EP0050247A1 - Process for regulating the evaporation intensity of plants employing solvents - Google Patents

Process for regulating the evaporation intensity of plants employing solvents Download PDF

Info

Publication number
EP0050247A1
EP0050247A1 EP81107847A EP81107847A EP0050247A1 EP 0050247 A1 EP0050247 A1 EP 0050247A1 EP 81107847 A EP81107847 A EP 81107847A EP 81107847 A EP81107847 A EP 81107847A EP 0050247 A1 EP0050247 A1 EP 0050247A1
Authority
EP
European Patent Office
Prior art keywords
cooling medium
heating
cooling
solvent
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81107847A
Other languages
German (de)
French (fr)
Other versions
EP0050247B1 (en
Inventor
Wolfgang Schmidt
Franz Staudinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0050247A1 publication Critical patent/EP0050247A1/en
Application granted granted Critical
Publication of EP0050247B1 publication Critical patent/EP0050247B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/02Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
    • C23G5/04Apparatus

Definitions

  • the invention is based on a method according to the preamble of the main claim.
  • Plants in which metal parts are preferably cleaned in the vapor of a solvent are used on a large scale in surface technology. For example, this involves steam degreasing.
  • the vast majority of such steam baths today are designed without regulating the steam intensity, ie without regulating the heating.
  • the heating energy is constantly supplied according to the maximum material throughput.
  • this has disadvantages in terms of cleaning quality, but on the other hand, a lot of energy is unnecessarily consumed in such systems.
  • With constant, once set energy supply for example by throttling the hot water flow through an orifice or a throttle valve, the throughput and thus the heating output change in the event of pressure fluctuations in the energy supply network.
  • the parts to be cleaned receive only an incomplete or no condensate rinsing, that is, the rinsing when the cold parts are immersed in the steam, with the cleaning agent condensing on the parts and dripping off.
  • Similar effects can e.g. B. occur when a screen is dirty and the associated unnoticed cross-sectional constriction in the energy supply or also due to contamination of heating coils or heat exchangers, the heat transfer and thus the efficiency changing so that the apparently constant energy supply gradually decreases.
  • energy consumption it should be borne in mind that in the majority of systems the condensation time in the bath is only approx. 50% of the system cycle time.
  • the method according to the invention with the characterizing features of the main claim has the advantage that the steam level is reliably kept constant at its setpoint, which leads to a high level of safety in cleaning quality, and that the water continuously from the solvent due to the reliable formation of condensate on the cooling coils is removed via the azeotropic mixture. In addition, no more energy is supplied than is necessary to keep the steam level constant, which leads to high energy savings due to the above-mentioned circumstances.
  • FIG. 1 An embodiment of the invention is shown in the drawing and explained in more detail in the following description.
  • the figure schematically shows a plant for steam degreasing in section, on the basis of which the method according to the invention is to be illustrated.
  • the solvent system e.g. B. for steam degreasing, consists of a container 1, at the upper opening a cooling system, for. B. in the form of cooling coils 2, is arranged.
  • the water separator 5 has an upper outlet 6 for the water and a lower outlet 7 for the return of the solvent into the container 1.
  • 8 denotes the input of the cooling medium, which has a temperature measuring point T1
  • 9 denotes the outlet of the cooling medium with the temperature measuring point T2.
  • a heater 10 in the form of a heating coil, a heat exchanger or direct or indirect heating is located in the lower part of the container 1. This heater can be controlled via a control valve 11.
  • the parts to be cleaned and a workpiece carrier are designated by 12.
  • the liquid solvent 13 the level of which is identified by 14. Tri, per, halogenated benzenes or the like can be used as solvents. be used.
  • the solvent 13 begins to evaporate and a steam level 15 is established at the level of the cooling coils 2.
  • a specific setpoint of the temperature difference T2 minus T1 must now be specified for a defined steam level.
  • the specific heat of the cooling medium can be neglected as a constant.
  • the control not shown in the figure, now causes the valve 11 to be closed when this setpoint is exceeded and the valve to be opened when the setpoint is undershot. This ensures that the steam level 15 remains approximately at the same level. If you now immerse the cold parts 12 in the steam, the steam first condenses on the parts and the condensate 16 runs back into the liquid solvent 13.
  • a condensate 17 also forms on the cooling coils 2 and, in the presence of water in the solvent, constitutes an azeotropic mixture. This is collected in channel 3, in the water separator 5 passed via line 4, from which the water is collected and processed via line 6 and the solvent is returned via line 7 to container 1.
  • the steam level 15 will first decrease, which has the consequence that the temperature difference T2 - T1 drops below the setpoint, whereby the valve 11 is opened and the heating power is increased until the steam level 15 and the temperature difference T2 - T1 have reached the setpoints again and the energy supply can be reduced again.
  • Possible heating media are, for example, hot water, steam, electrical energy and gas heating or secondary heating using thermal oil.
  • the most common cooling medium is water, but any other liquid with a sufficiently high specific heat can also be used.
  • the method can also be used in existing systems without difficulty by installing the necessary equipment. Limits of use exist only with extremely short cycle times, due to measurement dead times in the actual value acquisition or the actual value processing.

Abstract

1. Process for regulating the vapour intensity in solvent systems consisting of a vessel, in the lower part of which is located a liquid solvent, into which a heating device for evaporating the latter penetrates, and which has above the liquid solvent a vapour space in which a cooling system with a flowing cooling medium is provided at the top end of the vessel, characterised in that the heating power is regulated via the cooling power provided, by throttling the heating energy when the product of the difference between the outflow temperature and inflow temperature of the cooling medium and the flow rate of the cooling medium increases, and the heating energy is increased when this product diminishes.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einem Verfahren nach der Gattung des Hauptanspruchs. Anlagen, bei denen vorzugsweise Metallteile im Dampf eines Lösemittels gereinigt werden, werden in großem Maßstab in der Oberflächentechnik eingesetzt. Dabei geht es beispielsweise um die sogenannte Dampfentfettung. Der weitaus größte Teil derartiger Dampfbäder wird heute ohne eine Regelung der Dampfintensität, d. h. ohne eine Heizungsregelung ausgeführt. Bei diesen Anlagen wird die Heizenergie entsprechend dem maximalen Materialdurchsatz konstant zugeführt. Dies hat einmal Nachteile bei der Reinigungsqualität, zum anderen wird aber bei derartigen Anlagen noch sehr viel Energie unnötig verbraucht. Bei konstanter, einmal eingestellter Energiezuführung, beispielsweise durch Drosselung des Heißwasserflusses über eine Blende oder ein Drosselventil, ändert sich bei Druckschwankungen im Energieversorgungsnetz der Durchsatz und damit auch die Heizleistung.The invention is based on a method according to the preamble of the main claim. Plants in which metal parts are preferably cleaned in the vapor of a solvent are used on a large scale in surface technology. For example, this involves steam degreasing. The vast majority of such steam baths today are designed without regulating the steam intensity, ie without regulating the heating. In these systems, the heating energy is constantly supplied according to the maximum material throughput. On the one hand, this has disadvantages in terms of cleaning quality, but on the other hand, a lot of energy is unnecessarily consumed in such systems. With constant, once set energy supply, for example by throttling the hot water flow through an orifice or a throttle valve, the throughput and thus the heating output change in the event of pressure fluctuations in the energy supply network.

Dadurch erhalten die zu reinigenden Teile eine nur unvollständige oder gar keine Kondensatspülung, das ist die Spülung beim Eintauchen der kalten Teile in den Dampf, wobei sich das Reinigungsmittel an den Teilen kondensiert und abtropft. Ähnliche Effekte können z. B. auftreten bei Verschmutzung einer Blende und der damit verbundenen unbemerkten Querschnittsverengung in der Energiezuführung oder auch durch Verschmutzung von Heizschlangen bzw. Wärmetauschern, wobei sich der Wärmeübergang und damit der Wirkungsgrad ändert so daß die scheinbar konstante Energiezuführung allmählich abnimmt. Bezüglich des Energieverbrauchs ist zu bedenken, daß bei einem Großteil der Anlagen die Kondenszeit im Bad nur ca. 50 % der Anlagentaktzeit beträgt. Während der restlichen Zeit wird das Teil weitertransportiert, so daß die während dieser Zeit unnötig zugeführte Wärmeenergie wiederabgeführt werden muß. Das gleiche gilt für die Pausen, wie sie beispielsweise in der Mittagszeit oder durch eine nicht vollkommene Auslastung der Anlagen auftreten. Man kann überschlagen, daß hier durch eine bessere Ausnutzung der Energie unter Umständen mehr als 50 % der Heizenergie eingespart werden können.As a result, the parts to be cleaned receive only an incomplete or no condensate rinsing, that is, the rinsing when the cold parts are immersed in the steam, with the cleaning agent condensing on the parts and dripping off. Similar effects can e.g. B. occur when a screen is dirty and the associated unnoticed cross-sectional constriction in the energy supply or also due to contamination of heating coils or heat exchangers, the heat transfer and thus the efficiency changing so that the apparently constant energy supply gradually decreases. With regard to energy consumption, it should be borne in mind that in the majority of systems the condensation time in the bath is only approx. 50% of the system cycle time. During the rest of the time, the part is transported on, so that the unnecessarily supplied thermal energy has to be dissipated again during this time. The same applies to the breaks, such as those that occur at lunchtime or when the systems are not fully utilized. It can be overruled that better utilization of the energy may save more than 50% of the heating energy.

Bei einem sehr geringen Anteil derartiger Dampfbäder wird eine Dampfniveauregelung über eine Temperaturmessung auf der Soll-Dampfhöhe durchgeführt. Hierdurch kann jedoch nicht sichergestellt werden, ob die gemessene Temperatur tatsichlichdie Dampftemperatur ist oder ob nur die dar- überlagernde heiße Luft gemessen wird. Das hat zur Folge, daß es an den Kühlschlangen nicht zu einer Kondensatbildung kommt, so daß in das Bad über die Teile oder über die Luftfeuchtigkeit eingeschlepptes Wasser nicht eliminiert werden kann. Dies geschieht nämlich dadurch, daß das Wasser in einem azeotropen Gemisch mit dem Lösemittel verdampft und sich zusammen mit diesem an den Kühlschlangen niederschlägt, wo das Kondensat über eine Rinne einem Wasserabscheider zugeführt wird, in welchem Wasser und Lösemittel getrennt werden und das Lösemittel wieder in die Anlage zurückgeführt wird.With a very small proportion of such steam baths, a steam level control is carried out via a temperature measurement at the desired steam level. However, this cannot ensure whether the measured temperature is actually the steam temperature or whether only the hot air above it is measured. The consequence of this is that there is no condensation on the cooling coils, so that water which has been introduced into the bath via the parts or via the atmospheric humidity cannot be eliminated. This is because the water evaporates in an azeotropic mixture with the solvent and is deposited together with the latter on the cooling coils, where the condensate is fed to a water separator via a trough, in which water and solvent are separated and the solvent is returned to the Plant is returned.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß das Dampfniveau sicher konstant auf seinem Sollwert gehalten wird, was zu einer hohen Sicherheit in der Reinigungsqualität führt, und daß das Wasser durch die sichere Kondensatbildung an den Kühlschlangen kontinuierlich aus dem Lösemittel über das azeotrope Gemisch entfernt wird. Außerdem wird nicht mehr Energie zugeführt als zur Konstanthaltung des Dampfniveaus notwendig ist, was durch die obengenannten Umstände zu einer hohen Energieeinsparung führt.The method according to the invention with the characterizing features of the main claim has the advantage that the steam level is reliably kept constant at its setpoint, which leads to a high level of safety in cleaning quality, and that the water continuously from the solvent due to the reliable formation of condensate on the cooling coils is removed via the azeotropic mixture. In addition, no more energy is supplied than is necessary to keep the steam level constant, which leads to high energy savings due to the above-mentioned circumstances.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Verfahrens möglich. Besonders vorteilhaft ist es, wenn sowohl die Durchflußmenge als auch die Eintrittstemperatur des Kühlmediums konstantgehalten werden, da die Heizleistung dann nur noch in Abhängigkeit von der Austrittstemperatur des Kühlmediums geregelt zu werden braucht, was eine Vereinfachung der Regelvorrichtung bedeutet. Der Einsatz der Regelgeräte bzw. Reglertypen ist lediglich abhängig von der gewünschten Regelgenauigkeit bzw. den auftretenden Störgrößen.Advantageous further developments and improvements of the method specified in the main claim are possible through the measures listed in the subclaims. It is particularly advantageous if both the flow rate and the inlet temperature of the cooling medium are kept constant, since the heating output then only has to be regulated as a function of the outlet temperature of the cooling medium, which means a simplification of the control device. The use of control devices or controller types is only dependent on the desired control accuracy or the disturbance variables that occur.

Zeichnungdrawing

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Die Figur zeigt schematisch eine Anlage zur Dampfentfettung im Schnitt, anhand deren das erfindungsgemäße Verfahren dargestellt werden soll.An embodiment of the invention is shown in the drawing and explained in more detail in the following description. The figure schematically shows a plant for steam degreasing in section, on the basis of which the method according to the invention is to be illustrated.

Beschreibung des AusführungsbeispielsDescription of the embodiment

Die Lösemittelanlage, z. B. zur Dampfentfettung, besteht aus einem Behälter 1, an dessen oberer Öffnung ein Kühlsystem, z. B. in Form von Kühlschlangen 2, angeordnet ist.The solvent system, e.g. B. for steam degreasing, consists of a container 1, at the upper opening a cooling system, for. B. in the form of cooling coils 2, is arranged.

Unter den Kühlschlangen befindet sich eine Rinne 3, an die ein Ablauf 4 zu einem Wasserabscheider 5 angeschlossen ist. Der Wasserabscheider 5 weist einen oberen Ablauf 6 für das Wasser sowie einen tieferliegenden Ablauf 7 für den Rücklauf des Lösemittels in den Behälter 1 auf. Mit 8 ist der Eingang des Kühlmediums bezeichnet, der eine Temperaturmeßstelle T1 aufweist, - während mit 9 der Ausgang des Kühlmediums mit der Temperaturmeßstelle T2 bezeichnet ist. Eine Heizung 10 in Form einer,Heizschlange, eines Wärmetauschers oder einer Direkt- bzw. Indirektbeheizung befindet sich im unteren Teil des Behälters 1. Diese Heizung kann über ein Regelventil 11 geregelt werden. Die zu reinigenden Teile sowie ein Werkstückträger sind mit 12 bezeichnet. Im unteren Teil des Behälters befindet sich das flüssige Lösemittel 13, dessen Niveau mit 14 gekennzeichnet ist. Als Lösemittel können beispielsweise Tri, Per, halogenierte Benzole o.ä. verwendet werden.Under the cooling coils there is a channel 3, to which an outlet 4 to a water separator 5 is connected. The water separator 5 has an upper outlet 6 for the water and a lower outlet 7 for the return of the solvent into the container 1. 8 denotes the input of the cooling medium, which has a temperature measuring point T1, while 9 denotes the outlet of the cooling medium with the temperature measuring point T2. A heater 10 in the form of a heating coil, a heat exchanger or direct or indirect heating is located in the lower part of the container 1. This heater can be controlled via a control valve 11. The parts to be cleaned and a workpiece carrier are designated by 12. In the lower part of the container there is the liquid solvent 13, the level of which is identified by 14. Tri, per, halogenated benzenes or the like can be used as solvents. be used.

Schaltet man nun die Heizung 10 ein, so beginnt das Lösemittel 13 zu verdampfen und es stellt sich in der Höhe der Kühlschlangen 2 ein Dampfniveau 15 ein. Unter der Voraussetzung einer konstanten durchströmenden Menge des Kühlmediums muß nun für ein festgelegtes Dampfniveau ein bestimmter Sollwert der Temperaturdifferenz T2 minus T1 festgelegt werden. Die spezifische Wärme des Kühlmediums kann dabei als Konstante vernachlässigt werden. Die in der Figur nicht dargestellte Regelung bewirkt nun, daß bei Überschreiten dieses Sollwerts das Ventil 11 geschlossen und bei Unterschreiten des Sollwerts das Ventil geöffnet wird. Dadurch wird erreicht, daß das Dampfniveau 15 etwa in der gleichen Höhe bleibt. Taucht man nun die kalten Teile 12 in den Dampf ein, so kondensiert sich zunächst der Dampf an den Teilen und das Kondensat 16 läuft in das flüssige Lösemittel 13 zurück. Auch an den Kühlschlangen 2 bildet sich ein Kondensat 17, das im Falle der Anwesenheit von Wasser im Lösemittel ein azeotropes Gemisch darstellt. Dieses wird in der Rinne 3 gesammelt, in den Wasserabscheider 5 über die Leitung 4 geleitet, aus dem das Wasser über die Leitung 6 gesammelt und aufbereitet und das Lösemittel über die Leitung 7 in den Behälter 1 zurückgeführt wird.If the heater 10 is now switched on, the solvent 13 begins to evaporate and a steam level 15 is established at the level of the cooling coils 2. Assuming a constant flow of the cooling medium, a specific setpoint of the temperature difference T2 minus T1 must now be specified for a defined steam level. The specific heat of the cooling medium can be neglected as a constant. The control, not shown in the figure, now causes the valve 11 to be closed when this setpoint is exceeded and the valve to be opened when the setpoint is undershot. This ensures that the steam level 15 remains approximately at the same level. If you now immerse the cold parts 12 in the steam, the steam first condenses on the parts and the condensate 16 runs back into the liquid solvent 13. A condensate 17 also forms on the cooling coils 2 and, in the presence of water in the solvent, constitutes an azeotropic mixture. This is collected in channel 3, in the water separator 5 passed via line 4, from which the water is collected and processed via line 6 and the solvent is returned via line 7 to container 1.

Bringt man beispielsweise große Teile mit einer hohen Wärmekapazität in das Dampfbad ein, so wird sich zunächst das Dampfniveau 15 absinken, was zur Folge hat, daß die Temperaturdifferenz T2 - T1 unter den Sollwert sinkt, wodurch das Ventil 11 solange geöffnet und die Heizleistung damit erhöht wird, bis das Dampfniveau 15 sowie die Temperaturdifferenz T2 - T1 die Sollwerte wieder erreicht hat und die Energiezufuhr damit wieder gedrosselt werden kann.If, for example, large parts with a high heat capacity are brought into the steam bath, the steam level 15 will first decrease, which has the consequence that the temperature difference T2 - T1 drops below the setpoint, whereby the valve 11 is opened and the heating power is increased until the steam level 15 and the temperature difference T2 - T1 have reached the setpoints again and the energy supply can be reduced again.

Es ist schließlich auch möglich, nicht nur die Durchflußmenge, sondern auch die Eintrittstemperatur T1 des Kühlmediums bei 8 konstantzuhalten, so daß in die Regelung nur noch die Temperatur T2 eingeht.Finally, it is also possible to keep not only the flow rate, but also the inlet temperature T1 of the cooling medium at 8, so that only the temperature T2 is included in the control.

Als Heizmedien kommen beispielsweise Heißwasser, Dampf, elektrische Energie sowie eine Gasbeheizung oder eine Sekundärbeheizung über Thermoöl in Betracht. Das gängigste Kühlmedium ist Wasser, es kann jedoch auch jede andere Flüssigkeit mit genügend hoher spezifischer Wärme verwendet werden.Possible heating media are, for example, hot water, steam, electrical energy and gas heating or secondary heating using thermal oil. The most common cooling medium is water, but any other liquid with a sufficiently high specific heat can also be used.

Das Verfahren kann auch bei vorhandenen Anlagen durch Einbau der notwendigen Geräte ohne Schwierigkeiten angewendet werden. Einsatzgrenzen gibt es nur bei extrem kurzen Taktzeiten, bedingt durch meßtechnische Totzeiten in der Istwerterfassung bzw. der Istwertverarbeitung.The method can also be used in existing systems without difficulty by installing the necessary equipment. Limits of use exist only with extremely short cycle times, due to measurement dead times in the actual value acquisition or the actual value processing.

Claims (3)

1. Verfahren zur Regelung der Dampfintensität in Lösemittelanlagen, bestehend aus einem Behälter, in dessen unterem Teil sich ein flüssiges Lösemittel befindet, in das eine Heizung zur Verdampfung desselben eintaucht, und der über dem flüssigen Lösemittel einen Dampfraum aufweist, in dem am oberen Ende des Behälters ein Kühlsystem mit einem fließenden Kühlmedium angebracht ist, dadurch gekennzeichnet, daß die Heizleistung über die erbrachte Kühlleistung geregelt wird, indem die Heizenergie gedrosselt wird, wenn das Produkt aus der Differenz zwischen Austrittstemperatur und Eintrittstemperatur des Kühlmediums und der Durchflußmenge des Kühlmediums ansteigt, und die Heizenergie vergrößert wird, wenn dieses Produkt kleiner wird.1. A method for controlling the vapor intensity in solvent systems, consisting of a container, in the lower part of which there is a liquid solvent, in which a heater for evaporating the same, and which has a vapor space above the liquid solvent, in which at the upper end of the A cooling system with a flowing cooling medium is attached to the container, characterized in that the heating output is regulated by the cooling output provided by throttling the heating energy when the product of the difference between the outlet temperature and inlet temperature of the cooling medium and the flow rate of the cooling medium increases, and the Heating energy is increased when this product becomes smaller. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Durchflußmenge des Kühlmediums konstantgehalten wird und die Heizleistung nur in Abhängigkeit von der Differenz zwischen der Austrittstemperatur und der Eintrittstemperatur des Kühlmediums geregelt wird.2. The method according to claim 1, characterized in that the flow rate of the cooling medium is kept constant and the heating power is regulated only in dependence on the difference between the outlet temperature and the inlet temperature of the cooling medium. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sowohl die Durchflußmenge als auch die Eintrittstemperatur des Kühlmediums konstantgehalten und die Heizleistung nur in Abhängigkeit von der Austrittstemperatur des Kühlmediums geregelt wird.3. The method according to claim 1 or 2, characterized in that both the flow rate and the inlet temperature of the cooling medium are kept constant and the heating power is regulated only in dependence on the outlet temperature of the cooling medium.
EP81107847A 1980-10-18 1981-10-02 Process for regulating the evaporation intensity of plants employing solvents Expired EP0050247B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803039407 DE3039407A1 (en) 1980-10-18 1980-10-18 METHOD FOR REGULATING STEAM INTENSITY IN SOLVENT PLANTS
DE3039407 1980-10-18

Publications (2)

Publication Number Publication Date
EP0050247A1 true EP0050247A1 (en) 1982-04-28
EP0050247B1 EP0050247B1 (en) 1985-01-30

Family

ID=6114687

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81107847A Expired EP0050247B1 (en) 1980-10-18 1981-10-02 Process for regulating the evaporation intensity of plants employing solvents

Country Status (2)

Country Link
EP (1) EP0050247B1 (en)
DE (2) DE3039407A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0140090A1 (en) * 1983-10-03 1985-05-08 Robert Bosch Gmbh Process for the vapour degreasing of work pieces
GB2158465A (en) * 1984-05-03 1985-11-13 Thermo Technic Limited Solvent vapour cleaning apparatus
US4788043A (en) * 1985-04-17 1988-11-29 Tokuyama Soda Kabushiki Kaisha Process for washing semiconductor substrate with organic solvent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4128699A1 (en) * 1991-08-29 1993-03-04 Peter Warthmann Process and equipment for solvent degreasing and cleaning - by solvent evapn. and condensn. on goods due to temp. differential, with continuous multistage treatment at increasing solvent pressure and temp.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR841366A (en) * 1938-01-20 1939-05-17 Stylomine Sa Des Ets Safety device for degreasing machines using volatile products
GB683948A (en) * 1949-06-24 1952-12-10 Joseph Lenard Robinson Improvements in or relating to metal degreasing apparatus
US2700645A (en) * 1952-05-27 1955-01-25 Detrex Corp Degreasing apparatus
US2722593A (en) * 1953-05-25 1955-11-01 Ben W Sager Vapor degreasing apparatus
US2783975A (en) * 1953-10-26 1957-03-05 Metalwash Machinery Co Degreaser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR841366A (en) * 1938-01-20 1939-05-17 Stylomine Sa Des Ets Safety device for degreasing machines using volatile products
GB683948A (en) * 1949-06-24 1952-12-10 Joseph Lenard Robinson Improvements in or relating to metal degreasing apparatus
US2700645A (en) * 1952-05-27 1955-01-25 Detrex Corp Degreasing apparatus
US2722593A (en) * 1953-05-25 1955-11-01 Ben W Sager Vapor degreasing apparatus
US2783975A (en) * 1953-10-26 1957-03-05 Metalwash Machinery Co Degreaser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0140090A1 (en) * 1983-10-03 1985-05-08 Robert Bosch Gmbh Process for the vapour degreasing of work pieces
GB2158465A (en) * 1984-05-03 1985-11-13 Thermo Technic Limited Solvent vapour cleaning apparatus
US4788043A (en) * 1985-04-17 1988-11-29 Tokuyama Soda Kabushiki Kaisha Process for washing semiconductor substrate with organic solvent

Also Published As

Publication number Publication date
DE3168653D1 (en) 1985-03-14
EP0050247B1 (en) 1985-01-30
DE3039407A1 (en) 1982-06-03

Similar Documents

Publication Publication Date Title
DE60027784T2 (en) DEVICE AND METHOD FOR REGULATING INCOMPATIBILITIES
DE2647039A1 (en) ARRANGEMENT FOR INDEPENDENT CONTROL OF THE TEMPERATURE OF TOOLS, IN PARTICULAR CASTING FORMS
DE19836331A1 (en) Multi-mode gas system control method
DE3818414A1 (en) METHOD AND DEVICE FOR TREATING TEXTILE MATERIAL
EP0050247B1 (en) Process for regulating the evaporation intensity of plants employing solvents
DE2922281C2 (en) Process for the continuous degassing of water
DE2826132B1 (en) Process for the continuous conditioning of sludge
DE1239250B (en) Evaporator with vertical heating pipes and evaporator system for the sugar industry
EP2832242A1 (en) Cooling control method for a vacuum cooling device
DE3244761A1 (en) Concentration process and apparatus
DE10159057B4 (en) Method and device for automatic adjustment of temperature gradients, in particular in the case of vapor-phase soldering systems
EP0324941B1 (en) Method and apparatus for treating textiles
DE2418048B2 (en) Process and device for degassing distillate occurring in evaporation plants
DE819843C (en) Evaporator
DE959099C (en) Device for operating a comparison heating surface in boilers or heated heat consumers, in particular forced flow boilers
DE1519706A1 (en) Method and device for the automatic regulation of a continuous distillation process
DE4410405C1 (en) Two-stage vacuum distn. plant cleans effluents with low energy input,
DE2653214A1 (en) Dry weight solution control system for evaporator systems - has cut off valve operating in return flow pipeline system activated by outlet pipeline flow (NL 27.5.77)
EP0600903B1 (en) Process and device for removing gas in the evaporation of organically and/or inorganically contaminated water
DE19852733A1 (en) Method and device for tempering a liquid bath
DE1271883B (en) Process and installation for drying soap mass
EP4337903A1 (en) Drying device for drying containers containing cleaning fluid, control device, and method
DE1504436B2 (en) METHOD AND DEVICE FOR HEATING CALANDER ROLLS, PREFERABLY FOR PLASTIC DRAWING CALENDARS
DE957719C (en) Device for evaporating or boiling down sugar masses
DE1519691A1 (en) Method and device for regulating a continuous distillation process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811002

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 3168653

Country of ref document: DE

Date of ref document: 19850314

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19891019

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19891031

Ref country code: CH

Effective date: 19891031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19891031

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19891219

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900629

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19901031

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 19901031

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910702