% of the particles have a diameter between 0.14 and 0.15 ⁇ m.
  • composition of the polymer is essentially the same as that of the monomers used.
  • the particles have carboxyl and sulfonate functions on their surface, which are determined by conductometric titration.
  • average diameter of the particles 0.15 m, 90% having a diameter between 0.145 and 0.155 pm.
  • the particles have carboxyl and sulfonate functions on their surface, which are confirmed by conductometric titration, and groups of the formula:
  • washed latex 1 ml of the 10% latex produced above is added to 20 ml of water and the mixture is centrifuged at 35,000 g for 1 1/2 hours. The supernatant is decanted off, the residue is taken up in 20 ml of water and centrifuged again at 35,000 g for 1 1/2 hours. This operation is repeated twice and the latex thus obtained is referred to as "washed latex" in the following examples.
  • the latex is centrifuged off at 35,000 g for 1 1/2 hours, the supernatant is decanted off and the residue is washed twice with 25 ml of 0.1 M glycine-NaOH buffer pH 8.2, by centrifuging and slurrying the residue. So much buffer is now added to the latex that a solution with 30 mg / ml results.
  • the following buffer is used for the tube agglutination test: 7.5 g glycine, 6.0 g CaCl 2 , 3 g bovine albumin, 1 g NaN 3 dissolved in 1 liter water. The pH is adjusted to 8.2 with NaOH. To detect the rheumatoid factors in the serum, 20 ⁇ l of latex is diluted with 3 ml of buffer in a small test tube and 25 ⁇ l of the serum to be examined is added. After mixing, the tubes are kept in a heat block at 37 ° C for 2 hours. A positive serum agglutinates under these conditions, while a negative control system shows no agglutination.
  • 1 ml of washed latex is prepared and diazotized as in Example 1.
  • the diazotized latex residue becomes 5 ml ice-cold 0.1 M glycine-NaOH buffer pH 6.0 was added and 5 mg goat anti-human albumin immunoglobulin G dissolved in 1 ml of the above buffer were added and the mixture was left to stir overnight at 10 ° C. for 1 hour.
  • the latex is centrifuged off at 35,000 g for 1 1/2 hours, the supernatant is discarded and the sediment is washed twice with 25 ml of 0.1 M glycine-NaOH pH 8.2. After washing, the latex is mixed with so much buffer that a 3% solution is obtained.
  • the following buffer is used for the tube agglutination test: 7.5 g glycine, 6.0 g CaCl 2 , 3 g bovine albumin and 1.0 g NaN 3 are dissolved in 1 liter water and the pH is adjusted to 6.0 with hydrochloric acid. A series of concentrations of human albumin in 3 ml of buffer is prepared in small test tubes, 20 ⁇ l of latex are added in each case and, after mixing, kept in a heat block at 37 ° C. for 2 hours.
  • Example 1 1 ml of washed latex from Example 1 is added to 5 ml of 0.1 M phosphate buffer pH 5.0 and 5 mg of sheep anti-human IgG immunoglobulin G in 1 ml of buffer are added and the mixture is stirred well. Then 0.1 ml of a 0.01 M p-phenyldiisothiocyanate solution in dimethylformamide added, stirred for 1 hour and at Allow room temperature to stand overnight. The latex is centrifuged at 35,000 g for 1 1/2 hours, the supernatant is discarded and the residue is washed twice with 25 ml of 0.1 M glycine-NaOH buffer pH 8.2. The latex is used in a concentration of 30 mg / ml for the agglutination test.
  • a 0.1 M phosphate buffer pH 6.0 with 0.1% bovine albumin is used for the tube agglutination test.
  • a series of concentrations of human IgG in 3 ml of buffer are prepared.
  • 20 ⁇ l of latex reagent are added to each tube, mixed and incubated for 2 hours at 37 ° C in a heat block.
  • the table shows that 0.1 ⁇ g / ml human IgG can still be determined with this latex reagent.
  • Example 1 1 ml of washed latex from Example 1 is taken up in 5 ml of 0.1 M phosphate buffer pH 7.0 and 5 mg of human immunoglobulin G in 1 ml of the above buffer is added. The suspension is cooled to 0 ° and 0.01 ml of a 0.02 M with stirring. bisdiazot convinced benzidine solution was added and then at 1 0 0 left to stand overnight. The latex is centrifuged at 30,000 g for 1 1/2 hours, the supernatant is discarded and the sediment is washed twice with 25 ml of 0.1 M glycine-NaOH pH 8.2. After washing, the latex is mixed so much buffer that a 3% solution is obtained.
  • a 0.1 M phosphate buffer pH 6.0 is used to determine IgG in the inhibition test. 3 ml of a 1/500 diluted sheep anti-human IgG serum and increasing amounts of human IgG are placed in small test tubes. After incubation for 15 minutes at 37 ° C, 20 ul latex reagent is added to each tube and incubated for 3 hours at 37 ° C.

Abstract

immunologisches Reagenz, Verfahren zu deseen Herstellung, Verwendung dieses Reagenzes, Bestimmungsverfahren unter Verwendung dieses Reagenzes und Reagenziengarnitur enthaltend dieses Reagenz.
Es wurde ein immunologisches Reagenz mit einem aus Partikeln von Vinylpolymerisaten gebildeten Träger hergestellt, mit dem keine unerwünschte Vernetzung des eingesetzten Antikörpers oder Antigens eintritt. Dieser Träger bildet mit einem breiten Spektrum von immunologiech aktiven Materialien ein diagnostisch verwendbares Reagenz, das Stabil, spezifisch und empfindlich ist Der Träger liegt in Form diskreter Latexteilchen vor; der Latex besteht aus einer Dispersion von ! Partikeln von Vinylpolymerisaten, die als Endgruppen Gruppen der Formel:
Figure imga0001
tragen, wobei die Partikel aus einem Kern von Vinyl- und/oder Dienpolymerisat, das Carboxyl- und/oder Sulfonatfunktionen trägt, und aus einer äusseren Schicht von Vinylpolymerisat, das als Endgruppen Gruppen der Formel:
Figure imga0002
trägt, gebildet sind und einen mittleren Durchmesser zwischen 0,03 und 5 µm haben, zu den zu verwendenden immunologisch aktiven Substanzen gehören Amine, Aminosäuren, 'Peptide, Proteine, Lipoproteine. Glycoproteide, Sterine, Steroide, Lipoide, Nucleinsäuren, Enzyme, Hormone, Vitamine, Polysaccharide und Alkaloide.

Description

  • Die vorliegende Erfindung betrifft wertvolle diagnostische Reagenzien, ein Verfahren zu deren Herstellung und diagnostische Methoden, worin solche Reagenzien Verwendung finden.
  • Die Diagnose von pathologischen oder anderen Zuständen in Menschen und Tieren wird oft unter Anwendung von immunologischen Prinzipien durchgeführt. Diese Prinzipien werden zum Nachweis von Antikörpern oder Antigenen in den Körperflüssigkeiten des Lebewesens benützt. Ein Antigen ist eine fremde Substanz, welche, wenn sie dem Lebewesen appliziert wird, die Bildung von gewissen löslichen und als Antikörper bezeichneten Substanzen bewirkt. Irgendeine Substanz wie z.B. ein Protein, welche normal nicht in einem bestimmten Lebewesen vorhanden ist, kann die Bildung von Antikörpern verursachen, wenn sie dem Lebewesen unter geeigneten Bedingungen appliziert wird.
  • Nach ihrer Bildung reagieren die Antikörper mit den Antigenen und schützen auf diese Weise, im Fall eines Bakterien-oder Virus-Fremdkörpers, gegen Infektionen.
  • Immunologische Testverfahren beruhen auf der Antigen-Antikörper-Reaktion, welche sich gewöhnlich durch Unlöslichkeit oder Agglutination manifestiert.
  • Im allgemeinen wird die Anwesenheit eines Antigens oder eines Antikörpers dadurch bestätigt oder bestimmt, dass man den entsprechenden Antikörper oder das entsprechende Antigen einer Körperflüssigkeit des Lebewesens, meistens Urin, Blutserum oder einem speziell behandelten Blutextrakt, zugibt. Es können jedoch auch andere Körperflüssigkeiten verwendet werden. Man stellt die Anwesenheit bzw. die Abwesenheit des Antikörpers oder des Antigens in der Körperflüssigkeit des Lebewesens fest, indem das Eintreten oder nicht-Eintreten einer Antigen-Antikörperreaktion festgestellt wird.
  • Weil einige Komplexe sich nur sehr langsam bilden und sehr geringe Teilchengrössen besitzen, ist es notwendig,Träger zu benützen, um sie sichtbar zu machen. In einer bisher bevorzugten Methode wurden der Antikörper bzw. das Antigen mittels' eines Carbodiimids über eine Amidbindung an diskreten Teilchen von carboxylierten Latexpolymeren,wie z.B. von carboxylierten Copolymeren aus Butadien und Styrol,gebunden.
  • Diese Methode hat jedoch den Nachteil, dass während der Kupplung des Proteins (Antikörper oder Antigen) an die Latexteilchen, wegen der Verwendung von Carbodiimiden als Nebenreaktion eine unerwünschte Vernetzung des eingesetzten Proteins eintritt und somit ein Teil der oft sehr teuren Proteine für die Kupplung mit dem Träger verloren geht.
  • Die vorliegende Erfindung betrifft nun neuartige polymere Träger, mit welchen die obigen Nachteile vermieden werden können und welche mit einem breiten Spektrum von immunologisch aktiven Materialien ein diagnostisch verwendbares Reagenz bilden können, das stabil, spezifisch und empfindlich ist und eine leicht nachweisbare visuelle Bewertung in sehr kurzer Zeit ermöglicht.
  • Genauer gesagt betrifft die vorliegende Erfindung ein wasserunlösliches Reagenz für eine immunologische Bestimmung mit einem etwa dem von Wasser entsprechenden spezifischen Gewicht in Form diskreter Latexteilchen, an welche ein immunologisch aktives Material gebunden ist, dadurch gekennzeichnet, dass der Latex aus einer Dispersion von Partikeln von Vinylpolymerisaten besteht, die als Endgruppen Gruppen der Formel:
    Figure imgb0001
    tragen, wobei die Partikel aus einem Kern von Vinyl- und/oder Dienpolymerisat, das Carboxyl- und/oder Sulfonatfunktionen trägt, und aus einer äusseren Schicht von Vinylpolymerisat, das als Endgruppen Gruppen der Formel:
    Figure imgb0002
    trägt, gebildet sind und einen mittleren Durchmesser zwischen 0,03 und 5 pm haben.
  • Weiter bezieht sich die Erfindung auf ein Verfahren zur Herstellung eines solchen Reagens, welches dadurch gekennzeichnet ist, dass man den Latex nach Diazotierung oder in Gegenwart von geeigneten bifunktionellen Reagenzien mit dem immunologisch aktiven Material umsetzt.
  • Als "immunologisch aktive Substanzen" können all jene Bestandteile in physiologischen Flüssigkeiten, Zell- und Gewebeextrakten genannt werden, für die ein immunologischer Reaktionspartner vorhanden ist oder gebildet werden kann. Dazu gehören Amine, Aminosäuren, Peptide, Proteine, Lipoproteine, Glycoproteide, Sterine, Steroide, Lipoide, Nucleinsäuren, Enzyme, Hormone, Vitamine, Polysaccharide und Alkaloide. Bevorzugte immunologisch aktive Substanzen sind in der folgenden Tabelle zusammengestellt:
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
  • Im Rahmen der vorliegenden Erfindung sind besonders bevorzugte immunologisch aktive Substanzen Albumin, Rheumatoidfaktor, menschliches Immunoglobulin IgG und Antikörper gegen IgG.
  • Unter Vinylpolymerisaten, die den Kern der Partikeln bilden, versteht man Homopolymerisate von Monomeren, wie Styrol und seine Derivate: Methylstyrole, Aethylstyrole, Vinyltoluol; Vinylchlorid, Vinylidenchlorid; Vinylacetat; Acrylderivate, wie Alkylacrylate und -methacrylate (Alkyl mit 1 bis 10 Kohlenstoffatomen), die gegebenenfalls hydroxyliert sind, wie 2-Hydroxyäthylacrylat und -methacrylat und 2-Hydroxypropylacrylat und -methacrylat; Acrylnitril und Methacrylnitril; sowie Copolymerisate dieser Monomeren untereinander und/oder mit modifizierenden Vinylcomonomeren, wie Divinylbenzol, Acrylamid und Methacrylamid und deren N-substituierte Derivate, wie z.B. Methylolacrylamid; diese Comonomere stellen bis zu 5 Gew.-% des Copolymerisates dar.
  • Unter Dienpolymerisaten, die den Kern bilden, versteht man Homopolymerisate des Butadiens und seiner Derivate: Chloropren, Isopren; sowie die Copolymerisate dieser Monomeren untereinander und/oder mit Vinylmonomeren, wie sie oben genannt wurden, in allen Mengenverhältnissen und/oder mit modifizierend wirkenden Vinylmonomeren, wie sie oben'aufgezählt wurden, deren Menge in dem Copolymerisat bis zu 5 Gew.-% ausmacht.
  • Die Vinylpolymerisate, welche die äussere Schicht der Partikel bilden, sind Homopolymerisate von Monomeren, wie Styrol und seine Derivate, z.B. Methylstyrole, Aethylstyrole und Vinyltoluol; gegebenenfalls hydroxylierte Alkylacrylate und Alkylmethacrylate (Alkyl mit 1 bis 10 Kohlenstoffatomen); Acrylnitril und Methacrylnitril; sowie Copolymerisate dieser Monomeren untereinander und/oder mit modifizierend wirkenden Vinylcomonomeren, wie Divinylbenzol, Acrylamid und Methacrylamid sowie deren N-substituierte Derivate, wie Methylolacrylamid, die bis zu 5 Gew.-% des Copolymerisats ausmachen können.
  • In den Partikeln stellt das Kernpolymerisat 30 bis 99,5 Gew.-%, vorzugsweise 60 bis 99 Gew.-%, und das Polymerisat der äusseren Schicht 70 bis 0,5 Gew.-%, vorzugsweise 40 bis 1 Gew.-%, dar.
  • Die Polymerisatpartikel, deren Kornverteilung je nach den gewünschten Eigenschaften des Latex und den in Betracht gezogenen Anwendungen breit oder eng sein kann, haben einen mittleren Durchmesser zwischen 0,03 und 5 µm, vorzugsweise zwischen 0,05 und 1 ym. Sie stellen bis zu 60 Gew.-%, vorzugsweise bis zu 45 Gew.-%, des Latex dar. Jedoch kann der Latex ohne weiteres verdünnt oder konzentriert werden.
  • Das Kernpolymerisat kann hergestellt werden durch Emulsionspolymerisation des oder der Vinylmonomeren und/oder Dienmonomeren in Gegenwart von mindestens einer äthylenischen Mono-oder Polycarbonsäure, die mit dem oder den Monomeren copolymerisierbar ist, und/oder mindestens eines copolymerisierbaren ungesättigten Alkaliorganosulfonats; dann wird das Polymerisat der äusseren Schicht hergestellt durch Emulsionspolymerisation des oder der Vinylmonomeren in Gegenwart des Latex des Kernpolymerisates, der oben erhalten wurde, und in Gegenwart eines Kettenübertragungsmittels.
  • Die bei der Polymerisation des Kernpolymerisates und bei der Polymerisation des Polymerisates der äusseren Schicht verwendeten Monomeren sind die oben aufgezählten Monomeren. Sie werden entweder alle vor der Polymerisation verwendet oder zum Teil vor der Polymerisation verwendet, wobei der restliche Teil im Verlauf der Polymerisation in aufeinanderfolgenden Fraktionen oder kontinuierlich zum Reaktionsmedium gegeben wird, oder alle im Verlauf der Polymerisation in aufeinanderfolgenden Fraktionen oder kontinuierlich zugesetzt.
  • Als copolymerisierbare äthylenische Mono- oder Polycarbonsäuren seien Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure, Crotonsäure, Sorbinsäure, Zimtsäure, Itaconsäure, Aconitsäure genannt, die in Mengen zwischen 0,5 und 15 Gew.-%, vorzugsweise zwischen 0,5 und 10 Gew.-%, bezogen auf das oder die Monomeren, verwendet werden.
  • Die copolymerisierbaren ungesättigten Alkaliorganosulfonate sind z.B. Natriumvinylsulfonat, Natriummethallylsulfonat, Natrium-2-sulfoäthylacrylat, Natrium-2-sulfoäthylmetacrylat, 2-Acrylamido-2-methylpropansulfonat; sie werden in Mengen zwischen 0,1 und 3 Gew.-%, bezogen auf das oder die Monomeren, verwendet.
  • Die copolymerisierbaren äthylenischen Mono- oder Polycarbonsäuren und die copolymerisierbaren ungesättigten Alkaliorganosulfonate können einzeln oder in Kombination in den angegebenen Mengen verwendet werden.
  • Die Herstellung des Kernpolymerisates erfolgt in Emulsion nach jedem beliebigen klassischen Verfahren in Gegenwart eines Initiators und eines Emulgators.
  • Als Initiator verwendet man vorzugsweise Alkalipersulfate, wasserlösliche Diazoderivate oder Redoxysysteme auf Basis von Wasserstoffperoxyd, organischen Peroxyden oder Hydroperoxyden in Mengen in der Grössenordnung von 0,01 bis 5 Gew.-%, vorzugsweise 0,03 bis 3 Gew.-%, bezogen auf das oder die Monomeren.
  • Der verwendete Emulgator kann anionaktiv und/oder nichtionogen sein. Es handelt sich um klassische Produkte für die Emulsionspolymerisation.
  • Als anionaktive Emulgatoren seien genannt Salze von Fettsäuren; Alkalialkylsulfate, Alkalialkylsulfonate, Alkalialkylarylsulfonate, Alkalialkylsulfosuccinate, Alkalialkylphosphate; Sulfobernsteinsäurealkylester; Sulfonate von Alkylphenolpolyglycoläthern; Salze von Estern von Alkylsulfopolycarbonsäuren; Kondensationsprodukte von Fettsäuren mit Oxyalkansulfonsäuren und Aminoalkansulfonsäuren; sulfatierte Derivate von Pölyglycoläthern; sulfatierte Ester von Fettsäuren und Polyglycolen; Alkanolamide von sulfatierten Fettsäuren.
  • Als nichtionogene Emulgatoren kommen Fettsäureester von Polyalkoholen, Alkanolamide von Fettsäuren, Polyäthylenoxyde, Copolyäthylenoxyd/Propylenoxyd, oxyäthylierte Alkylphenole in Betracht.
  • Die zu verwendenden Mengen des oder der Emulgatoren liegen in der Grössenordnung von 0,01 bis 5 Gew.-%, bezogen auf das oder die Monomeren, und ihre Einführung erfolgt entweder insgesamt vor der Polymerisation oder zum Teil vor der Polymerisation, wobei der restliche Teil im Verlauf der Polymerisation in nacheinanderfolgenden Fraktionen oder kontinuierlich zum Reaktionsmedium zugesetzt wird, oder insgesamt im Verlauf der Polymerisation in nacheinanderfolgenden Fraktionen oder kontinuierlich.
  • Die für die Polymerisation des Kernpolymerisates zu verwendende Menge Wasser muss derart sein, dass die Konzentration des oder der Monomeren 60 Gew.-% nicht übersteigt.
  • Obgleich es nicht unbedingt erforderlich ist, ist es möglich, dem Reaktionsmedium beliebige Verbindungen zuzusetzen, die entweder die Ionenstärke des Mediums und demzufolge die Kornverteilung zu modifizieren vermögen, wie Mineralsalze, Elektrolyten, in einer Menge bis zu 3 Gew.-%, bezogen auf die Monomeren, oder die den pH-Wert des Mediums zu modifizieren vermögen, wie beispielsweise Puffer, Säuren, Basen. Jedoch wurde in bestimmten Fällen festgestellt, dass es zur Begünstigung der Copolymerisation zu bevorzugen ist, wenn das Medium neutral oder sauer ist.
  • Die Polymerisationstemperatur, die eine Funktion des verwendeten Initiators und des herzustellenden Polymerisats ist, liegt im allgemeinen zwischen -5 und +90°C.
  • Die erhaltenen Latices weisen Polymerisatpartikel mit einem Durchmesser zwischen 0,03 und 5 µm, vorzugsweise zwischen 0,05 und 1 ktm, auf. Diese Partikel sind im allgemeinen nicht kalibriert, aber es ist möglich, sie kalibriert zu erhalten, wenn man bekannte Kalibrierverfahren für die Emulsionspolymerisation anwendet, wie die gesteuerte Zugabe des Emulgators und/oder des oder der Monomeren und insbesondere die Animpfung. Im letzten Falle kann der Emulgator in dem Impfmaterial enthalten sein.
  • Die Partikel sind aus Homopolymerisat oder Copolymerisat mit einer Oberfläche von Carboxyl- und/oder Sulfonatfunktionen gebildet. Das Vorhandensein dieser Funktionen kann durch konduktometrische Titration bestätigt werden.
  • Die Herstellung des Polymerisates der äusseren Schicht wird in wässriger Emulsion in Gegenwart von Kernpolymerisat, Kettenübertragungsmittel, Initiator und gegebenenfalls Emulgator ausgeführt.
  • Die verwendete Menge des Kernpolymerisats liegt zwischen 30 und 99,5 Gew.-% und beträgt.vorzugsweise 60 bis 99 Gew.-%, bezogen auf die Summe von Kernpolymerisat und zu polymerisierendem Monomer oder zu polymerisierenden Monomeren.
  • Das Kettenübertragungsmittel vom Typ Aminophenyldisulfid oder Aminophenylmercaptan ist insbesondere o,o'-Dithiobisani- lin, p,p'-Dithiobisanilin, 2-Mercaptoanilin, 3-Mercaptoanilin, 4-Mercaptoanilin. Dieses Mittel wird im allgemeinen in Lösung in dem oder den Monomeren verwendet, und zwar in Mengen zwischen O,1 und 10 Gew.-%, vorzugsweise zwischen 0,5 und 5 Gew.-%, bezogen auf das oder die Monomere.
  • Die für die Polymerisation des oder der Monomeren der äusseren Schicht erforderlichen Initiatoren sind Diazoinitiatoren, Azonitrile wie Azo-bis-isobutyronitril oder wie sulfonierte Azonitrile, wie sie im französischen Patent Nr. 1.233.582 beschrieben sind; von diesen kann man erwähnen Azobis-(iso- butyronitrilnatriumsulfonat), Azobis-(a-methylbutyronitril- natriumsulfonat), Azobis-(a-methyl-ß-äthoxycarbonylbutyronitril- natriumsulfonat); carboxylierte Azonitrile, wie 4,4'-Azobis-(4- cyanpentansäure) und ihre Salze, Azobis-alkylamidiniumsalze, wie a,a'-Azobis-isobutyramidiniumchlorid, Azobis-N,N'-dimethylen- isobutyramidiniumchlorid.
  • Der Initiator, der in einer Menge von 0,01 bis 3 Gew.-%, vorzugsweise 0,1 bis 2 Gew.-%, bezogen auf das oder die Monomeren, verwendet wird, wird insgesamt oder zum Teil vor der Polymerisation verwendet, wobei der andere Teil im Verlauf der Polymerisation in nacheinanderfolgenden Fraktionen oder kontinuierlich zu dem Reaktionsmedium zugesetzt wird, insbesondere wenn die Lebensdauer des Initiators bei der Polymerisationstemperatur kurz ist. Der Initiator kann auch insgesamt im Verlauf der Polymerisation kontinuierlich zum Reaktionsmedium zugegeben werden.
  • Der allfällige Emulgator wird aus anionaktiven und/oder nichtionogenen Emulgatoren gewählt, die für die Herstellung des Kernpolymerisats angegeben wurden; er kann gleich oder verschieden wie der für die Herstellung des Kernpolymerisates verwendete Emulgator sein. Er wird in Mengen von bis zu 10 Gew.-%, bezogen auf das oder die Monomeren, verwendet, und seine Einführung kann je nach dem mittleren Durchmesser der Latexpartikel, der erhalten werden soll, entweder insgesamt vor der Polymerisation oder zum Teil vor der Polymerisation erfolgen, wobei der restliche Teil im Verlauf der Polymerisation in nacheinanderfolgenden Fraktionen oder kontinuierlich zugegeben wird, oder sie kann insgesamt im Verlauf der Polymerisation in aufeinanderfolgenden Fraktionen oder kontinuierlich erfolgen.
  • Die bei der Polymerisation der äusseren Schicht zu verwendende Menge Wasser muss derart sein, dass die Konzentration von Kernpolymerisat und zu polymerisierendem oder zu polymerisierenden Monomeren 60 Gew.-%, vorzugsweise 45 Gew.-%, nicht übersteigt.
  • Die Polymerisationstemperatur, die eine Funktion des gewählten Initiators ist, liegt im allgemeinen zwischen 5 und 100°C, vorzugsweise zwischen 40 und 90°C.
  • Die erhaltenen Latices weisen Polymerisationspartikel auf, deren Durchmesser zwischen 0,03 und 5 µm, vorzugsweise zwischen 0,05 und 1 µm, liegt; da die Menge der äusseren Schicht nicht sehr gross ist, modifiziert sie nicht in merklicher Weise die Grösse der Partikel des Kernpolymerisates. Die Partikel können kalibriert sein oder nicht, aber bei bestimmten Anwendungen wird es aus Gründen der Reproduzierbarkeit bevorzugt, dass sie kalibriert sind, d.h. dass sie eine schmale Korngrössenverteilung haben.
  • Die Latices sind mechanisch und bei der Lagerung sowie gegen Elektrolyten beständig, d.h. sie flocken nicht aus, wenn man ihnen Mineralsalze, wie z.B. die Chloride, Nitrate, Borate, Phosphate des Natriums, Calciums, Magnesiums, Kaliums zusetzt.
  • Die Partikel sind aus Polymerisaten gebildet und weisen eine Oberfläche mit Carboxyl- und/oder Sulfonatfunktionen sowie Gruppen der Formel:
    Figure imgb0010
    auf.
  • Obgleich die äussere Schicht auf dem Kernpolymerisat polymerisiert wird, bleiben die Carboxyl- und/oder Sulfonatfunktionen zugänglich, wie durch konduktometrische Titration gezeigt werden kann, und die Gruppen der Formel:
    Figure imgb0011
    stehen für weitere Reaktionen zur Verfügung.
  • Die immunologisch aktiven Materialien (Antigen oder Antikörper) können physikalisch und/oder chemisch an den erfindungsgemäss verwendeten Latexpolymeren gebunden werden.
  • In einer Ausführungsform wird das erfindungsgemässe Reagenz durch Bildung einer Azobindung zwischen dem Latex und dem immunologisch aktiven Material hergestellt. Zu diesem Zweck werden durch Behandlung des Latex in wässriger saurer Lösung mit einem Nitrit die primären aromatischen Aminogruppen des Latex in ein Diazoniumsalz überführt.
  • Als Säure kann z.B. eine anorganische Säure wie Salzsäure, Schwefelsäure oder Perchlorsäure verwendet werden. Als Nitrit wird vorzugsweise Natriumnitrit oder Kaliumnitrit verwendet. Die Reaktion wird wegen der Instabilität der Diazoniumsalze vorzugsweise bei 0-5 C ausgeführt.
  • Das immunologische aktive Material wird anschliesscnd im wässrigen Medium, vorzugsweise zwischen 0°C und Zimmertemperatur,mit dem diazotierten Träger zur Reaktion gebracht.
  • In einer weiteren Ausführungsform des erfindungsgemässen Verfahrens kann das immunologisch aktive Material mit Hilfe einer polyfunktionellen Verbindung über ein Zwischenstück an den gemäss vorliegender Erfindung verwendeten Latex gebunden werden.
  • Als polyfunktionelle Verbindungen eignen sich diejenigen, welche mit den aromatischen Aminogruppen des Latexpolymeren reagieren oder an den aromatischen Ring des Latexpolymeren eine Substitutionsreaktion eingehen und gleichzeitig mit funktionellen Gruppen des immunologisch aktiven Materials, wie Amino-, Mercapto-, Carbonyl- and Hydroxylgruppen, reagieren oder eine Substitutionsreaktion an dem aromatischen Ring des immunologisch aktiven Materials eingehen.
  • Repräsentative Vertreter derartiger polyfunktioneller Verbindungen sind Azó-, Isocyano-, Isothiocyano- oder Aldehydgruppen enthaltenden Verbindungen wie z.B. Bis-diazobenzidin, Bis-diazobenzidin-disulfonsäure, Bis-diazo-p-phenyldiamin, Phenyldiisocyanat, Toluoldiisocyanat, Glutardialdehyd.
  • Bei Umsetzung in Gegenwart einer bifunktionellen Verbindung wird das immunologisch aktive Material in wässrigem Medium, vorzugsweise bei Zimmertemperatur (20°C bis 25°C), mit dem Träger zur Reaktion gebracht. Die Temperatur kann jedoch auch zwischen 0°C und 40°C liegen.
  • Die Menge der verwendeten bifunktionellen Verbindung hängt ab von der Zahl der Aminogruppen auf dem Latex. Vorzugsweise wird ein zehn- bis hundert-facher molarer Ueberschuss der bifunktionellen Verbindung gegenüber der Zahl der Aminogruppen des eingesetztes Latex verwendet.
  • In beiden Ausführungsformen zur Herstellung des erfindungsgemässen Reagenz ist der pH-Wert der Reaktion wichtig. Er darf nicht so gewählt werden, dass ein Protein-Reaktionspartner denaturiert wird. In der Regel liegt der pH-Wert zwischen 5 und 9. Dieser pH-Wert wird unter Verwendung von geeigneten üblichen. Puffer-Systemen Wie Phosphatpuffer und dgl., aufrechterhalten.
  • Das Endprodukt ist ein wassernlösliches Material, welches in einer wässrigen Pufferlösung von pH-Wert 5,0 bis 9 suspendiert ist, wobei der pH-Wert der Lösung von dem im einzelnen verwendeten System und von den Anforderungen an die Stabilität des immunologisch aktiven Materials abhängig ist. Das spezifische Gewicht des Produktes entspricht etwa demjenigen von Wasser (0,97-1,02), wodurch eine stabile Suspension des Produkts erreicht wird. Die Produkte können z.B. durch Zentrifugieren in Form eines weissen oder gelblichen Niederschlags isoliert werden.
  • Die Menge an immunologisch aktivem Material, das an die immunologisch inerten LatexpolymernTräger gebunden ist, beträgt in der Regel 0,01 bis 15,0 Gew.%. Jedoch wird jedes einzelne immunologisch aktive Material in einer Menge benützt, welche sich in einem diagnostischen Test am zweckmässigsten erweist. Aus diesem Grunde wird jedes Material mit dem Träger in einem Verhältnis kombiniert, welches den jeweiligen spezifischen Anforderungen am besten entspricht. Die vorliegende Erfindung umfasst deshalb die Verwendung einer solchen Menge an immunologisch aktivem Material in Kombination mit einem immunologisch inerten Latexpolymer-Träger, die geeignet ist, ein für derartige diagnostische Zwecke nützliches Reagens zu liefern.
  • Nach seiner Herstellung kann das Produkt in spezifischen diagnostischen Tests, welche auf immunologischen Prinzipien aufgebaut sind, verwendet werden.
  • Erfindungsgemäss kann die Bestimmung der immunologisch aktiven Substanz sowohl in einem direkten wie auch in einem indirekten (Inhibitions-) Testverfahren durchgeführt werden.
  • Im direkten Testverfahren werden zur Bestimmung einer immunologisch aktiven Substanz die Analysenprobe und die mit dem entsprechenden immunologischen Reaktionspartner beschichteten Latexteilchen vermischt und das Auftreten einer Agglutination beobachtet. Der Test ist positiv, wenn eine Agglutination festgestellt wird.
  • Beim indirekten (Inhibitions-)-Testverfahren wird zur Bestimmung einer immunologisch aktiven Substanz die Analysenprobe mit einer bestimmten Menge des entsprechenden immunologischen Reaktionspartners(z.B. Antiserum) und Latexteilchen, die mit der immunologisch aktiven Substanz beschichtet sind, vermischt und das Auftreten einer Agglutination beobachtet. Der Test ist positiv, wenn keine Agglutination festgestellt wird.
  • Die in derartigen immunologischen Testverfahren nutzbaren Reagenzien können vorteilhaft für kommerzielle Zwecke in eine diagnostische Testgarnitur abgepackt werden.
  • Im Falle eines direkten Tests enthält die Reagenziengarnitur zur Bestimmung einer immunologisch aktiven Substanz in einem Behälter eine wässrige Suspension von mit dem entsprechenden immunologischen Reaktionspartner beschichteten Latexteilchen.
  • Im Falle eines indirekten Tests enthält die Reagenziengarnitur zur Bestimmung einer immunologisch aktiven Substanz in einem ersten Behälter eine Lösung des entsprechenden immunologischen Reaktionspartners (z.B. Antiserum) und in . einem zweiten Behälter eine wässrige Suspension von mit dem immunologisch aktiven Material beschichteten Latexteilchen.
  • In beiden Fällen kann die wässrige Suspension des an Latex gebundenen immunologisch aktiven Materials oder des an Latex gebundenen immunologischen Reaktionspartners in irgendeiner Konzentration vorhanden sein. Jedoch ist eine Konzentration von 0,5 bis 5 Gew.% bevorzugt.
  • Die Erfindung wird anhand der folgenden Beispielen veranschaulicht.
  • Beispiel 1
  • In einem Autoklaven von 25 Liter stellt man einen Latex von Kernpolymerisat her, wobei man verwendet:
    • 4800 g entionisiertes Wasser
    • 50 g Kaliumpersulfat
    • 50 g Natriumpyrophosphat
    • 10 g Natriumlaurylsulfat
    • 50 g Natriummethallylsulfonat
    • 100 g Acrylsäure
    • 100 g Itaconsäure
    • 2135 g Styrol
    • 2865 g Butadien
  • Die Polymerisation wird bei 75°C unter Stickstoffatmosphäre ausgeführt, wobei die Monomeren im Verlauf von 7 Stunden kontinuierlich eingeführt werden und die Reaktion 8 Stunden lang fortgesetzt wird.
  • Nach dem Abkühlen erhält man einen Latex vom pH = 2,5, dessen Konzentration an Polymerisatpartikeln 51 Gew.-% beträgt.
  • Durch Elektronenmikroskopie stellt man fest, dass die Partikel einen mittleren Durchmesser von 0,145 µm haben; 90% der Partikel haben einen Durchmesser zwischen 0,14 und 0,15 µm.
  • Die Zusammensetzung des Polymerisates ist im wesentlichen gleich wie diejenige der verwendeten Monomeren. Die Partikel tragen auf ihrer Oberfläche Carboxyl- und Sulfonatfunktionen, die durch konduktometrische Titration bestimmt werden.
  • 406 g des erhaltenen Latex und 1541 g entionisiertes Wasser werden in einen Reaktor eingeführt. Das Gemisch wird unter Rühren auf 70°C erhitzt; diese Temperatur wird während der ganzen Dauer der Reaktion aufrechterhalten.
  • Sobald das Gemisch. 70°C erreicht hat, wird es unter Stickstoffatmosphäre gehalten; man gibt in 3 Stunden mit konstanter Geschwindigkeit gleichzeitig 1,25 g Natriumdihexylsulfosuccinat in 150 g Wasser, 0,20 g a,a'-Azobis-isobutyramidiniumchlorid in 210 g Wasser, 18 g Styrol, die 0,45 g p,p'-Dithiobisanilin enthalten, zu.
  • Dann wird die Polymerisation 5 Stunden lang fortgesetzt. Das Gemisch wird danach abgekühlt.
  • Eigenschaften des erhaltenen Latex:
  • pH: 3,1
    • Konzentration an Polymerisationspartikeln: 9,3 Gew.-%
    • Elektrolytbeständigkeit: 5
  • mittlerer Durchmesser der Partikel: 0,15 m, wobei 90% einen Durchmesser zwischen 0,145 und 0,155 pm haben.
  • Die Partikel tragen auf ihrer Oberfläche Carboxyl- und Sulfonatfunktionen, die durch konduktometrische Titration bestätigt werden, und Gruppen der Formel:
    Figure imgb0012
  • 1 ml von dem oben hergestellten 10%igen Latex wird 20 ml Wasser zugesetzt und die Mischung 1 1/2 Stunden bei 35'000 g zentrifugiert. Der Ueberstand wird abdekantiert, der Rückstand in 20 ml Wasser aufgenommen und nochmals 1 1/2 Stunden bei 35'000 g zentrifugiert. Diese Operation wird zweimal wiederholt und der so erhaltene Latex wird in den folgenden Beispielen als "gewaschener Latex" bezeichnet.
  • 5 mg humanes Immunoglobulin G (Cohn Fraktion II) wird durch Erhitzen auf 60°C während 3 Stunden in 1 ml 0,1 M Glycin-HCl Puffer pH 4 denaturiert..
  • 1 ml gewaschener Latex wird 5 ml 0,05 M HC1 zugesetzt und die Mischung auf 0°C abgekühlt. Zu dieser Mischung wird 0,1 ml einer 0,01 M NaN02 Lösung gegeben und es wird 15 Minuten bei 0°C gerührt. Der diazotierte Latex wird bei 5°C 1 1/2 Stunden bei 35'000 g zentrifugiert und der Ueberstand abdekantiert. Der Rückstand wird in 5 ml eisgekühltem 0,1 M Glycin-HCl Puffer pH 4,0 aufgenommen und im gleichen Puffer 1 ml 0,5%iges denaturiertes humanes Immunoglobulin G zugegeben, 1 Stunde im Eisbad gerührt und anschliessend über Nacht bei 10° stehen gelassen. Der Latex wird 1 1/2 Stunden bei 35'000 g abzentrifugiert, der Ueberstand abdekantiert und der Rückstand zweimal mit je 25 ml 0,1 M Glycin-NaOH Puffer pH 8,2 gewaschen, durch Zentrifugieren und Aufschlämmen des Rückstandes. Dem Latex wird nun soviel Puffer zugesetzt, dass eine Lösung mit 30 mg/ml resultiert.
  • Agglutinationstest:
  • Für den Röhrchen-Agglutinationstest wird der folgende Puffer verwendet: 7,5 g Glycin, 6,0 g CaCl2, 3 g Rinderalbumin, 1 g NaN3 gelöst in 1 Liter Wasser. Der pH-Wert wird mit NaOH auf 8,2 eingestellt. Für den Nachweis der Rheumafaktoren im Serum wird in einem kleinen Reagenzglas 20 µl Latex mit 3 ml Puffer verdünnt und 25 µl des zu untersuchenden Serums zugegeben. Nach dem Durchmischen werden die Röhrchen während 2 Stunden in einem Wärmeblock bei 37°C gehalten. Ein positives Serum agglutiniert unter diesen Bedingungen während ein negatives Kontrollsystem keine Agglutination zeigt.
  • Beispiel 2
  • 1 ml gewaschener Latex wird wie in Beispiel 1 hergestellt und diazotiert. Dem diazotierten Latexrückstand wird 5 ml eiskalter 0,1 M Glycin-NaOH Puffer pH 6,0 zugesetzt und 5 mg Ziegen anti-Humanalbumin Immunoglobulin G in 1 ml obigem Puffer gelöst zugegeben und die Mischung wird nach Rühren während 1 Stunde bei 10°C über Nacht stehen gelassen. Der Latex wird bei 35'000 g während 1 1/2 Stunden abzentrifugiert, der Ueberstand verworfen und das Sediment zweimal mit je 25 ml 0,1 M Glycin-NaOH pH 8,2 gewaschen. Nach dem Waschen wird der Latex mit soviel Puffer vermischt, dass eine 3%ige Lösung erhalten wird.
  • Agglutinationstest:
  • Für den Röhrchenagglutinationstest wird der folgende Puffer verwendet: 7,5 g Glycin, 6,0 g CaCl2, 3 g Rinderalbumin und 1,0 g NaN3 werden in 1 Liter Wasser gelöst und das pH mit Salzsäure auf 6,0 eingestellt. Es wird in kleinen Reagenzgläsern eine Konzentrationsreihe von Humanalbumin in 3 ml Puffer erstellt, je 20 µl Latex zugegeben und nach Durchmischen 2 Stunden bei 37°C in einem Wärmeblock gehalten.
    Figure imgb0013
  • Aus dieser Tabelle ist ersichtlich, dass mit dem so hergestellten Latex 0,05 µg Humanalbumin/ml bestimmt werden kann. ,
  • Beispiel 3
  • 1 ml gewaschenem Latex von Beispiel 1 wird 5 ml 0,1 M Phosphatpuffer pH 5,0 zugesetzt und 5 mg Schaf anti-Human IgG Immunoglobulin G in 1 ml Puffer zugegeben und es wird gut gerührt Anschliessend wird 0,1 ml einer 0,01 M p-Phenyldiisothiocyanatlösung in Dimethylformamid zugegeben, 1 Stunde gerührt und bei Raumtemperatur über Nacht stehen gelassen. Der Latex wird 1 1/2 Stunden bei 35'000 g zentrifugiert, der Ueberstand verworfen und der Rückstand zweimal mit je 25 ml 0,1 M Glycin-NaOH Puffer pH 8,2 gewaschen. Für den Agglutinationstest wird der Latex in einer Konzentration von 30 mg/ml eingesetzt.
  • Agglutinationstest:
  • Für den Röhrchenagglutinationstest wird ein 0,1 M Phosphatpuffer pH 6,0 mit 0,1% Rinderalbumin verwendet. Es wird eine Konzentrationsreihe von Human IgG in 3 ml Puffer hergestellt. Zu jedem Röhrchen werden 20 µl Latexreagens gegeben, durchmischt und 2 Stunden bei 37°C inkubiert im Wärmeblock.
    Figure imgb0014
  • Die Tabelle zeigt, dass mit diesem Latexreagens 0,1 µg/ml Human IgG noch bestimmt werden können.
  • Beispiel 4
  • 36,8 mg Benzidin werden in 0,5 ml 2 NaCl gelöst und mit 7,5 ml Wasser verdünnt. Die Mischung wird im Eisbad gekühlt und unter Rühren 27,2 mg NaN02 in 2 ml Wasser zugetropft. Das so erhaltene bisdiazotierte Benzidin ist bei -20]-während Wochen haltbar.
  • 1 ml gewaschener Latex von Beispiel 1 wird in 5 ml 0,1 M Phosphatpuffer pH 7,0 aufgenommen und 5 mg humanes Immunoglobulin G in 1 ml obigem Puffer zugegeben. Die Suspension wird auf 0° abgekühlt und unter Rühren 0,01 ml einer 0,02 M . bisdiazotierten Benzidinlösung zugegeben und anschliessend bei 10 0 über Nacht stehen gelassen. Der Latex wird bei 30'000 g während 1 1/2 Stunden zentrifugiert, der Ueberstand verworfen und das Sediment zweimal mit je 25 ml 0,1 M Glycin-NaOH pH 8,2 gewaschen. Nach dem Waschen wird der Latex wird soviel Puffer vermischt, dass eine 3%ige Lösung erhalten wird.
  • Agglutinationstest:
  • Für die Bestimmung von IgG im Inhibitionstest wird ein 0,1 M Phosphatpuffer pH 6,0 verwendet. In kleine Reagenzgläser wird je 3 ml eines 1/500 verdünnten Schaf anti-human IgG Serums und steigende Mengen von human IgG gegeben. Nach Inkubation während 15 Minuten bei 37°C wird in jedes Röhrchen 20 µl Latexreagenz gegeben und 3 Stunden bei 37°C inkubiert.
    Figure imgb0015
  • Es lassen sich mit dem oben beschriebenen Latexreagenz 0,16 µg human IgG/ml bestimmen.

Claims (26)

1. Wasserunlösliches Reagenz für eine immunologische Bestimmung,mit einem etwa dem von Wasser entsprechenden spezifischen Gewicht in Form diskreter Latexteilchen, an welche ein immunologisch aktives Material gebunden ist, dadurch gekennzeichnet, dass der Latex aus einer Dispersion von Partikeln von Vinylpolymerisaten besteht, die als Endgruppen Gruppen der Formel:
Figure imgb0016
tragen, wobei die Partikel aus einem Kern von Vinyl- und/oder Dienpolymerisat, das Carboxyl- und/oder Sulfonatfunktionen trägt, und aus einer äusseren Schicht von Vinylpolymerisat, das als Endgruppen Gruppen der Formel:
Figure imgb0017
trägt, gebildet sind und einen mittleren Durchmesser zwischen 0,03 und 5 µm haben.
2. Reagenz nach Anspruch 1, dadurch gekennzeichnet, dass die Vinylpolymerisate entweder Homopolymerisate von Monomeren sind, die aus Styrol und seinen Derivaten, Vinylchlorid, Vinylidenchlorid, Vinylacetat, Acrylderivaten gewählt sind, oder Copolymerisate dieser Monomeren untereinander und/oder mit modifizierend wirkenden Vinyl-Comonomeren sind, die bis zu 5 Gew.-% des Copolymerisats ausmachen.
3. Reagenz nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Dienpolymerisate Homopolymerisate des Butadiens und seiner Derivate oder Copolymerisate dieser Monomeren untereinander und/oder mit Vinylmonomeren und/oder modifizierend wirkenden Vinylcomonomeren, die bis zu 5 Gew.-% des Copolymerisats ausmachen, sind.
4. Reagenz nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Vinylpolymerisate, die die äussere Schicht bilden, Homopolymerisate des Styrols und seiner Derivate, von Alkylacrylaten und Alkylmethacrylaten (Alkyl mit 1 bis 10 Kohlenstoffatomen), von Acrylnitril oder Methacrylnitril, sowie Copolymerisate dieser Monomeren untereinander und/oder mit modifizierend wirkenden Vinylcomonomeren sind, die bis zu 5 Gew.-% des Copolymerisates ausmachen.
5. Reagenz nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Kernpolymerisat 30 bis 99,5 Gew.-% der Partikel und das Polymerisat der äusseren Schicht 70 bis 0,5 Gew.-% der Partikel ausmacht.
6. Reagenz nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das immunologische aktive Material an einen gemäss Beispiel 1 hergestellten Latex gebunden ist.
7. Reagenz nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Menge des immunologisch aktiven Materials 0,01 bis 15,0 Gew.-% beträgt.
8. Reagenz nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das immunologisch aktive Material kovalent an die diskreten Teilchen des Latexpolymeren gebunden ist.
9. Reagenz nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das immunologisch aktive Material humanes Immunoglobulin G ist.
10. Reagenz nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das immunologisch aktive Material Ziegen anti-Humanalbumin Immunoglobulin G ist.
11. Reagenz nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das immunologisch aktive Material Schaf anti-Human IgG Immunoglobulin G ist.
12. Verfahren zur Herstellung eines Reagens nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass man den Latex nach Diazotierung oder unter Verwendung von geeigneten bifunktionellen Verbindungen mit dem immunologisch aktiven Material umsetzt.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass man den gemäss Beispiel 1 hergestellten Latex nach Diazotierung mit denaturiertem humanem Immunoglobulin G umsetzt.
14. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass man den gemäss Beispiel 1 hergestellten Latex nach Diazotierung mit Ziegen anti-Humanalbumin Immunoglobulin G umsetzt.
15. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass man den gemäss Beispiel 1 hergestellten Latex unter Verwendung von p-Phenyldiisothiocyanat mit Schaf anti-Human IgG Immunoglobulin G umsetzt..
16. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass man den gemäss Beispiel 1 hergestellten Latex unter Verwendung von Bis-diazobenzidin mit humanem Immunoglobulin G umsetzt.
17. Verfahren zur Bestimmung einer immunologisch aktiven Substanz in einer Probe, dadurch gekennzeichnet, dass man die Probe und die mit dem entsprechenden immunologischen Reaktionspartner beschichteten Teilchen eines in den Ansprüchen 1 bis 5 definierten Latex vermischt und das Auftreten einer Agglutination beobachtet.
18. Verfahren zur Bestimmung einer immunologisch aktiven Substanz in einer Probe, dadurch gekennzeichnet, dass man die Probe mit einer bestimmten Menge des entsprechenden immunologischen Reaktionspartners und mit der immunologischen aktiven Substanz beschichteten Teilchen eines in den Ansprüchen 1 bis 5 definierten Latex vermischt und das Auftreten einer Agglutination beobachtet.
19. Verfahren nach Anspruch 17 zur Bestimmung des Rheumatoidfaktors in einer Probe, dadurch gekennzeichnet, dass man die Probe und mit denaturiertem humanen Immunoglobulin G beschichteten Teilchen eines gemäss Beispiel 1 hergestellten Latex vermischt und das Auftreten einer Agglutination beobachtet.
20. Verfahren nach Anspruch 17 zur Bestimmung von Humanalbumin in einer Probe, dadurch gekennzeichnet, dass man die Probe und mit Ziegen anti-Humanalbumin Immunoglobulin G beschichteten Teilchen eines gemäss Beispiel 1 hergestellten Latex vermischt und das Auftreten einer Agglutination beobachtet.
21. Verfahren nach Anspruch 17 zur Bestimmung von Human Immunoglobulin G in einer Probe, dadurch gekennzeichnet, dass man die Probe und mit Schaf anti-Human IgG-Immunoglobulin G beschichteten Teilchen eines gemäss Beispiel 1 hergestellten Latex vermischt und das Auftreten einer Agglutination beobachtet.
22. Verfahren nach Anspruch 18 zur Bestimmung von Human Immunoglobulin G in eine Probe, dadurch gekennzeichnet, dass man die Probe mit anti-Human-Immunoglobulin G Serum und mit Human Immunoglobulin G beschichteten Teilchen eines gemäss Beispiel 1 hergestellten Latex vermischt und das Auftreten einer Agglutination beobachtet.
23. Reagenziengarnitur zur Bestimmung einer immunologisch aktiven Substanz in einer Probe enthaltend in einem Behälter eine wässrige Suspension von mit dem entsprechenden immunologischen Reaktionspartner beschichteten Teilchen eines in den Ansprüchen 1 bis 5 definierten Latex.
24. Reagenziengarnitur zur Bestimmung einer immunologisch aktiven Substanz in einer Probe enthaltend in einem ersten Behälter eine Lösung des entsprechend immunologischen Reaktionspartners und in einem zweiten Behälter eine wässrige Suspension von mit dem immunologisch aktiven Material beschichteten Teilchen eines in den Ansprüchen 1 bis 5 definierten Latex.
25. Verwendung von einem in den Ansprüchen 1 bis 5 definierten Latex als Träger für immunologische Bestimmungen.
26. Verwendung eines Reagens nach einem der Ansprüche 1 bis 11 in immunologischen Bestimmungen.
EP78100581A 1977-08-03 1978-08-02 Immunologisches Reagenz in Form spezieller, mit einem immunologisch aktiven Material beschichteter Latexteilchen auf Vinylpolymerisatbasis, Verfahren zu dessen Herstellung, Verwendung dieses Reagenzes, Bestimmungsverfahren unter Verwendung dieses Reagenzes und Reagenziengarnitur enthaltend dieses Reagenz Withdrawn EP0000772A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH9542/77 1977-08-03
CH954277A CH628738A5 (de) 1977-08-03 1977-08-03 Immunologisches diagnose-reagenz.

Publications (1)

Publication Number Publication Date
EP0000772A1 true EP0000772A1 (de) 1979-02-21

Family

ID=4353079

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100581A Withdrawn EP0000772A1 (de) 1977-08-03 1978-08-02 Immunologisches Reagenz in Form spezieller, mit einem immunologisch aktiven Material beschichteter Latexteilchen auf Vinylpolymerisatbasis, Verfahren zu dessen Herstellung, Verwendung dieses Reagenzes, Bestimmungsverfahren unter Verwendung dieses Reagenzes und Reagenziengarnitur enthaltend dieses Reagenz

Country Status (12)

Country Link
US (1) US4226747A (de)
EP (1) EP0000772A1 (de)
JP (1) JPS5428816A (de)
AU (1) AU528150B2 (de)
CA (1) CA1103153A (de)
CH (1) CH628738A5 (de)
DE (1) DE2833886A1 (de)
DK (1) DK343678A (de)
FR (1) FR2399665A1 (de)
GB (1) GB2001996B (de)
NL (1) NL7808143A (de)
SE (1) SE7808349L (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008682A1 (de) * 1978-08-02 1980-03-19 F. HOFFMANN-LA ROCHE & CO. Aktiengesellschaft Mit einem Proteinmaterial beschichteter Latex, Verfahren zur Herstellung dieses Latex, immunologisches Reagenz enthaltend diesen Latex, Verfahren zur Herstellung dieses Reagenzes, Verwendung dieses Reagenzes, Bestimmungsverfahren unter Verwendung dieses Reagenzes und Reagenziengarnitur enthaltend dieses Reagenz
EP0019741A1 (de) * 1979-05-07 1980-12-10 BEHRINGWERKE Aktiengesellschaft Latex-Reagenz, Verfahren zu seiner Herstellung, seine Verwendung und ein das Reagenz enthaltendes Mittel
FR2595826A1 (fr) * 1986-03-13 1987-09-18 Lurhuma Zirimwabagabo Produit d'immuno-essai, son procede de preparation, son utilisation, complexe immunogene le comportant et utilisation de ce complexe

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH628738A5 (de) * 1977-08-03 1982-03-15 Hoffmann La Roche Immunologisches diagnose-reagenz.
DE3048883A1 (de) * 1980-12-23 1982-07-15 Boehringer Mannheim Gmbh, 6800 Mannheim Hydrophile latexpartikel, verfahren zu deren herstellung und deren verwendung
JPS57168163A (en) * 1981-04-10 1982-10-16 Japan Synthetic Rubber Co Ltd Carier for immunoserological inspection reagent
DE3116995A1 (de) * 1981-04-29 1982-11-25 Röhm GmbH, 6100 Darmstadt Latex zur immobilisierung von biologisch wirksamen substanzen
JPS585658A (ja) * 1981-07-02 1983-01-13 Japan Synthetic Rubber Co Ltd 免疫血清学的検査試薬用担体
US4792527A (en) * 1981-07-17 1988-12-20 Toray Industries, Inc. Method of assaying biologically active substances and labelling agents therefor
DE3130924A1 (de) * 1981-08-05 1983-02-17 Röhm GmbH, 6100 Darmstadt Oberflaechenreiche systeme zur fixierung von nucleophile gruppen enthaltenden substraten
JPS5847258A (ja) * 1981-09-01 1983-03-18 イ−・アイ・デユポン・ド・ネモア−ス・アンド・コンパニ− 光散乱イムノアツセイ用粒子試薬
US4401765A (en) * 1981-09-01 1983-08-30 E. I. Du Pont De Nemours And Company Covalently bonded high refractive index particle reagents and their use in light scattering immunoassays
US4480042A (en) * 1981-10-28 1984-10-30 E. I. Du Pont De Nemours And Company Covalently bonded high refractive index particle reagents and their use in light scattering immunoassays
JPS5897656A (ja) * 1981-12-07 1983-06-10 Sekisui Chem Co Ltd 診断試薬用ラテツクス
US4713350A (en) * 1983-10-24 1987-12-15 Technicon Instruments Corporation Hydrophilic assay reagent containing one member of specific binding pair
US4654325A (en) * 1984-05-24 1987-03-31 Selenke William M Medicament for reducing nephrotoxicity caused by positively charged agents such as aminoglycosides and methods of use thereof
JPH0692970B2 (ja) * 1986-02-28 1994-11-16 日本合成ゴム株式会社 診断薬用担体粒子の製造方法
US5166077A (en) * 1987-04-30 1992-11-24 Nitto Denko Corporation Latex for immobilization of physiologically active substances for immuno nephelometry
ATE153138T1 (de) * 1990-09-26 1997-05-15 Akers Lab Inc Verbessertes bestimmungsverfahren für liganden
US5231035A (en) * 1991-01-11 1993-07-27 Akers Research Corporation Latex agglutination assay
US5973029A (en) * 1993-10-12 1999-10-26 The Sherwin-Williams Company Corrosion-resistant waterborne paints
US5432210A (en) * 1993-11-22 1995-07-11 Rohm And Haas Company Polymer particles and method for preparing by polymerization of encapsulated monomers
US5981296A (en) * 1997-02-18 1999-11-09 Dade Behring Inc. Stabilization of particle reagents
IT1291164B1 (it) 1997-03-04 1998-12-29 Coral Spa Condotto universale di convogliamento di fumi o gas nocivi da un posto di lavorazione.
ATE458762T1 (de) * 2005-07-01 2010-03-15 Hoffmann La Roche Carboxylierte latexteilchen
CN101516382A (zh) 2006-08-24 2009-08-26 马拉德克里科聚合物公司 作为生物活性成分的载体的阳离子型胶乳及其生产和使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1806418A1 (de) * 1967-11-01 1969-06-26 Miles Lab Eiweissartiges Reagens und Herstellungsverfahren hierfuer
DE2204684A1 (de) * 1971-02-01 1972-08-17 Hoffmann La Roche Verfahren zum Nachweis von Antikörpern bzw. Antigenen in einer Körperflüssigkeit
US3857931A (en) * 1971-02-01 1974-12-31 Hoffmann La Roche Latex polymer reagents for diagnostic tests
FR2331567A1 (fr) * 1975-11-13 1977-06-10 Inst Nat Sante Rech Med Nouveau procede de fixation chimique sur un support, de composes organiques comportant un residu glucidique et produits obtenus par ce procede

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118349A (en) * 1971-05-12 1978-10-03 Behringwerke Aktiengesellschaft Process for the manufacture of polystyrene latex compounds
US3896217A (en) * 1973-03-19 1975-07-22 Summa Corp Method and apparatus for radioimmunoassay with regeneration of immunoadsorbent
FR2321519A1 (fr) * 1975-08-22 1977-03-18 Rhone Poulenc Ind Latex de polymeres styreniques
US4140662A (en) * 1977-03-25 1979-02-20 Ortho Diagnostics, Inc. Attachment of proteins to inert particles
US4134872A (en) * 1977-05-20 1979-01-16 The Dow Chemical Company Heterogeneous polymer particles comprising an interpolymer domain of a monovinylidene aromatic monomer, an open chain aliphatic conjugated diene and a monoethylenically unsaturated acid
CH628738A5 (de) * 1977-08-03 1982-03-15 Hoffmann La Roche Immunologisches diagnose-reagenz.
US4156669A (en) * 1978-04-24 1979-05-29 The Dow Chemical Company Latexes of encapsulated vinylidene chloride copolymer particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1806418A1 (de) * 1967-11-01 1969-06-26 Miles Lab Eiweissartiges Reagens und Herstellungsverfahren hierfuer
DE2204684A1 (de) * 1971-02-01 1972-08-17 Hoffmann La Roche Verfahren zum Nachweis von Antikörpern bzw. Antigenen in einer Körperflüssigkeit
US3857931A (en) * 1971-02-01 1974-12-31 Hoffmann La Roche Latex polymer reagents for diagnostic tests
FR2331567A1 (fr) * 1975-11-13 1977-06-10 Inst Nat Sante Rech Med Nouveau procede de fixation chimique sur un support, de composes organiques comportant un residu glucidique et produits obtenus par ce procede

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008682A1 (de) * 1978-08-02 1980-03-19 F. HOFFMANN-LA ROCHE & CO. Aktiengesellschaft Mit einem Proteinmaterial beschichteter Latex, Verfahren zur Herstellung dieses Latex, immunologisches Reagenz enthaltend diesen Latex, Verfahren zur Herstellung dieses Reagenzes, Verwendung dieses Reagenzes, Bestimmungsverfahren unter Verwendung dieses Reagenzes und Reagenziengarnitur enthaltend dieses Reagenz
EP0019741A1 (de) * 1979-05-07 1980-12-10 BEHRINGWERKE Aktiengesellschaft Latex-Reagenz, Verfahren zu seiner Herstellung, seine Verwendung und ein das Reagenz enthaltendes Mittel
FR2595826A1 (fr) * 1986-03-13 1987-09-18 Lurhuma Zirimwabagabo Produit d'immuno-essai, son procede de preparation, son utilisation, complexe immunogene le comportant et utilisation de ce complexe
EP0238396A1 (de) * 1986-03-13 1987-09-23 Zirimwabagabo Lurhuma Produkt für Immunotestverfahren, Verfahren zu seiner Herstellung, seine Verwendung, das Produkt enthaltender Immunokomplex und Verwendung des Komplexes

Also Published As

Publication number Publication date
DK343678A (da) 1979-02-04
CH628738A5 (de) 1982-03-15
CA1103153A (en) 1981-06-16
JPS5428816A (en) 1979-03-03
FR2399665B1 (de) 1982-11-05
AU3840778A (en) 1980-01-31
NL7808143A (nl) 1979-02-06
SE7808349L (sv) 1979-02-04
GB2001996A (en) 1979-02-14
FR2399665A1 (fr) 1979-03-02
DE2833886A1 (de) 1979-02-22
US4226747A (en) 1980-10-07
GB2001996B (en) 1982-03-24
AU528150B2 (en) 1983-04-14

Similar Documents

Publication Publication Date Title
EP0000772A1 (de) Immunologisches Reagenz in Form spezieller, mit einem immunologisch aktiven Material beschichteter Latexteilchen auf Vinylpolymerisatbasis, Verfahren zu dessen Herstellung, Verwendung dieses Reagenzes, Bestimmungsverfahren unter Verwendung dieses Reagenzes und Reagenziengarnitur enthaltend dieses Reagenz
DE2203377C3 (de) Wasserunlösliches, für einen Agglutinationstest bestimmtes immunologisches Diagnose-Reagenz
EP0054685B1 (de) Hydrophile Latexpartikel, Verfahren zu deren Herstellung und deren Verwendung
EP0065069B1 (de) Latex zur Immobilisierung von biologisch wirksamen Substanzen
EP0224134B1 (de) Verfahren zur Quantifizierung von Zellpopulationen bzw. Subpopulationen sowie hierfür geeignetes Reagenz
EP0080614B1 (de) Ein Latex, biologisch aktive Latexkonjugate und Verfahren zu ihrer Herstellung
DE2812845A1 (de) Immunologischer testreagens und verfahren zu seiner herstellung
EP0019741A1 (de) Latex-Reagenz, Verfahren zu seiner Herstellung, seine Verwendung und ein das Reagenz enthaltendes Mittel
DE3224484A1 (de) Polymere mikrokuegelchen und verfahren zu ihrer herstellung
EP0849595B1 (de) Synthetische Partikel als Agglutinationsreagenzien
DE2529937A1 (de) Serologisches reagenz und verfahren zu seiner herstellung
DE3002973C2 (de)
EP0253254B1 (de) Dispersionspolymere, biologisch aktive Dispersionspolymere, Verfahren zu ihrer Herstellung und Verwendung als diagnostisches Mittel
DE2204684A1 (de) Verfahren zum Nachweis von Antikörpern bzw. Antigenen in einer Körperflüssigkeit
DE3105555C2 (de)
DE3048883A1 (de) Hydrophile latexpartikel, verfahren zu deren herstellung und deren verwendung
EP0372413B1 (de) Mittel für immunchemische Tests, carboxylgruppenhaltige Polymere enthaltend
EP0379133B1 (de) Verwendung von zweiwertigen Kationen in immunchemischen Tests
CH625626A5 (en) Process for the preparation of stable immunological reagents
DE3048884A1 (de) Verfahren zur enzymimmunobestimmung in heterogener phase
EP0266686B1 (de) Latex-Agglutinations-Verfahren zum Nachweis von Anti-Streptokokken-Desoxyribonuclease B
DE2833510B2 (de) Latex von Vinylpolymerisatteilchen mit endständigen Aminothiophenolgruppen
CH658728A5 (en) Process for the production of particulate reagents for immunoassays, and these reagents and their use
EP0014965B1 (de) Immunologisches diagnostisches Reagenz zur Bestimmung der Schwangerschaft, Verfahren zu dessen Herstellung sowie dessen Verwendung zur Bestimmung der Schwangerschaft
DE2907794A1 (de) Protein-latex-konjugat und verfahren zu seiner herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB NL SE

17P Request for examination filed
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19801203

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GAETANO, RONCARI, DR.