EP0054680A1 - Smoke detector according to the radiation extinction principle - Google Patents

Smoke detector according to the radiation extinction principle Download PDF

Info

Publication number
EP0054680A1
EP0054680A1 EP81108849A EP81108849A EP0054680A1 EP 0054680 A1 EP0054680 A1 EP 0054680A1 EP 81108849 A EP81108849 A EP 81108849A EP 81108849 A EP81108849 A EP 81108849A EP 0054680 A1 EP0054680 A1 EP 0054680A1
Authority
EP
European Patent Office
Prior art keywords
radiation
smoke detector
detector according
transmitters
smoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81108849A
Other languages
German (de)
French (fr)
Other versions
EP0054680B1 (en
Inventor
Jürg Dr. sc. nat. Muggli
Martin Dr. Sc. Nat. Labhart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cerberus AG
Original Assignee
Cerberus AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cerberus AG filed Critical Cerberus AG
Priority to AT81108849T priority Critical patent/ATE24787T1/en
Publication of EP0054680A1 publication Critical patent/EP0054680A1/en
Application granted granted Critical
Publication of EP0054680B1 publication Critical patent/EP0054680B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components

Definitions

  • the invention relates to a smoke detector based on the radiation extinction principle, in which the radiation attenuation by smoke is detected in a measurement section and an alarm signal is triggered by means of an evaluation circuit for a predetermined radiation attenuation.
  • a relatively small decrease in the radiation directed from a radiation transmitter to a radiation receiver must be demonstrated.
  • the disadvantage here is that a decrease in radiation, for example due to aging of the radiation source, dusting optically effective surfaces, or the temperature response of radiation transmitters and receivers can have a similar effect to the presence of smoke in the measuring section, so that a faulty alarm signal is triggered can, even if there is no smoke, or the smoke detector becomes less sensitive and therefore unusable.
  • the invention has for its object to avoid the disadvantages of the prior art mentioned and in particular to create a smoke detector based on the extinction principle, against temperature fluctuations, dust or condensation, aging of the Components and other slow property changes is insensitive, has an improved long-term stability and is not susceptible to malfunction and works reliably, and is able to distinguish smoke from other particle types with greater certainty and has a lower susceptibility to false alarms.
  • the invention is characterized in that a radiation transmitter is provided for emitting radiation in a longer-wave and a shorter-wave spectral region, as well as a measurement radiation receiver for receiving the radiation from the two radiation transmitters after passing through a smoke-accessible measurement section and a comparison radiation receiver for receiving the radiation from the two radiation transmitters Traversing a comparison route that is not or less accessible to smoke.
  • smoke detector arrangement comprises two radiation transmitters L R L and G are arranged so that their main emission directions crossing at an angle of 90 0th
  • a semi-transparent mirror D is arranged at an angle of 45 ° to the two radiation directions.
  • a comparison radiation receiver S V is provided in the direct radiation direction of the one radiation transmitter L R.
  • a measuring path M that is accessible to smoke, for example in the length of 10 cm - 20 cm.
  • a radiation reflector R At the end of the measuring section there is a radiation reflector R, which reflects the radiation passing through the measuring section M back to a measuring radiation receiver S M.
  • This arrangement has the effect that both the radiation from the radiation transmitter L R , deflected by the semitransparent mirror D, and the portion of the other radiation transmitter let through by this mirror D pass the measurement path M and are reflected by the reflector R and are received by the measurement radiation receiver S M .
  • the direct radiation emanating from the radiation transmitter L R after passing through the semitransparent mirror D and the radiation emitted by the other radiation transmitter L G and reflected by the semitransparent mirror D hit the comparison radiation receiver S V after passing through a comparison path which is not or less accessible to smoke.
  • This arrangement has the effect that the two radiation receivers are acted upon almost equally by the two radiation transmitters in the absence of smoke, but in the presence of smoke in the measurement section, on the other hand, are very different, since smoke absorbs radiation with shorter wavelengths than longer-wave radiation.
  • the two radiation transmitters L R and L G are now designed such that they emit radiation in different wavelength regions. It has proven expedient to design the one radiation transmitter so that it preferably emits radiation with a wavelength below 600 nm, preferably in the range of green light, while the other radiation transmitter produces radiation above 600 nm, preferably red light or infrared radiation.
  • the wavelength ranges can also be selected so that their mean values are at a distance of at least 50 nm from one another. With the choice of the wavelength ranges, the different absorption properties of different suspended particles can be used to distinguish smoke, since it has been shown that the difference in absorption in the two spectral ranges mentioned has a characteristic value for different particle types.
  • the evaluation circuit connected to the two radiation receivers is matched to this difference, it can be achieved that smoke particles deliver a particularly large output signal, while other particle types, such as dust or fog droplets, have a significantly smaller influence, so that a Alarm signaling is essentially caused by smoke, but not by other types of particles.
  • Broadband emitters for example incandescent lamps, with corresponding upstream color filters can be used as radiation sources.
  • the use of light-emitting diodes, which are aimed at the emission of radiation in certain wavelength ranges, has proven particularly expedient.
  • the use of a collimator lens K - is recommended in order to avoid radiation losses.
  • Such a collimator lens can, however, be dispensed with if the radiation sources are designed as LASER diodes.
  • the two radiation receivers S and S are expediently matched to the radiation from the two radiation transmitters L G and L R , that is, they are expediently designed such that they are sensitive to the spectral ranges of both radiation transmitters L G and L R.
  • the partial ratio of the semi-transparent mirror D can, but need not, be 1: 1. If radiation transmitters L R and L G with very different intensities or radiation receivers S M and S V with very different sensitivity are used, it is expedient to choose a different ratio, if necessary up to 50. 1 to achieve that the receiver when irradiated in both spectral ranges. give about the same output signal.
  • FIG. 2 shows a modified embodiment of a smoke detector arrangement in which a separate collimator lens K1 and K 2 is provided for each of the two radiation transmitters L G and L R.
  • the radiation is not reflected after passing through the measurement section M, but is returned to the measurement radiation receiver S M using a radiation guide F (fiber optics).
  • measurement radiation receiver S M and comparison radiation receiver S V can be arranged directly adjacent to one another, or in a further development of the invention, can be designed as a dual radiation receiver. This makes the connection to the evaluation circuit considerably easier, and the same optical properties and the same temperature response are achieved.
  • Figure 3 shows a smoke detector arrangement with immediately adjacent radiation transmitters L G and L R.
  • the dispersion of a prism P is used.
  • the radiation from the two radiation transmitters L and L G is initially aligned by a collimator K and passes through the same prism P. Since longer-wave light is refracted less than shorter-wave light, the angle of the main radiation directions is equalized and both beams M emerge from the prism in parallel with one another out. This ensures that the measurement beam paths largely agree for both wavelengths or spectral ranges and are subject to the same influences.
  • the comparison radiation can be taken in front of or behind the prism at a suitable point.
  • FIG. 4 shows a further smoke detector arrangement with a matching measuring beam M in both spectral areas.
  • this is achieved in that the two radiation sources L and R LG are arranged on the same axis behind one another.
  • a green-emitting LED chip can be mounted on an infrared-emitting chip, so that the radiation emitted by the infrared chip radiates through the green chip.
  • the two types of radiation are directed in parallel by a collimator K and pass through the measuring path M in identical ways.
  • a semitransparent mirror D is provided in front of or behind the collimator K, which directs part of the radiation onto the comparison radiation receiver S V. This ensures complete compensation for all intensity fluctuations and misalignments.
  • the radiation from the two radiation transmitters L G and L R can also be combined by means of radiation-conducting elements F 1 , F 2 (fiber optics) and a collimator K at the output of the elements to form the measuring beam M.
  • the two radiation transmitters L G , L R can also irradiate the same focusing screen element MS, the radiation emanating from this being guided into the measuring path M by means of the collimator K.
  • the radiation emitted in slightly different directions by the two radiation transmitters L R , L G can also be directed in the same direction of the measurement path M by means of a roof edge prism DP.
  • a more uniform illumination of the aperture can still be achieved if an entire array (side by side arrangement) of narrow roof edge prisms is used instead of the one roof edge prism (Fresnel prism).
  • the two radiation transmitters are installed one behind the other, their light can be combined in the measuring section by using a bifocal Fresnel lens. Every second ring of this Fresnel lens maps one radiation transmitter to a point (which can also be at infinity), while the other rings map the other radiation transmitter to the same point. If the two radiation transmitters are mounted next to each other, they can be imaged on the same pixel using a cylindrical bifocal Fresnel lens.
  • a complete identity of the measuring section for the two spectral regions can moreover be achieved by connecting the two radiation transmitters to a spectrally variable radiation source, e.g. an incandescent lamp with an optical filter that can be switched to two different spectral regions or a tunable light-emitting diode.
  • a spectrally variable radiation source e.g. an incandescent lamp with an optical filter that can be switched to two different spectral regions or a tunable light-emitting diode.
  • FIG. 8 shows a suitable evaluation circuit which can be connected to the radiation receivers S and S and can be used to operate the radiation transmitters L R and L G.
  • the comparison radiation receiver S is connected to the negative input of an operational amplifier C 1 of the MC 34002 type, the positive input of which is grounded and the output of which is coupled to the negative input via a resistor R 1 .
  • the output of the operational amplifier C 1 is connected to a controllable switch S W , for example a FET switch MC 14066, which is periodically switched from one initial position to the other by an oscillator OS.
  • Both outputs of the switching means SW are connected to each driver channel a T for the two radiation transmitters L G and L R.
  • the oscillator has the effect that the two radiation transmitters emit radiation alternately, either adjoining one another or with intermediate times, ie in the form of alternating radiation pulses.
  • both channels can be constructed identically or, taking into account different properties of the radiation transmitters, can be constructed at least analogously.
  • the analog components are placed in parentheses.
  • the two outputs of the switching device SW are connected to earth via a resistor R 3 (R 7 ) and are simultaneously connected to the negative input of an operational amplifier C 3 (C 4 ) of the type MC 34002, the positive input of which is at the tap of a voltage divider R 4 , R 5 ( R8 , R9 ).
  • the output of the operational amplifier C 3 (C 4 ) operates the associated radiation transmitter L G (L R ) via a resistor R 6 (R 10 ).
  • a resistance of the voltage divider for example resistance R 4 (R 8 ), can expediently be set or exchanged in order to be able to set the control level for the intensity of the two radiation sources.
  • the circuit described has the effect that the intensity of the two radiation transmitters L G and L R is automatically regulated to a specific intensity level depending on the intensity of the reference radiation received by the reference radiation receiver S, so that intensity fluctuations due to aging, temperature changes and similar effects are automatically compensated for.
  • the measuring radiation receiver S is also connected to the negative input of an operational amplifier C 2 of the type MC 34002, the positive input of which is in turn grounded and the output of which is coupled to the negative input via a resistor R 2 .
  • the output of this operational amplifier C 2 is connected to an AC amplifier AC, at the output of which there is an alarm circuit A.
  • the amplitude of the output signal of the AC voltage amplifier AC supplied to the alarm circuit thus depends in the following manner on the radiation intensities I G and I R recorded by the measurement radiation receiver in the two spectral ranges and on the reference radiation intensities I RV and I GV recorded by the reference radiation receiver S in the same spectral ranges: a and b are factors that result from the properties of the components, especially in the voltage divider ratio R 4 / R 5 (R 8 / R 9 ).
  • R 4 resistance
  • the output signal A becomes directly dependent on the smoke density, and the alarm circuit can be set up in such a way that an alarm signal is triggered or passed on as soon as the output signal A exceeds a predetermined threshold value. Since in this case the deviation from zero serves as a criterion for triggering an alarm signal, the difficulties of previously known smoke detectors operating according to the extinction principle, in which a small deviation from a large and difficult to stabilize value had to be determined, are avoided from the outset.
  • An alarm signal is triggered when one of the sizes A, B / a, C / b or 2D / a exceeds a value between 0.01 (due to the stability of the smoke detector) and 0.2 (due to the length of the measuring section) , where a and b are chosen such that will.
  • the circuit can be developed in such a way that additional parameters are formed, for example or which depend on the type of smoke and which allow a conclusion to be drawn about the type of smoke.
  • An additional evaluation of one of the sizes E, F, G, or H can also be used to distinguish between smoke and disturbance variables such as dust or condensation.
  • the smoke development can be tracked if the time differential quotient dA / dt, dB / dt, dC / dt or dD / dt of the output signal A, B, C or D is also formed.
  • the stability of the smoke detector can be significantly increased if one suppresses the small and slow changes in the output signal and only evaluates signals that are at least as fast as can be generated by a fire. This can be achieved either by slowly changing at least one of the factors a, b, c, d, e, f, g or h in order to compensate for these fluctuations or by comparing the output signal with its moving average.
  • FIG. 9 Another evaluation circuit is recorded in FIG. 9.
  • the signal of the measurement radiation receiver S M as well as the signal of the comparison radiation receiver S V is integrated in time (A 2 , C 2 ' S 2 or A 1 , C 1 , S l ).
  • the comparator K compares the integral of the comparison radiation receiver with a predetermined value, which is determined by the voltage divider R 3 , R 4 , and opens the switch S 3 of the sample and hold amplifier (S 3 , C 3 , A 3 ) at that time at which the integration value exceeds the specified value.
  • An alarm circuit A is located at the output of the amplifier A 3.
  • the oscillator OS controls the repetition of the integration process and switches using the flip-flop FF between the two radiation transmitters L G and L R.
  • the smoke detectors described have significantly improved stability, even over longer periods, as well as improved functional reliability and greater susceptibility to malfunction. Changes due to dust and changes in the properties of the components are automatically compensated for without the risk of an incorrect alarm triggering and without loss of sensitivity. By appropriately selecting the spectral ranges used, it can also be achieved that the smoke detectors described preferably react to smoke particles, but not or only weakly to other types of particles.

Abstract

A smoke detector contains two radiation transmitters and two radiation receivers. Each of the radiation transmitters emits in a different spectral region, for instance, one emits above and the other one below 600 nm. One part of the radiation of both radiation transmitters is conducted via a measuring path, which is accessible to smoke, to one of the receivers constituting a measuring radiation receiver, and another part of such radiation is conducted via a comparison path, which is not accessible to smoke, to the other of the receivers constituting a comparison radiation receiver. Connected to both radiation receivers is an evaluation circuit which forms from the measuring radiation intensities prevailing in the two spectral regions and from the comparison radiation intensities prevailing in the same spectral regions a function of the type: <IMAGE> By suitably adjusting or selecting the components of the evaluation circuit, the coefficients a and b are selected such that in the absence of smoke in the measuring path, A becomes zero and in the presence of smoke such is proportional to the smoke density.

Description

Die Erfindung betrifft einen Rauchmelder nach dem Strahlungs-Extinktions-Prinzip, bei dem die Strahlungsschwächung durch Rauch in einer Messstrecke detektiert und mittels einer Auswerteschaltung bei einer vorgegebenen Strahlungsschwächung ein Alarmsignal ausgelöst wird.The invention relates to a smoke detector based on the radiation extinction principle, in which the radiation attenuation by smoke is detected in a measurement section and an alarm signal is triggered by means of an evaluation circuit for a predetermined radiation attenuation.

Bei einem derartigen Rauchmelder muss eine relative kleine Abnahme der von einem Strahlungssender auf einen Strahlungsempfänger.gerichteten Strahlung nachgewiesen werden. Nachteilig wirkt sich dabei aus, dass eine Bestrahlungsabnahme, beispielsweise durch Alterung der Strahlungsquelle, durch Verstaubung optisch wirksamer Flächen, oder der Temperaturgang von Strahlungssendern und -Empfängern eine ähnliche Wirkung haben können wie das Vorhandensein von Rauch in der Messstrecke, sodass ein fehlerhaftes Alarmsignal ausgelöst werden kann, auch wenn kein Rauch vorhanden ist, oder der Rauchmelder unempfindlicher und daher unbrauchbar wird.With such a smoke detector, a relatively small decrease in the radiation directed from a radiation transmitter to a radiation receiver must be demonstrated. The disadvantage here is that a decrease in radiation, for example due to aging of the radiation source, dusting optically effective surfaces, or the temperature response of radiation transmitters and receivers can have a similar effect to the presence of smoke in the measuring section, so that a faulty alarm signal is triggered can, even if there is no smoke, or the smoke detector becomes less sensitive and therefore unusable.

Gemäss US-Patent 3 994 603 kann dieser Nachteil dadurch beseitigt werden, dass ein Vergleichsstrahlengang vorgesehen ist, der nicht oder weniger durch Rauch beeinflusst wird, wobei die Auswerteschaltung mittels eines Vergleichsstrahlungsempfängers nicht durch Rauch bedingte Strahlungsänderungen kompensiert.According to US Pat. No. 3,994,603, this disadvantage can be eliminated by providing a comparison beam path that is not or only slightly influenced by smoke, the evaluation circuit using a comparison radiation receiver not compensating for radiation changes caused by smoke.

Auf diese Weise können zwar die genannten Nachteile weitgehend vermieden werden, jedoch lässt sich auf diese Weise Rauch nicht mit Sicherheit von anderen Schwebeteilcheriarten, z.B. Staubpartikel oder Nebeldämpfen, unterscheiden.Although the disadvantages mentioned can largely be avoided in this way, smoke cannot be reliably removed from other types of floating particles, e.g. Differentiate between dust particles or mist vapors.

Die Erfindung stellt sich die Aufgabe, die erwähnten Nachteile des Standes der Technik zu vermeiden und insbesondere einen Rauchmelder nach dem Extinktionsprinzip zu schaffen, der gegen Temperaturschwankungen, Verstaubung oder Betauung, Alterung der Bauelemente und andere langsame Eigenschaftsänderungen unempfindlich ist, der eine verbesserte Langzeit-Stabilität aufweist und störunanfällig und betriebssicher arbeitet, und der Rauch mit grösserer Sicherheit von anderen Partikelarten zu unterscheiden vermag und eine geringerere Fehlalarmanfälligkeit aufweist.The invention has for its object to avoid the disadvantages of the prior art mentioned and in particular to create a smoke detector based on the extinction principle, against temperature fluctuations, dust or condensation, aging of the Components and other slow property changes is insensitive, has an improved long-term stability and is not susceptible to malfunction and works reliably, and is able to distinguish smoke from other particle types with greater certainty and has a lower susceptibility to false alarms.

Die Erfindung ist dadurch gekennzeichnet, dass je ein Strahlungssender zur Aussendung von Strahlung in einem längerwelligen und einem kürzerwelligen Spektralgebiet vorgesehen ist, sowie ein Messstrahlungsempfänger zum Empfang der Strahlung der beiden Strahlungssender nach Durchlaufen einer rauchzugänglichen Messstrecke und ein Vergleichsstrahlungsempfänger zum Empfang der Strahlung der beiden Strahlungssender nach Durchlaufen einer nicht oder weniger rauchzugänglichen Vergleichsstrecke.The invention is characterized in that a radiation transmitter is provided for emitting radiation in a longer-wave and a shorter-wave spectral region, as well as a measurement radiation receiver for receiving the radiation from the two radiation transmitters after passing through a smoke-accessible measurement section and a comparison radiation receiver for receiving the radiation from the two radiation transmitters Traversing a comparison route that is not or less accessible to smoke.

Die Erfindung, sowie zweckmässige Weiterbildungen derselben, werden anhand der in den Figuren dargestellten Ausführungsbeispielen beschrieben.

  • Figur 1 zeigt eine Rauchmelder-Anordnung mit Reflektor.
  • Figur 2 zeigt eine Rauchmelder-Anordnung mit Strahlungsleiter im Anschluss an die Messstrecke.
  • Figur 3 zeigt eine Rauchmelder-Anordnung mit Dispersions-Prisma.
  • Figur 4 zeigt eine Rauchmelder-Anordnung mit hintereinander angeordneten Strahlungssendern.
  • Figur 5 zeigt eine Rauchmelder-Anordnung mit Strahlungsleitern vor der Messstrecke.
  • Figur 6 zeigt eine Rauchmelder-Anordnung mit Mattscheibe.
  • Figur 7 zeigt eine Rauchmelder-Anordnung mit Dachkanten-Prisma.
  • Figuren 8 und 9 zeigen je eine Auswerteschaltung für einen Rauchmelder.
The invention, as well as expedient developments of the same, are described on the basis of the exemplary embodiments illustrated in the figures.
  • Figure 1 shows a smoke detector arrangement with reflector.
  • Figure 2 shows a smoke detector arrangement with a radiation conductor following the measuring section.
  • Figure 3 shows a smoke detector arrangement with a dispersion prism.
  • FIG. 4 shows a smoke detector arrangement with radiation transmitters arranged one behind the other.
  • FIG. 5 shows a smoke detector arrangement with radiation conductors in front of the measuring section.
  • Figure 6 shows a smoke detector arrangement with a focusing screen.
  • Figure 7 shows a smoke detector arrangement with roof edge prism.
  • FIGS. 8 and 9 each show an evaluation circuit for a smoke detector.

Bei der in Figur 1 dargestellten Rauchmelder-Anordnung sind zwei Strahlungssender LR und LG so angeordnet, dass ihre Hauptausstrahlungsrichtungen sich unter einem Winkel von 900 kreuzen. Unter einem Winkel von 45° zu den beiden Strahlungsrichtungen ist ein halbdurchlässiger Spiegel D angeordnet. In der direkten Strahlungsrichtung des einen Strahlungssenders LR ist ein Vergleichsstrahlungsempfänger SV vorgesehen. In Strahlungsrichtung des anderen Strahlungssenders LG liegt eine rauchzugängliche Messstrecke M, beispielsweise in der Länge von 10 cm - 20 cm. Am Ende der Messstrecke befindet sich ein Strahlungsreflektor R, der die die Messstrecke M durchsetzende Strahlung auf einen Messstrahlungsempfänger SM zurückwirft. Mit dieser Anordnung wird bewirkt, dass sowohl die Strahlung des Strahlungssenders LR, umgelenkt durch den halbdurchlässigen Spiegel D, als auch der von diesem Spiegel D durchgelassene Anteil des anderen Strahlungssenders die Messstrecke M passiert und vom Reflektor R zurückgeworfen, vom Messstrahlungsempfänger SM aufgenommen wird. Dahingegen trifft die vom Strahlungssender LR ausgehende direkte Strahlung nach Durchsetzen des halbdurchlässigen Spiegels D und die vom anderen Strahlungssender LG ausgehende, vom halbdurchlässigen Spiegel D reflektierte Strahlung nach Durchlaufen einer nicht oder weniger rauchzugänglichen Vergleichsstrecke auf den Vergleichsstrahlungsempfänger SV. Durch diese Anordnung wird also bewirkt, dass die beiden Strahlungsempfänger bei Abwesenheit von Rauch durch die beiden Strahlungssender nahezu gleich beaufschlagt werden, bei Anwesenheit von Rauch in der Messstrecke dagegen stark unterschiedlich, da Rauch kürzerwelligere Strahlung stärker absorbiert als längerwellige.In the embodiment shown in Figure 1 smoke detector arrangement comprises two radiation transmitters L R L and G are arranged so that their main emission directions crossing at an angle of 90 0th A semi-transparent mirror D is arranged at an angle of 45 ° to the two radiation directions. A comparison radiation receiver S V is provided in the direct radiation direction of the one radiation transmitter L R. In the radiation direction of the other radiation transmitter L G there is a measuring path M that is accessible to smoke, for example in the length of 10 cm - 20 cm. At the end of the measuring section there is a radiation reflector R, which reflects the radiation passing through the measuring section M back to a measuring radiation receiver S M. This arrangement has the effect that both the radiation from the radiation transmitter L R , deflected by the semitransparent mirror D, and the portion of the other radiation transmitter let through by this mirror D pass the measurement path M and are reflected by the reflector R and are received by the measurement radiation receiver S M . In contrast, the direct radiation emanating from the radiation transmitter L R after passing through the semitransparent mirror D and the radiation emitted by the other radiation transmitter L G and reflected by the semitransparent mirror D hit the comparison radiation receiver S V after passing through a comparison path which is not or less accessible to smoke. This arrangement has the effect that the two radiation receivers are acted upon almost equally by the two radiation transmitters in the absence of smoke, but in the presence of smoke in the measurement section, on the other hand, are very different, since smoke absorbs radiation with shorter wavelengths than longer-wave radiation.

Die beiden Strahlungssender LR und LG sind nun so ausgebildet, dass sie Strahlung in unterschiedlichen Wellenlängengebieten aussenden. Es hat sich als zweckmässig erwiesen, den einen Strahlungssender so auszubilden, dass er bevorzugt Strahlung mit einer Wellenlänge unter 600 nm aussendet, vorzugsweise im Bereich des grünen Lichtes, während der andere Strahlungssender Strahlung über 600 nm produziert, vorzugsweise rotes Licht oder Infrarotstrahlung. Die Wellenlängengebiete können auch so gewählt werden, dass ihre Mittelwerte einen Abstand von mindestens 50 nm voneinander haben. Mit der Wahl der Wellenlängenbereiche können die unterschiedlichen Absorptionseigenschaften verschiedener Schwebeteilchen zur Unterscheidung von Rauch ausgenützt werden, da es sich gezeigt hat, dass der Unterschied der Absorption in den beiden genannten Spektralbereichen für verschiedene Partikelarten einen charakteristischen Wert hat. Wenn nun die an die beiden Strahlungsempfänger angeschlossene Auswerteschaltung, wie später erläutert, auf diesen Unterschied abgestimmt ist, so kann erreicht werden, dass Rauchpartikel ein besonders grosses Ausgangssignal liefern, während andere Partikelarten, z.B. Staub oder Nebeltröpfchen, einen wesentlich geringeren Einfluss zeigen, sodass eine Alarmsignalgabe im Wesentlichen durch Rauch bewirkt wird, jedoch nicht durch andere Partikelarten. Als Strahlungsquellen können dabei Breitbandstrahler, z.B. Glühlampen, mit entsprechenden, vorgeschalteten Farbfiltern verwendet werden. Besonders zweckmässig hat sich die Verwendung von Leuchtdioden erwiesen, die auf die Emission von Strahlung in bestimmten Wellenlängenbereichen ausgerichtet sind. Zur Fokussierung der Strahlung auf die Messstrecke M ist dabei die Verwendung einer Kollimatorlinse K - empfehlenswert, um Strahlungsverluste zu vermeiden. Auf eine solche Kollimatorlinse kann jedoch verzichtet werden, wenn die Strahlungsquellen als LASER-Dioden ausgebildet sind. Die beiden Strahlungsempfänger S und S sind zweckmässigerweise auf die Strahlung der beiden Strahlungssender LG und LR abgestimmt, d.h., sie sind zweckmässigerweise so ausgebildet, dass sie für die Spektralbereiche beider Strahlungssender LG und LR empfindlich sind.The two radiation transmitters L R and L G are now designed such that they emit radiation in different wavelength regions. It has proven expedient to design the one radiation transmitter so that it preferably emits radiation with a wavelength below 600 nm, preferably in the range of green light, while the other radiation transmitter produces radiation above 600 nm, preferably red light or infrared radiation. The wavelength ranges can also be selected so that their mean values are at a distance of at least 50 nm from one another. With the choice of the wavelength ranges, the different absorption properties of different suspended particles can be used to distinguish smoke, since it has been shown that the difference in absorption in the two spectral ranges mentioned has a characteristic value for different particle types. If, as explained later, the evaluation circuit connected to the two radiation receivers is matched to this difference, it can be achieved that smoke particles deliver a particularly large output signal, while other particle types, such as dust or fog droplets, have a significantly smaller influence, so that a Alarm signaling is essentially caused by smoke, but not by other types of particles. Broadband emitters, for example incandescent lamps, with corresponding upstream color filters can be used as radiation sources. The use of light-emitting diodes, which are aimed at the emission of radiation in certain wavelength ranges, has proven particularly expedient. To focus the radiation on the measurement path M, the use of a collimator lens K - is recommended in order to avoid radiation losses. Such a collimator lens can, however, be dispensed with if the radiation sources are designed as LASER diodes. The two radiation receivers S and S are expediently matched to the radiation from the two radiation transmitters L G and L R , that is, they are expediently designed such that they are sensitive to the spectral ranges of both radiation transmitters L G and L R.

Das Teilverhältnis des halbdurchlässigen Spiegels D kann, aber muss nicht 1 : 1 betragen. Falls Strahlungssender LR und LG mit stark unterschiedlicher Intensität oder Strahlungsempfänger SM und SV mit stark unterschiedlicher Empfindlichkeit benützt werden, ist es zweckmässig, das Teilverhältnis abweichend zu wählen, nötigenfalls bis zu 50 . 1 um zu erreichen, dass die Empfänger bei Bestrahlung in beiden Spektralbereichen. etwa das gleiche Ausgangssignal abgeben.The partial ratio of the semi-transparent mirror D can, but need not, be 1: 1. If radiation transmitters L R and L G with very different intensities or radiation receivers S M and S V with very different sensitivity are used, it is expedient to choose a different ratio, if necessary up to 50. 1 to achieve that the receiver when irradiated in both spectral ranges. give about the same output signal.

Statt eines einzigen Reflektors R können im Uebrigen auch mehrere Reflektorelemente vorgesehen sein, mit denen die Messstrecke M mehrfach gefaltet wird, z.B. in Stern-Form(DE 2856259).Instead of a single reflector R, several reflector elements can also be provided with which the measuring section M is folded several times, e.g. in star shape (DE 2856259).

Figur 2 zeigt eine abgewandelte Ausführung einer Rauchmelder-Anordnung, bei der für jeden der beiden Strahlungssender LG und LR jeweils eine separate Kollimatorlinse K1 und K2 vorgesehen ist. Zum Unterschied vom ersten Beispiel wird die Strahlung nach Durchlaufen der Messstrecke M nicht reflektiert, sondern mit einem Strahlungsleiter F (Fiberoptik) zum Messstrahlungsempfänger SM zurückgeleitet. In diesem Ausführungsbeispiel können Messstrahlungsempfänger SM und Vergleichsstrahlungsempfänger SV unmittelbar benachbart zueinander angeordnet sein, oder in einer Weiterbildung der Erfindung, als Dual-Strahlungsempfänger ausgebildet sein. Der Anschluss an die Auswerteschaltung wird hierdurch wesentlich erleichtert, und es werden gleiche optische Eigenschaften und gleicher Temperaturgang erreicht.FIG. 2 shows a modified embodiment of a smoke detector arrangement in which a separate collimator lens K1 and K 2 is provided for each of the two radiation transmitters L G and L R. In contrast to the first example, the radiation is not reflected after passing through the measurement section M, but is returned to the measurement radiation receiver S M using a radiation guide F (fiber optics). In this exemplary embodiment, measurement radiation receiver S M and comparison radiation receiver S V can be arranged directly adjacent to one another, or in a further development of the invention, can be designed as a dual radiation receiver. This makes the connection to the evaluation circuit considerably easier, and the same optical properties and the same temperature response are achieved.

Figur 3 zeigt eine Rauchdetektor-Anordnung mit unmittelbar benachbart angeordneten Strahlungssendern LG und LR. Um zu erreichen, dass bei einer solchen Anordnung die Messstrahlen beider Strahlungssender parallel zueinander verlaufen; wird die Dispersion eines Prismas P ausgenützt. Die Strahlung der beiden Strahlungssender L und LG wird zunächst von einem Kollimator K ausgerichtet und durchsetzt das gleiche Prisma P. Da längerwelliges Licht weniger gebrochen wird als kürzerwelliges Licht, wird dabei der Winkel der Hauptstrahlungsrichtungen ausgeglichen und beide Strahlen M treten parallel zueinander aus dem Prisma aus. Damit kann gewährleistet werden, dass für beide Wellenlängen oder Spektralbereiche die Messstrahlengänge weitgehen übereinstimmen und den gleichen Einflüssen unterliegen. Die Vergleichsstrahlung kann dabei vor oder hinter dem Prisma an einer geeigneten Stelle abgenommen werden.Figure 3 shows a smoke detector arrangement with immediately adjacent radiation transmitters L G and L R. In order to ensure that the measurement beams of both radiation transmitters run parallel to one another in such an arrangement; the dispersion of a prism P is used. The radiation from the two radiation transmitters L and L G is initially aligned by a collimator K and passes through the same prism P. Since longer-wave light is refracted less than shorter-wave light, the angle of the main radiation directions is equalized and both beams M emerge from the prism in parallel with one another out. This ensures that the measurement beam paths largely agree for both wavelengths or spectral ranges and are subject to the same influences. The comparison radiation can be taken in front of or behind the prism at a suitable point.

Figur 4 zeigt eine weitere Rauchmelder-Anordnung mit übereinstimmendem Messstrahl M in beiden Spektralgebieten. In diesem Beispiel wird dies dadurch erreicht, dass die beiden Strahlungsquellen LR und LG auf der gleichen Achse hintereinander angeordnet sind. Dabei kann beispielsweise ein grün emittierender LED-Chip auf einem Infrarot-emittierenden Chip montiert sein, so dass die vom Infrarot-Chip ausgesandte Strahlung durch den Grün-Chip hindurch strahlt. Die beiden Strahlungsarten werden durch einen Kollimator K parallel gerichtet und durchlaufen die Messstrecke M auf identischen Wegen. Dabei ist vor oder hinter dem Kollimator K ein halbdurchlässiger Spiegel D vorgesehen, der einen Teil der Strahlung auf den Vergleichsstrahlungsempfänger SV leitet. Dies gewährleistet eine vollständige Kompensation aller Intensitätsschwankungen und Dejustierungen.FIG. 4 shows a further smoke detector arrangement with a matching measuring beam M in both spectral areas. In this example, this is achieved in that the two radiation sources L and R LG are arranged on the same axis behind one another. In this case, for example, a green-emitting LED chip can be mounted on an infrared-emitting chip, so that the radiation emitted by the infrared chip radiates through the green chip. The two types of radiation are directed in parallel by a collimator K and pass through the measuring path M in identical ways. A semitransparent mirror D is provided in front of or behind the collimator K, which directs part of the radiation onto the comparison radiation receiver S V. This ensures complete compensation for all intensity fluctuations and misalignments.

Wie in Figur 5 dargestellt, kann die Strahlung der beiden Strahlungssender LG und LR auch mittels strahlungsleitender Elemente F1, F2 (Fiberoptik) und einem Kollimator K am Ausgang der Elemente zum Messstrahl M vereinigt werden.As shown in FIG. 5, the radiation from the two radiation transmitters L G and L R can also be combined by means of radiation-conducting elements F 1 , F 2 (fiber optics) and a collimator K at the output of the elements to form the measuring beam M.

Nach Figur 6 können die beiden Strahlungssender LG, LR auch das gleiche Mattscheiben-Element MS bestrahlen, wobei die von diesem ausgehende Strahlung mittels des Kollimators K in die Messstrecke M geleitet wird.According to FIG. 6, the two radiation transmitters L G , L R can also irradiate the same focusing screen element MS, the radiation emanating from this being guided into the measuring path M by means of the collimator K.

Gemäss Figur 7 kann die in leicht unterschiedlichen Richtungen ausgesandte Strahlung der beiden Strahlungssender LR, LG auch mittels eines Dachkantenprismas DP in der gleichen Richtung der Messstrecke M gerichtet werden. Eine gleichmässigere Ausleuchtung der Apertur kann dabei noch erreicht werden, wenn anstelle des einen Dachkantenprismas ein ganzer Array (Nebeneinanderanordnung) von schmalen Dachkantenprismen verwendet wird (Fresnelprisma).According to FIG. 7, the radiation emitted in slightly different directions by the two radiation transmitters L R , L G can also be directed in the same direction of the measurement path M by means of a roof edge prism DP. A more uniform illumination of the aperture can still be achieved if an entire array (side by side arrangement) of narrow roof edge prisms is used instead of the one roof edge prism (Fresnel prism).

Falls die beiden Strahlungssender hintereinander montiert sind, lässt sich deren Licht in die Messstrecke vereinigen, indem man eine bifokale Fresnellinse verwendet. Jeder zweite Ring dieser Fresnellinse bildet den einen Strahlungssender auf einen Punkt (der sich auch im Unendlich befinden kann) ab, während die anderen Ringe den anderen Strahlungssender auf denselben Punkt abbilden. Falls die beiden Strahlungssender nebeneinander montiert sind, können sie mit Hilfe einer zylindrischen bifokalen Fresnellinse auf denselben Bildpunkt abgebildet werden.If the two radiation transmitters are installed one behind the other, their light can be combined in the measuring section by using a bifocal Fresnel lens. Every second ring of this Fresnel lens maps one radiation transmitter to a point (which can also be at infinity), while the other rings map the other radiation transmitter to the same point. If the two radiation transmitters are mounted next to each other, they can be imaged on the same pixel using a cylindrical bifocal Fresnel lens.

Eine vollständige Identität der Messstrecke für die beiden Spektralgebiete kann im Uebrigen dadurch erreicht werden, dass die beiden Strahlungssender zu einer spektralvariablen Strahlungsquelle, z.B. einer Glühlampe mit einem auf zwei verschiedene Spektralgebiete umschaltbaren optischen Filter oder einer durchstimmbaren Leuchtdiode, vereinigt sind.A complete identity of the measuring section for the two spectral regions can moreover be achieved by connecting the two radiation transmitters to a spectrally variable radiation source, e.g. an incandescent lamp with an optical filter that can be switched to two different spectral regions or a tunable light-emitting diode.

Figur 8 zeigt eine geeignete Auswerteschaltung, die an die Strahlungsempfänger S und S angeschlossen werden und zum Betrieb der Strahlungssender LR und LG dienen kann.FIG. 8 shows a suitable evaluation circuit which can be connected to the radiation receivers S and S and can be used to operate the radiation transmitters L R and L G.

In dieser Schaltung ist der Vergleichsstrahlungsempfänger S an den negativen Eingang eines Operationsverstärkers C1 vom Typ MC 34002 angeschlossen, dessen positiver Eingang geerdet ist und dessen Ausgang über einen Widerstand R1 mit dem negativen Eingang gegengekoppelt ist. Der Ausgang des Operationsverstärkers C1 ist an einen steuerbaren Schalter SW angeschlossen, z.B. ein FET-Schalter MC 14066, der von einem Oszillator OS periodisch von einer Ausgangsstellung auf die andere umgeschaltet wird. Beide Ausgänge der Schalteinrichtung SW sind an je einen Treiberkanal für die beiden Strahlungssender LG und LR angeschlossen. Der Oszillator bewirkt, dass die beiden Strahlungssender alternierend Strahlung aussenden, und zwar entweder aneinander anschliessend oder mit Zwischenzeiten, d.h. in Form alternierender Strahlungsimpulse. Beide Kanäle können im Prinzip identisch oder unter Berücksichtigung unterschiedlicher Eigenschaften der Strahlungssender zumindest analog aufgebaut sein. In der folgenden Beschreibung sind die analogen Komponenten jeweils in Klammern gesetzt. Die beiden Ausgänge der Schalteinrichtung SW liegen über einen Widerstand R3 (R7) an Erde und sind gleichzeitig mit dem negativen Eingang eines Operationsverstärkers C3 (C4) vom Typ MC 34002 verbunden, dessen positiver Eingang am Abgriff eines Spannungsteilers R4, R5 (R8, R9) liegt. Der Ausgang des Operationsverstärkers C3 (C4) betreibt über einen Widerstand R6 (R10) den zugehörigen Strahlungssender LG (LR). Ein Widerstand des Spannungsteilers, beispeilsweise Widerstand R4 (R8), ist zweckmässigerweise einstellbar oder auswechselbar, um das Regelniveau für die Intensität der beiden Strahlungsquellen einstellen zu können.In this circuit, the comparison radiation receiver S is connected to the negative input of an operational amplifier C 1 of the MC 34002 type, the positive input of which is grounded and the output of which is coupled to the negative input via a resistor R 1 . The output of the operational amplifier C 1 is connected to a controllable switch S W , for example a FET switch MC 14066, which is periodically switched from one initial position to the other by an oscillator OS. Both outputs of the switching means SW are connected to each driver channel a T for the two radiation transmitters L G and L R. The oscillator has the effect that the two radiation transmitters emit radiation alternately, either adjoining one another or with intermediate times, ie in the form of alternating radiation pulses. In principle, both channels can be constructed identically or, taking into account different properties of the radiation transmitters, can be constructed at least analogously. In the following description, the analog components are placed in parentheses. The two outputs of the switching device SW are connected to earth via a resistor R 3 (R 7 ) and are simultaneously connected to the negative input of an operational amplifier C 3 (C 4 ) of the type MC 34002, the positive input of which is at the tap of a voltage divider R 4 , R 5 ( R8 , R9 ). The output of the operational amplifier C 3 (C 4 ) operates the associated radiation transmitter L G (L R ) via a resistor R 6 (R 10 ). A resistance of the voltage divider, for example resistance R 4 (R 8 ), can expediently be set or exchanged in order to be able to set the control level for the intensity of the two radiation sources.

Die beschriebene Schaltung bewirkt, dass die Intensität der beiden Strahlungssender LG und LR je nach Intensität der vom Referenzstrahlüngsempfänger S aufgenommenen Referenzstrahlung auf ein bestimmtes Intensitätsniveau automatisch geregelt wird, so dass Intensitätsschwankungen durch Alterung, Temperaturänderungen und ähnliche Effekte automatisch kompensiert werden.The circuit described has the effect that the intensity of the two radiation transmitters L G and L R is automatically regulated to a specific intensity level depending on the intensity of the reference radiation received by the reference radiation receiver S, so that intensity fluctuations due to aging, temperature changes and similar effects are automatically compensated for.

Der Messstrahlungsempfänger S ist ebenfalls an den negativen Eingang eines Operationsverstärkers C2 vom Typ MC 34002 angeschlossen, dessen positiver Eingang wiederum geerdet ist und dessen Ausgang über einen Widerstand R2 mit dem negativen Eingang gegengekoppelt ist. Der Ausgang dieses Operationsverstärkers C2 ist mit einem Wechselspannungsverstärker AC verbunden, an dessen Ausgang eine Alarmschaltung A liegt.The measuring radiation receiver S is also connected to the negative input of an operational amplifier C 2 of the type MC 34002, the positive input of which is in turn grounded and the output of which is coupled to the negative input via a resistor R 2 . The output of this operational amplifier C 2 is connected to an AC amplifier AC, at the output of which there is an alarm circuit A.

.Die Amplitude des der Alarmschaltung zugeführten Ausgangssignales des Wechselspannungsverstärkers AC hängt also in folgender Weise von den vom Messstrahlungsempfänger aufgenommenen Strahlungsintensitäten IG und IR in den beiden Spektralbereichen und von den vom Referenzstrahlungsempfänger S in den gleichen Spektralbereichen aufgenommenen Referenzstrahlungsintensitäten I RV und IGV ab:

Figure imgb0001
dabei sind a und b Faktoren, die sich aus den Eigenschaften der Komponenten speziell im Spannungsteilerverhältnis R4 / R5 (R8/ R9) ergeben. Durch geeignete Einstellung des Widerstandes R4 (R8) kann dabei erreicht werden, dass das Wechselspannungssignal A Null wird, wenn kein Rauch in der Messstrecke M vorhanden ist. Das Ausgangssignal A wird dabei unmittelbar abhängig von der Rauchdichte,und die Alarmschaltung kann so eingerichtet werden, dass ein Alarmsignal ausgelöst oder weitergegeben wird, sobald das Ausgangssignal A einen vorgegebenen Schwellenwert übersteigt. Da in diesem Fall die Abweichung von Null als Kriterium zur Auslösung eines Alarmsignales dient, werden die Schwierigkeiten vorbekannter, nach dem Extinktions- prinzip arbeitende Rauchmelder, bei denen eine kleine Abweichung von einem grossen und schwierig zu stabilisierenden Wert bestimmt werden musste, von Vornherein vermieden.The amplitude of the output signal of the AC voltage amplifier AC supplied to the alarm circuit thus depends in the following manner on the radiation intensities I G and I R recorded by the measurement radiation receiver in the two spectral ranges and on the reference radiation intensities I RV and I GV recorded by the reference radiation receiver S in the same spectral ranges:
Figure imgb0001
a and b are factors that result from the properties of the components, especially in the voltage divider ratio R 4 / R 5 (R 8 / R 9 ). By suitably setting the resistance R 4 (R 8 ) it can be achieved that the AC voltage signal A becomes zero when there is no smoke in the measuring section M. The output signal A becomes directly dependent on the smoke density, and the alarm circuit can be set up in such a way that an alarm signal is triggered or passed on as soon as the output signal A exceeds a predetermined threshold value. Since in this case the deviation from zero serves as a criterion for triggering an alarm signal, the difficulties of previously known smoke detectors operating according to the extinction principle, in which a small deviation from a large and difficult to stabilize value had to be determined, are avoided from the outset.

Es besteht auch die Möglichkeit eine der Grössen

Figure imgb0002
oder
Figure imgb0003
oder
Figure imgb0004
zu bilden und als Alarmkriterium auszuwerten. Sie sind ebenfalls ein Mass für die Rauchdichte.There is also the possibility of one of the sizes
Figure imgb0002
or
Figure imgb0003
or
Figure imgb0004
to form and evaluate as an alarm criterion. They are also a measure of smoke density.

Dabei wird ein Alarmsignal ausgelöst, wenn eine der Grössen A, B/a, C/b oder 2D/a einen Wert zwischen 0,01 (bedingt durch die Stabilität des Rauchmelders) und 0,2 (bedingt durch die Länge der Messstrecke) überschreitet, wobei a und b so gewählt werden, dass

Figure imgb0005
werden.An alarm signal is triggered when one of the sizes A, B / a, C / b or 2D / a exceeds a value between 0.01 (due to the stability of the smoke detector) and 0.2 (due to the length of the measuring section) , where a and b are chosen such that
Figure imgb0005
will.

Die Schaltung kann noch so weitergebildet werden, dass zusätzlich weitere Kenngrössen gebildet werden, z.B.

Figure imgb0006
oder
Figure imgb0007
die von der Rauchart abhängen und die einen Schluss darauf zulassen, welche Art von Rauch vorliegt.The circuit can be developed in such a way that additional parameters are formed, for example
Figure imgb0006
or
Figure imgb0007
which depend on the type of smoke and which allow a conclusion to be drawn about the type of smoke.

Es kann auch G = g

Figure imgb0008
oder H = h
Figure imgb0009
gebildet werden, welche ebenfalls, in Kombination mit dem Hauptkriterium A, B, C oder D, dazu verwendet werden können, die Unterschiede im Ansprechverhalten für verschiedene Feuerarten zu verändern. Eine Zusatzauswertung einer der Grössen E, F, G, oder H kann auch verwendet werden, um noch schärfer zwischen Rauch und Störgrössen wie Staub oder Betauung zu unterscheiden.It can also be G = g
Figure imgb0008
or H = h
Figure imgb0009
which, in combination with the main criteria A, B, C or D, can also be used to change the response differences for different types of fire. An additional evaluation of one of the sizes E, F, G, or H can also be used to distinguish between smoke and disturbance variables such as dust or condensation.

Die Rauchentwicklung kann verfolgt werden, wenn zusätzlich noch der zeitliche Differentialquotient dA/dt, dB/dt, dC/dt oder dD/dt des Ausgangssignales A, B, C oder D gebildet wird.The smoke development can be tracked if the time differential quotient dA / dt, dB / dt, dC / dt or dD / dt of the output signal A, B, C or D is also formed.

Die Stabilität des Rauchmelders kann noch erheblich erhöht werden, wenn man die kleinen und langsamen Veränderungen des Ausgangssignals unterdrückt und nur Signale auswertet, welche mindestens so schnell sind, wie sie durch ein Feuer erzeugt werden können. Dies kann erzielt werden entweder dadurch, dass mindestens einer der Faktoren a, b, c, d, e, f, g oder h langsam verändert wird, um diese Schwankungen auszugleichen oder dadurch, dass das Ausgangssignal mit seinem gleitenden Mittelwert verglichen wird.The stability of the smoke detector can be significantly increased if one suppresses the small and slow changes in the output signal and only evaluates signals that are at least as fast as can be generated by a fire. This can be achieved either by slowly changing at least one of the factors a, b, c, d, e, f, g or h in order to compensate for these fluctuations or by comparing the output signal with its moving average.

Eine andere Auswerteschaltung ist in Figur 9 aufgezeichnet. Das Signal des Messstrahlungsempfängers SM wie auch das Signal des Vergleichsstrahlungsempfängers SV wird zeitlich integriert (A2, C2' S2 bzw. A1, C1, Sl). Der Komparator K vergleicht das Integral des Vergleichsstrahlungsempfängers mit einem vorgegebenen Wert, welcher durch den Spannungsteiler R3, R4 bestimmt wird, und öffnet den Schalter S3 des Sample and Hold-Verstärkers (S3, C3, A3) zu demjenigen Zeitpunkt zu dem der Integrationswert den vorgegebenen Wert überschreitet. Am Ausgang des Verstärkers A3 liegt eine Alarmschaltung A. Der Oszillator OS steuert die Wiederholung des Integrationsvorganges und schaltet mit Hilfe des Flip-Flops FF zwischen den beiden Strahlungssendern LG und LR um.Another evaluation circuit is recorded in FIG. 9. The signal of the measurement radiation receiver S M as well as the signal of the comparison radiation receiver S V is integrated in time (A 2 , C 2 ' S 2 or A 1 , C 1 , S l ). The comparator K compares the integral of the comparison radiation receiver with a predetermined value, which is determined by the voltage divider R 3 , R 4 , and opens the switch S 3 of the sample and hold amplifier (S 3 , C 3 , A 3 ) at that time at which the integration value exceeds the specified value. An alarm circuit A is located at the output of the amplifier A 3. The oscillator OS controls the repetition of the integration process and switches using the flip-flop FF between the two radiation transmitters L G and L R.

Die beschriebenen Rauchmelder weisen eine wesentlich verbesserte Stabilität, auch über längere Zeiträume, sowie eine verbesserte Funktionssicherheit und eine grössere Störunanfälligkeit auf. Aenderungen durch Verstaubung und Aenderungen der Eigenschaften der Komponenten werden automatisch kompensiert ohne die Gefahr einer fehlerhaften Alarmauslösung und ohne Empfindlichkeitsverlust. Durch eine zweckmässige Auswahl der benützten Spektralbereiche kann zudem erreicht werden, dass die beschriebenen Rauchmelder vorzugsweise auf Rauchpartikel reagieren, jedoch nicht oder nur schwach auf andere Partikelarten.The smoke detectors described have significantly improved stability, even over longer periods, as well as improved functional reliability and greater susceptibility to malfunction. Changes due to dust and changes in the properties of the components are automatically compensated for without the risk of an incorrect alarm triggering and without loss of sensitivity. By appropriately selecting the spectral ranges used, it can also be achieved that the smoke detectors described preferably react to smoke particles, but not or only weakly to other types of particles.

Claims (39)

1. Rauchmelder nach dem Strahlungs-Extinktions-Prinzip, bei dem die Strahlungsschwächung durch Rauch in einer Messstrecke detektiert und mittels einer Auswerteschaltung bei einer vorgegebenen Strahlungsschwächung ein Signal ausgelöst wird, dadurch gekennzeichnet, dass je ein Strahlungssender (LR, LG) zur Aussendung von Strahlung in einem längerwelligen und einem kürzerwelligen Spektralgebiet vorgesehen ist, sowie ein Messstrahlungsempfänger (SM) zum Empfang der Strahlung (IR, IG) der beiden Strahlungssender (LR, LG) nach Durchlaufen einer rauchzugänglichen Messstrecke (M) und ein Vergleichsstrahlungsempfänger (Sv) zum Empfang der Strahlung (IRV' IGV) der beiden Strahlungssender (LR, LG) nach Durchlaufen einer nicht oder weniger rauchzugänglichen Vergleichsstrecke (V).1. Smoke detector according to the radiation extinction principle, in which the radiation attenuation by smoke is detected in a measuring section and a signal is triggered by an evaluation circuit for a given radiation attenuation, characterized in that one radiation transmitter (L R , L G ) is emitted of radiation in a longer-wave and a shorter-wave spectral region is provided, and a measuring radiation receiver (S M ) for receiving the radiation (I R , I G ) from the two radiation transmitters (L R , L G ) after passing through a smoke-accessible measuring section (M) and a Comparative radiation receiver (S v ) for receiving the radiation (I RV ' I GV ) from the two radiation transmitters (L R , L G ) after passing through a comparison section (V) which is not or less accessible to smoke. 2. Rauchmelder nach Anspruch 1, dadurch gekennzeichnet, dass die Auswerteschaltung ausgebildet ist, aus der nach Durchlaufen der Messtrecke (M) empfangenen Strahlung IR, I G und der nach Durchlaufen der Vergleichsstrecke (V) empfangenen Strahlung IRV' IGV das Ausgangssignal
Figure imgb0010
zu bilden, wobei a, b vorgegebene Faktoren sind.
2. Smoke detector according to claim 1, characterized in that the evaluation circuit is formed from the radiation I R , I G received after passing through the measurement section (M) and the radiation I RV ' I GV received after passing through the comparison section (V) the output signal
Figure imgb0010
form, where a, b are predetermined factors.
3. Rauchmelder nach Anspruch 1, dadurch gekennzeichnet, dass die Auswerteschaltung ausgebildet ist, aus der nach Durchlaufen der Messtrecke (M) empfangenen Strahlung IR, IG und der nach Durchlaufen der Vergleichsstrecke (V) empfangenen Strahlung IRV, IGV das Ausgangssignal
Figure imgb0011
oder
Figure imgb0012
oder
Figure imgb0013
zu bilden, wobei a, b vorgegebene Faktoren sind.
3. Smoke detector according to claim 1, characterized in that the evaluation circuit is designed, from the radiation I R , I G received after passing through the measurement section (M) and the radiation I RV , I GV received after passing through the comparison section (V) the output signal
Figure imgb0011
or
Figure imgb0012
or
Figure imgb0013
form, where a, b are predetermined factors.
4. Rauchmelder nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass die Schaltungskomponenten, vorzugsweise die Widerstände (R4, R8) in den Spannungsteilern (R4, R5; R8, R9) so gewählt sind, dass das Ausgangssignal (A, B, C oder D) Null ist, wenn kein Rauch in der Messstrecke (M) vorhanden ist.4. Smoke detector according to one of claims 2 or 3, characterized in that the circuit components, preferably the resistors (R 4 , R 8 ) in the voltage dividers (R 4 , R 5 ; R 8 , R 9 ) are selected so that Output signal ( A , B , C or D) is zero if there is no smoke in the measuring section (M). 5. Rauchmelder nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Schaltung so ausgebildet ist, dass zusätzlich wahlweise die Grösse
Figure imgb0014
oder die Grösse v
Figure imgb0015
gebildet wird, wobei c, d, e und f vorgegebene Faktoren sind.
5. Smoke detector according to one of claims 2 to 4, characterized in that the circuit is designed such that, in addition, optionally the size
Figure imgb0014
or the size of
Figure imgb0015
is formed, where c, d, e and f are predetermined factors.
6. Rauchmelder nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die Schaltung so ausgebildet ist, dass zusätzlich wahlweise die Grösse
Figure imgb0016
gebildet wird, wobei g und h vorgegebene Faktoren sind.
6. Smoke detector according to one of claims 2 to 5 , characterized in that the circuit is designed such that, in addition, optionally the size
Figure imgb0016
is formed, where g and h are predetermined factors.
7. Rauchmelder nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass die Schaltung so ausgebildet ist, dass mindestens einer der Faktoren a, b, c, d, e, f, g oder h langsam veränderbar ist.7. Smoke detector according to one of claims 2 to 6, characterized in that the circuit is designed such that at least one of the factors a, b, c, d, e, f, g or h is slowly changeable. 8. Rauchmelder nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass die Schaltung so ausgebildet ist, dass mindestens eine der Grössen A, B, C, D, E, F, G oder H mit deren gleitenden Mittelwert verglichen wird.8. Smoke detector according to one of claims 2 to 7, characterized in that the circuit is designed such that at least one of the sizes A, B, C, D, E, F, G or H is compared with its moving average. 9. Rauchmelder nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass die Schaltung so ausgebildet ist, dass zusätzlich der zeitliche Differentialquotient dA/dt, dB/dt, dC/dt oder dD/dt des Ausgangssignales A resp. B, resp. C, resp. D gebildet wird.9. Smoke detector according to one of claims 2 to 8, characterized in that the circuit is designed such that in addition the temporal differential quotient dA / dt, dB / dt, dC / dt or dD / dt of the output signal A and. B, resp. C, resp. D is formed. 10. Rauchmelder nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass ein Strahlungsteiler (D) vorgesehen ist und dass die beiden Strahlungssender (LR, LG) und die beiden Strahlungsempfänger (SM, SV) so angeordnet sind, dass die Strahlung des einen Strahlungssenders (LR) den Messstrahlungsemptänger (SM) nach Umlenkung am Strahlungsteiler (D), jedoch den Vergleichsstrahlungsempfänger (Sv) nach Durchsetzung des Strahlungsteilers (D) erreicht, während die Strahlung des anderen Strahlungssenders (LG) den Messstrahlempfänger (SM) nach Durchstrahlung des Strahlungsteilers (D), jedoch den Referenzstrahlungsempfänger (Sv) nach Reflexion am Strahlungsteiler (D) erreicht.10. Smoke detector according to one of claims 1 to 9, characterized in that a radiation divider (D) is provided and that the two radiation transmitters (L R , L G ) and the two radiation receivers (S M , S V ) are arranged such that the radiation from one radiation transmitter (L R ) reaches the measurement radiation receiver (S M ) after deflection at the radiation splitter (D), but reaches the comparison radiation receiver (S v ) after the radiation splitter (D) has been enforced, while the radiation from the other radiation transmitter (L G ) reaches the Measuring beam receiver (S M ) after irradiation of the radiation divider (D), but reached the reference radiation receiver (S v ) after reflection on the radiation divider (D). 11. Rauchmelder nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die beiden Strahlungssender (LR, LG) unmittelbar benachbart zueinander angeordnet sind.11. Smoke detector according to one of claims 1 to 9, characterized in that the two radiation transmitters (L R , L G ) are arranged immediately adjacent to one another. 12. Rauchmelder nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass Strahlungsleiter (F1, F2) vorgesehen sind, welche so angeordnet sind, dass die Strahlung der beiden Strahlungssender (LG, LR) an unmittelbar benacharte Orte gebracht wird.12. Smoke detector according to one of claims 1 to 9, characterized in that radiation conductors (F 1 , F 2 ) are provided which are arranged such that the radiation from the two radiation transmitters (L G , L R ) is brought to immediately adjacent locations . 13. Rauchmelder nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass die beiden Strahlungssender (L G, LR) so angeordnet sind, dass sie eine Mattscheibe (MS) bestrahlen, wobei die von der bestrahlten Fläche der Mattscheibe ausgehende Strahlung in die Messstrecke (M) geleitet wird.13. Smoke detector according to one of claims 11 or 12, characterized in that the two radiation transmitters (LG, L R ) are arranged so that they irradiate a screen (MS), the radiation emanating from the irradiated surface of the screen into the measuring section (M) is directed. 14. Rauchmelder nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass ein Dachkantenprisma (DP) vorgesehen ist, das die Strahlung der beiden Strahlungssender (LG, LR) zur Messstrecke (M) vereinigt.14. Smoke detector according to one of claims 1 to 12, characterized in that a roof edge prism (DP) is provided which combines the radiation from the two radiation transmitters (L G , L R ) to form the measurement section (M). 15. Rauchmelder nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass viele schmale, nebeneinander angeordnete Dachkantprismen vorgesehen sind, welche jeweils die Strahlung der beiden Strahlungssender (LG, LR) zur Messstrecke (M) vereinigen.15. Smoke detector according to one of claims 1 to 12, characterized in that many narrow, side by side roof prisms are provided, each of which combine the radiation from the two radiation transmitters (L G , L R ) to form the measurement section (M). 16. Rauchmelder nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass ein Prisma (P) vorgesehen ist, welches mittels seiner Dispersion die Strahlung der beiden benachbart zueinander angeordneten Strahlungssender (LR, LG) parallel zueinander ausrichtet.16. Smoke detector according to one of claims 11 or 12, characterized in that a prism (P) is provided which, by means of its dispersion, aligns the radiation of the two radiation transmitters (L R , L G ) arranged adjacent to one another parallel to one another. 17. Rauchmelder nach Anspruch 11, dadurch gekennzeichnet, dass die beiden Strahlungssender (LR, LG) in Strahlungsrichtung hintereinander montiert sind, so dass die Strahlung des einen Strahlungssenders (LR) den anderen Strahlungssender (LG) durchstrahlt.17. Smoke detector according to claim 11, characterized in that the two radiation transmitters (L R , L G ) are mounted one behind the other in the radiation direction, so that the radiation from one radiation transmitter (L R ) shines through the other radiation transmitter (L G ). 18. Rauchmelder nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die beiden Strahlungssender (LR, LG) in Strahlungsrichtung hintereinander oder nebeneinander montiert sind und dass eine bifokale Fresnellinse vorgesehen ist, welche die Strahlung der beiden Strahlungssender (LR, LG) auf denselben Bildpunkt abbildet.18. Smoke detector according to one of claims 1 to 9, characterized in that the two radiation transmitters (L R , L G ) are mounted one behind the other or next to one another in the radiation direction and in that a bifocal Fresnel lens is provided which detects the radiation from the two radiation transmitters (L R , L G ) maps to the same pixel. 19. Rauchmelder nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass der eine Strahlungssender (LR) Strahlung mit einer Wellenlänge über 600 nm und der andere Strahlungssender (LG) Strahlung mit einer kleineren Wellenlänge als 600 nm aussendet.19. Smoke detector according to one of claims 1 to 18, characterized in that the one radiation transmitter (L R ) emits radiation with a wavelength above 600 nm and the other radiation transmitter (L G ) radiation with a wavelength shorter than 600 nm. 20. Rauchmelder nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die Strahlungssender (LR, LG) so ausgebildet sind, dass die Mittelwerte der Wellenlängengebiete der beiden Strahlungssender einen Abstand von mindestens 50 nm voneinander haben.20. Smoke detector according to one of claims 1 to 18, characterized in that the radiation transmitters (L R , L G ) are designed such that the mean values of the wavelength regions of the two radiation transmitters are at a distance of at least 50 nm from one another. 21. Rauchmelder nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die Strahlungssender (LR, LG) als Leuchtdioden (LED) ausgebildet sind.21. Smoke detector according to one of claims 1 to 20, characterized in that the radiation transmitters (L R , L G ) are designed as light-emitting diodes (LED). 22. Rauchmelder nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die Strahlungssender (LG, LR) als breitbandige Strahlungsquellen mit vorgeschalteten optischen Filtern ausgebildet sind.22. Smoke detector according to one of claims 1 to 20, characterized in that the radiation transmitters (L G , L R ) are designed as broadband radiation sources with upstream optical filters. 23. Rauchmelder nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die Strahlungssender (LR, LG) als eine breitbandige Strahlungsquelle (G) mit einem vorgeschalteten optischen Filter dessen Durchlassbereich durch elektrische Signale verändert werden kann, ausgebildet sind.23. Smoke detector according to one of claims 1 to 20, characterized in that the radiation transmitters (L R , L G ) are designed as a broadband radiation source (G) with an upstream optical filter whose passband can be changed by electrical signals. 24. Rauchmelder nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die Strahlungssender (LR, LG) als eine breitbandige Strahlungsquelle ausgebildet sind und dass den Empfängern ein optisches Filter vorgeschaltet ist, dessen Durchlassbereich durch elektrische Signale verändert werden kann.24. Smoke detector according to one of claims 1 to 20, characterized in that the radiation transmitters (L R , L G ) are designed as a broadband radiation source and that the receivers are preceded by an optical filter whose pass band can be changed by electrical signals. 25. Rauchmelder nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die Strahlungssender als eine durchstimmbare Leuchtdiode (tuning LED) ausgebildet sind.25. Smoke detector according to one of claims 1 to 2 0, characterized in that the radiation transmitters are designed as a tunable light-emitting diode (tuning LED). 26. Rauchmelder nach einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, dass zur Kollimation der von den Strahlungssendern ausgesandten Strahlung wenigstens eine Kollimatoroptik vorgesehen ist.26. Smoke detector according to one of claims 1 to 25, characterized in that at least one collimator lens is provided for collimation of the radiation emitted by the radiation transmitters. 27. Rauchmelder nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die Strahlungssender (LR, LG) als LASER-Dioden ausgebildet sind.27. Smoke detector according to one of claims 1 to 20, characterized in that the radiation transmitters (L R , L G ) are designed as LASER diodes. 28. Rauchmelder nach einem der Ansprüche 1 bis 27, dadurch gekennzeichnet, dass in der Messstrecke (M) mindestens ein Reflektor (R) vorgesehen ist, der die Strahlung der beiden Strahlungssender (LR, LG) auf den Messstrahlungsempfänger (SM) reflektiert.28. Smoke detector according to one of claims 1 to 27, characterized in that in the measuring section (M) at least one reflector (R) is provided which transmits the radiation from the two radiation transmitters (L R , L G ) to the measuring radiation receiver (S M ) reflected. 29. Rauchmelder nach einem der Ansprüche 1 bis 28, dadurch gekennzeichnet, dass die Strahlung der Strahlungssender (LR, LG) nach Durchlaufen der Messstrecke (M) von einem Strahlungsleiter (F) abgenommen und dem Messstrahlungsempfänger (SM) zugeleitet wird.29. Smoke detector according to one of claims 1 to 28, characterized in that the radiation from the radiation transmitters (L R , L G ) is removed from a radiation conductor (F) after passing through the measurement section (M) and fed to the measurement radiation receiver (S M ). 30. Rauchmelder nach Anspruch 28, dadurch gekennzeichnet, dass Reflektorelemente so angeordnet sind, dass die Messstrecke (M) sternförmig gestaltet ist.30. Smoke detector according to claim 28, characterized in that reflector elements are arranged so that the measuring section (M) is star-shaped. 31. Rauchmelder nach einem der Ansprüche 1 bis 30, dadurch gekennzeichnet, dass Messstrahlungsempfänger (SM) und Vergleichsstrahlungsempfänger (SV) zu einem Dualstrahlungsempfänger vereinigt sind.31. Smoke detector according to one of claims 1 to 30, characterized in that the measurement radiation receiver (S M ) and comparison radiation receiver (S V ) are combined to form a dual radiation receiver. 32. Rauchmelder nach einem der Ansprüche 1 bis 31, dadurch gekennzeichnet, dass die Auswerteschaltung eingerichtet ist, die Strahlungssender (LR, LG) so anzusteuern, dass sie alternierend Strahlung aussenden.32. Smoke detector according to one of claims 1 to 31, characterized in that the evaluation circuit is set up to control the radiation transmitters (L R , L G ) in such a way that they alternately emit radiation. 33. Rauchmelder nach einem der Ansprüche 1 bis 31, dadurch gekennzeichnet, dass die Schaltung so ausgebildet ist, dass die Strahlungssender (LR, LG) alternierend Strahlungsimpulse aussenden.33. Smoke detector according to one of claims 1 to 31, characterized in that the circuit is designed such that the radiation transmitters (L R , L G ) alternately emit radiation pulses. 34. Rauchmelder nach einem der Ansprüche 1 bis 33, dadurch gekennzeichnet, dass die Schaltung so ausgebildet ist, dass der Wechselanteil des Ausgangssignales des Messstrahlungsempfängers (SM) als Kriterium für die Alarmsignalauslösung dient.34. Smoke detector according to one of claims 1 to 33, characterized in that the circuit is designed such that the alternating component of the output signal of the measuring radiation receiver (S M ) serves as a criterion for triggering the alarm signal. 35. Rauchmelder nach einem der Ansprüche 1 bis 34, dadurch gekennzeichnet, dass die Auswerteschaltung Regeleinrichtungen aufweist, welche eingerichtet sind, die Strahlungsintensität der beiden Strahlungssender (LR, LG) in Abhängigkeit von der empfangenen Vergleichsstrahlung im entsprechenden Wellenlängenbereich auf ein vorgegebenes Niveau zu regeln.35. Smoke detector according to one of claims 1 to 34, characterized in that the evaluation circuit has control devices which are set up to the radiation intensity of the two radiation transmitters (L R , L G ) as a function of the received comparison radiation in the corresponding wavelength range to a predetermined level regulate. 36. Rauchmelder nach Anspruch 35, dadurch gekennzeichnet, dass das Regelhiveau für die Strahlung in den beiden Wellenlängenbereichen einstellbar ist.36. Smoke detector according to claim 35, characterized in that the control level for the radiation in the two wavelength ranges is adjustable. 37. Rauchmelder nach einem der Ansprüche 1 bis 36, dadurch gekennzeichnet, dass die Schaltung so ausgebildet ist, dass das Signal mindestens einer der beiden Strahlungsempfänger zeitlich integriert wird.37. Smoke detector according to one of claims 1 to 36, characterized in that the circuit is designed such that the signal of at least one of the two radiation receivers is integrated in time. 38. Rauchmelder nach Anspruch 37, dadurch gekennzeichnet, dass die Schaltung so ausgebildet ist, dass der Integrationswert desjenigen Zeitpunktes ausgewertet wird, zu dem das Integral des Signals des Vergleichsempfängers ein vorgegebenes Niveau erreicht hat.38. Smoke detector according to claim 37, characterized in that the circuit is designed such that the integration value of that point in time is evaluated at which the integral of the signal of the comparison receiver has reached a predetermined level. 39. Rauchmelder nach einem der Ansprüche 1 bis 38, dadurch gekennzeichnet, dass die Schaltung so ausgebildet ist, dass eine der Grössen A, B/a, C/b oder 2D/a im Alarmpunkt zwischen 0,01 und 0,2 liegt, wobei a und b so gewählt werden, dass a
Figure imgb0017
= 1 und b
Figure imgb0018
= 1 werden, wenn kein Rauch in der Messstrecke vorhanden ist.
39. Smoke detector according to one of claims 1 to 38, characterized in that the circuit is designed such that one of the sizes A, B / a, C / b or 2D / a at the alarm point is between 0.01 and 0.2, where a and b are chosen such that a
Figure imgb0017
= 1 and b
Figure imgb0018
= 1 if there is no smoke in the measuring section.
EP81108849A 1980-12-18 1981-10-24 Smoke detector according to the radiation extinction principle Expired EP0054680B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81108849T ATE24787T1 (en) 1980-12-18 1981-10-24 SMOKE DETECTOR ACCORDING TO THE RADIATION EXTINCTION PRINCIPLE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH934280 1980-12-18
CH9342/80 1980-12-18

Publications (2)

Publication Number Publication Date
EP0054680A1 true EP0054680A1 (en) 1982-06-30
EP0054680B1 EP0054680B1 (en) 1987-01-07

Family

ID=4350969

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81108849A Expired EP0054680B1 (en) 1980-12-18 1981-10-24 Smoke detector according to the radiation extinction principle

Country Status (10)

Country Link
US (1) US4547675A (en)
EP (1) EP0054680B1 (en)
JP (1) JPS57128831A (en)
AT (1) ATE24787T1 (en)
AU (1) AU544283B2 (en)
CA (1) CA1208331A (en)
DE (1) DE3175819D1 (en)
DK (1) DK543181A (en)
ES (1) ES8303773A1 (en)
NO (1) NO814089L (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988005517A1 (en) * 1987-01-27 1988-07-28 Halton Oy Ventilation control procedure and ventilation control means
FR2666163A1 (en) * 1990-08-22 1992-02-28 Bertin & Cie Opto-electronic device for detecting smoke or gas in suspension in air
EP0580110A1 (en) * 1992-07-20 1994-01-26 Nohmi Bosai Ltd. Smoke detecting apparatus for fire alarm
EP0631263A1 (en) * 1993-06-23 1994-12-28 HEKATRON GmbH Circuit arrangement of an optical detector for environmental monitoring and indication of a disturbing medium
EP0813178A1 (en) * 1996-06-13 1997-12-17 Cerberus Ag Optical smoke detector
WO2005004075A1 (en) * 2003-07-03 2005-01-13 Misevich Igor Zakharovich Smoke fire alarm
DE102014009642B4 (en) 2014-06-26 2019-08-22 Elmos Semiconductor Aktiengesellschaft Method for detecting physical quantities for the detection and characterization of gases, mists and smoke, in particular a device for measuring the particle concentration
EP3992637A1 (en) 2020-11-02 2022-05-04 Kistler Holding AG Acceleration sensor
EP3992638A1 (en) 2020-11-02 2022-05-04 Kistler Holding AG Acceleration sensor
EP3992639A1 (en) 2020-11-02 2022-05-04 Kistler Holding AG Acceleration sensor

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144458U (en) * 1984-03-05 1985-09-25 ホーチキ株式会社 fire detection device
JPH0765963B2 (en) * 1986-04-07 1995-07-19 ホーチキ株式会社 Dimming smoke detector
JPH0765964B2 (en) * 1986-11-14 1995-07-19 ホーチキ株式会社 Dimming smoke detector
JP2585559B2 (en) * 1986-12-27 1997-02-26 ホーチキ株式会社 Fire judgment device
US4814628A (en) * 1987-03-20 1989-03-21 Precitronic Gesellschaft Fuer Feinmechanik Und Electronic Mbh Arrangement for the transmission of laser light with reference source for backscatter obstruction detection
US4857895A (en) * 1987-08-31 1989-08-15 Kaprelian Edward K Combined scatter and light obscuration smoke detector
JPH1123458A (en) * 1997-05-08 1999-01-29 Nittan Co Ltd Smoke sensor and monitoring control system
GB9721861D0 (en) * 1997-10-15 1997-12-17 Kidde Fire Protection Ltd High sensitivity particle detection
GB2389176C (en) * 2002-05-27 2011-07-27 Kidde Ip Holdings Ltd Smoke detector
EP1552489B1 (en) * 2002-08-23 2008-12-10 General Electric Company Rapidly responding, false detection immune alarm signal producing smoke detector
US7564365B2 (en) * 2002-08-23 2009-07-21 Ge Security, Inc. Smoke detector and method of detecting smoke
US7301641B1 (en) * 2004-04-16 2007-11-27 United States Of America As Represented By The Secretary Of The Navy Fiber optic smoke detector
JP2006003233A (en) * 2004-06-17 2006-01-05 Otsuka Denshi Co Ltd Optical cell measuring device
KR101738013B1 (en) 2008-06-10 2017-05-19 엑스트랄리스 테크놀로지 리미티드 Particle detection
KR101735576B1 (en) 2009-05-01 2017-05-15 엑스트랄리스 테크놀로지 리미티드 Improvements to Particle Detectors
EP3276680A1 (en) * 2017-01-25 2018-01-31 Siemens Schweiz AG Optical smoke detection based on the two colour principle using a light emitting diode with an led chip for light emission and with a light converter for converting a part of the emitted light to longer wave light

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2193486A5 (en) * 1972-07-24 1974-02-15 Hotellier Jac Ues L
US3895233A (en) * 1972-10-26 1975-07-15 Bailey Meter Co Gas analyzer
US3982130A (en) * 1975-10-10 1976-09-21 The United States Of America As Represented By The Secretary Of The Air Force Ultraviolet wavelength smoke detector
US3994603A (en) * 1974-03-08 1976-11-30 Cerberus Ag Detection system to determine the transmissivity of a medium with respect to radiation, particularly the light transmissivity of smoke-contaminated air, for fire detection

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3521958A (en) * 1969-01-30 1970-07-28 Kettering Scient Research Inc Rapid scanning spectrophotometer
US3843258A (en) * 1971-08-25 1974-10-22 Bendix Corp Dual beam absorption type optical spectrometer
JPS555157B2 (en) * 1972-06-24 1980-02-04
JPS51127787A (en) * 1975-04-30 1976-11-08 Kokusai Gijutsu Kaihatsu Kk Smoke sensor
JPS51127786A (en) * 1975-04-30 1976-11-08 Kokusai Gijutsu Kaihatsu Kk Smoke sensor
US4057734A (en) * 1975-08-28 1977-11-08 Barringer Research Limited Spectroscopic apparatus with balanced dual detectors
US4076425A (en) * 1976-02-17 1978-02-28 Julian Saltz Opacity measuring apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2193486A5 (en) * 1972-07-24 1974-02-15 Hotellier Jac Ues L
US3895233A (en) * 1972-10-26 1975-07-15 Bailey Meter Co Gas analyzer
US3994603A (en) * 1974-03-08 1976-11-30 Cerberus Ag Detection system to determine the transmissivity of a medium with respect to radiation, particularly the light transmissivity of smoke-contaminated air, for fire detection
US3982130A (en) * 1975-10-10 1976-09-21 The United States Of America As Represented By The Secretary Of The Air Force Ultraviolet wavelength smoke detector

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988005517A1 (en) * 1987-01-27 1988-07-28 Halton Oy Ventilation control procedure and ventilation control means
US4903894A (en) * 1987-01-27 1990-02-27 Halton Oy Ventilation control procedure and ventilation control means
FR2666163A1 (en) * 1990-08-22 1992-02-28 Bertin & Cie Opto-electronic device for detecting smoke or gas in suspension in air
EP0580110A1 (en) * 1992-07-20 1994-01-26 Nohmi Bosai Ltd. Smoke detecting apparatus for fire alarm
US5473314A (en) * 1992-07-20 1995-12-05 Nohmi Bosai, Ltd. High sensitivity smoke detecting apparatus using a plurality of sample gases for calibration
EP0631263A1 (en) * 1993-06-23 1994-12-28 HEKATRON GmbH Circuit arrangement of an optical detector for environmental monitoring and indication of a disturbing medium
EP0813178A1 (en) * 1996-06-13 1997-12-17 Cerberus Ag Optical smoke detector
WO2005004075A1 (en) * 2003-07-03 2005-01-13 Misevich Igor Zakharovich Smoke fire alarm
EA007944B1 (en) * 2003-07-03 2007-02-27 Мисевич, Игорь Захарович Smoke fire alarm
DE102014009642B4 (en) 2014-06-26 2019-08-22 Elmos Semiconductor Aktiengesellschaft Method for detecting physical quantities for the detection and characterization of gases, mists and smoke, in particular a device for measuring the particle concentration
EP3992637A1 (en) 2020-11-02 2022-05-04 Kistler Holding AG Acceleration sensor
EP3992638A1 (en) 2020-11-02 2022-05-04 Kistler Holding AG Acceleration sensor
EP3992639A1 (en) 2020-11-02 2022-05-04 Kistler Holding AG Acceleration sensor
EP4220190A2 (en) 2020-11-02 2023-08-02 Kistler Holding AG Acceleration sensor
EP4220189A1 (en) 2020-11-02 2023-08-02 Kistler Holding AG Acceleration sensor

Also Published As

Publication number Publication date
EP0054680B1 (en) 1987-01-07
NO814089L (en) 1982-06-21
CA1208331A (en) 1986-07-22
DK543181A (en) 1982-06-19
AU544283B2 (en) 1985-05-23
AU7856481A (en) 1982-06-24
ATE24787T1 (en) 1987-01-15
JPS57128831A (en) 1982-08-10
DE3175819D1 (en) 1987-02-12
US4547675A (en) 1985-10-15
ES508644A0 (en) 1983-02-01
ES8303773A1 (en) 1983-02-01

Similar Documents

Publication Publication Date Title
EP0054680B1 (en) Smoke detector according to the radiation extinction principle
DE2504300C3 (en) Device for measuring the absorption capacity of a medium, in particular smoke
EP1887536A1 (en) Smoke alarm using light scattering
EP0209860B1 (en) Apparatus for contactless reflection measurement
EP1405037B1 (en) Device for optical measurement of distance over a large measuring range
DE3203613C2 (en) Distance measuring device
DE19940280C2 (en) Gas sensor with an open optical measuring section
DE1939034C2 (en) Photometer for making measurements at different wavelengths
DE2754139B2 (en) Smoke detector
DE2851444A1 (en) LIGHT GRID
EP0762174B1 (en) Device for linear illumination of sheet material, e.g. bank notes or securities
WO2018036754A1 (en) Method for detecting a fire according to the scattered light principle with a staggered addition of a further led unit for radiating in further light pulses with different wavelengths and scattered light angles, and such scattered light smoke detectors
DE3437580A1 (en) Apparatus for optically testing a cigarette rod
DE3134815A1 (en) Area protection
DE102011015527A1 (en) Sensor for non-contact determination of the road condition and its use
CH638067A5 (en) ARRANGEMENT FOR SEPARATING AN OPTICAL SIGNAL FROM AMBIENT LIGHT.
EP0926646A1 (en) Optical smoke detector
DE2346249A1 (en) FIRE ALARM
DE2310817B2 (en) Device for detecting particles carried along in a fluid, in particular smoke alarms
DE102015012429A1 (en) Method for signal acquisition in a gas analysis system
DE212017000206U1 (en) Device for detecting objects in a material stream
EP0802499A2 (en) Luminance scanner
DE3401475C2 (en)
DE2709866C2 (en) Device for the detection of suspended particles
DE2857795C2 (en) Radiation detector for a flame detector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19821103

ITF It: translation for a ep patent filed

Owner name: VETTOR GALLETTI DI SAN CATALDO

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 24787

Country of ref document: AT

Date of ref document: 19870115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3175819

Country of ref document: DE

Date of ref document: 19870212

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890911

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890915

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890927

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19891031

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900823

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900910

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900912

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900928

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19901024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19901025

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19901031

BERE Be: lapsed

Owner name: CERBERUS A.G.

Effective date: 19901031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19911031

Ref country code: CH

Effective date: 19911031

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81108849.1

Effective date: 19910603