EP0071845A2 - Apparatus for compensating hearing deficiencies - Google Patents

Apparatus for compensating hearing deficiencies Download PDF

Info

Publication number
EP0071845A2
EP0071845A2 EP82106683A EP82106683A EP0071845A2 EP 0071845 A2 EP0071845 A2 EP 0071845A2 EP 82106683 A EP82106683 A EP 82106683A EP 82106683 A EP82106683 A EP 82106683A EP 0071845 A2 EP0071845 A2 EP 0071845A2
Authority
EP
European Patent Office
Prior art keywords
filters
signal
filter
frequency
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82106683A
Other languages
German (de)
French (fr)
Other versions
EP0071845B1 (en
EP0071845A3 (en
Inventor
Gerhard Heinrich Dr. Steeger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6138766&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0071845(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT82106683T priority Critical patent/ATE16748T1/en
Publication of EP0071845A2 publication Critical patent/EP0071845A2/en
Publication of EP0071845A3 publication Critical patent/EP0071845A3/en
Application granted granted Critical
Publication of EP0071845B1 publication Critical patent/EP0071845B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/43Signal processing in hearing aids to enhance the speech intelligibility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/35Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using translation techniques
    • H04R25/356Amplitude, e.g. amplitude shift or compression

Definitions

  • the invention relates to a device for compensating for hearing damage according to the preamble of claim 1.
  • Devices of this type are e.g. described in Scand.Audiol. 8: 121-126, 1979, as "programmable hearing aid with multichannel compression" by S.Mangold and A.Leijon (see in particular page 121, right column, last paragraph including page 122, right column, paragraph 4).
  • the electrical input signal which is generated, for example, in a microphone or an induction pick-up coil, is fed to a plurality of filters, which each pass adjacent sections of the offered frequency range.
  • the individual parts of the signal are then influenced with regard to the hearing loss, which must be compensated for, by compression and change in the amplitudes.
  • the various signals from the so-called channels are brought together again and fed to the hearing impaired person via an output converter.
  • the control of the filters as well as the compression and the volume control takes place via a memory that has been programmed with data about the hearing loss to be compensated for or with data derived therefrom, for example by inputting this data through an audiometer via a data input of the hearing aid. .
  • the invention is based on the object of specifying an arrangement for a device for compensating for hearing damage according to the preamble of patent claim 1 Visible space requirement and power consumption also enables multi-channel processing of the input signal in hearing aids to be worn on the head, which can be controlled from a memory.
  • the above object is achieved according to the invention by the measures mentioned in the characterizing part of claim 1.
  • Advantageous further developments and refinements can be found in the subclaims.
  • discrete-time and amplitude-analog filters means that complex circuits are avoided, so that implementation in the size of commercially available pocket hearing aids or behind-the-ear hearing aids is made considerably easier.
  • time-discrete integrated filter circuits which have all the advantages of pure digital filters that are essential for hearing aid applications, but which do not have any analog-digital and analog signals because of the analog representation of the state variables.
  • Digital-to-analog converters require more. These are preferably switched capacitor filters (“SCF”), chain storage filters (“bucked brigade devices” -BBD) and filters with charge-coupled devices (“charge coupled devices" -CCD).
  • the output signals from time-discrete filters operating in an amplitude-analog manner and from digital-to-analog converters are in the form of a staircase curve. This means that their spectrum contains repetitions of the signal spectrum at multiples of the sampling frequency (known e.g. from A.B. Carlson, Communication Systems, McGraw Hill, New York, 1968, Sect. 7.1 - 7.2, pages 272 to 289). If parts of these repetition spectra fall within the audible frequency range, they become audible as distortions. For this reason, these repetition spectra are usually suppressed by an analog low-pass filter (a so-called “smoothing filter").
  • an analog low-pass filter a so-called “smoothing filter”
  • the limit frequency is to be understood as the frequency at which a limit value of the frequency response (e.g. -60 dB) is finally undershot. In this way, the above-mentioned distortions can no longer be heard in a simple manner and there is no need for their screening out.
  • the discrete-time filters used have the advantage that they can also be produced as integrated circuits both in thick or thin film and in monolithic integration technology. This enables highly complex circuits to be implemented in a small space.
  • the time-discrete mode of operation has the advantage that the problems with stability and temperature behavior known from integrated analog circuits can largely be avoided, and thus also the circuits with discrete components which are often required to stabilize the integrated circuits.
  • CMOS complementary metal-oxide-silicon
  • the invention includes multi-channel hearing aids of any number of channels, ie devices with generally n parallel frequency-selective filters, whose pass bands overlap at most slightly in the falling edges of the frequency response, n Z 2 being selected.
  • a desirable upper limit of the number of channels n at the current state of knowledge is the number of frequency groups ("critical bands") of the hearing, which is given as 24 (according to E. Zwicker, Scaling, in: WDKeidel and WDNeff (Ed.), Handbook of Sensory Physiology, Vol. V, Part 2, Springer, Berlin 1975, Section III.A, pages 409 to 414).
  • the hearing impairment can be compensated with sufficient accuracy in very many cases will; it also prevents strong low-frequency interference signals (eg traffic or machine noise) from adversely affecting the gain control in the higher-frequency channels that are particularly important for speech intelligibility, ie in particular at approximately 1 to approximately 8 kHz.
  • strong low-frequency interference signals eg traffic or machine noise
  • time-discrete filters makes it easy to change the filter characteristics (frequency limits and gains) over a wide adjustment range.
  • the setting parameters are digitally coded in an external device, most advantageously already in the audiometer, and transmitted serially to the hearing aid via a double line or in parallel via several lines.
  • This data is stored in a programming circuit, which derives setting signals therefrom in a manner known in principle (above-mentioned publication by Mangold and Leijon; US Pat. No. 4,187,413) and feeds it to the filters.
  • the parameter memory of the programming circuit is expediently designed to be erasable, for example in the form of a programmable read-only memory that can be erased by ultraviolet light or electrical voltage (erasable programmable read-only memory (EPROM) or electrically alterable read-only memory (EAROM)).
  • EPROM erasable programmable read-only memory
  • EAROM electrically alterable read-only memory
  • An extension of the programming circuit which has proven to be expedient in many cases, can be obtained in that, in addition to the storage of predetermined basic data, a continuous change in the hearing aid data that is dependent on the input signal is made possible by the programming circuit itself, for example by implementing this circuit by means of a microcomputer circuit.
  • the principle implemented there in only one channel can be expanded by the invention to multi-channel optimal filtering in all frequency channels.
  • a hearing aid equipped with filters is drawn in a schematic block diagram.
  • a microphone 1 is provided as an input converter, which is connected to a preamplifier 2, which, as indicated by 2 ', has a low-pass frequency response.
  • the signal thus amplified is then divided at a point 3 to a plurality, i.e. a total of n time-discrete frequency filters 4a to 4n, distributed.
  • the one designated 4a is a bandpass filter which passes frequencies from 50 to 600 Hz.
  • the filter 4b also connected to point 3 is a bandpass filter, which is effective at frequencies from 0.6 to 2.5 kHz. If the frequency range of the filters 4a and 4b is reduced, several filters can then be provided, as indicated by points 4c.
  • the filter 4n follows last, which is effective in the frequency distribution specified for 4a and 4b at 2.5 to approx. 8 kHz.
  • controllable amplifiers 5a to 5n which, together with controllers 6a to 6n, implement gain control in a manner known in principle.
  • controllers 6a to 6n implement gain control in a manner known in principle.
  • the arrangement of further control amplifiers is denoted by 5c and regulators by 6c.
  • the signals then arrive at controllable amplifiers 7a to 7n, which are controlled make the volume adjustment using the output voltage of the volume control 8.
  • the signals are then subjected to a peak limitation in the nonlinear elements 9a to 9n in a known manner.
  • Signal distortions caused thereby are reduced by post-filtering with filters 10a to 10n, which frequency response can correspond to filters 4a to 4n, for example.
  • the limiters and the distortion-reducing filters 10a to 10n, 7c, 9c and 10c also indicate that additional channels can be added.
  • the signals treated in this way are finally combined again at a point 11 and fed via a power amplifier 12 to a receiver 13 as an output converter.
  • the setting of filters 4a to 4n, controllers 6a to 6n. and peak limiters 9a to 9n are carried out by a programming circuit 14.
  • the filters 4a to 4n receive their control signals via the lines 15a to 15n; The same applies to the controllers 6a to 6n via the lines 16a to 16n, to the limiters 9a to 9n via the lines 17a to 17n and finally to the filters 10a to 10n via the lines 18a to 18n.
  • the programming circuit 14 receives the setting data from an external device (e.g. an audiometer) via one or more data lines 19, the transmission and the storage in the programming circuit 14 being controlled via a plurality of control lines 20 from the external device.
  • the connection to the latter is mediated by a plug connection 21.
  • the programming circuit 14 can calculate the setting parameters completely or partially yourself, depending on the currently available input signal, which is supplied to it for this purpose via line 22.
  • the mode of operation of the device results from the fact that the input signal converter, i. in the microphone 1 or in its place induction pick-up coil for electromagnetic vibrations, generated electrical signal in the amplifier 2 is raised to such a voltage level that it is easily accessible to the subsequent signal processing.
  • the low-pass frequency response 2 'contained in the amplifier 2 prevents signal portions and possibly coupled interference signals, which are above half the sampling frequency, from being folded back into the audible frequency range during the sampling process to be carried out in the discrete-time filters 4a to 4n.
  • the signal in the filters 4a to 4n is then sampled and frequency-selectively suppressed to such an extent that the respective parts of the signal belonging to the specified frequency ranges can be treated separately.
  • the control amplifiers 5a to 5n which are controlled by the controllers 6a to 6n, a gain control that is dependent on the input or output level is achieved, whereby various known control principles can be used, for example the usual AGC circuits using the short-term average of these levels, but also instantaneous value compressors, as specified by Keidel and Spreng in DE-AS 15 12 720. This enables extensive compensation for disturbances in hearing dynamics (e.g. loudness compensation - recruitment).
  • the hearing aid wearer has the possibility of bringing the volume of the output signal into a volume range which is comfortable for him.
  • any nonlinear signal deformation can be achieved with the nonlinear circuits 9a to 9n.
  • a peak value limitation is carried out in a known manner and thus the occurrence of unpleasant or even hearing-damaging peak values of the output sound pressure level is prevented.
  • Filters 10a to 10n can be dispensed with if the interference suppression due to the low-pass characteristics of power amplifier 12 and receiver 13 is sufficient.
  • the further treatment of the sum signal takes place in the usual way, i.e. it is in the amplifier 12 to operate the output converter, i.e. in the present case, the receiver 13, brought the necessary intensity.
  • a signal then appears on the receiver 13 which is suitable for compensating for the particular hearing loss.
  • the (unregulated) basic amplification of the frequency channels on the amplifiers 5a to 5n must be set in a known manner that the pathological course of the patient's hearing threshold is compensated for on average as best as possible.
  • the controllers 6a to 6n are now set so that the loss of dynamics in the respective Fre quenzband is balanced as well as possible, ie the controller 6n in the high-frequency channel will bring about a significant gain reduction at high levels, while the controller 6a in the low-pass channel remains almost without influence.
  • the limiters 9a to 9n are to be set in a known manner in such a way that the patient's discomfort threshold is not significantly exceeded by the signal level at any frequency.
  • the filters 10a . installed up to 10n they must be dimensioned so that distortion components are largely suppressed (for example, by designing the frequency response as duplicates of the corresponding channel separation filters 4a to 4n).
  • the programming circuit 14 is a microcomputer circuit operating in the sense of an adaptive optimal filter, this will only maintain the basic setting described above if it is only in the input signal supplied via line 22 according to methods described in US Pat. No. 4,025,721 Speech, but no significant interference signal components. However, if noise components are detected, the gain in each channel is automatically reduced in the sense of the optimal filter function, the greater the ratio of noise level to speech signal level in the channel concerned.
  • the data which are fed to the programming circuit 14 via the plug connection 21 can be taken from an external device, for example an audiometer.
  • an external device for example an audiometer.
  • the data transfer from the external device to the hearing aid can be according to the signal plan of a standardized cut position (e.g. CCITT-V.24 according to DIN 66020), only the signal levels have to be adjusted to the operating voltage of the hearing aid.
  • an agreed data word or control signal causes the non-volatile storage in an EPROM or EAROM. Later reprogramming is easily possible by deleting the non-volatile memory (EPROM or EAROM) according to its design (using ultraviolet radiation or electrical voltages) and transferring a new data record.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Amplifiers (AREA)
  • Stereophonic System (AREA)
  • Prostheses (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

An exemplary embodiment includes a plurality of parallel signal channels coupled with a signal input transducer, such as a microphone or induction coil. Each of the signal channels includes a respective bandpass filter for selection of a different frequency band, a controlled-gain amplifier, controlled by a volume control potentiometer, circuits for non-linear signal processing, and a bandpass filter for the reduction of distortion components caused by the non-linear processing circuits. A summing amplifier combines the signal components from all channels and is connected via an amplifier to an output signal transducer. Space requirements and power consumption are reduced in such a multi-channel processing arrangement by implementing all of the filters as sampled-data analog circuits. As a result hearing aids are provided which can be worn on the head, e.g. behind the ear.

Description

Die Erfindung betrifft ein Gerät zur Kompensation von Gehörschäden nach dem Oberbegriff des Patentanspruchs 1. Geräte dieser Art sind z.B. beschrieben in Scand.Audiol. 8:121-126, 1979, als "programmable Hearing aid with multichannel compression" von S.Mangold und A.Leijon (vgl. insbesondere Seite 121, rechte Spalte, letzter Absatz einschließlich Seite 122, rechte Spalte, Absatz 4).The invention relates to a device for compensating for hearing damage according to the preamble of claim 1. Devices of this type are e.g. described in Scand.Audiol. 8: 121-126, 1979, as "programmable hearing aid with multichannel compression" by S.Mangold and A.Leijon (see in particular page 121, right column, last paragraph including page 122, right column, paragraph 4).

Bei dem bekannten Gerät wird das elektrische Eingangssignal, das etwa in einem Mikrofon oder einer Induktionsaufnahmespule erzeugt wird, mehreren Filtern zugeleitet, die jeweils aneinandergrenzende Abschnitte des angebotenen Frequenzbereiches durchlassen. Die einzelnen Teile des Signales werden dann im Hinblick auf die Schwerhörigkeit,-die zu kompensieren ist, durch Kompression und Veränderung der Amplituden beeinflußt. Schließlich werden die verschiedenen Signale aus den sogenannten Kanälen wieder zusammengeführt und über einen Ausgangswandler dem Ohr des Schwerhörigen zugeführt. Die Steuerung der Filter ebenso wie der Kompression und der Lautstärkesteuerung erfolgt dabei über einen Speicher, der mit Daten über die zu kompensierende Schwerhörigkeit oder mit daraus hergeleiteten Daten programmiert wurde, etwa, indem die Eingabe dieser Daten durch ein Audiometer über einen Dateneingang des Hörgerätes erfolgt..In the known device, the electrical input signal, which is generated, for example, in a microphone or an induction pick-up coil, is fed to a plurality of filters, which each pass adjacent sections of the offered frequency range. The individual parts of the signal are then influenced with regard to the hearing loss, which must be compensated for, by compression and change in the amplitudes. Finally, the various signals from the so-called channels are brought together again and fed to the hearing impaired person via an output converter. The control of the filters as well as the compression and the volume control takes place via a memory that has been programmed with data about the hearing loss to be compensated for or with data derived therefrom, for example by inputting this data through an audiometer via a data input of the hearing aid. .

Obwohl die bei dem bekannten Gerät realisierte analoge Signalverarbeitung ein prinzipiell einfaches Verfahren darstellt und der in der Hörgerätetechnik bisher verwendeten Technologie entspricht, ergeben sich bei der apparativen Realisierung folgende Nachteile:

  • 1. Soll die Hörhilfe auch schwergradige Hörstörungen ausgleichen können (z.B. starke Hochtonverluste), so werden Filterschaltungen notwendig, die viel Raum und Strom beanspruchen, so daß ein Einbau in Hinter-dem-Ohr-Geräte erschwert ist.
  • 2. Es ergeben sich Genauigkeits- und Temperaturstabilitätsprobleme bei den Widerständen und Kondensatoren, insbesondere, wenn die Filter in integrierter Schaltungstechnik realisiert werden sollen.
  • 3. Die Einstellung der Filtercharakteristik mit der für eine universell anwendbare Hörhilfe nötigen Variationsbreite und Genauigkeit erfordert sehr aufwendige Schaltungen (z.B. Digital-Analog-Wandler und Analog-Multiplizierer).
Although the analog signal processing implemented in the known device represents a basically simple method and has so far been used in hearing aid technology corresponding technology, there are the following disadvantages in the implementation:
  • 1. If the hearing aid should also be able to compensate for severe hearing disorders (for example, strong high-frequency losses), filter circuits are required which take up a lot of space and electricity, so that installation in behind-the-ear devices is difficult.
  • 2. There are problems of accuracy and temperature stability with the resistors and capacitors, especially if the filters are to be implemented in integrated circuit technology.
  • 3. The setting of the filter characteristic with the range and accuracy necessary for a universally applicable hearing aid requires very complex circuits (for example digital-analog converter and analog multiplier).

Die unter 2. und 3. genannten Nachteile werden vermieden, wenn die Signalverarbeitung vollständig digital, d.h. zeitdiskret und amplitudenquantisiert, durchgeführt wird. Ein derartiges, mit integrierten Logikschaltungen arbeitendes Hörgerät ist aus der US-PS 41 87 413 bekannt. Wegen des Aufwandes für den Analog-Digital-Wandler am Eingang und den Digital-Analog-Wandler am Ausgang bleibt aber die unter 1. genannte Schwierigkeit erhalten. Insbesondere der hohe Strombedarf derartiger Schaltkreise kann aus den in dem bei Hinter-dem-Ohr-Geräten durch die Schaltung schon beschränkten Einbauraum einsetzbaren Batterien nur schwer gedeckt werden.The disadvantages mentioned under 2 and 3 are avoided if the signal processing is completely digital, i.e. time-discrete and amplitude-quantized, is carried out. Such a hearing aid working with integrated logic circuits is known from US Pat. No. 4,187,413. Because of the effort for the analog-digital converter at the input and the digital-analog converter at the output, the difficulty mentioned under 1. remains. In particular, the high current requirement of such circuits can be covered only with difficulty from the batteries which can be used in the installation space which is already limited by the circuit in behind-the-ear devices.

Der Erfindung liegt die Aufgabe zugrunde, für ein Gerät zur Kompensation von Gehörschäden nach dem Oberbegriff des Patentanspruchs 1 eine Anordnung anzugeben, die hin-1 sichtlich Raumbedarf und Stromverbrauch auch in am Kopf zu tragenden Hörgeräten eine Mehrkanalverarbeitung des Eingangssignals ermöglicht, die von einem Speicher aus gesteuert werden kann. Die vorgenannte Aufgabe wird nach der Erfindung durch die im kennzeichnenden Teil des Anspruchs 1 genannten Maßnahmen gelöst. Vorteilhafte Weiterbildungen und Ausgestaltungen sind den Unteransprüchen zu entnehmen.The invention is based on the object of specifying an arrangement for a device for compensating for hearing damage according to the preamble of patent claim 1 Visible space requirement and power consumption also enables multi-channel processing of the input signal in hearing aids to be worn on the head, which can be controlled from a memory. The above object is achieved according to the invention by the measures mentioned in the characterizing part of claim 1. Advantageous further developments and refinements can be found in the subclaims.

Durch die Verwendung zeitdiskret und amplitudenanalog arbeitender Filter werden aufwendige Schaltungen vermieden, so daß eine Realisierung in der Größe von handelsüblichen Taschenhörgeräten oder Hinter-dem-Ohr-Hörgeräten wesentlich erleichtert wird. Dies ist mit den inzwischen bekanntgewordenen zeitdiskret arbeitenden integrierten Filterschaltungen möglich, welche alle für Hörgeräteanwendungen wesentlichen Vorteile reiner Digitalfilter besitzen, die wegen der analogen Darstellung der Zustandsvariablen aber keine Analog-Digital- und . Digital-Analog-Wandler mehr erfordern. Es handelt sich hierbei vorzugsweise um Schalter-Kondensator-Filter ("switched capacitor filters"-SCF), Kettenspeicher-Filter ("bucked brigade devices"-BBD) und Filter mit ladungsgekoppelten Speichern ("charge coupled devices"-CCD). Damit ergibt sich die Möglichkeit, kleine Taschenhörgeräte und Hinter-dem-Ohr-Hörgeräte mit zeitdiskreten Filtern auszustatten. Weil die genannten Filter auch so aufgebaut werden können, daß ihre Koeffizienten durch digitale Steuersignale sehr schnell veränderbar sind, wird es nach der Erfindung möglich, eine mehrkanalige adaptive Optimalfilterung im Hörgerät durchzuführen. Dies ermöglicht zugleich die gezielte Verminderung von Störgeräuschen, wie sie etwa im US-PT 40 25 721 näher beschrieben ist.The use of discrete-time and amplitude-analog filters means that complex circuits are avoided, so that implementation in the size of commercially available pocket hearing aids or behind-the-ear hearing aids is made considerably easier. This is possible with the now known time-discrete integrated filter circuits, which have all the advantages of pure digital filters that are essential for hearing aid applications, but which do not have any analog-digital and analog signals because of the analog representation of the state variables. Digital-to-analog converters require more. These are preferably switched capacitor filters ("SCF"), chain storage filters ("bucked brigade devices" -BBD) and filters with charge-coupled devices ("charge coupled devices" -CCD). This makes it possible to equip small pocket hearing aids and behind-the-ear hearing aids with time-discrete filters. Because the filters mentioned can also be constructed in such a way that their coefficients can be changed very quickly by digital control signals, it is possible according to the invention to carry out a multi-channel adaptive optimal filtering in the hearing device. This also enables the targeted reduction of noise, as described in more detail in US-PT 40 25 721.

Die Ausgangssignale von amplitudenanalog arbeitenden zeitdiskreten Filtern und von Digital-Analog-Wandlern liegen in der Form einer Treppenkurve vor. Dies bedeutet, daß ihr Spektrum Wiederholungen des Signalspektrums bei Vielfachen der Abtastfrequenz enthält (bekannt z.B. aus A.B.Carlson, Communication Systems, McGraw Hill, New York, 1968, Abschn. 7.1 - 7.2, Seiten 272 bis 289). Fallen Teile dieser Wiederholungsspektren in den hörbaren Frequenzbereich, so werden sie als Verzerrungen hörbar. Deshalb werden diese Wiederhohmgsspektren üblicherweise durch einen analogen Tiefpaß (ein sogenanntes "Glättungsfilter") unterdrückt.The output signals from time-discrete filters operating in an amplitude-analog manner and from digital-to-analog converters are in the form of a staircase curve. This means that their spectrum contains repetitions of the signal spectrum at multiples of the sampling frequency (known e.g. from A.B. Carlson, Communication Systems, McGraw Hill, New York, 1968, Sect. 7.1 - 7.2, pages 272 to 289). If parts of these repetition spectra fall within the audible frequency range, they become audible as distortions. For this reason, these repetition spectra are usually suppressed by an analog low-pass filter (a so-called "smoothing filter").

Als besonders zweckmäßig hat es sich erwiesen, die Arbeitstaktfrequenz der zeitdiskreten Filter höher zu wählen als die Summe aus der oberen Grenzfrequenz der Hörfähigkeit und der Grenzfrequenz des Eingangsverstärkers, weil dann die genannten Wiederholungsspektren vollständig oberhalb des hörbaren Frequenzbereiches liegen. Als Grenzfrequenz ist hierbei diejenige Frequenz zu verstehen, bei der ein Grenzwert des Frequenzganges (z.B. -60 dB) endgültig unterschritten wird. Damit werden auf einfache Weise die genannten Verzerrungen nicht mehr hörbar und man kommt ohne Mittel für ihre Aussiebung aus.It has proven to be particularly expedient to select the operating clock frequency of the time-discrete filters higher than the sum of the upper limit frequency of the hearing ability and the limit frequency of the input amplifier, because the repetition spectra mentioned are then completely above the audible frequency range. The limit frequency is to be understood as the frequency at which a limit value of the frequency response (e.g. -60 dB) is finally undershot. In this way, the above-mentioned distortions can no longer be heard in a simple manner and there is no need for their screening out.

Die verwendeten zeitdiskreten Filter haben-den Vorteil, daß sie auch als integrierte Schaltkreise sowohl in Dick-oder Dünnschicht- als auch in monolithischer Integrationstechnik herstellbar sind. Dadurch lassen sich hochkomplexe Schaltungen auf kleinem Raum realisieren. Die zeitdiskrete Arbeitsweise hat hierbei den Vorteil, daß die von integrierten Analogschaltungen bekannten Probleme hinsichtlich Stabilität und Temperaturverhaltens weitgehend vermeidbar sind und damit auch die oft zur Stabilisierung der integrierten Schaltungen erforderlichen Beschaltungen mit diskreten Bauelementen. Speziell Schalter-Kondensator-Filter lassen sich besonders vorteilhaft in komplementärer Metall-Oxid-Silizium-(CMOS-)Technologie integrieren zu Schaltkreisen, die sich durch geringen Platzbedarf, höchste Zeit- und Temperaturkonstanz sowie sehr kleine Versorgungsspannungen und -ströme auszeichnen.The discrete-time filters used have the advantage that they can also be produced as integrated circuits both in thick or thin film and in monolithic integration technology. This enables highly complex circuits to be implemented in a small space. The time-discrete mode of operation has the advantage that the problems with stability and temperature behavior known from integrated analog circuits can largely be avoided, and thus also the circuits with discrete components which are often required to stabilize the integrated circuits. Especially scarf Ter capacitor filters can be integrated particularly advantageously in complementary metal-oxide-silicon (CMOS) technology to form circuits which are characterized by a small space requirement, maximum time and temperature constancy, and very low supply voltages and currents.

Die Erfindung umfaßt Mehrkanalhörgeräte jeder Kanalzahl, d.h. Geräte mit allgemein n parallelen frequenzselektiven Filtern, deren Durchlaßbereiche sich höchstens geringfügig in den Abfallflanken des Frequenzganges überlappen, wobei n Z 2 gewählt ist. Im Hinblick auf den beabsichtigten optimalen Ausgleich möglichst vieler praktisch vorkommender Hörstörungen ist eine wünschenswerte obere Grenze der Kanalzahl n beim gegenwärtigen Stand der Erkenntnis die Zahl der Frequenzgruppen ("Critical Bands") des Gehörs, die mit 24 angegeben wird (lt. E.Zwicker, Scaling, in: W.D.Keidel und W.D.Neff (Ed.), Handbook of Sensory Physiology, Vol. V, Part 2, Springer, Berlin 1975, Abschn. III.A, Seiten 409 bis 414).The invention includes multi-channel hearing aids of any number of channels, ie devices with generally n parallel frequency-selective filters, whose pass bands overlap at most slightly in the falling edges of the frequency response, n Z 2 being selected. In view of the intended optimal compensation of as many practically occurring hearing disorders as possible, a desirable upper limit of the number of channels n at the current state of knowledge is the number of frequency groups ("critical bands") of the hearing, which is given as 24 (according to E. Zwicker, Scaling, in: WDKeidel and WDNeff (Ed.), Handbook of Sensory Physiology, Vol. V, Part 2, Springer, Berlin 1975, Section III.A, pages 409 to 414).

Derart hohe Kanalzahlen sind wegen des Raum- und Strombedarfs der erforderlichen Schaltungselemente derzeit noch nicht realisierbar. Es hat sich jedoch erwiesen, daß bereits Dreikanalgeräte eine wesentlich bessere Anpassung als konventionelle Hörgeräte erlauben, wenn die Durchlaßbereiche der Filter mit denjenigen Frequenzbändern übereinstimmen, die von den wichtigsten Formanten durchschnittlicherweise eingenommen werden. Damit würde der erste Bereich zwischen der unteren Frequenzgrenze der Schallwandler (ca. 50 Hz) und ca. 600 Hz, der zweite zwischen ca. 600 Hz und ca. 2,5 kHz und der dritte zwischen ca. 2,5 kHz und der durch die Schallwandler festgelegten Obergrenze (derzeit 8 bis 10 kHz) liegen. Mit solchen Geräten kann in sehr vielen Fällen die Hörstörung bereits mit ausreichender Genauigkeit ausgeglichen werden; außerdem wird damit verhindert, daß starke tieffrequente Störsignale (z.B. Verkehrs- oder Maschinengeräusche) die Verstärkungsregelung in den für die Sprachverständlichkeit besonders wesentlichen höherfrequenten Kanälen, d.h. insbesondere bei ca. 1 bis ca. 8 kHz, ungünstig beeinflussen.Such high numbers of channels are currently not feasible due to the space and power requirements of the necessary circuit elements. However, it has been found that three-channel devices already allow a much better adaptation than conventional hearing aids if the passband of the filters correspond to those frequency bands that the most important formants occupy on average. This would make the first range between the lower frequency limit of the sound transducers (approx. 50 Hz) and approx. 600 Hz, the second between approx. 600 Hz and approx. 2.5 kHz and the third between approx. 2.5 kHz and the through the transducers set upper limit (currently 8 to 10 kHz). With such devices, the hearing impairment can be compensated with sufficient accuracy in very many cases will; it also prevents strong low-frequency interference signals (eg traffic or machine noise) from adversely affecting the gain control in the higher-frequency channels that are particularly important for speech intelligibility, ie in particular at approximately 1 to approximately 8 kHz.

Es hat sich als zweckmäßig erwiesen, nur einen Lautstärkesteller vorzusehen, dessen Ausgangssignal die Verstärkung jeweils eines Signalverstärkers in je einem Teilkanal beeinflußt. Damit läßt sich der Einbau von Mehrfachpotentiometern vermeiden, welche hinsichtlich ihres Platzbedarfes und des schwierigen Gleichlaufabgleiches problematisch sind. Gleichzeitig kann so in jedem Kanal eine individuelle, durch Bauart oder Voreinstellung des jeweiligen Verstärkers festgelegte Stellerkennlinie realisiert werden.It has proven to be expedient to provide only one volume control, whose output signal influences the amplification of one signal amplifier in each subchannel. This avoids the installation of multiple potentiometers, which are problematic in terms of their space requirements and the difficult synchronization synchronization. At the same time, an individual actuator characteristic curve can be realized in each channel, determined by the type or presetting of the respective amplifier.

Als weiterhin vorteilhaft hat es sich erwiesen, vor oder nach der additiven Zusammenfassung der Teilsignale eine Ausfilterung von Verzerrungsanteilen, die sich aus der nichtlinearen Signalverformung durch die automatische Verstärkungsregelung (AGC) und die Spitzenwertbegrenzung (PC) ergeben können, aus den Teilsignalen oder aus dem Summensignal zu bewirken. Dafür können Tiefpässe oder Bandpässe verwendet werden, deren Frequenzgänge denjenigen der oben beschriebenen Filter zur Kanaltrennung angenähert sind..Je nach dem Grad der erforderlichen Störbefreiung können einfache passive RC-Filter, integrierte aktive RC-Schaltungen oder wiederum zeitdiskrete Filter verwendet werden.It has also proven to be advantageous, before or after the additive combination of the partial signals, to filter out distortion components, which may result from the nonlinear signal deformation due to the automatic gain control (AGC) and the peak value limitation (PC), from the partial signals or from the sum signal to effect. For this purpose, low-pass filters or band-pass filters can be used, whose frequency responses approximate those of the filters for channel separation described above. Depending on the degree of interference suppression required, simple passive RC filters, integrated active RC circuits or, in turn, time-discrete filters can be used.

Die Verwendung zeitdiskreter Filter ermöglicht es, eine Änderung der Filtercharakteristika (Frequenzgrenzen und Verstärkungen) über einen weiten Verstellbereich hin in einfacher Weise zu erreichen. Dies geschieht zweckmäßigerweise dadurch, daß die Einstellparameter in einem externen Gerät, am vorteilhaftesten bereits im Audiometer, digital codiert und seriell über eine Doppelleitung oder parallel über mehrere Leitungen an das Hörgerät übermittelt werden. Diese Daten werden in eine Programmierschaltung eingespeichert, welche daraus in prinzipiell bekannter Weise (o.g. Veröffentlichung von Mangold u. Leijon; US-PS 41 87 413) Einstellsignale herleitet und den Filtern zuführt. Wie ebenfalls prinzipiell vorbekannt, erweist es sich als zweckmäßig, mittels weiterer, an die Programmierschaltung übertragener Daten auch die Parameter der Verstärkungsregelungs- und Spitzenwertbegrenzungs-Schaltungen (z.B. Grundverstärkung, Regelungseinsatz, statischer und dynamischer Kennlinienverlauf) einzustellen.The use of time-discrete filters makes it easy to change the filter characteristics (frequency limits and gains) over a wide adjustment range. This is done appropriately partially in that the setting parameters are digitally coded in an external device, most advantageously already in the audiometer, and transmitted serially to the hearing aid via a double line or in parallel via several lines. This data is stored in a programming circuit, which derives setting signals therefrom in a manner known in principle (above-mentioned publication by Mangold and Leijon; US Pat. No. 4,187,413) and feeds it to the filters. As also known in principle, it proves to be expedient to also set the parameters of the gain control and peak value limiting circuits (for example basic gain, control use, static and dynamic characteristic curve profile) by means of further data transmitted to the programming circuit.

Der Parameterspeicher der Programmierschaltung wird zweckmäßigerweise löschbar ausgebildet, etwa nach Art eines durch Ultraviolettlicht bzw. elektrische Spannung löschbaren programmierbaren Festwertspeichers ausgeführt (erasable programmable read-only-memory (EPROM) bzw. electrically alterable read-only-memory (EAROM) ). Dadurch ist es möglich, die für einen längeren Zeitraum fest programmierten Hörgerätedaten später, z.B. bei einer weiteren audiometrischen Untersuchung des Hörgeräteträgers gemäß der inzwischen eingetretenen Veränderung des Hörschadens, zu ändern.The parameter memory of the programming circuit is expediently designed to be erasable, for example in the form of a programmable read-only memory that can be erased by ultraviolet light or electrical voltage (erasable programmable read-only memory (EPROM) or electrically alterable read-only memory (EAROM)). This makes it possible to later process the hearing aid data that has been permanently programmed for a longer period, e.g. in a further audiometric examination of the hearing device wearer in accordance with the change in hearing damage that has now occurred.

Eine Erweiterung der Programmierschaltung, die sich in vielen Fällen als zweckmäßig erwiesen hat, kann dadurch erhalten werden, daß neben der Speicherung vorgegebener Grunddaten eine vom Eingangssignal abhängige fortlaufende Veränderung der Hörgerätedaten durch die Programmierschaltung selbst ermöglicht wird, z.B. durch Realisierung dieser Schaltung mittels eines Mikrocomputerschaltkreises. Dadurch wird eine adaptive Störsignalunterdrückung durch Optimalfilterung möglich, wie sie aus US-Patent 40 25 721 bekannt ist. Durch die Erfindung wird aber das dort nur einkanalig realisierte Prinzip auf eine mehrkanalige Optimalfilterung in allen Frequenzkanälen erweiterbar.An extension of the programming circuit, which has proven to be expedient in many cases, can be obtained in that, in addition to the storage of predetermined basic data, a continuous change in the hearing aid data that is dependent on the input signal is made possible by the programming circuit itself, for example by implementing this circuit by means of a microcomputer circuit. This eliminates an adaptive noise signal pressure by optimal filtering possible, as is known from US Patent 40 25 721. However, the principle implemented there in only one channel can be expanded by the invention to multi-channel optimal filtering in all frequency channels.

Weitere Einzelheiten und Vorteile der Erfindung werden nachfolgend anhand des in der Figur dargestellten Ausführungsbeispiels weiter erläutert.Further details and advantages of the invention are further explained below with reference to the embodiment shown in the figure.

In der Figur ist in einem schematischen Blockschaltbild ein erfindungsgemäß mit Filtern ausgestattetes Hörgerät gezeichnet.In the figure, a hearing aid equipped with filters is drawn in a schematic block diagram.

Bei dem gezeichneten Gerät ist als Eingangswandler ein Mikrofon 1 vorgesehen, das an einen Vorverstärker 2 angeschlossen ist, der, wie durch 2' angedeutet, einen Tiefpaßfrequenzgang aufweist. Das so verstärkte Signal wird dann an einem Punkt 3 auf eine Mehrzahl, d.h. insgesamt n zeitdiskrete Frequenzfilter 4a bis 4n, verteilt. Davon ist das mit 4a bezeichnete ein Bandpaß, welcher Frequenzen von 50 bis 600 Hz durchläßt. Das ebenfalls an den Punkt 3 angeschlossene Filter 4b ist ein Bandpaß, welcher bei Frequenzen von 0,6 bis 2,5 kHz wirksam ist. Bei verkleinertem Frequenzumfang der Filter 4a und 4b können dann, wie durch Punkte 4c angedeutet, noch mehrere Filter vorgesehen sein. Schließlich folgt als letztes das Filter 4n, welches bei der für 4a und 4b angegebenen Frequenzverteilung bei 2,5 bis ca. 8 kHz wirksam ist.In the device shown, a microphone 1 is provided as an input converter, which is connected to a preamplifier 2, which, as indicated by 2 ', has a low-pass frequency response. The signal thus amplified is then divided at a point 3 to a plurality, i.e. a total of n time-discrete frequency filters 4a to 4n, distributed. Of these, the one designated 4a is a bandpass filter which passes frequencies from 50 to 600 Hz. The filter 4b also connected to point 3 is a bandpass filter, which is effective at frequencies from 0.6 to 2.5 kHz. If the frequency range of the filters 4a and 4b is reduced, several filters can then be provided, as indicated by points 4c. Finally, the filter 4n follows last, which is effective in the frequency distribution specified for 4a and 4b at 2.5 to approx. 8 kHz.

,,

Auf die Filter folgen dann regelbare Verstärker 5a bis 5n, die zusammen mit Reglern 6a bis 6n in prinzipiell bekannter Weise eine Verstärkungsregelung realisieren. Auch hier ist die Anordnung weiterer Regelverstärker mit 5c und Regler mit 6c bezeichnet. Danach gelangen die Signale zu regelbaren Verstärkern 7a bis 7n, welche, gesteuert durch die Ausgangsspannung des Lautstärkestellers 8, die Lautstärkeeinstellung vornehmen.The filters are then followed by controllable amplifiers 5a to 5n which, together with controllers 6a to 6n, implement gain control in a manner known in principle. Here too, the arrangement of further control amplifiers is denoted by 5c and regulators by 6c. The signals then arrive at controllable amplifiers 7a to 7n, which are controlled make the volume adjustment using the output voltage of the volume control 8.

Anschließend werden die Signale in bekannter Weise in den nichtlinearen Elementen 9a bis 9n einer Spitzenwertbegrenzung unterworfen. Dadurch verursachte Signalverzerrungen werden durch Nachfilterung mit Filtern 10a bis 10n vermindert, welche in ihrem Frequenzgang beispielsweise den Filtern 4a bis 4n entsprechen können. Auch bei den Regelverstärkern 7a bis 7n, den Begrenzern und den verzerrungsvermindernden Filtern 10a bis 10n ist mit 7c, 9c und 10c eine Ergänzungsmöglichkeit durch weitere Kanäle angedeutet.The signals are then subjected to a peak limitation in the nonlinear elements 9a to 9n in a known manner. Signal distortions caused thereby are reduced by post-filtering with filters 10a to 10n, which frequency response can correspond to filters 4a to 4n, for example. In the case of the control amplifiers 7a to 7n, the limiters and the distortion-reducing filters 10a to 10n, 7c, 9c and 10c also indicate that additional channels can be added.

Die so behandelten Signale werden schließlich in einem Punkt 11 additiv wieder zusammengefaßt und über einen Endverstärker 12 einem Hörer 13 als Ausgangswandler zugeführt.The signals treated in this way are finally combined again at a point 11 and fed via a power amplifier 12 to a receiver 13 as an output converter.

Die Einstellung der Filter 4a bis 4n, Regler 6a bis 6n . und Spitzenwertbegrenzer 9a bis 9n erfolgt durch eine Programmierschaltung 14. Die Filter 4a bis 4n erhalten dabei ihre Steuersignale über die Leitungen 15a bis 15n; entsprechendes erfolgt bei den Reglern 6a bis 6n über die Leitungen 16a bis 16n, bei den Begrenzern 9a bis 9n über die Leitungen 17a bis 17n und schließlich bei den Filtern 10a bis 10n über die Leitungen 18a bis 18n.The setting of filters 4a to 4n, controllers 6a to 6n. and peak limiters 9a to 9n are carried out by a programming circuit 14. The filters 4a to 4n receive their control signals via the lines 15a to 15n; The same applies to the controllers 6a to 6n via the lines 16a to 16n, to the limiters 9a to 9n via the lines 17a to 17n and finally to the filters 10a to 10n via the lines 18a to 18n.

Die Programmierschaltung 14 ihrerseits erhält die Einstelldaten von einem externen Gerät (z.B. einem Audiometer) über eine oder mehrere Datenleitungen 19, wobei die Übertragung und die Abspeicherung in der Programmierschaltung 14 über mehrere Steuerleitungen 20 vom externen Gerät aus kontrolliert wird. Die Verbindung zu letzterem wird durch eine Steckverbindung 21 vermittelt.The programming circuit 14 in turn receives the setting data from an external device (e.g. an audiometer) via one or more data lines 19, the transmission and the storage in the programming circuit 14 being controlled via a plurality of control lines 20 from the external device. The connection to the latter is mediated by a plug connection 21.

Wird die Programmierschaltung 14 durch einen Mikrocomputerschaltkreis realisiert, so kann sie die Einstellparameter vollständig oder teilweise selbst errechnen, in Abhängigkeit von dem momentan vorliegenden Eingangssignal, das ihr zu diesem Zweck über die Leitung 22 zugeführt wird.If the programming circuit 14 by a microcompu terschaltkreis realized, it can calculate the setting parameters completely or partially yourself, depending on the currently available input signal, which is supplied to it for this purpose via line 22.

Die Wirkungsweise des Gerätes ergibt sich dadurch, daß das im Eingangssignalwandler, d.h. im Mikrofon 1 bzw. einer an seine Stelle tretenden Induktionsaufnahmespule für elektromagnetische Schwingungen, erzeugte elektrische Signal im Verstärker 2 auf einen solchen Spannungspegel angehoben wird, daß es der nachfolgenden Signalverarbeitung gut zugänglich ist. Der im Verstärker 2 enthaltene Tiefpaßfrequenzgang 2' verhindert, daß bei dem in den zeitdiskreten Filtern 4a bis 4n durchzuführenden Abtastvorgang Signalanteile und gegebenenfalls eingekoppelte Störsignale, die oberhalb der halben Abtastfrequenz liegen, in den hörbaren Frequenzbereich zurückgefaltet werden.The mode of operation of the device results from the fact that the input signal converter, i. in the microphone 1 or in its place induction pick-up coil for electromagnetic vibrations, generated electrical signal in the amplifier 2 is raised to such a voltage level that it is easily accessible to the subsequent signal processing. The low-pass frequency response 2 'contained in the amplifier 2 prevents signal portions and possibly coupled interference signals, which are above half the sampling frequency, from being folded back into the audible frequency range during the sampling process to be carried out in the discrete-time filters 4a to 4n.

Daraufhin wird das Signal in den Filtern 4a bis 4n abgetastet und frequenzselektiv jeweils so weit unterdrückt, daß die jeweiligen, den angegebenen Frequenzbereichen angehörenden Teile des Signals gesondert behandelt werden können. So wird in den Regelverstärkern 5a bis 5n, die über die Regler 6a bis 6n gesteuert werden, eine vom Eingangs- oder Ausgangspegel abhängige Verstärkungsregelung erreicht, wobei verschiedene bekannte Regelungsprinzipien anwendbar sind, beispielsweise die üblichen, den Kurzzeitmittelwert dieser Pegel verwendenden AGC-Schaltungen, aber auch Momentanwertkompressoren, wie von Keidel und Spreng in der DE-AS 15 12 720 angegeben. Dadurch wird eine weitgehende Kompensation von Störungen der Gehördynamik (z.B. dem Lautheitsausgleich - Rekruitment -) ermöglicht.The signal in the filters 4a to 4n is then sampled and frequency-selectively suppressed to such an extent that the respective parts of the signal belonging to the specified frequency ranges can be treated separately. In the control amplifiers 5a to 5n, which are controlled by the controllers 6a to 6n, a gain control that is dependent on the input or output level is achieved, whereby various known control principles can be used, for example the usual AGC circuits using the short-term average of these levels, but also instantaneous value compressors, as specified by Keidel and Spreng in DE-AS 15 12 720. This enables extensive compensation for disturbances in hearing dynamics (e.g. loudness compensation - recruitment).

Mittels des Stellers 8 und der davon angesteuerten Regelverstärker 7a bis 7n hat der Hörgeräteträger die Möglichkeit, die Lautstärke des Ausgangssignals in einen ihm angenehmen Lautstärkebereich zu bringen. Mit den nichtlinearen Schaltungen 9a bis 9n kann prinzipiell eine beliebige nichtlineare Signalverformung erreicht werden. Im Normalfall wird in bekannter Weise eine Spitzenwertbegrenzung vorgenommen und damit das Auftreten von unangenehmen oder gar gehörschädigenden Spitzenwerten des Ausgangsschalldruckpegels verhindert.By means of the actuator 8 and the control amplifiers 7a to 7n controlled thereby, the hearing aid wearer has the possibility of bringing the volume of the output signal into a volume range which is comfortable for him. In principle, any nonlinear signal deformation can be achieved with the nonlinear circuits 9a to 9n. In the normal case, a peak value limitation is carried out in a known manner and thus the occurrence of unpleasant or even hearing-damaging peak values of the output sound pressure level is prevented.

In den Filtern 10a bis 10n werden die durch diese Nichtlinearitäten verursachten Verzerrungsanteile vermindert, die Nutzsignale aber weitmöglichst unbeeinflußt gelassen. Auf die Filter 10a bis 10n kann verzichtet werden, wenn die Störanteil-Unterdrückung durch die Tiefpaßeigenschaften von Endverstärker 12 und Hörer 13 ausreichend ist. Nach der Zusammenfassung der Teilsignale am Additionspunkt 11 erfolgt die weitere Behandlung des Summensignals in üblicher Weise, d.h. es wird im Verstärker 12 auf die zum Betrieb des Ausgangswandlers, d.h. im vorliegenden Fall des Hörers 13, notwendige Intensität gebracht. Am Hörer 13 erscheint dann ein Signal, welches zur Kompensation der jeweils vorliegenden Schwerhörigkeit geeignet ist.The distortion components caused by these nonlinearities are reduced in the filters 10a to 10n, but the useful signals are left unaffected as far as possible. Filters 10a to 10n can be dispensed with if the interference suppression due to the low-pass characteristics of power amplifier 12 and receiver 13 is sufficient. After the combination of the partial signals at the addition point 11, the further treatment of the sum signal takes place in the usual way, i.e. it is in the amplifier 12 to operate the output converter, i.e. in the present case, the receiver 13, brought the necessary intensity. A signal then appears on the receiver 13 which is suitable for compensating for the particular hearing loss.

Bei einer Schwerhörigkeit, bei der z.B. hauptsächlich die Hörfähigkeit für hohe Frequenzen beeinträchtigt ist und außerdem ein Lautheitsausgleich (Rekruitment) im wesentlichen nur in diesem Bereich auftritt, ist die (ungeregelte) Grundverstärkung der Frequenzkanäle an den Verstärkern 5a bis 5n in bekannter Weise jeweils so einzustellen, daß insgesamt der pathologische Hörschwellenverlauf des Patienten im Mittel bestmöglich kompensiert wird. Die Regler 6a bis 6n sind nun so einzustellen, daß der Dynamikverlust im jeweiligen Frequenzband so gut wie möglich ausgeglichen wird, d.h. der Regler 6n im hochfrequentesten Kanal wird bei großen Pegeln eine deutliche Verstärkungsverminderung bewirken, während der Regler 6a im Tiefpaßkanal nahezu ohne Einfluß bleibt. Die Begrenzer 9a bis 9n schließlich sind in bekannter Weise so einzustellen, daß die Unbehaglichkeitsschwelle des Patienten bei keiner Frequenz vom Signalpegel merklich überschritten wird. Sind die Filter 10a.bis 10n eingebaut, so sind sie so zu bemessen, daß Verzerrungsanteile weitestgehend unterdrückt werden (z.B. indem sie frequenzgangsmäßig als Duplikate der entsprechenden Kanaltrennungsfilter 4a bis 4n ausgeführt werden).In the case of hearing loss, for example where the hearing ability for high frequencies is mainly impaired and, in addition, loudness compensation (recruitment) essentially only occurs in this area, the (unregulated) basic amplification of the frequency channels on the amplifiers 5a to 5n must be set in a known manner that the pathological course of the patient's hearing threshold is compensated for on average as best as possible. The controllers 6a to 6n are now set so that the loss of dynamics in the respective Fre quenzband is balanced as well as possible, ie the controller 6n in the high-frequency channel will bring about a significant gain reduction at high levels, while the controller 6a in the low-pass channel remains almost without influence. Finally, the limiters 9a to 9n are to be set in a known manner in such a way that the patient's discomfort threshold is not significantly exceeded by the signal level at any frequency. Are the filters 10a . installed up to 10n, they must be dimensioned so that distortion components are largely suppressed (for example, by designing the frequency response as duplicates of the corresponding channel separation filters 4a to 4n).

Stellt die Programmierschaltung 14 eine im Sinne eines adaptiven Optimalfilters arbeitende Mikrocomputerschaltung dar, so wird diese die oben beschriebene Grundeinstellung nur dann beibehalten, wenn sie nach Verfahren, die im US-Patent 40 25 721 beschrieben sind, in dem über die Leitung 22 zugeführten Eingangssignal nur Sprache, aber keine wesentlichen Störsignalanteile feststellt. Werden jedoch Störschallanteile erkannt, dann wird im Sinne der Optimalfilterfunktion die Verstärkung in jedem Kanal automatisch um so mehr zurückgenommen, je größer das Verhältnis von Störpegel zu Sprachsignalpegel in dem betreffenden Kanal ist.If the programming circuit 14 is a microcomputer circuit operating in the sense of an adaptive optimal filter, this will only maintain the basic setting described above if it is only in the input signal supplied via line 22 according to methods described in US Pat. No. 4,025,721 Speech, but no significant interference signal components. However, if noise components are detected, the gain in each channel is automatically reduced in the sense of the optimal filter function, the greater the ratio of noise level to speech signal level in the channel concerned.

Die Daten, welche der Programmierschaltung 14 über die Steckverbindung 21 zugeführt werden, können einem externen Gerät, z.B. einem Audiometer, entnommen werden. Dazu ist es notwendig, daß im externen Gerät das Sendeteil einer Datenschnittstelle eingebaut ist, während die Programmierschaltung 14 so ausgeführt ist, daß sie die Funktion des zugehörigen Empfangsteils erfüllt. Die Datenübertragung vom externen Gerät zur Hörhilfe kann entsprechend dem Signalplan einer genormten Schnittstelle (z.B. CCITT-V.24 nach DIN 66020) erfolgen, lediglich die Signalpegel sind an die Betriebsspannung der Hörhilfe anzupassen. Nach der Übertragung veranlaßt ein vereinbartes Datenwort oder Steuersignal die nichtflüchtige Speicherung in einem EPROM oder EAROM. Eine spätere Umprogrammierung ist leicht möglich, indem der nichtflüchtige Speicher (EPROM oder EAROM) entsprechend seiner Bauweise (mittels Ultraviolettstrahlung oder elektrischer Spannungen) gelöscht und ein neuer Datensatz übertragen wird.The data which are fed to the programming circuit 14 via the plug connection 21 can be taken from an external device, for example an audiometer. For this purpose, it is necessary that the transmitting part of a data interface is installed in the external device, while the programming circuit 14 is designed so that it fulfills the function of the associated receiving part. The data transfer from the external device to the hearing aid can be according to the signal plan of a standardized cut position (e.g. CCITT-V.24 according to DIN 66020), only the signal levels have to be adjusted to the operating voltage of the hearing aid. After the transmission, an agreed data word or control signal causes the non-volatile storage in an EPROM or EAROM. Later reprogramming is easily possible by deleting the non-volatile memory (EPROM or EAROM) according to its design (using ultraviolet radiation or electrical voltages) and transferring a new data record.

Claims (12)

1. Gerät zur Kompensation von Gehördefekten, bei dem hinter dem die Eingangsschallsignale aufnehmenden Element (Wandler, wie Mikrofon, Hörspule oder einem mit einem Radiogerät etc. verbundenen Audioeingang) eine Parallelanordnung aus mehreren Signalzweigen angeordnet ist, von welchen jeder aus jeweils einem frequenzselektiven Filter, einer pegelabhängigen Verstärkungsregelung und einer Anordnung zur nichtlinearen Signalverformung besteht, gefolgt von einem die Teilsignale zusammenfassenden Summierverstärker., der über einen Endverstärker mit einem Ausgangssignalwandler verbunden ist, dadurch gekennzeichnet , daß die vor und/oder hinter der pegelabhängigen Verstärkungsregelung und der nichtlinearen Signalverformung liegenden Filter als zeitdiskret und als amplitudenabhängig arbeitende Filter ausgebildet sind.1. A device for compensating for hearing defects, in which a parallel arrangement of several signal branches is arranged behind the element receiving the input sound signals (transducer, such as a microphone, hearing coil or an audio input connected to a radio, etc.), each of which has a frequency-selective filter, there is a level-dependent gain control and an arrangement for non-linear signal deformation, followed by a summing amplifier which summarizes the partial signals and which is connected to an output signal converter via a power amplifier, characterized in that the filters lying in front of and / or behind the level-dependent gain control and the non-linear signal deformation act as are time-discrete and designed as amplitude-dependent filters. 2. Gerät nach Anspruch 1, dadurch gekennzeichnet , daß in jedem parallelen Signalzweig zwischen der Anordnung zur nichtlinearen Signalverformung und dem die Teilsignale zusammenfassenden Summierverstärker zusätzlich jeweils ein Filter eingefügt ist, welches die durch die nichtlineare Signalbeeinflussung entstehenden Verzerrungsanteile des jeweiligen Teilsignals reduziert.2. Apparatus according to claim 1, characterized in that in each parallel signal branch between the arrangement for non-linear signal deformation and the summing amplifier combining the partial signals, a filter is additionally inserted in each case, which reduces the distortion components of the respective partial signal resulting from the non-linear signal influencing. 3. Gerät nach Anspruch 2, dadurch gekennzeichnet , daß auch die die Verzerrungsanteile reduzierenden Filter als zeitdiskret und amplitudenabhängig arbeitende Filter ausgebildet sind.3. Apparatus according to claim 2, characterized in that the filters reducing the distortion components are designed as discrete-time and amplitude-dependent filters. 4. Gerät nach Anspruch 1, dadurch gekennzeichnet , daß die Arbeitstaktfrequenz der zeitdiskreten Filter höher ist als die Summe aus der oberen Frequenzgrenze der Hörfähigkeit und der oberen Grenzfrequenz des Eingangsverstärkers.4. Apparatus according to claim 1, characterized in that the operating clock frequency of the discrete-time filter is higher than the sum of the upper Frequency limit of hearing and the upper limit frequency of the input amplifier. 5. Gerät nach Anspruch 1, dadurch gekennzeichnet , daß die Filter als integrierte Schaltkreise ausgebildet sind.5. Apparatus according to claim 1, characterized in that the filters are designed as integrated circuits. 6. Gerät nach Anspruch 1, dadurch gekennzeichnet , daß die Anordnung eine Programmierschaltung umfaßt, welche Daten für die Beeinflussung der Koeffizienten der zeitdiskreten Filter, der Parameter der Verstärkungsregler und der nichtlinearen Schaltungsanordnungen sowie der Koeffizienten der verzerrungsabschwächenden Filter enthält.6. Apparatus according to claim 1, characterized in that the arrangement comprises a programming circuit which contains data for influencing the coefficients of the discrete-time filter, the parameters of the gain controller and the non-linear circuitry and the coefficient of the distortion-reducing filter. 7. Gerät nach Anspruch 6, dadurch gekennzeichnet , daß die Programmierschaltung von einem externen Datenerzeugungsgerät, etwa einem Audiome-ter, her mit Einstelldaten versorgt wird.7. Apparatus according to claim 6, characterized in that the programming circuit is supplied with setting data from an external data generation device, such as an audio meter. 8. Gerät nach Anspruch 1, gekennzeichnet , daß die frequenzselektiven Filter Schalter-Kondensator-Filter ("Switched Capacitor Filters") sind.8. Apparatus according to claim 1, characterized in that the frequency-selective filters are switch-capacitor filters ("Switched Capacitor Filters"). 9. Gerät nach Anspruch 1, gekennzeichnet durch ein Mikrofon (1) als Eingangssignalwandler, einen anschließenden, einen Tiefpaßfrequenzgang aufweisenden Vorverstärker (2, 2'), dessen Ausgang an wenigstens zwei (allgemein n) parallelgeschalteten zeitdiskreten Filtern (4a bis 4n) liegt, auf die mindestens in einem Kanal (allgemein in allen n Kanälen) jeweils ein Regelverstärker (5a bis 5n) mit Regler (6a bis 6n) für automatische Verstärkungsregelung (6a bis 6n), je ein über einen gemeinsamen Lautstärkesteller (8) in seiner Verstärkung veränderbarer Signalverstärker (7a bis 7n), je ein nichtlineares Element (9a bis 9n), sowie je ein frequenzselektives Filter zur Verzerrungsanteilsabschwächung (10a bis 10n) folgt und daß die Ausgänge dieser Parallelschaltungen an einem Summierpunkt (11) zusammengeführt sind, an dem ein Endverstärker (12) und schließlich ein Ausgangswandler (13) liegen, sowie durch eine Programmierschaltung (14), über welche die Filterkoeffizienten der Filter (4a bis 4n und 10a bis 10n) und die Parameter der Regler (6a bis 6n) sowie der Nichtlinearitäten (9a bis 9n) einstellbar sind.9. Apparatus according to claim 1, characterized by a microphone (1) as an input signal converter, a subsequent preamplifier (2, 2 ') having a low-pass frequency response, the output of which is connected to at least two (generally n) time-discrete filters (4a to 4n) connected in parallel, on the at least in one channel (generally in all n channels) a control amplifier (5a to 5n) with controller (6a to 6n) for automatic gain control (6a to 6n), each with a common volume control (8) whose gain can be changed Signal amplifier (7a to 7n), A non-linear element (9a to 9n) and a frequency-selective filter for attenuation of the distortion component (10a to 10n) each follow and that the outputs of these parallel circuits are brought together at a summing point (11) at which an output amplifier (12) and finally an output converter ( 13) and a programming circuit (14), via which the filter coefficients of the filters (4a to 4n and 10a to 10n) and the parameters of the controllers (6a to 6n) and the non-linearities (9a to 9n) can be set. 10. Gerät nach Anspruch 9, dadurch gekenn-zeichnet, daß die Programmierschaltung (14) über mehrere Leitungen (19 und 20) und eine Steckverbindung (21) von einem externen Gerät aus mit Einstelldaten versorgt werden kann.10. Apparatus according to claim 9, characterized in that the programming circuit (14) via a plurality of lines (19 and 20) and a plug connection (21) can be supplied with setting data from an external device. 11. Gerät nach Anspruch 10, dadurch gekennzeichnet , daß die Programmierschaltung (14) eine integrierte Mikrocomputerschaltung ist.11. The device according to claim 10, characterized in that the programming circuit (14) is an integrated microcomputer circuit. 12. Gerät nach Anspruch 11, dadurch gekennzeichnet , daß in der Mikrocomputerschaltung Programme und Daten gespeichert und wirksam sind, welche eine von dem an Punkt 3 anstehenden Eingangssignal abhängige Einstellung der zeitdiskreten Filter (4a bis 4n) als adaptive Optimalfilter ermöglichen.12. Apparatus according to claim 11, characterized in that programs and data are stored and effective in the microcomputer circuit which enable a setting of the time-discrete filter (4a to 4n) as an adaptive optimal filter which is dependent on the input signal pending at point 3.
EP82106683A 1981-08-06 1982-07-23 Apparatus for compensating hearing deficiencies Expired EP0071845B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82106683T ATE16748T1 (en) 1981-08-06 1982-07-23 DEVICE FOR COMPENSATION OF HEARING DAMAGE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3131193 1981-08-06
DE19813131193 DE3131193A1 (en) 1981-08-06 1981-08-06 DEVICE FOR COMPENSATING HEALTH DAMAGE

Publications (3)

Publication Number Publication Date
EP0071845A2 true EP0071845A2 (en) 1983-02-16
EP0071845A3 EP0071845A3 (en) 1983-04-20
EP0071845B1 EP0071845B1 (en) 1985-11-27

Family

ID=6138766

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82106683A Expired EP0071845B1 (en) 1981-08-06 1982-07-23 Apparatus for compensating hearing deficiencies

Country Status (7)

Country Link
US (1) US4508940A (en)
EP (1) EP0071845B1 (en)
JP (1) JPS5834700A (en)
AT (1) ATE16748T1 (en)
CA (1) CA1198509A (en)
DE (1) DE3131193A1 (en)
DK (1) DK152869B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2566658A1 (en) * 1984-06-28 1986-01-03 Inst Nat Sante Rech Med Multichannel auditory prosthesis.
WO1986001671A1 (en) * 1984-08-28 1986-03-13 Central Institute For The Deaf System and method for compensating hearing deficiences
US4622440A (en) * 1984-04-11 1986-11-11 In Tech Systems Corp. Differential hearing aid with programmable frequency response
EP0250679A2 (en) * 1986-06-26 1988-01-07 Audimax Corporation Programmable sound reproducing system
EP0252205A2 (en) * 1986-01-21 1988-01-13 Mark Antin Digital hearing enhancement apparatus
EP0389825A1 (en) * 1989-03-29 1990-10-03 Siemens Aktiengesellschaft Circuit for use in programmable hearing aids
EP0535425A2 (en) * 1991-10-03 1993-04-07 Ascom Audiosys Ag Method for amplifying an acoustic signal for the hard of hearing and device for carrying out the method
EP0674463A1 (en) * 1994-03-23 1995-09-27 Siemens Audiologische Technik GmbH Programmable hearing aid
DE19525944A1 (en) * 1995-07-18 1997-01-23 Berndsen Klaus Juergen Dr Hearing aid for person with frequency dependent hearing loss

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH658354A5 (en) * 1983-01-11 1986-10-31 Gfeller Ag HEARING DEVICE WITH ADJUSTABLE CHARACTERISTIC VALUES.
US4680798A (en) * 1984-07-23 1987-07-14 Analogic Corporation Audio signal processing circuit for use in a hearing aid and method for operating same
US4791672A (en) * 1984-10-05 1988-12-13 Audiotone, Inc. Wearable digital hearing aid and method for improving hearing ability
US4641361A (en) * 1985-04-10 1987-02-03 Harris Corporation Multi-band automatic gain control apparatus
US4630305A (en) * 1985-07-01 1986-12-16 Motorola, Inc. Automatic gain selector for a noise suppression system
US4630304A (en) * 1985-07-01 1986-12-16 Motorola, Inc. Automatic background noise estimator for a noise suppression system
US4628529A (en) * 1985-07-01 1986-12-09 Motorola, Inc. Noise suppression system
US4596902A (en) * 1985-07-16 1986-06-24 Samuel Gilman Processor controlled ear responsive hearing aid and method
US4934770A (en) * 1986-03-12 1990-06-19 Beltone Electronics Electronic compression system
US4829270A (en) * 1986-03-12 1989-05-09 Beltone Electronics Corporation Compansion system
US4792977A (en) * 1986-03-12 1988-12-20 Beltone Electronics Corporation Hearing aid circuit
US4952867A (en) * 1986-03-12 1990-08-28 Beltone Electronics Corporation Base bias current compensator
US4912393A (en) * 1986-03-12 1990-03-27 Beltone Electronics Corporation Voltage regulator with variable reference outputs for a hearing aid
US4922131A (en) * 1986-03-12 1990-05-01 Beltone Electronics Corporation Differential voltage threshold detector
US4802228A (en) * 1986-10-24 1989-01-31 Bernard Silverstein Amplifier filter system for speech therapy
US4790018A (en) * 1987-02-11 1988-12-06 Argosy Electronics Frequency selection circuit for hearing aids
US4837832A (en) * 1987-10-20 1989-06-06 Sol Fanshel Electronic hearing aid with gain control means for eliminating low frequency noise
US4887299A (en) * 1987-11-12 1989-12-12 Nicolet Instrument Corporation Adaptive, programmable signal processing hearing aid
US4920570A (en) * 1987-12-18 1990-04-24 West Henry L Modular assistive listening system
DE3802903A1 (en) * 1988-02-01 1989-08-10 Siemens Ag LANGUAGE TRANSFER DEVICE
US4852175A (en) * 1988-02-03 1989-07-25 Siemens Hearing Instr Inc Hearing aid signal-processing system
US5225836A (en) * 1988-03-23 1993-07-06 Central Institute For The Deaf Electronic filters, repeated signal charge conversion apparatus, hearing aids and methods
US5111419A (en) * 1988-03-23 1992-05-05 Central Institute For The Deaf Electronic filters, signal conversion apparatus, hearing aids and methods
US5357251A (en) * 1988-03-23 1994-10-18 Central Institute For The Deaf Electronic filters, signal conversion apparatus, hearing aids and methods
US4901353A (en) * 1988-05-10 1990-02-13 Minnesota Mining And Manufacturing Company Auditory prosthesis fitting using vectors
FR2635680B1 (en) * 1988-08-30 1997-12-26 Belone Electronics Corp HEARING AID
US5027410A (en) * 1988-11-10 1991-06-25 Wisconsin Alumni Research Foundation Adaptive, programmable signal processing and filtering for hearing aids
DE3900588A1 (en) * 1989-01-11 1990-07-19 Toepholm & Westermann REMOTE CONTROLLED, PROGRAMMABLE HOUR DEVICE SYSTEM
US5111506A (en) * 1989-03-02 1992-05-05 Ensonig Corporation Power efficient hearing aid
US5303306A (en) * 1989-06-06 1994-04-12 Audioscience, Inc. Hearing aid with programmable remote and method of deriving settings for configuring the hearing aid
US5083312A (en) * 1989-08-01 1992-01-21 Argosy Electronics, Inc. Programmable multichannel hearing aid with adaptive filter
US5274711A (en) * 1989-11-14 1993-12-28 Rutledge Janet C Apparatus and method for modifying a speech waveform to compensate for recruitment of loudness
US5408581A (en) * 1991-03-14 1995-04-18 Technology Research Association Of Medical And Welfare Apparatus Apparatus and method for speech signal processing
WO1994007341A1 (en) * 1992-09-11 1994-03-31 Hyman Goldberg Electroacoustic speech intelligibility enhancement method and apparatus
US5332928A (en) * 1992-12-10 1994-07-26 Threepenny Electronics Corporation Battery drain reducer
US5706352A (en) * 1993-04-07 1998-01-06 K/S Himpp Adaptive gain and filtering circuit for a sound reproduction system
DE4319599C1 (en) * 1993-06-14 1994-08-25 Siemens Audiologische Technik Hearing aid
US5500902A (en) * 1994-07-08 1996-03-19 Stockham, Jr.; Thomas G. Hearing aid device incorporating signal processing techniques
US8085959B2 (en) * 1994-07-08 2011-12-27 Brigham Young University Hearing compensation system incorporating signal processing techniques
DE4441755C1 (en) * 1994-11-23 1996-01-18 Siemens Audiologische Technik Electronic hearing aid circuit with noise suppression
US5862238A (en) * 1995-09-11 1999-01-19 Starkey Laboratories, Inc. Hearing aid having input and output gain compression circuits
DE19619312A1 (en) * 1996-05-13 1997-11-20 Siemens Audiologische Technik Amplification system for hearing aid input signals
US5909497A (en) * 1996-10-10 1999-06-01 Alexandrescu; Eugene Programmable hearing aid instrument and programming method thereof
US5903655A (en) * 1996-10-23 1999-05-11 Telex Communications, Inc. Compression systems for hearing aids
DE19647399C1 (en) 1996-11-15 1998-07-02 Fraunhofer Ges Forschung Hearing-appropriate quality assessment of audio test signals
US6236731B1 (en) 1997-04-16 2001-05-22 Dspfactory Ltd. Filterbank structure and method for filtering and separating an information signal into different bands, particularly for audio signal in hearing aids
DK0985328T3 (en) * 1997-04-16 2006-04-10 Emma Mixed Signal Cv Filter banking structure and method for filtering and separating an information signal in different bands, especially for audio signals in hearing aids
US6654467B1 (en) * 1997-05-07 2003-11-25 Stanley J. York Active noise cancellation apparatus and method
DE19748079A1 (en) * 1997-10-30 1999-05-06 Siemens Audiologische Technik Hearing aid with feedback suppression
US6353671B1 (en) * 1998-02-05 2002-03-05 Bioinstco Corp. Signal processing circuit and method for increasing speech intelligibility
DE19859480A1 (en) * 1998-12-22 2000-02-03 Siemens Audiologische Technik Hearing aid with output signal level control
DE19957128C1 (en) * 1999-11-26 2001-08-16 Siemens Audiologische Technik Signal level limitation method for digital hearing aid has sampling rate of digital signal raised prior to limitation of maximum signal value
US6760457B1 (en) 2000-09-11 2004-07-06 Micro Ear Technology, Inc. Automatic telephone switch for hearing aid
US7248713B2 (en) 2000-09-11 2007-07-24 Micro Bar Technology, Inc. Integrated automatic telephone switch
US6748089B1 (en) 2000-10-17 2004-06-08 Sonic Innovations, Inc. Switch responsive to an audio cue
EP1251714B2 (en) 2001-04-12 2015-06-03 Sound Design Technologies Ltd. Digital hearing aid system
US6633202B2 (en) 2001-04-12 2003-10-14 Gennum Corporation Precision low jitter oscillator circuit
ATE318062T1 (en) * 2001-04-18 2006-03-15 Gennum Corp MULTI-CHANNEL HEARING AID WITH TRANSMISSION POSSIBILITIES BETWEEN THE CHANNELS
CA2382358C (en) * 2001-04-18 2007-01-09 Gennum Corporation Digital quasi-rms detector
US20020191800A1 (en) * 2001-04-19 2002-12-19 Armstrong Stephen W. In-situ transducer modeling in a digital hearing instrument
US7110562B1 (en) * 2001-08-10 2006-09-19 Hear-Wear Technologies, Llc BTE/CIC auditory device and modular connector system therefor
US7139404B2 (en) * 2001-08-10 2006-11-21 Hear-Wear Technologies, Llc BTE/CIC auditory device and modular connector system therefor
DK1284587T3 (en) * 2001-08-15 2011-10-31 Sound Design Technologies Ltd Reconfigurable low energy hearing aid
US7447325B2 (en) * 2002-09-12 2008-11-04 Micro Ear Technology, Inc. System and method for selectively coupling hearing aids to electromagnetic signals
US8284970B2 (en) * 2002-09-16 2012-10-09 Starkey Laboratories Inc. Switching structures for hearing aid
US7369671B2 (en) * 2002-09-16 2008-05-06 Starkey, Laboratories, Inc. Switching structures for hearing aid
US20040125964A1 (en) * 2002-12-31 2004-07-01 Mr. James Graham In-Line Audio Signal Control Apparatus
DE602004010317T2 (en) * 2004-02-05 2008-10-16 Phonak Ag Method for operating a hearing aid and hearing aid
US7386142B2 (en) 2004-05-27 2008-06-10 Starkey Laboratories, Inc. Method and apparatus for a hearing assistance system with adaptive bulk delay
ATE435523T1 (en) * 2005-04-08 2009-07-15 Nxp Bv METHOD AND DEVICE FOR PROCESSING AUDIO DATA, PROGRAM ELEMENT AND COMPUTER READABLE MEDIUM
US8041066B2 (en) 2007-01-03 2011-10-18 Starkey Laboratories, Inc. Wireless system for hearing communication devices providing wireless stereo reception modes
US9774961B2 (en) 2005-06-05 2017-09-26 Starkey Laboratories, Inc. Hearing assistance device ear-to-ear communication using an intermediate device
US8208642B2 (en) 2006-07-10 2012-06-26 Starkey Laboratories, Inc. Method and apparatus for a binaural hearing assistance system using monaural audio signals
EP2080408B1 (en) * 2006-10-23 2012-08-15 Starkey Laboratories, Inc. Entrainment avoidance with an auto regressive filter
US8571244B2 (en) 2008-03-25 2013-10-29 Starkey Laboratories, Inc. Apparatus and method for dynamic detection and attenuation of periodic acoustic feedback
DE102009012166B4 (en) * 2009-03-06 2010-12-16 Siemens Medical Instruments Pte. Ltd. Hearing apparatus and method for reducing a noise for a hearing device
EP2278707B1 (en) * 2009-07-03 2012-01-18 Am3D A/S Dynamic enhancement of audio signals
US9420385B2 (en) 2009-12-21 2016-08-16 Starkey Laboratories, Inc. Low power intermittent messaging for hearing assistance devices
US8917891B2 (en) 2010-04-13 2014-12-23 Starkey Laboratories, Inc. Methods and apparatus for allocating feedback cancellation resources for hearing assistance devices
US8942398B2 (en) 2010-04-13 2015-01-27 Starkey Laboratories, Inc. Methods and apparatus for early audio feedback cancellation for hearing assistance devices
US9654885B2 (en) 2010-04-13 2017-05-16 Starkey Laboratories, Inc. Methods and apparatus for allocating feedback cancellation resources for hearing assistance devices
DE102010041740A1 (en) * 2010-09-30 2012-04-05 Siemens Medical Instruments Pte. Ltd. Method for signal processing in a hearing aid device and hearing aid device
EP2590434B1 (en) * 2011-11-04 2016-01-27 AKG Acoustics GmbH Filter circuit
US10003379B2 (en) 2014-05-06 2018-06-19 Starkey Laboratories, Inc. Wireless communication with probing bandwidth
WO2018200484A1 (en) * 2017-04-24 2018-11-01 Maxim Integrated Products, Inc. System and method for reducing power consumption in an audio system by disabling filter elements based on signal level

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3784750A (en) * 1972-02-25 1974-01-08 Shalako Resource Systems Apparatus and prosthetic device for providing electronic correction of auditory deficiencies for aurally handicapped persons
DE2707607A1 (en) * 1976-02-23 1977-09-01 Biocommunications Research Cor Autoregressive moving average filter for hearing aid - can be matched to desired response curve using inverse Fourier transformation
US4185168A (en) * 1976-05-04 1980-01-22 Causey G Donald Method and means for adaptively filtering near-stationary noise from an information bearing signal

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1512720B2 (en) * 1967-06-29 1971-01-07 Keidel, Wolf-Dieter, Dr.med.; Spreng, Manfied, Dr -Ing.; 8520 Erlangen Amplifier for adjustable amplification of sound frequencies
US3846719A (en) * 1973-09-13 1974-11-05 Dolby Laboratories Inc Noise reduction systems
JPS5250646B2 (en) * 1972-10-16 1977-12-26
US3818149A (en) * 1973-04-12 1974-06-18 Shalako Int Prosthetic device for providing corrections of auditory deficiencies in aurally handicapped persons
US3848091A (en) * 1973-04-12 1974-11-12 Holmes J Method of fitting a prosthetic device for providing corrections of auditory deficiencies in aurally handicapped persons
JPS5034405A (en) * 1973-07-30 1975-04-02
US3894195A (en) * 1974-06-12 1975-07-08 Karl D Kryter Method of and apparatus for aiding hearing and the like
DE2502536A1 (en) * 1975-01-23 1976-07-29 Peter Dr Med Bumm Noise guard permitting passage of normal speech frequencies - whilst filtering out all other endangering frequencies
US4025723A (en) * 1975-07-07 1977-05-24 Hearing Health Group, Inc. Real time amplitude control of electrical waves
GB1541004A (en) * 1975-11-07 1979-02-21 Nat Res Dev Hearing aid
JPS52125251A (en) * 1976-02-23 1977-10-20 Bio Communication Res Electric filter and method of designing same
US4025721A (en) * 1976-05-04 1977-05-24 Biocommunications Research Corporation Method of and means for adaptively filtering near-stationary noise from speech
DE2641675A1 (en) * 1976-09-16 1978-03-23 Bosch Gmbh Robert Two-channel hearing aid system - has HF and LF channels, each containing input filter and AGC amplifier and output filter
US4061875A (en) * 1977-02-22 1977-12-06 Stephen Freifeld Audio processor for use in high noise environments
DE2716336B1 (en) * 1977-04-13 1978-07-06 Siemens Ag Procedure and hearing aid for the compensation of hearing defects
US4119812A (en) * 1977-04-20 1978-10-10 Rca Corporation Signal defect detection and compensation with signal de-emphasis
US4156116A (en) * 1978-03-27 1979-05-22 Paul Yanick Hearing aids using single side band clipping with output compression AMP
DE2844979C2 (en) * 1978-10-16 1989-08-31 Juval Dr.-Ing. 8000 München Mantel Hearing aid
US4266094A (en) * 1979-03-15 1981-05-05 Abend Irving J Electronic speech processing system
US4290034A (en) * 1980-05-16 1981-09-15 Bell Telephone Laboratories, Incorporated Switched capacitor filter
SE428167B (en) * 1981-04-16 1983-06-06 Mangold Stephan PROGRAMMABLE SIGNAL TREATMENT DEVICE, MAINLY INTENDED FOR PERSONS WITH DISABILITY

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3784750A (en) * 1972-02-25 1974-01-08 Shalako Resource Systems Apparatus and prosthetic device for providing electronic correction of auditory deficiencies for aurally handicapped persons
DE2707607A1 (en) * 1976-02-23 1977-09-01 Biocommunications Research Cor Autoregressive moving average filter for hearing aid - can be matched to desired response curve using inverse Fourier transformation
US4185168A (en) * 1976-05-04 1980-01-22 Causey G Donald Method and means for adaptively filtering near-stationary noise from an information bearing signal

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622440A (en) * 1984-04-11 1986-11-11 In Tech Systems Corp. Differential hearing aid with programmable frequency response
FR2566658A1 (en) * 1984-06-28 1986-01-03 Inst Nat Sante Rech Med Multichannel auditory prosthesis.
WO1986001671A1 (en) * 1984-08-28 1986-03-13 Central Institute For The Deaf System and method for compensating hearing deficiences
EP0252205A3 (en) * 1986-01-21 1989-09-27 Mark Antin Digital hearing enhancement apparatus
EP0252205A2 (en) * 1986-01-21 1988-01-13 Mark Antin Digital hearing enhancement apparatus
EP0250679A2 (en) * 1986-06-26 1988-01-07 Audimax Corporation Programmable sound reproducing system
EP0250679A3 (en) * 1986-06-26 1989-04-19 Audimax, Inc. Programmable sound reproducing system
EP0389825A1 (en) * 1989-03-29 1990-10-03 Siemens Aktiengesellschaft Circuit for use in programmable hearing aids
EP0535425A2 (en) * 1991-10-03 1993-04-07 Ascom Audiosys Ag Method for amplifying an acoustic signal for the hard of hearing and device for carrying out the method
EP0535425A3 (en) * 1991-10-03 1993-11-10 Ascom Audiosys Ag Method for amplifying an acoustic signal for the hard of hearing and device for carrying out the method
EP0674463A1 (en) * 1994-03-23 1995-09-27 Siemens Audiologische Technik GmbH Programmable hearing aid
DE19525944A1 (en) * 1995-07-18 1997-01-23 Berndsen Klaus Juergen Dr Hearing aid for person with frequency dependent hearing loss
DE19525944C2 (en) * 1995-07-18 1999-03-25 Berndsen Klaus Juergen Dr Hearing aid

Also Published As

Publication number Publication date
US4508940A (en) 1985-04-02
DE3131193A1 (en) 1983-02-24
DK350582A (en) 1983-02-07
ATE16748T1 (en) 1985-12-15
JPS5834700A (en) 1983-03-01
EP0071845B1 (en) 1985-11-27
EP0071845A3 (en) 1983-04-20
CA1198509A (en) 1985-12-24
DE3131193C2 (en) 1989-04-13
DK152869B (en) 1988-05-24

Similar Documents

Publication Publication Date Title
EP0071845B1 (en) Apparatus for compensating hearing deficiencies
EP0820211B1 (en) Programmable hearing aid
DE10131964B4 (en) Method for operating a digital programmable hearing aid and digital programmable hearing aid
DE69933141T2 (en) TONE PROCESSOR FOR ADAPTIVE DYNAMIC RANGE IMPROVEMENT
EP1366564B1 (en) Device for the noise-dependent adjustment of sound volumes
EP2180726B2 (en) Sound localization in binaural hearing aids
EP0449860B1 (en) Tinnitus masker
DE2716336B1 (en) Procedure and hearing aid for the compensation of hearing defects
DE3512999A1 (en) DIFFERENTIAL HEARING AID WITH PROGRAMMABLE FREQUENCY GEAR
EP0661905A2 (en) Method for the fitting of hearing aids, device therefor and hearing aid
EP1499160A2 (en) Directional hearing aid
DE2658301B1 (en) Hearing aid
DE102010039589A1 (en) Hearing aid and / or tinnitus therapy device
DE102007033484A1 (en) hearing Aid
DE60016144T2 (en) hearing aid
CH643727A5 (en) ARRANGEMENT FOR GENERATING A SIGNAL SEQUENCE FOR ADAPTING A HOUR DEVICE.
EP1369994A2 (en) Method for boosting low frequencies adapted to an auditory system and corresponding reproduction system
DE102008024535A1 (en) Method for optimizing a multi-level filter bank and corresponding filter bank and hearing device
DE102006019694B3 (en) Hearing aid amplification adjusting method, involves determining maximum amplification or periodical maximum amplification curve in upper frequency range based on open-loop-gain- measurement
DE102007018121B4 (en) Hearing device with low-noise handset control and corresponding method and hearing system
DE19624092B4 (en) Amplification circuit, preferably for analog or digital hearing aids and hearing aids using a corresponding amplification circuit or a corresponding signal processing algorithm
EP1351550B1 (en) Method for adapting a signal amplification in a hearing aid and a hearing aid
DE2316939B2 (en) Electric hearing aid circuit
DE102008058496B4 (en) Filter bank system with specific stop attenuation components for a hearing device
DE202016101050U1 (en) Device for configuring a user-specific hearing system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT CH GB LI NL

AK Designated contracting states

Designated state(s): AT CH GB LI NL

17P Request for examination filed

Effective date: 19830805

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH GB LI NL

REF Corresponds to:

Ref document number: 16748

Country of ref document: AT

Date of ref document: 19851215

Kind code of ref document: T

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Effective date: 19860219

NLR1 Nl: opposition has been filed with the epo

Opponent name: N.V. PHILIPS GLOEILAMPENFABRIEKEN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860625

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870731

Year of fee payment: 6

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 19881102

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
NLR2 Nl: decision of opposition
APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO