EP0048190A1 - Non-dispersive antenna array and its application to electronic scanning - Google Patents

Non-dispersive antenna array and its application to electronic scanning Download PDF

Info

Publication number
EP0048190A1
EP0048190A1 EP81401310A EP81401310A EP0048190A1 EP 0048190 A1 EP0048190 A1 EP 0048190A1 EP 81401310 A EP81401310 A EP 81401310A EP 81401310 A EP81401310 A EP 81401310A EP 0048190 A1 EP0048190 A1 EP 0048190A1
Authority
EP
European Patent Office
Prior art keywords
network
primary
antenna according
dispersive
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81401310A
Other languages
German (de)
French (fr)
Other versions
EP0048190B1 (en
Inventor
Michel Dudome
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0048190A1 publication Critical patent/EP0048190A1/en
Application granted granted Critical
Publication of EP0048190B1 publication Critical patent/EP0048190B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0018Space- fed arrays

Definitions

  • the present invention relates to a network antenna and more particularly to an antenna of this type which is non-dispersive and has a small footprint.
  • non-dispersive array antenna is meant an antenna for which the direction of maximum radiation is practically independent of the frequency.
  • the present invention also relates to the application of such an antenna to the production of an electronic scanning antenna.
  • Network antennas which respond to the characteristic of non-dispersivity and we can cite a so-called candlestick network antenna for which the feed path divides and each new feed path thus obtained is connected to radiating elements capable of constitute basic sources according to the terminology used in network antennas.
  • Such an antenna structure which includes a certain number of magic Tees or dividers, is complex to say the least, cumbersome, and risks being heavy and of a high cost price.
  • Another non-dispersive antenna structure which comprises a supply guide to which are coupled, by means of directional couplers, guides supplying elementary sources, the assembly being such that the electrical lengths of each circuit of supply from an elementary source are equal.
  • This antenna structure although less bulky than the first cited, has the defect of being complicated from the point of view of its mechanical production which, from a large number of elementary sources, of the order of a hundred , again results in some annoying bulk.
  • non-dispersive antennas can also be cited, in particular active lenses and reflective arrays which are supplied with free space by means of a simple primary source.
  • these antennas have the drawback a longitudinal size equal to the focal length of the system which is large; on the other hand, there is a risk of overflow of the primary radiation on the periphery of the network which can produce annoying diffuse radiation.
  • Non-dispersive array antenna Another embodiment of a non-dispersive array antenna has been proposed by the Applicant in its French patent application No. EN 77.07331 which consists of a first dispersive array supplying a second array whose general direction makes a certain angle with the first, the supply of the second network by the first by propagation in free space.
  • FIG. 1 represents this prism array antenna of the prior art in which 1 is the linear dispersive primary array, a simple slotted guide supplied by its end 2 with its other end closed on an absorbent load 3.
  • An absorbent panel 8 can be provided on the third side of the triangle, absorbing the reflected radiation linked to the active coefficient of the networks.
  • the secondary network 4 also linear, makes an angle ⁇ with the primary network.
  • this secondary network is a double-sided network, the faces of which consist of radiating elements of the horn 5 and 6 type. Between the two faces of the secondary network are phase-shifters 7, which for the example described, have a fixed value each, the set of phase shifts following a linear law from the first phase shifter to the last. This law is such that .
  • the wave radiated by the secondary network has a direction of radiation perpendicular to said network. It follows that the phase shift to which the wave supplying the secondary network is subjected has the effect of compensating for the phase law produced by the oblique incidence on the secondary network of the primary radiated wave, thus determining a law on the secondary network. stationary phase.
  • FIG. 2 shows an embodiment of this antenna also falling within the prior art.
  • the network 1 is formed by a number of slot guides 91 to 9n similar to the guide 1 in FIG. 1, each comprising the same number of slots 10. All these guides are fed in parallel by one of their ends, by a channel. 11. Phase shifters 12 of the electronic type for example are provided to allow electronic scanning with this antenna to be carried out in a vertical plane perpendicular to the plane of the figure.
  • the secondary network IV is constituted by a panel 13 comprising a certain number of radiating elements which are, in the described case, rotary propellers 14 powered by dipoles 15.
  • the use of rotary propellers makes it unnecessary to interpose phase shifters between the two sides of the network IV.
  • the third face of the trihedron is an absorbent panel 16.
  • An antenna with electronic scanning such as that which has been described has the advantages of being aperiodic in the first order and of exhibiting neither mask effect nor overflow.
  • the optimization of the non-dispersivity of the pointing as a function of the frequency is not carried out for all the sites scanned. Indeed, during a depointing in the site plane, the propagation of the wave between the primary network 1 and the secondary network IV is no longer strictly done in the field plane, but in an inclined plane of the value of l 'angle of site considered. Therefore, during the electronic scanning, differences in electrical length are created for the waves propagating between the two networks, differences which are no longer compensated for by the secondary network.
  • An object of the invention is to remedy this drawback.
  • a non-dispersive array antenna comprising a directional primary array constituted by a superposition of one-dimensional primary arrays, each supplied through a phase shifter, a secondary array in the form of a panel comprising elementary sources on the internal faces and external of the panel, with passive phase shifters introduced between the two faces, the secondary network making an angle ⁇ with the primary network, and an absorbing panel closing the defined angle between the two networks, is characterized in that the wave propagation between the primary and secondary networks are carried out in space guided by parallel planes arranged in such a way that they materialize the antenna as a stack of a plurality of elementary non-dispersive one-dimensional antennas, for each of which the propagation between the primary network and the secondary network is guided.
  • a so-called prism antenna can be produced in a one-dimensional form and in a two-dimensional form, the latter making it possible to carry out an electronic scanning of the space.
  • the main characteristic of these antennas is that the direc tion of the maximum radiation is practically independent of the frequency, this characteristic being linked to the fact that the primary and secondary networks which constitute this antenna form between them an angle lX which can be chosen and determined optimally so that the phase of the wave supplying the secondary network is stationary, the propagation between the primary network and the secondary network taking place in free space.
  • such an antenna mainly when it is one-dimensional, does not pose any problem, except in the event of overflow where part of the wave directly emitted by the primary network can recombine with the wave leaving the secondary network and alter direction.
  • Such a drawback is remedied by eliminating the overflow, by closing the free space existing between the primary and secondary networks. Under these conditions the emitted wave propagates in guided space and the overflow cannot take place.
  • the performance of the antenna the structure of which is thus modified relative to the array antenna of the prior art, is not modified.
  • This value of the angle ⁇ as a function of the direction of radiation Go of the primary network at the frequency fo is given by the formula in which for the frequency fo, Ko (Z) is the propagation constant in the space between the networks, whether this propagation is free or guided, that is to say that in free space, Ko (Z) takes a value Ko and that in guided space, Ko (Z) takes the value Kgo, except in the case where the polarization vector is vertical and then Ko (Z) is equal to Ko, and Ko (R1) is the propagation constant in the guide that constitutes the primary network.
  • This formula is identical to that given for the embodiment according to the prior art for which the propagation takes place in free space.
  • FIG. 3 represents a one-dimensional array antenna according to the invention. This figure is not very different from that of Figure 1 so that the elements common to the two figures have the same references.
  • the primary network 1 supplied by its end 2, the other end being closed by an absorbent load 3, the secondary network 4 with for radiating sources in the case of the figure, propellers 6 supplied on the internal face of the network 4 by the dipoles 5.
  • propellers 6 supplied on the internal face of the network 4 by the dipoles 5.
  • the use of propellers makes it possible to suppress the stage of phase shifters between the internal face and the external face of the secondary network 4.
  • An identical plate is located on the side of the lower opening which is not visible in FIG. 3.
  • a compact module has been produced, usable as such as a one-dimensional non-dispersive array antenna.
  • such a module is used to constitute an element of a two-dimensional array antenna, such an antenna being constituted by a stack of a plurality of these elements. Produced in this way, such an antenna no longer exhibits the drawback indicated in the case of electronic scanning.
  • the two-dimensional antenna by a stack of modules, as they have been defined previously and described in support of FIG. 3, modules in which the propagation is guided, it can be seen that at level of each module, that is to say at the level of the elementary horizontal array antennas in the example described that they constitute, the phase shift introduced by the phase shifter, disposed at the input of the feed guides of an antenna elementary, is fully retransmitted to the secondary network so that for the entire antenna the phase law applied to these phase shifters is fully transmitted in the site map at the output of the secondary network.
  • FIG. 4 represents a two-dimensional array antenna according to the invention, a representation which does not differ much from the representation of FIG. 2 where the propagation between the primary or input and the secondary or output linear networks takes place in free space. Under these conditions, the parts common to the two figures bear the same references.
  • panel I a network consisting of a certain number of slot guides 91 to 9n each with the same number of slots 10.
  • the input of each of these guides comprises a phase shifter, the assembly of which is identified by 12 and the power is supplied by a guide 11.
  • the electronic phase shifters 12 allow electronic scanning to be carried out in a vertical plane perpendicular to the plane of the figure.
  • the secondary IV array is constituted by a panel 13 comprising a certain number of radiating elements, rotary propellers for example 14 supplied by dipoles 15.
  • An absorbent panel 16 is provided to complete the trihedron that constitutes this two-dimensional array antenna.
  • This antenna structure is completed by parallel planes 18 which materialize, inside the two-dimensional array antenna, the elementary array antennas or modules conforming to FIG. 3, in which the propagation is guided.
  • the polarization of the transmitted waves is of horizontal or vertical type; on the other hand, the polarization of the wave leaving the secondary network can be arbitrary, depending only on the radiating elements.
  • the primary network has been considered as a slotted guide supplied by a traveling wave.
  • the slots are arranged on the short or the long side of the guide.
  • the primary network can equally well be a network composed of radiating elements coupled in some way with a supply line.
  • This line can be a guide but also a line produced by any photogravure process, that is to say deposited on a dielectric substrate, as in the slit line, two-wire line, microstrip, triplate technologies.
  • the radiating elements if they have a plane geometry, can also be etched on this same dielectric. These elements can be quarter wave strands, dipoles, half or whole wave, yagis, zigzag, periodic log, lines with flared radiating slits.
  • FIG. 5 represents an embodiment in slot line technology with couplers 19 and flared lines 20 and FIG. 6 an embodiment in microstrip technology with couplers 19 and dipoles 21.
  • the elements internal and external to the output network can be made up of any type of radiating elements photograved or not.
  • the polarization emitted on the two faces of the secondary network remains the same, all of the radiating elements of this secondary network with passive phase shifters interposed between them can be achieved by metallization of a single dielectric plate.
  • the photo-etched elements are the same as those designated for the primary network.
  • non-dispersive array antenna of small size and reduced weight with electronic scanning which can be produced by stacking a plurality of modules each constituting themselves a non-dispersive one-dimensional antenna.

Abstract

Antenne réseau non dispersive, du type antenne prisme dans laquelle le réseau primaire d'entrée dispersif (I) et le réseau secondaire (IV) de sortie font un angle α entre eux, réalisée par empilement d'antennes réseau non dispersives monodimensionnelles, pour chacune desquelles la propagation entre lesdit réseaux est guidée. Application aux antennes prismes à balayage électronique.Non-dispersive network antenna, of the prism antenna type in which the primary dispersive input network (I) and the secondary output network (IV) make an angle α between them, produced by stacking one-dimensional non-dispersive network antennas, for each which propagation between said networks is guided. Application to electronic scanning prism antennas.

Description

La présente invention concerne une antenne réseau et plus particulièrement une antenne de ce type qui soit non dispersive et présente un faible encombrement. Par antenne réseau non dispersive on entend une antenne pour laquelle la direction de rayonnement maximal est pratiquement indépendante de la fréquence. La présente invention concerne également l'application d'une telle antenne à la réalisation d'une antenne à balayage électronique.The present invention relates to a network antenna and more particularly to an antenna of this type which is non-dispersive and has a small footprint. By non-dispersive array antenna is meant an antenna for which the direction of maximum radiation is practically independent of the frequency. The present invention also relates to the application of such an antenna to the production of an electronic scanning antenna.

On connait des antennes réseau qui répondent à la caractéristique de non dispersivité et l'on pourra citer une antenne réseau dite en chandelier pour laquelle la voie d'alimentation se divise et chaque nouvelle voie d'alimentation ainsi obtenue est connectée à des éléments rayonnants pouvant constituer des sources élémentaires suivant la terminologie utilisée dans les antennes réseau. Une telle structure d'antenne qui comporte un certain nombre de Tés magiques ou de diviseurs, est pour le moins complexe, encombrante, et risque d'être lourde et d'un prix de revient élevé.Network antennas are known which respond to the characteristic of non-dispersivity and we can cite a so-called candlestick network antenna for which the feed path divides and each new feed path thus obtained is connected to radiating elements capable of constitute basic sources according to the terminology used in network antennas. Such an antenna structure which includes a certain number of magic Tees or dividers, is complex to say the least, cumbersome, and risks being heavy and of a high cost price.

Une autre structure d'antenne non dispersive est également connue qui comporte un guide d'alimentation auquel sont couplés, par l'intermédiaire de coupleurs directifs des guides alimentant des sources élémentaires, l'ensemble étant tel que les longueurs électriques de chaque circuit d'alimentation d'une source élémentaire sont égales.Another non-dispersive antenna structure is also known which comprises a supply guide to which are coupled, by means of directional couplers, guides supplying elementary sources, the assembly being such that the electrical lengths of each circuit of supply from an elementary source are equal.

Cette structure d'antenne, bien que moins encombrante que la première citée, présente le défaut d'être compliquée au point de vue de sa réalisation mécanique qui, à partir d'un nombre de sources élémentaires important, de l'ordre de la centaine, entraîne à nouveau un certain encombrement gênant.This antenna structure, although less bulky than the first cited, has the defect of being complicated from the point of view of its mechanical production which, from a large number of elementary sources, of the order of a hundred , again results in some annoying bulk.

D'autres réalisations d'antennes non dispersives peuvent encore être citées, notamment les lentilles actives et les réseaux réflecteurs qui sont alimentés en espace libre au moyen d'une simple source primaire. Toutefois ces antennes présentent l'inconvénient d'un encombrement longitudinal égal à la distance focale du système qui est grande ; d'autre part, il y a risque de débordement du rayonnement primaire sur la périphérie du réseau ce qui peut produire un rayonnement diffus gênant.Other embodiments of non-dispersive antennas can also be cited, in particular active lenses and reflective arrays which are supplied with free space by means of a simple primary source. However, these antennas have the drawback a longitudinal size equal to the focal length of the system which is large; on the other hand, there is a risk of overflow of the primary radiation on the periphery of the network which can produce annoying diffuse radiation.

Une autre réalisation d'antenne réseau non dispersive a été proposée par la Demanderesse dans sa demande de brevet français N° EN 77.07331 qui consiste en un premier réseau dispersif alimentant un second réseau dont la direction générale fait un certain angle avec le premier, l'alimentation du second réseau par le premier se faisant par propagation en espace libre.Another embodiment of a non-dispersive array antenna has been proposed by the Applicant in its French patent application No. EN 77.07331 which consists of a first dispersive array supplying a second array whose general direction makes a certain angle with the first, the supply of the second network by the first by propagation in free space.

On a démontré pour une telle antenne, appelée antenne réseau prisme, que pour une fréquence fo de l'onde progressive alimentant le réseau primaire, les valeurs de l'angle 0: entre les deux réseaux en fonction de la direction de rayonnement eo du réseau primaire étaient données par la formule :

Figure imgb0001
dans laquelle Ko est le nombre d'onde 2π/λo en espace libre et Kgo le nombre d'onde dans le guide à fentes constituant le réseau primaire à la fréquence fo.It has been demonstrated for such an antenna, called a prism array antenna, that for a frequency fo of the traveling wave supplying the primary array, the values of the angle 0: between the two arrays as a function of the direction of radiation eo of the array primary were given by the formula:
Figure imgb0001
in which Ko is the wave number 2π / λo in free space and Kgo the wave number in the slot guide constituting the primary network at the frequency fo.

La figure 1 représente cette antenne réseau prisme de l'art antérieur dans laquelle 1 est le réseau primaire dispersif linéaire, un simple guide à fentes alimenté par son extrémité 2 avec son autre extrémité fermée sur une charge absorbante 3. Un panneau 8 absorbant peut être prévu sur le troisème côté du triangle, absorbant les rayonnements réfléchis liés au coefficient actif des réseaux. Le réseau secondaire 4, également linéaire, fait un angle α avec le réseau primaire. Sur la figure 1, ce réseau secondaire est un réseau double face dont les faces sont constituées d'éléments rayonnants du genre cornet 5 et 6. Entre les deux faces du réseau secondaire sont disposés des déphaseurs 7, qui pour l'exemple décrit, ont une valeur fixe chacun, l'ensemble des déphasages suivant une loi linéaire du premier déphaseur au dernier. Cette loi est telle que . l'onde rayonnée par le réseau secondaire a une direction de rayonnement perpendiculaire audit réseau. Il en résulte que le déphasage auquel est soumise l'onde alimentant le réseau secondaire a pour effet de compenser la loi de phase produite par l'incidence oblique sur le réseau secondaire de l'onde rayonnée primaire, déterminant ainsi sur le réseau secondaire une loi de phase stationnaire.FIG. 1 represents this prism array antenna of the prior art in which 1 is the linear dispersive primary array, a simple slotted guide supplied by its end 2 with its other end closed on an absorbent load 3. An absorbent panel 8 can be provided on the third side of the triangle, absorbing the reflected radiation linked to the active coefficient of the networks. The secondary network 4, also linear, makes an angle α with the primary network. In FIG. 1, this secondary network is a double-sided network, the faces of which consist of radiating elements of the horn 5 and 6 type. Between the two faces of the secondary network are phase-shifters 7, which for the example described, have a fixed value each, the set of phase shifts following a linear law from the first phase shifter to the last. This law is such that . the wave radiated by the secondary network has a direction of radiation perpendicular to said network. It follows that the phase shift to which the wave supplying the secondary network is subjected has the effect of compensating for the phase law produced by the oblique incidence on the secondary network of the primary radiated wave, thus determining a law on the secondary network. stationary phase.

Dans la demande de brevet citée précédemment on a étendu les enseignements tirés de la réalisation monodimensionnelle de l'antenne réseau, à une antenne réseau bidimensionnelle avec laquelle on veut effectuer un balayage électronique.In the patent application cited above, the lessons learned from the one-dimensional realization of the array antenna have been extended to a two-dimensional array antenna with which it is desired to carry out an electronic scan.

La figure 2 présente une réalisation de cette antenne relevant également de l'art antérieur.Figure 2 shows an embodiment of this antenna also falling within the prior art.

Le réseau 1 est formé par un certain nombre de guides à fentes 91 à 9n semblables au guide 1 de la figure 1, comportant chacun un même nombre de fentes 10. Tous ces guides sont alimentés en parallèle par une de leurs extrémités, par une voie 11. Des déphaseurs 12 du type électronique par exemple sont prévus pour permettre d'effectuer avec cette antenne un balayage électronique dans un plan vertical perpendiculaire au plan de la figure.The network 1 is formed by a number of slot guides 91 to 9n similar to the guide 1 in FIG. 1, each comprising the same number of slots 10. All these guides are fed in parallel by one of their ends, by a channel. 11. Phase shifters 12 of the electronic type for example are provided to allow electronic scanning with this antenna to be carried out in a vertical plane perpendicular to the plane of the figure.

Le réseau secondaire IV est constitué par un panneau 13 comportant un certain nombre d'éléments rayonnants qui sont dans le cas décrit, des hélices rotatives 14 alimentées par des dipôles 15. L'utilisation d'hélices rotatives rend inutile l'interposition de déphaseurs entre les deux faces du réseau IV. La troisième face du trièdre est un panneau absorbant 16.The secondary network IV is constituted by a panel 13 comprising a certain number of radiating elements which are, in the described case, rotary propellers 14 powered by dipoles 15. The use of rotary propellers makes it unnecessary to interpose phase shifters between the two sides of the network IV. The third face of the trihedron is an absorbent panel 16.

Une antenne à balayage électronique telle que celle qui a été décrite présente les avantages d'être apériodique au premier ordre et de ne présenter ni effet de masque, ni débordement. Toutefois l'optimisation de la non dispersivité du pointage en fonction de la fréquence n'est pas réalisée pour tous les sites balayés. En effet, lors d'un dépointage dans le plan site, la propagation de l'onde entre le réseau primaire 1 et le réseau secondaire IV ne se fait plus rigoureusement dans le plan de gisement, mais dans un plan incliné de la valeur de l'angle de site considéré. De ce fait, au cours du balayage électronique, il se crée des différences de longueur électrique pour les ondes se propageant entre les deux réseaux, différences qui ne sont plus compensées par le réseau secondaire.An antenna with electronic scanning such as that which has been described has the advantages of being aperiodic in the first order and of exhibiting neither mask effect nor overflow. However, the optimization of the non-dispersivity of the pointing as a function of the frequency is not carried out for all the sites scanned. Indeed, during a depointing in the site plane, the propagation of the wave between the primary network 1 and the secondary network IV is no longer strictly done in the field plane, but in an inclined plane of the value of l 'angle of site considered. Therefore, during the electronic scanning, differences in electrical length are created for the waves propagating between the two networks, differences which are no longer compensated for by the secondary network.

Un but de l'invention est de remédier à cet inconvénient.An object of the invention is to remedy this drawback.

Suivant l'invention, une antenne réseau non dispersive comportant un réseau primaire directif constitué par une superposition de réseaux primaires monodimensionnels, alimentés chacun à travers un déphaseur, un réseau secondaire sous la forme d'un panneau comprenant des sources élémentaires sur les faces interne et externe du panneau, avec des déphaseurs passifs introduits entre les deux faces, le réseau secondaire faisant un angle α avec le réseau primaire, et un panneau absorbant fermant l'angle défini entre les deux réseaux, est caractérisée en ce que la propagation des ondes entre les réseaux primaire et secondaire s'effectue en espace guidé par des plans parallèles disposés de façon telle qu'ils matérialisent l'antenne comme un empilement d'une pluralité d'antennes élémentaires non dispersives monodimensionnelles, pour chacune desquelles la propagation entre le réseau primaire et le réseau secondaire est guidée.According to the invention, a non-dispersive array antenna comprising a directional primary array constituted by a superposition of one-dimensional primary arrays, each supplied through a phase shifter, a secondary array in the form of a panel comprising elementary sources on the internal faces and external of the panel, with passive phase shifters introduced between the two faces, the secondary network making an angle α with the primary network, and an absorbing panel closing the defined angle between the two networks, is characterized in that the wave propagation between the primary and secondary networks are carried out in space guided by parallel planes arranged in such a way that they materialize the antenna as a stack of a plurality of elementary non-dispersive one-dimensional antennas, for each of which the propagation between the primary network and the secondary network is guided.

D'autres caractéristiques et avantages de l'invention apparaîtront dans la description qui suit, donnée à l'aide des figures qui représentent outre les figures 1 et 2 relatives à l'art antérieur :

  • - la figure 3, une antenne réseau monodimensionnelle suivant l'invention ;
  • - la figure 4, une antenne réseau bidimensionnelle suivant l'invention ;
  • - la figure 5, un exemple de réseau primaire photogravé en technologie ligne à fente ;
  • - la figure 6, un exemple du réseau primaire photogravé en technologie ligne microstrip.
Other characteristics and advantages of the invention will appear in the description which follows, given with the aid of the figures which also represent Figures 1 and 2 relating to the prior art:
  • - Figure 3, a one-dimensional array antenna according to the invention;
  • - Figure 4, a two-dimensional array antenna according to the invention;
  • - Figure 5, an example of primary network photo-etched in slot line technology;
  • - Figure 6, an example of the primary network photo-etched in microstrip line technology.

On a vu dans ce qui précède que l'on pouvait réaliser une antenne dite prisme sous une forme monodimensionnelle et sous une forme bidimensionnelle, cette dernière permettant d'effectuer un balayage électronique de l'espace.We have seen in the foregoing that a so-called prism antenna can be produced in a one-dimensional form and in a two-dimensional form, the latter making it possible to carry out an electronic scanning of the space.

Ces antennes ont pour caractéristique principale que la direction du rayonnement maximal est pratiquement indépendante de la fréquence, cette caractéristique étant liée au fait que les réseaux primaire et secondaire qui constituent cette antenne forment entre eux un angle lX qui peut être choisi et déterminé de façon optimale pour que la phase de l'onde alimentant le réseau secondaire soit stationnaire, la propagation entre le réseau primaire et le réseau secondaire se faisant en espace libre.The main characteristic of these antennas is that the direc tion of the maximum radiation is practically independent of the frequency, this characteristic being linked to the fact that the primary and secondary networks which constitute this antenna form between them an angle lX which can be chosen and determined optimally so that the phase of the wave supplying the secondary network is stationary, the propagation between the primary network and the secondary network taking place in free space.

En fonctionnement, une telle antenne principalement lorsqu'elle est monodimensionnelle, ne pose pas de problème, sauf en cas de débordement où une partie de l'onde directement émise par le réseau primaire peut se recombiner à l'onde sortant du réseau secondaire et en altérer la direction. Il est remédié à un tel inconvénient en supprimant le débordement, en fermant l'espace libre existant entre les réseaux primaire et secondaire. Dans ces conditions l'onde émise se propage en espace guidé et le débordement ne peut avoir lieu. Les performances de l'antenne dont la structure est ainsi modifiée par rapport à l'antenne réseau de l'art antérieur, ne sont pas modifiées. De fait, un calcul, en Tout point semblable à celui qui a été fait dans la demande de brevet déjà citée montre que, aussi bien avec une propagation en espace libre qu'avec une propagation en espace guidé entre les réseaux primaire et secondaire, on peut obtenir des valeurs de l'angle α entre les deux réseaux linéaires pour lesquelles le réseau secondaire est alimenté avec une onde dont la phase est stationnaire. Cette valeur de l'angle α en fonction de la direction de rayonnement Go du réseau primaire à la fréquence fo est donnée par la formule

Figure imgb0002
dans laquelle pour la fréquence fo, Ko(Z) est la constante de propagation dans l'espace entre les réseaux, que cette propagation soit libre ou guidée, c'est-à-dire qu'en espace libre, Ko(Z) prend une valeur Ko et qu'en espace guidé, Ko(Z) prend la valeur Kgo, sauf dans le cas où le vecteur polarisation est vertical et alors Ko(Z) est égal à Ko, et Ko(R1) est la constante de propagation dans le guide que constitue le réseau primaire. Cette formule est identique à celle donnée pour la réalisation suivant l'art antérieur pour laquelle la propagation se fait en espace libre.In operation, such an antenna mainly when it is one-dimensional, does not pose any problem, except in the event of overflow where part of the wave directly emitted by the primary network can recombine with the wave leaving the secondary network and alter direction. Such a drawback is remedied by eliminating the overflow, by closing the free space existing between the primary and secondary networks. Under these conditions the emitted wave propagates in guided space and the overflow cannot take place. The performance of the antenna, the structure of which is thus modified relative to the array antenna of the prior art, is not modified. In fact, a calculation, in All points similar to that which was made in the patent application already cited shows that, as well with a propagation in free space as with a propagation in guided space between the primary and secondary networks, one can obtain values of the angle α between the two linear networks for which the secondary network is supplied with a wave whose phase is stationary. This value of the angle α as a function of the direction of radiation Go of the primary network at the frequency fo is given by the formula
Figure imgb0002
in which for the frequency fo, Ko (Z) is the propagation constant in the space between the networks, whether this propagation is free or guided, that is to say that in free space, Ko (Z) takes a value Ko and that in guided space, Ko (Z) takes the value Kgo, except in the case where the polarization vector is vertical and then Ko (Z) is equal to Ko, and Ko (R1) is the propagation constant in the guide that constitutes the primary network. This formula is identical to that given for the embodiment according to the prior art for which the propagation takes place in free space.

La figure 3 représente une antenne réseau de type mono- dimensionnel suivant l'invention. Cette figure n'est pas très différente de celle de la figure 1 de sorte que les éléments communs aux deux figures portent les mêmes références. On retrouve ainsi le réseau primaire 1 alimenté par son extrémité 2, l'autre extrémité étant fermée par une charge absorbante 3, le réseau secondaire 4 avec pour sources rayonnantes dans le cas de la figure, des hélices 6 alimentées sur la face interne du réseau 4 par les dipôles 5. On notera que l'utilisation d'hélices permet de supprimer l'étage de déphaseurs entre la face interne et la face externe du réseau secondaire 4. En 17 on a représenté la plaque fermant l'ouverture supérieure de l'espace de propagation entre les réseaux 1 et 4. Une plaque identique se trouve du côté de l'ouverture inférieure qui n'est pas visible sur la figure 3.FIG. 3 represents a one-dimensional array antenna according to the invention. This figure is not very different from that of Figure 1 so that the elements common to the two figures have the same references. We thus find the primary network 1 supplied by its end 2, the other end being closed by an absorbent load 3, the secondary network 4 with for radiating sources in the case of the figure, propellers 6 supplied on the internal face of the network 4 by the dipoles 5. It will be noted that the use of propellers makes it possible to suppress the stage of phase shifters between the internal face and the external face of the secondary network 4. In 17 the plate closing the upper opening of the propagation space between networks 1 and 4. An identical plate is located on the side of the lower opening which is not visible in FIG. 3.

En 8 on a représenté une charge absorbante fermant l'angle α entre les réseaux linéaires 1 et 4.In 8 there is shown an absorbent charge closing the angle α between the linear networks 1 and 4.

On constate que, suivant l'invention donc, on a réalisé un module compact, utilisable en tant que tel comme une antenne réseau non dispersive monodimensionnelle.It can be seen that, according to the invention therefore, a compact module has been produced, usable as such as a one-dimensional non-dispersive array antenna.

Suivant l'invention, un tel module est utilisé pour constituer un élément d'une antenne réseau bidimensionnelle, une telle antenne étant constituée par un empilement d'une pluralité de ces éléments. Réalisée de la sorte, une telle antenne ne présente plus l'inconvénient signalé dans le cas du balayage électronique.According to the invention, such a module is used to constitute an element of a two-dimensional array antenna, such an antenna being constituted by a stack of a plurality of these elements. Produced in this way, such an antenna no longer exhibits the drawback indicated in the case of electronic scanning.

De fait on a vu, dans la définition de l'art antérieur qu'une antenne réseau non dispersive à balayage électronique n'était pas optimisable pour toute valeur de l'angle de site et que pour les sites balayés, la compensation des longueurs électriques dans l'espace de propagation libre entre les réseaux n'est plus correctement réalisée par le réseau de sortie et qu'il s'ensuit une erreur dans la direction du pointage en gisement.In fact, in the definition of the prior art, we have seen that a non-dispersive electronic antenna with electronic scanning cannot be optimized for any value of the elevation angle and that for the scanned sites, the compensation of the electrical lengths in the free propagation space between the networks is no longer correctly performed by the output network and that an error in the direction ensues pointing in deposit.

En constituant, suivant l'invention, l'antenne bidimensionnelle par un empilement de modules, tels qu'ils ont été définis précédemment et décrits à l'appui de la figure 3, modules dans lesquels la propagation est guidée, on constate qu'au niveau de chaque module, c'est-à-dire au niveau des antennes réseaux élémentaires horizontales dans l'exemple décrit qu'ils constituent, le déphasage introduit par le déphaseur, disposé à l'entrée des guides d'alimentation d'une antenne élémentaire, est intégralement retransmis au réseau secondaire de sorte que pour l'ensemble de l'antenne la loi de phase appliquée à ces déphaseurs est intégralement transmise dans le plan de site à la sortie du réseau secondaire.By constituting, according to the invention, the two-dimensional antenna by a stack of modules, as they have been defined previously and described in support of FIG. 3, modules in which the propagation is guided, it can be seen that at level of each module, that is to say at the level of the elementary horizontal array antennas in the example described that they constitute, the phase shift introduced by the phase shifter, disposed at the input of the feed guides of an antenna elementary, is fully retransmitted to the secondary network so that for the entire antenna the phase law applied to these phase shifters is fully transmitted in the site map at the output of the secondary network.

La figure 4 représente une antenne réseau bidimensionnelle suivant l'invention, représentation qui ne diffère pas beaucoup de la représentation de la figure 2 où la propagation entre les réseaux linéaires primaire ou d'entrée et secondaire ou de sortie s'effectuent en espace libre. Dans ces conditions, les parties communes aux deux figures portent les mêmes références.FIG. 4 represents a two-dimensional array antenna according to the invention, a representation which does not differ much from the representation of FIG. 2 where the propagation between the primary or input and the secondary or output linear networks takes place in free space. Under these conditions, the parts common to the two figures bear the same references.

On retrouve ainsi le panneau I, réseau constitué par un certain nombre de guides à fentes 91 à 9n avec chacun un même nombre de fentes 10. L'entrée de chacun de ces guides comporte un déphaseur, dont l'ensemble est repéré par 12 et l'alimentation est assurée par un guide 11. Les déphaseurs 12 de type électronique permettent d'effectuer un balayage électronique dans un plan vertical perpendiculaire au plan de la figure.We thus find panel I, a network consisting of a certain number of slot guides 91 to 9n each with the same number of slots 10. The input of each of these guides comprises a phase shifter, the assembly of which is identified by 12 and the power is supplied by a guide 11. The electronic phase shifters 12 allow electronic scanning to be carried out in a vertical plane perpendicular to the plane of the figure.

Le réseau IV secondaire est constitué par un panneau 13 comportant un certain nombre d'éléments rayonnants, des hélices rotatives par exemple 14 alimentées par des dipôles 15. Un panneau absorbant 16 est prévu pour compléter le trièdre que constitue cette antenne réseau bidimensionnelle. Cette structure d'antenne est complétée par des plans parallèles 18 qui matérialisent, à l'intérieur de l'antenne réseau bidimensionnelle, les antennes réseaux élémentaires ou modules conformes à la figure 3, dans lesquels la propagation est guidée.The secondary IV array is constituted by a panel 13 comprising a certain number of radiating elements, rotary propellers for example 14 supplied by dipoles 15. An absorbent panel 16 is provided to complete the trihedron that constitutes this two-dimensional array antenna. This antenna structure is completed by parallel planes 18 which materialize, inside the two-dimensional array antenna, the elementary array antennas or modules conforming to FIG. 3, in which the propagation is guided.

On notera que dans la structure d'antenne suivant l'invention, dans laquelle la propagation entre les réseaux primaire et secondaire est guidée que la polarisation des ondes transmises est de type horizontal ou vertical ; par contre la polarisation de l'onde sortant du réseau secondaire peut être quelconque, dépendant uniquement des éléments rayonnants.It will be noted that in the antenna structure according to the invention, in which the propagation between the primary and secondary networks is guided that the polarization of the transmitted waves is of horizontal or vertical type; on the other hand, the polarization of the wave leaving the secondary network can be arbitrary, depending only on the radiating elements.

On notera également que dans les exemples de réalisation, on a considéré le réseau primaire comme un guide à fentes alimenté par une onde progressive. Les fentes sont disposées sur le petit ou le grand côté du guide. Cependant, le réseau primaire peut tout aussi bien être un réseau composé d'éléments rayonnants couplés d'une manière quelconque à une ligne d'alimentation. Cette ligne peut être un guide mais également une ligne fabriquée par un procédé quelconque de photogravure c'est-à-dire déposée sur un substrat en diélectrique, comme dans les technologies ligne à fente, ligne bifilaire, microstrip, triplaque. Les éléments rayonnants, s'ils présentent une géométrie plane, peuvent également être gravés sur ce même diélectrique. Ces éléments peuvent être des brins quart d'onde, des dipoles, demi ou onde entière, yagis, zigzag, log périodique, lignes à fentes rayonnantes évasées.It will also be noted that in the exemplary embodiments, the primary network has been considered as a slotted guide supplied by a traveling wave. The slots are arranged on the short or the long side of the guide. However, the primary network can equally well be a network composed of radiating elements coupled in some way with a supply line. This line can be a guide but also a line produced by any photogravure process, that is to say deposited on a dielectric substrate, as in the slit line, two-wire line, microstrip, triplate technologies. The radiating elements, if they have a plane geometry, can also be etched on this same dielectric. These elements can be quarter wave strands, dipoles, half or whole wave, yagis, zigzag, periodic log, lines with flared radiating slits.

Les figures 5 et 6 montrent des exemples de réseau primaire photogravé. La figure 5 représente une réalisation en technologie ligne à fentes avec coupleurs 19 et lignes évasées 20 et la figure 6 une réalisation en technologie microstrip avec coupleurs 19 et dipôles 21.Figures 5 and 6 show examples of a photoetched primary network. FIG. 5 represents an embodiment in slot line technology with couplers 19 and flared lines 20 and FIG. 6 an embodiment in microstrip technology with couplers 19 and dipoles 21.

Les éléments internes et externes au réseau de sortie peuvent être constitués de n'importe quel type d'éléments rayonnants photogravés ou non.The elements internal and external to the output network can be made up of any type of radiating elements photograved or not.

Si la polarisation émise sur les deux faces du réseau secondaire reste la même, l'ensemble des éléments rayonnants de ce réseau secondaire avec des déphaseurs passifs intercalés entre eux est réalisable par la métallisation d'une seule plaquette de diélectrique. Les éléments photogravés sont les mêmes que ceux désignés pour le réseau primaire.If the polarization emitted on the two faces of the secondary network remains the same, all of the radiating elements of this secondary network with passive phase shifters interposed between them can be achieved by metallization of a single dielectric plate. The photo-etched elements are the same as those designated for the primary network.

On a ainsi décrit une antenne réseau non dispersive de faible encombrement et de poids réduit à balayage électronique, réalisable par un empilement d'une pluralité de modules constituant eux- mêmes chacun une antenne monodimensionnelle non dispersive.We have thus described a non-dispersive array antenna of small size and reduced weight with electronic scanning, which can be produced by stacking a plurality of modules each constituting themselves a non-dispersive one-dimensional antenna.

Claims (8)

1. Antenne réseau non dispersive comportant un réseau primaire directif (I) constitué par une superposition de réseaux primaires monodimensionnels (91 à 9n), alimentés chacun à travers un déphaseur (12) pour permettre d'effectuer un balayage électronique, un réseau secondaire (IV) sous la forme d'un panneau (13) comprenant des sources élémentaires (15-14) sur ses faces interne et externe avec des déphaseurs passifs (7) introduits entre les deux faces, le réseau secondaire faisant un angle c( avec le réseau primaire, et un panneau absorbant (16) fermant l'angle défini entre les deux réseaux, caractérisée en ce que la propagation des ondes entre les réseaux primaire (I) et secondaire (IV) s'effectue dans un espace guidé par des plans parallèles (18) disposés de façon telle qu'ils matérialisent l'antenne comme un empilement d'une pluralité d'antennes non dispersives monodimensionnelles (figure 3) pour chacune desquelles la propagation entre le réseau primaire (1) et le réseau secondaire (4) est guidée.1. Non-dispersive network antenna comprising a directional primary network (I) constituted by a superposition of one-dimensional primary networks (91 to 9n), each supplied through a phase shifter (12) to allow electronic scanning, a secondary network ( IV) in the form of a panel (13) comprising elementary sources (15-14) on its internal and external faces with passive phase shifters (7) introduced between the two faces, the secondary network making an angle c (with the primary network, and an absorbent panel (16) closing the angle defined between the two networks, characterized in that the propagation of the waves between the primary (I) and secondary (IV) networks takes place in a space guided by planes parallels (18) arranged in such a way that they materialize the antenna as a stack of a plurality of one-dimensional non-dispersive antennas (FIG. 3) for each of which the propagation between the primary network (1) and the secondary network ( 4) is guided. 2. Antenne réseau non dispersive suivant la revendication 1, caractérisée en ce que chaque antehne élémentaire monodimensionnelle (figure 3) constitue un module compact optimisable reproductible.2. A non-dispersive network antenna according to claim 1, characterized in that each one-dimensional elementary antehne (FIG. 3) constitutes a reproducible optimizable compact module. 3. Antenne réseau suivant l'une des revendications 1 ou 2, caractérisée en ce que le réseau primaire (1) d'un module est un guide à fentes (9) alimenté par une onde progressive, et que le réseau secondaire (4) est un réseau double face avec des éléments rayonnants (5-6) sur les faces interne et externe et des éléments déphaseurs (7) situés entre eux.3. network antenna according to one of claims 1 or 2, characterized in that the primary network (1) of a module is a slot guide (9) supplied by a traveling wave, and that the secondary network (4) is a double-sided network with radiating elements (5-6) on the internal and external faces and phase-shifting elements (7) located between them. 4. Antenne réseau suivant la revendication 3, caractérisée en ce que le réseau secondaire (4) comporte des dipôles (15) sur la face interne du réseau et des hélices rotatives (14) incorporant des déphaseurs sur la face externe.4. Network antenna according to claim 3, characterized in that the secondary network (4) comprises dipoles (15) on the internal face of the network and rotary propellers (14) incorporating phase shifters on the external face. 5. Antenne réseau suivant l'une des revendications 1 ou 2, caractérisée en ce que le réseau primaire (1) d'un module est une ligne réalisée sur un substrat en diélectrique par photogravure, les éléments rayonnants du réseau étant, s'ils présentent une géométrie plane, gravés sur ce substrat.5. Network antenna according to one of claims 1 or 2, characterized in that the primary network (1) of a module is a line produced on a dielectric substrate by photoengraving, the radiating elements of the network being, if they have a plane geometry, etched on this substrate. 6. Antenne réseau suivant l'une des revendications 1 ou 2, caractérisée en ce que le réseau secondaire d'un module est réalisé par photogravure sur substrat diélectrique.6. Network antenna according to one of claims 1 or 2, characterized in that the secondary network of a module is produced by photoengraving on a dielectric substrate. 7. Antenne réseau suivant l'une des revendications 1 ou 2, pour laquelle la polarisation des ondes entrant et sortant du réseau secondaire reste la même, caractérisée en ce que l'ensemble des éléments rayonnants du réseau secondaire et des déphaseurs passifs situés entre eux est réalisé par métallisation d'une seule plaquette de diélectrique.7. Network antenna according to one of claims 1 or 2, for which the polarization of the waves entering and leaving the secondary network remains the same, characterized in that all of the radiating elements of the secondary network and passive phase shifters located between them is made by metallization of a single dielectric plate. 8. Antenne réseau suivant l'une des revendications 1 ou 2, caractérisée en ce que dans l'espace de propagation entre les réseaux primaire (1, 1) et secondaire (2, IV) la polarisation des ondes transmises est indifféremment verticale ou horizontale.8. Network antenna according to one of claims 1 or 2, characterized in that in the propagation space between the primary (1, 1) and secondary (2, IV) networks the polarization of the transmitted waves is either vertical or horizontal .
EP81401310A 1980-09-09 1981-08-17 Non-dispersive antenna array and its application to electronic scanning Expired EP0048190B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8019413A FR2490026A1 (en) 1980-09-09 1980-09-09 NON-DISPERSIVE NETWORK ANTENNA AND ITS APPLICATION TO THE PRODUCTION OF AN ELECTRONIC SCANNING ANTENNA
FR8019413 1980-09-09

Publications (2)

Publication Number Publication Date
EP0048190A1 true EP0048190A1 (en) 1982-03-24
EP0048190B1 EP0048190B1 (en) 1985-01-30

Family

ID=9245766

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81401310A Expired EP0048190B1 (en) 1980-09-09 1981-08-17 Non-dispersive antenna array and its application to electronic scanning

Country Status (4)

Country Link
US (1) US4356497A (en)
EP (1) EP0048190B1 (en)
DE (1) DE3168637D1 (en)
FR (1) FR2490026A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2123215A (en) * 1982-07-01 1984-01-25 Licentia Gmbh Group aerial
GB2171257A (en) * 1984-12-20 1986-08-20 Marconi Co Ltd A dipole array
US5039994A (en) * 1984-12-20 1991-08-13 The Marconi Company Ltd. Dipole arrays

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8317938D0 (en) * 1983-07-01 1983-08-03 Emi Ltd Antenna
US4939527A (en) * 1989-01-23 1990-07-03 The Boeing Company Distribution network for phased array antennas
FR2667198B1 (en) * 1990-09-21 1993-08-13 Applic Rech Electro Ste DIRECTIVE NETWORK FOR RADIOCOMMUNICATIONS, WITH ADJACENT RADIANT ELEMENTS AND SET OF SUCH DIRECTIVE NETWORKS.
US5276455A (en) * 1991-05-24 1994-01-04 The Boeing Company Packaging architecture for phased arrays
US5488380A (en) * 1991-05-24 1996-01-30 The Boeing Company Packaging architecture for phased arrays
US10297924B2 (en) * 2015-08-27 2019-05-21 Nidec Corporation Radar antenna unit and radar device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3045237A (en) * 1958-12-17 1962-07-17 Arthur E Marston Antenna system having beam control members consisting of array of spiral elements
US3524188A (en) * 1967-08-24 1970-08-11 Rca Corp Antenna arrays with elements aperiodically arranged to reduce grating lobes
US3631503A (en) * 1969-05-02 1971-12-28 Hughes Aircraft Co High-performance distributionally integrated subarray antenna
US3803621A (en) * 1971-12-20 1974-04-09 Gen Electric Antenna element including means for providing zero-error 180{20 {11 phase shift
US4010474A (en) * 1975-05-05 1977-03-01 The United States Of America As Represented By The Secretary Of The Navy Two dimensional array antenna
FR2353530A1 (en) * 1976-06-05 1977-12-30 Wyeth John & Brother Ltd NEW GUANIDINE DERIVATIVES, THEIR PREPARATION PROCESS AND PHARMACEUTICAL COMPOSITION CONTAINING THEM
US4187507A (en) * 1978-10-13 1980-02-05 Sperry Rand Corporation Multiple beam antenna array

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3978484A (en) * 1975-02-12 1976-08-31 Collier Donald C Waveguide-tuned phased array antenna
US4044360A (en) * 1975-12-19 1977-08-23 International Telephone And Telegraph Corporation Two-mode RF phase shifter particularly for phase scanner array
FR2383530A1 (en) * 1977-03-11 1978-10-06 Thomson Csf NON-DISPERSIVE NETWORK ANTENNA AND ITS APPLICATION TO THE REALIZATION OF AN ELECTRONIC SCAN ANTENNA
FR2400781A1 (en) * 1977-06-24 1979-03-16 Radant Etudes HYPERFREQUENCY ANTENNA, FLAT, NON-DISPERSIVE, ELECTRONIC SCAN

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3045237A (en) * 1958-12-17 1962-07-17 Arthur E Marston Antenna system having beam control members consisting of array of spiral elements
US3524188A (en) * 1967-08-24 1970-08-11 Rca Corp Antenna arrays with elements aperiodically arranged to reduce grating lobes
US3631503A (en) * 1969-05-02 1971-12-28 Hughes Aircraft Co High-performance distributionally integrated subarray antenna
US3803621A (en) * 1971-12-20 1974-04-09 Gen Electric Antenna element including means for providing zero-error 180{20 {11 phase shift
US4010474A (en) * 1975-05-05 1977-03-01 The United States Of America As Represented By The Secretary Of The Navy Two dimensional array antenna
FR2353530A1 (en) * 1976-06-05 1977-12-30 Wyeth John & Brother Ltd NEW GUANIDINE DERIVATIVES, THEIR PREPARATION PROCESS AND PHARMACEUTICAL COMPOSITION CONTAINING THEM
US4187507A (en) * 1978-10-13 1980-02-05 Sperry Rand Corporation Multiple beam antenna array

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-16 no. 7, juillet 1968, NEW YORK (US) G.T. ROOME et al.: "Thin Ferrite Devices for Microwave Circuits", pages 411-420 *
PHASED ARRAY ANTENNAS; PROCEEDINGS OF THE 1970 PHASED ARRAY ANTENNA SYMPOSIUM, juin 1970, DEDHAM (US) R.T. HILL: "Phased Array Feed Systems, a Survey", pages 197-211 *
PROCEEDINGS OF THE IEEE, vol. 56, no. 11, novembre 1968, NEW YORK (US) E.C. DUFORT: "A Design Procedure for Matching Volumetrically Scanned Waveguide Arrays", pages 1851-1860 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2123215A (en) * 1982-07-01 1984-01-25 Licentia Gmbh Group aerial
GB2171257A (en) * 1984-12-20 1986-08-20 Marconi Co Ltd A dipole array
US5039994A (en) * 1984-12-20 1991-08-13 The Marconi Company Ltd. Dipole arrays

Also Published As

Publication number Publication date
EP0048190B1 (en) 1985-01-30
DE3168637D1 (en) 1985-03-14
FR2490026A1 (en) 1982-03-12
FR2490026B1 (en) 1982-10-01
US4356497A (en) 1982-10-26

Similar Documents

Publication Publication Date Title
EP3547450A1 (en) Radiating element with circular polarisation implementing a resonance in a fabry-perot cavity
EP3073569B1 (en) Compact butler matrix , planar bi-dimensional beam-former, and planar antenna with such a butler matrix
EP0237429B1 (en) Controlled-phase reflector array, and antenna comprising such an array
WO1981001486A1 (en) Electronic scanning device in the biaising plane
EP0048190B1 (en) Non-dispersive antenna array and its application to electronic scanning
EP3113286B1 (en) Quasi-optical lens beam former and planar antenna comprising such a beam former
EP0017530B1 (en) Radiating source constituted by a dipole excited by a waveguide, and its use in an electronic scanning antenna
EP3176875B1 (en) Active antenna architecture with reconfigurable hybrid beam formation
EP3435480B1 (en) Antenna incorporating delay lenses inside a divider based distributor with a parallel plate waveguide
EP2658032B1 (en) Corrugated horn antenna
EP3840124B1 (en) Antenna with leaky wave in afsiw technology
FR2743234A1 (en) WAVE LENGTH DEMULTIPLEXER
EP0117803A1 (en) Wideband primary microwave horn radiator and antenna using such a primary radiator
FR2472852A1 (en) FREQUENCY DUPLEXER
EP1191630A1 (en) High frequency diverging dome shaped lens and antenna incorporating such lens
WO2002011238A1 (en) Active dual-polarization microwave reflector, in particular for electronically scanning antenna
WO2017025675A1 (en) Surface-wave antenna, antenna array and use of an antenna or an antenna array
FR3089358A1 (en) Multiple access radiant element
EP0130859B1 (en) Infrared beam deflection device with electronic control
FR2490025A1 (en) Monomode or multimode radar horn - contains radiating elements deposited on thin dielectric substrate located perpendicular to direction of polarisation
FR2519475A1 (en) MAGNETOSTATIC VOLUME-TUNABLE TUNABLE DEVICE
FR2477785A1 (en) MULTIMODE HYPERFREQUENCY SOURCE AND ANTENNA COMPRISING SUCH A SOURCE
FR2470457A1 (en) SLOT NETWORK ANTENNA WITH AMPLITUDE DISTRIBUTION IN A SMALL CIRCULAR OPENING
EP4010932B1 (en) Planar optoelectronic device for generating a microwave signal
EP4262024A1 (en) Device for controlling rf electromagnetic beams according to their frequency band and manufacturing method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL SE

17P Request for examination filed

Effective date: 19820619

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB IT NL SE

REF Corresponds to:

Ref document number: 3168637

Country of ref document: DE

Date of ref document: 19850314

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870831

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900501

EUG Se: european patent has lapsed

Ref document number: 81401310.8

Effective date: 19900418