EP0096847B1 - Chaff dispensing device - Google Patents

Chaff dispensing device Download PDF

Info

Publication number
EP0096847B1
EP0096847B1 EP83105651A EP83105651A EP0096847B1 EP 0096847 B1 EP0096847 B1 EP 0096847B1 EP 83105651 A EP83105651 A EP 83105651A EP 83105651 A EP83105651 A EP 83105651A EP 0096847 B1 EP0096847 B1 EP 0096847B1
Authority
EP
European Patent Office
Prior art keywords
dipoles
sleeve
metal foil
sections
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83105651A
Other languages
German (de)
French (fr)
Other versions
EP0096847A2 (en
EP0096847A3 (en
Inventor
Gmbh & Co. Diehl
Original Assignee
Diehl GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl GmbH and Co filed Critical Diehl GmbH and Co
Publication of EP0096847A2 publication Critical patent/EP0096847A2/en
Publication of EP0096847A3 publication Critical patent/EP0096847A3/en
Application granted granted Critical
Publication of EP0096847B1 publication Critical patent/EP0096847B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/36Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information
    • F42B12/56Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing discrete solid bodies
    • F42B12/70Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing discrete solid bodies for dispensing radar chaff or infrared material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/145Reflecting surfaces; Equivalent structures comprising a plurality of reflecting particles, e.g. radar chaff

Definitions

  • the invention relates to a device for distributing dipoles which are arranged to be ejected in a sleeve in the form of sections of the same length, the sections each consisting of bundled and centripetal-biased dipoles in an envelope.
  • dipole sections of different lengths are arranged in sections in a sleeve.
  • the dipole sections can be ejected from the sleeve via a piston, the piston being drivable by a gas pressure-generating charge.
  • GB-PS 834 596 discloses sections of dipoles bundled by loose, thin paper, which are arranged in a sleeve made of reinforced paper. In addition, it is known to insert a section of the paper directly enveloping the dipoles as a tail in the mass of the dipoles, for example in the radial direction.
  • the dipole sections For dipole sections arranged in a sleeve, for rapid and large cloud formation, it is necessary that the dipole sections can be ejected relatively easily and quickly and that the individual dipoles separate independently of one another after leaving the pipe mouth in order to achieve a radar to form relevant cloud.
  • the measure for deceiving target-seeking radar devices in aircraft and missiles is important.
  • the object of the invention is to provide a structurally simple, inexpensive dipole arrangement for an ejection sleeve, which can be ejected from the sleeve in a short time and quickly generates a large-area and homogeneous cloud after the ejection.
  • the metal foil slides very well on the highly polished inner surface of the sleeve, so that the energy required to eject the sections from the sleeve can be measured relatively small.
  • the discharge width of the sections is increased by approx. 30%. This is advantageous for the diameter of the cloud when ejecting from the aircraft and for the distance and height of the cloud above the ejection location for earth-based ejection, since the sections cover a relatively large distance at high average speed during the detachment of the dipoles.
  • the dipoles pretensioned in the sections act as a drive spring for the metal foil surrounding the section, so that a time-delayed release of the dipoles is achieved depending on the number of turns of the metal foil.
  • the section with a low number of turns releases the dipoles earlier than the section with a higher number of turns.
  • a radar-relevant cloud with a diameter of approx. 4 m is reached when there is no wind, at a wind force of 3 m a cloud is approx. 4 m high with a diameter of 3 m and a length of approx. 40 m.
  • a radar-relevant cloud is reached which is approximately 50% larger than the side view area of an aircraft, such as the F-104G Starfighter.
  • the diameter of the cloud is also larger than the largest cross section of a fighter plane. This provides an all-round repellent against ground-based and air-based defense devices with homing radar.
  • the section lying at the mouth of the sleeve has an envelope with a number of turns of 1.2 to 0.75, which initiates cloud formation immediately after the ejection.
  • the deflection time for the opposing radar is therefore very short, since the cloud surface detected by the radar as the target arises much earlier than according to the prior art.
  • a cloud that is 70% formed is sufficient to deflect the radar from the aircraft.
  • the section arranged at the mouth of the sleeve can be without a cover in order to increase the formation of the cloud with respect to its radar-relevant intensities.
  • Claim 4 covers in a simple manner a frequency spectrum which is evenly present per unit area of the finished cloud.
  • the decisive factor here is that the cutting length is selected so that the dipoles assigned to the highest frequency cover about one square meter of the finished cloud in a radar-relevant manner.
  • Those dipoles of a section that not enough in themselves to cover one square meter of the finished cloud, are supplemented by corresponding dipoles of other sections to meet the above condition.
  • a good distribution of the dipoles both in the longitudinal direction of the cloud and in the transverse direction is achieved in that the dipoles of different lengths form the structure in the manner of a network by swirling.
  • the one-piece metal foil according to claim 7 ensures that after ejection from the sleeve - due to the radially expanding dipoles - the only plastically deformable metal foil only needs to increase its winding radius until the number of turns ⁇ 1 and a sufficiently large distance (window ) is reached between the two ends of the film. Because of this window, dipoles are detached from the section (package) by the air flow and, on the other hand, the film itself is removed from the package. As a result, the parcel can unfold unhindered into a partial cloud due to the clamping force still present in the parcel and the air flowing out. The number of partial clouds of a minimum of 10 pieces and a maximum of approximately 25 pieces then results in the actual cloud by overlapping.
  • a radar grid of an opposing radar with the stop lines 1 to 4 is specified.
  • the grid 5 is approx. 21 m.
  • an aircraft 6 which has emitted dipoles 10 to 12 at two intervals in accordance with the arrow 7, thereby forming the radar-relevant clouds 8, 9 lying between the rest lines 2 to 4. Comparing the areas of aircraft 6 and cloud 8 or 9, cloud 8 or 9 is approximately 30% larger than the area of the aircraft shown.
  • the stop lines 1 to 4 correspond to a conventional radar with a pulse width of 200 ⁇ s at a predetermined target distance.
  • the speed of the aircraft is 300 m / s.
  • the output sequence of dipole arrangements is 100 m / s.
  • a dipole arrangement 13 consists of a sleeve 14 with a square inner cross section, dipole sections 15 to 24, a piston 25 and a cover 26.
  • the inner surfaces 27 of the sleeve 14 are highly polished.
  • the individual dipoles 10 to 12 usually consist of aluminum-coated glass threads. These glass threads are stranded in the longitudinal direction of the sleeve 14, the length of the dipoles 10 to 12 corresponds to the length of the individual sections 15 to 24.
  • a curve 40 determined by empirical values allows the number of turns of the foils 31 to 39 to be determined for each individual dipole section 16 to 24.
  • the section 15 at the mouth 45 of the sleeve 14 has no casing.
  • the dipoles 10 are arranged as a package section 15 “naked” in the sleeve 14.
  • the film 36 is detached from FIG. 2 and is drawn at a distance between the turns for the sake of better illustration. In reality, the turns of the film 36 are close together.
  • the contact pressure between the windings of the film is achieved by inserting the individual dipole sections 16 to 24 into the sleeve 14. This is because the sections 16 to 24 have larger dimensions in the circumferential direction before insertion into the sleeve 14 than the inner cross section of the sleeve 14. To insert the sections 16 to 24 into the sleeve, the sections 16 to 24 which have already been wrapped are therefore made using a suitable device pressed into the sleeve 14. The section 15 is pressed as the last part of the sections 16 to 24 into the sleeve, so that their dipoles 10 are also biased centripetal.
  • the mode of operation of the device according to FIGS. 2 and 3 is that the piston 25, which is driven in the direction of the mouth 45, lifts the cover 26 from the mouth 45 via the sections 16 to 24. Then the "naked" section 15 is ejected first.
  • the centripetal-biased dipoles 10 diverge in the radial direction and, after they have left the mouth 45, are swirled by the inflowing air.
  • the compressed dipoles 10 act as a spring element.
  • This spring element acts in the radial direction in that the dipole assembly expands radially. As a result, they act on the metal foil 31 and reduce the number of turns until the metal foil 31 releases the dipoles on the circumference. Only then does the swirling of the dipoles 10 by the attacking air flow begin. The wound metal foil 31 is also removed from the dipoles.
  • dipole sections 46 to 52 of a dipole arrangement 44 are configured as packets of the same length.
  • the dipole sections 47, 49, 51 - with dipoles lying in the longitudinal direction of the sleeve 14 - are cut transversely to the longitudinal axis of the sleeve 14 (section line 54).
  • the cut (depth of cut 53) through the metal foil and the dipoles is carried out in such a way that the dipoles 12 (each section 47, 49, 51) with the shortest length (subset 65) cover about one square meter of cloud surface with regard to radar in terms of their number.
  • the depth of cut is designated 53 and the cut line 54.
  • the cut is carried out by means of a suitable device before the sections 46 to 52 are filled into the sleeve 14 through the enveloping metal foil and the relevant dipoles.
  • the non-cut dipoles 10 then result in the subset 67.
  • the curve 70 indicated in the upper part of FIG. 4 is defined analogously to FIG.
  • the curve 70 indicates the number of turns of the metal foil in relation to the respective sections 46 to 52.
  • the mode of operation of the dipole arrangement according to FIG. 4 corresponds to the function described for FIGS. 3 and 4.
  • each section has dipoles 10 to 12 of different lengths
  • the metal foil is pulled up to a number of turns ⁇ 1 after ejection from sleeve 14 due to the radial pressure of dipoles 10 to 12, to the extent that until the inflowing air has loosened the film and loosens and distributes the dipoles.
  • the dipoles 10 to 12 of all sections lie in the axial direction of the sleeve 14.
  • the dipoles of the sections are transverse to the longitudinal direction to arrange the sleeve 14.
  • a circular cross-section can also be used instead of the square inner cross-section of the sleeve 14.
  • a dipole section 70 has dipoles 10 and a metal foil 71.
  • the film 71 is provided with an integral air brake 72.
  • the air brake 72 consists of two braking surfaces 73, 74. The braking surfaces are determined by edges 75, 76 of the film 71.
  • the air brake 72 is folded in the sleeve 14 accordingly, so that it supports the unwinding of the film 71 from the section 70 after the ejection by the air flowing in the direction of arrow 77.
  • the essential idea of this solution is that the twice-bent end of the film 71 creates a very effective air brake.
  • the start of the unwinding process is accelerated.
  • the duration of the unwinding process is not significantly accelerated, however, since a free film end, similar to a “flag”, already acts as a brake due to the air vortex.
  • This air brake 72 saves space and therefore does not influence the number of dipoles 10 in section 70.
  • the measure described above can also be used for the incised sections 47, 49, 51.

Description

Die Erfindung bezieht sich auf ein Gerät zur Verteilung von Dipolen, die in einer Hülse in Form von gleich langen Abschnitten ausstossbar angeordnet sind, wobei die Abschnitte jeweils aus gebündelten, und zentripetal vorgespannten Dipolen in einer Umhüllung bestehen.The invention relates to a device for distributing dipoles which are arranged to be ejected in a sleeve in the form of sections of the same length, the sections each consisting of bundled and centripetal-biased dipoles in an envelope.

Aus der DE-OS 3 015 719 sind Dipol-Abschnitte unterschiedlicher Längen in einer Hülse abschnittsweise angeordnet. Die Dipol-Abschnitte sind aus der Hülse über einen Kolben ausstossbar, wobei der Kolben durch eine gasdruckerzeugende Ladung antreibbar ist.From DE-OS 3 015 719, dipole sections of different lengths are arranged in sections in a sleeve. The dipole sections can be ejected from the sleeve via a piston, the piston being drivable by a gas pressure-generating charge.

Durch die GB-PS 834 596 sind durch loses, dünnes Papier gebündelte Abschnitte von Dipolen bekannt, die in einer Hülse aus verstärktem Papier angeordnet sind. Daneben ist bekannt, einen Abschnitt des die Dipole direkt umhüllenden Papieres als Schwanz in der Masse der Dipole - etwa in radialer Richtung - hineinzulegen.GB-PS 834 596 discloses sections of dipoles bundled by loose, thin paper, which are arranged in a sleeve made of reinforced paper. In addition, it is known to insert a section of the paper directly enveloping the dipoles as a tail in the mass of the dipoles, for example in the radial direction.

Bei einer ausserordentlich grossen Anzahl von kreisförmig gebündelten Dipolen ist es schliesslich bekannt, im Innern des Bündels einen Abschnitt der Umhüllung als Schwanz mäanderförmig anzuordnen. Die Masse der Dipole liegt durch den Schwanz in etwa zwei gleich grossen Teilmengen vor. Damit wird zur Bildung einer Wolke die Angriffsfläche für die Luftströmung etwa verdoppelt.In the case of an extraordinarily large number of dipoles bundled in a circle, it is finally known to arrange a section of the sheathing in the form of a tail in the interior of the bundle as a tail. Due to the tail, the mass of the dipoles is present in approximately two equal subsets. This roughly doubles the area of attack for the air flow to form a cloud.

Aus der US-A-3 023 703 ist es bei einer Rakete bekannt, gleich lange Abschnitte von Dipol-Paketen vorzusehen, wobei die Dipole in einer Umhüllung angeordnet und zentripetal vorgespannt sind. Diese Abschnitte werden aus der Rakete radial ausgestossen. Die Umhüllung besteht aus zwei unmittelbar an den Dipolen anliegenden, sich etwas überlappenden Folien und aus einem aufschneidbaren Halteband. Sämtliche Dipol-Abschnitte sind mit den vorbeschriebenen Folien versehen. Beim Ausstoss der Abschnitte öffnen diese zum selben Zeitpunkt, so dass die für eine relativ grosse Dipol-Wolke erforderliche unterschiedlich zeitverzögernde Freigabe der Dipole nicht vorliegt.From US-A-3 023 703 it is known for a rocket to provide sections of dipole packets of equal length, the dipoles being arranged in an envelope and being centripetal biased. These sections are ejected radially from the missile. The sheath consists of two slightly overlapping foils directly adjacent to the dipoles and a holding tape that can be cut open. All dipole sections are provided with the films described above. When the sections are ejected, they open at the same time, so that the time-delayed release of the dipoles required for a relatively large dipole cloud is not present.

Für, in einer Hülse angeordnete Dipol-Abschnitte ist für eine schnelle und grosse Wolkenbildung erforderlich, dass die Dipol-Abschnitte aus der Hülse relativ leicht und rasch ausstossbar sind und nach dem Verlassen der Rohrmündung die einzelnen Dipole sich unabhängig voneinander loslösen, um eine radar-relevante Wolke zu bilden. Neben der Anwendung dieses Effektes im Rettungswesen zur Signalerzeugung ist die Massnahme zur Täuschung von zielsuchenden Radareinrichtungen bei Flugzeugen und Raketen von Bedeutung.For dipole sections arranged in a sleeve, for rapid and large cloud formation, it is necessary that the dipole sections can be ejected relatively easily and quickly and that the individual dipoles separate independently of one another after leaving the pipe mouth in order to achieve a radar to form relevant cloud. In addition to the use of this effect in the emergency services for signal generation, the measure for deceiving target-seeking radar devices in aircraft and missiles is important.

Die Aufgabe der Erfindung besteht darin, eine konstruktiv einfache, kostengünstige Dipol-Anordnung für eine Ausstoss-Hülse zu schaffen, die aus der Hülse in kurzer Zeit ausstossbar ist und nach dem Ausstoss schnell eine grossflächige und homogene Wolke erzeugt.The object of the invention is to provide a structurally simple, inexpensive dipole arrangement for an ejection sleeve, which can be ejected from the sleeve in a short time and quickly generates a large-area and homogeneous cloud after the ejection.

Diese Aufgabe wird durch die erfindungsgemässen Merkmale des kennzeichnenden Teils des Anspruches 1 gelöst.This object is achieved by the features according to the invention of the characterizing part of claim 1.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.Advantageous developments of the invention are specified in the subclaims.

Die Metallfolie gleitet an der hochglanzpolierten Innenfläche der Hülse sehr gut, so dass die zum Ausstoss der Abschnitte aus der Hülse erforderliche Energie relativ klein bemessen werden kann. Andererseits wird bei einer standardisierten Ausstossladung gegenüber dem Stand der Technik erreicht, dass die Ausstossweite der Abschnitte um ca. 30% gesteigert wird. Dies ist beim Ausstoss vom Flugzeug vorteilhaft für den Durchmesser der Wolke und beim erdgebundenen Ausstoss für den Abstand und Höhe der Wolke über dem Ausstossort, da die Abschnitte während der Ablösung der Dipole einen relativ grossen Weg bei hoher Durchschnittsgeschwindigkeit zurücklegen.The metal foil slides very well on the highly polished inner surface of the sleeve, so that the energy required to eject the sections from the sleeve can be measured relatively small. On the other hand, with a standardized discharge charge compared to the prior art, the discharge width of the sections is increased by approx. 30%. This is advantageous for the diameter of the cloud when ejecting from the aircraft and for the distance and height of the cloud above the ejection location for earth-based ejection, since the sections cover a relatively large distance at high average speed during the detachment of the dipoles.

Die in den Abschnitten vorgespannten Dipole wirken als Antriebsfeder für die den Abschnitt umgebende Metallfolie, so dass abhängig von der Windungszahl der Metallfolie eine zeitverzögernde Freigabe der Dipole erreicht wird.The dipoles pretensioned in the sections act as a drive spring for the metal foil surrounding the section, so that a time-delayed release of the dipoles is achieved depending on the number of turns of the metal foil.

Der Abschnitt, der eine geringe Windungszahl aufweist, gibt die Dipole früher ab, als der Abschnitt, der eine grössere Windungszahl aufweist.The section with a low number of turns releases the dipoles earlier than the section with a higher number of turns.

Bei stationär angeordneter Hülse wird bei Windstille in etwa 6 m Höhe eine radar-relevante Wolke mit ca. 4 m Durchmesser, bei Windstärke von 3 m eine Wolke in etwa 4 m Höhe mit 3 m Durchmesser und ca. 40 m Länge erreicht.With the sleeve arranged stationary, a radar-relevant cloud with a diameter of approx. 4 m is reached when there is no wind, at a wind force of 3 m a cloud is approx. 4 m high with a diameter of 3 m and a length of approx. 40 m.

Bei einem Ausstoss der Dipol-Anordnung aus einem Flugzeug wird eine radar-relevante Wolke erreicht, die um ca. 50% grösser ist als die Seitenansichtsfläche eines Flugzeuges, wie F-104G Starfighter. Auch ist der Durchmesser der Wolke grösser als der grösste Querschnitt eines Kampfflugzeuges. Dadurch liegt ein allseitig wirksames Abwehrmittel gegen bodengestützte und luftgestützte Abwehreinrichtungen mit Zielsuch-Radar vor.When the dipole arrangement is ejected from an aircraft, a radar-relevant cloud is reached which is approximately 50% larger than the side view area of an aircraft, such as the F-104G Starfighter. The diameter of the cloud is also larger than the largest cross section of a fighter plane. This provides an all-round repellent against ground-based and air-based defense devices with homing radar.

Nach dem Anspruch 2 wird erreicht, dass der an der Mündung der Hülse liegende Abschnitt eine Umhüllung mit einer Windungszahl von 1,2 bis 0,75 aufweist, der unmittelbar nach dem Ausstoss die Wolkenbildung einleitet. Die Ablenkzeit für das gegnerische Radar ist daher sehr klein, da die vom Radar als Ziel detektierte Wolkenflächen wesentlich früher entsteht als nach dem Stande der Technik. Es genügt bereits eine zu 70% gebildete Wolke, um das Radar vom Flugzeug abzulenken.According to claim 2 it is achieved that the section lying at the mouth of the sleeve has an envelope with a number of turns of 1.2 to 0.75, which initiates cloud formation immediately after the ejection. The deflection time for the opposing radar is therefore very short, since the cloud surface detected by the radar as the target arises much earlier than according to the prior art. A cloud that is 70% formed is sufficient to deflect the radar from the aircraft.

Nach dem Anspruch 3 kann der an der Mündung der Hülse angeordnete Abschnitt ohne Umhüllung sein, um das Entstehen der Wolke auch bezüglich ihrer radar-relevanten Intensitäten zu steigern.According to claim 3, the section arranged at the mouth of the sleeve can be without a cover in order to increase the formation of the cloud with respect to its radar-relevant intensities.

Durch den Anspruch 4 wird in einfacher Weise ein Frequenzspektrum abgedeckt, das pro Flächeneinheit der fertigen Wolke gleichmässig vorhanden ist. Massgebend ist hierbei: Die Schnittlänge wird so gewählt, dass die der höchsten Frequenz zugeordneten Dipole etwa einen Quadratmeter der fertigen Wolke radar-relevant bedecken. Diejenigen Dipole eines Abschnittes, die für sich gesehen in ihrer Anzahl nicht ausreichen, einen Quadratmeter der fertigen Wolke abzudekken, werden durch entsprechende Dipole anderer Abschnitte ergänzt, um die vorgenannte Bedingung zu erfüllen. Es wird eine gute Verteilung der Dipole sowohl in Längsrichtung der Wolke als auch in Querrichtung dazu erreicht, indem die unterschiedlich langen Dipole durch Verwirbelung die Struktur in der Art eines Netzes bilden.Claim 4 covers in a simple manner a frequency spectrum which is evenly present per unit area of the finished cloud. The decisive factor here is that the cutting length is selected so that the dipoles assigned to the highest frequency cover about one square meter of the finished cloud in a radar-relevant manner. Those dipoles of a section that not enough in themselves to cover one square meter of the finished cloud, are supplemented by corresponding dipoles of other sections to meet the above condition. A good distribution of the dipoles both in the longitudinal direction of the cloud and in the transverse direction is achieved in that the dipoles of different lengths form the structure in the manner of a network by swirling.

Nach dem Anspruch 5 ist gewährleistet, dass neben der geringen Reibung beim Ausstoss der Abschnitte aus der Hülse das Abwickeln der Metallfolie von den gebündelten Dipolen durch die geringe Reibung zwischen den Windungen der Folie bzw. den Dipolen und der Folie rasch erfolgt. Eine Nestbildung durch in grosser Zahl zusammenhaftende Dipole wird dadurch sicher vermieden.According to claim 5, it is ensured that, in addition to the low friction when the sections are ejected from the sleeve, the unwinding of the metal foil from the bundled dipoles takes place rapidly due to the low friction between the turns of the foil or the dipoles and the foil. Nest formation due to dipoles sticking together in large numbers is thereby reliably avoided.

Eine kostengünstige Metallfolie ist dem Anspruch 6 zu entnehmen.An inexpensive metal foil can be found in claim 6.

Die pro Abschnitt einstückige Metallfolie nach Anspruch 7 gewährleistet, dass nach dem Ausstoss aus der Hülse - aufgrund der radial sich ausdehnenden Dipole-die nur plastisch verformbare Metallfolie nur ihren Wickelradius zu vergrössern braucht bis die Windungszahl < 1 erreicht ist und ein genügend grosser Abstand (Fenster) zwischen den beiden Enden der Folie erreicht ist. Aufgrund dieses Fensters werden durch die Luftströmung Dipole aus dem Abschnitt (Paket) abgelöst und andererseits die Folie selbst von dem Paket entfernt. Dadurch kann das Paket durch die noch im Paket vorhandene Spannkraft und durch die ausströmende Luft sich ungehindert zu einer Teilwolke entfalten. Die Anzahl der Teilwolken von minimal 10 Stück und maximal etwa 25 Stück ergeben dann durch Überschneidungen die eigentliche Wolke.The one-piece metal foil according to claim 7 ensures that after ejection from the sleeve - due to the radially expanding dipoles - the only plastically deformable metal foil only needs to increase its winding radius until the number of turns <1 and a sufficiently large distance (window ) is reached between the two ends of the film. Because of this window, dipoles are detached from the section (package) by the air flow and, on the other hand, the film itself is removed from the package. As a result, the parcel can unfold unhindered into a partial cloud due to the clamping force still present in the parcel and the air flowing out. The number of partial clouds of a minimum of 10 pieces and a maximum of approximately 25 pieces then results in the actual cloud by overlapping.

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt. Es zeigt:

  • Fig. 1 ein Flugzeug und aus separaten Dipol-Anordnungen gebildete Wolken,
  • Fig. 2 eine Dipol-Anordnung mit Hülse,
  • Fig. 3 eine Einzelheit 111 nach Fig. 2,
  • Fig. 4 eine weitere Dipol-Anordnung mit Hülse,
  • Fig. 5 eine Einzelheit V nach Fig. 4,
  • Fig. 6 einen einzelnen Dipol-Abschnitt.
Embodiments of the invention are shown in the drawing. It shows:
  • 1 shows an aircraft and clouds formed from separate dipole arrangements,
  • 2 shows a dipole arrangement with a sleeve,
  • 3 shows a detail 111 according to FIG. 2,
  • 4 shows a further dipole arrangement with a sleeve,
  • 5 shows a detail V according to FIG. 4,
  • Fig. 6 shows a single dipole section.

Nach Fig. 1 ist ein Radar-Raster eines gegnerischen Radars mit den Rastlinien 1 bis 4 vorgegeben. Die Rasterweite 5 beträgt ca. 21 m. Zwischen den Rastlinien 1 und 2 befindet sich ein Flugzeug 6, das entsprechend dem Pfeil 7 in zwei Intervallen Dipole 10 bis 12 ausgestossen hat, dadurch wurden die zwischen den Rastlinien 2 bis 4 liegenden, radar-relevanten Wolken 8, 9 gebildet. Vergleicht man die Flächen von Flugzeug 6 und Wolke 8 bzw. 9, so ist die Wolke 8 bzw. 9 ca. 30% grösser als die dargestellte Fläche des Flugzeuges.1, a radar grid of an opposing radar with the stop lines 1 to 4 is specified. The grid 5 is approx. 21 m. Between the rest lines 1 and 2 there is an aircraft 6, which has emitted dipoles 10 to 12 at two intervals in accordance with the arrow 7, thereby forming the radar-relevant clouds 8, 9 lying between the rest lines 2 to 4. Comparing the areas of aircraft 6 and cloud 8 or 9, cloud 8 or 9 is approximately 30% larger than the area of the aircraft shown.

Die Rastlinien 1 bis 4 entsprechen bei einem vorgegebenen Zielabstand einem üblichen Radar mit einer Impulsbreite von 200 µs. Die Geschwindigkeit des Flugzeuges beträgt dabei 300 m/s. Die Ausstossfolge von Dipol-Anordnungen beträgt 100 m/s.The stop lines 1 to 4 correspond to a conventional radar with a pulse width of 200 µs at a predetermined target distance. The speed of the aircraft is 300 m / s. The output sequence of dipole arrangements is 100 m / s.

Nach Fig. 2 besteht eine Dipol-Anordnung 13 aus einer Hülse 14 mit quadratischem Innenquerschnitt, Dipol-Abschnitten 15 bis 24, einem Kolben 25 und einem Deckel 26. Die Innenflächen 27 der Hülse 14 sind hochglanzpoliert. Die einzelnen Dipole 10 bis 12 bestehen üblicherweise aus aluminiumummantelten Glasfäden. Diese Glasfäden liegen strangförmig in Längsrichtung der Hülse 14, die Länge der Dipole 10 bis 12 entspricht der Länge der einzelnen Abschnitte 15 bis 24.2, a dipole arrangement 13 consists of a sleeve 14 with a square inner cross section, dipole sections 15 to 24, a piston 25 and a cover 26. The inner surfaces 27 of the sleeve 14 are highly polished. The individual dipoles 10 to 12 usually consist of aluminum-coated glass threads. These glass threads are stranded in the longitudinal direction of the sleeve 14, the length of the dipoles 10 to 12 corresponds to the length of the individual sections 15 to 24.

Entsprechend dem, über der Hülse 14 aufgezeichneten Diagramm sind an der Ordinate 28 die Windungszahlen für eine Umhüllung aus dünner, beidseitiger glatter (polierter) Aluminium-Folie mit einer Dicke von ca. 0,1 mm aufgetragen.In accordance with the diagram plotted over the sleeve 14, the number of turns for a covering made of thin, double-sided smooth (polished) aluminum foil with a thickness of approximately 0.1 mm are plotted on the ordinate 28.

Eine durch Erfahrungswerte ermittelte Kurve 40 erlaubt die Windungszahlen der Folien 31 bis 39 für jeden einzelnen Dipol-Abschnitt 16 bis 24 festzulegen. So ist die Windungszahl für den Dipol-Abschnitt 16 = 1,2, für den Abschnitt 24 = 4,2 und für den Abschnitt 21 = 2,6 (Fig. 3). Der Abschnitt 15 an der Mündung 45 der Hülse 14 besitzt keine Umhüllung. Hier sind die Dipole 10 als Paket-Abschnitt 15 «nackt» in der Hülse 14 angeordnet.A curve 40 determined by empirical values allows the number of turns of the foils 31 to 39 to be determined for each individual dipole section 16 to 24. Thus the number of turns for the dipole section 16 = 1.2, for the section 24 = 4.2 and for the section 21 = 2.6 (FIG. 3). The section 15 at the mouth 45 of the sleeve 14 has no casing. Here, the dipoles 10 are arranged as a package section 15 “naked” in the sleeve 14.

Nach Fig. 3 ist ersichtlich, wie bei einer Windungszahl der Folie 36 = 2,6 der Anfang 41 der Folie 35 versetzt zum Ende 42 liegt. Die Folie 36 ist aus der Fig. 2 herausgelöst und der besseren Darstellung wegen mit Abstand zwischen den Windungen gezeichnet. In Wirklichkeit liegen die Windungen der Folie 36 dicht aneinander. Der Anpressdruck zwischen den Windungen der Folie wird durch die beim Einführen der einzelnen Dipol-Abschnitte 16 bis 24 in die Hülse 14 erreicht. Denn die Abschnitte 16 bis 24 weisen vor dem Einführen in die Hülse 14 in Umfangsrichtung grössere Abmessungen auf, als der Innenquerschnitt der Hülse 14. Zum Einführen der Abschnitte 16 bis 24 in die Hülse werden daher die bereits fertigumwickelten Abschnitte 16 bis 24 über eine geeignete Vorrichtung in die Hülse 14 eingepresst. Der Abschnitt 15 wird als letztes Teil der Abschnitte 16 bis 24 in die Hülse eingepresst, so dass auch deren Dipole 10 zentripetal vorgespannt sind.3 shows how the start 41 of the film 35 is offset from the end 42 when the number of turns of the film 36 = 2.6. The film 36 is detached from FIG. 2 and is drawn at a distance between the turns for the sake of better illustration. In reality, the turns of the film 36 are close together. The contact pressure between the windings of the film is achieved by inserting the individual dipole sections 16 to 24 into the sleeve 14. This is because the sections 16 to 24 have larger dimensions in the circumferential direction before insertion into the sleeve 14 than the inner cross section of the sleeve 14. To insert the sections 16 to 24 into the sleeve, the sections 16 to 24 which have already been wrapped are therefore made using a suitable device pressed into the sleeve 14. The section 15 is pressed as the last part of the sections 16 to 24 into the sleeve, so that their dipoles 10 are also biased centripetal.

Die Wirkungsweise des Geräts nach den Fig. 2 und 3 besteht darin, dass der in Richtung der Mündung 45 angetriebene Kolben 25 über die Abschnitte 16 bis 24 den Deckel 26 von der Mündung 45 abhebt. Dann wird zuerst der «nackte» Abschnitt 15 ausgeworfen. Die zentripetal vorgespannten Dipole 10 streben in radialer Richtung auseinander und werden, nachdem sie die Mündung 45 verlassen haben, durch die anströmende Luft verwirbelt.The mode of operation of the device according to FIGS. 2 and 3 is that the piston 25, which is driven in the direction of the mouth 45, lifts the cover 26 from the mouth 45 via the sections 16 to 24. Then the "naked" section 15 is ejected first. The centripetal-biased dipoles 10 diverge in the radial direction and, after they have left the mouth 45, are swirled by the inflowing air.

Dieser Vorgang wiederholt sich bei den folgenden Abschnitten 16 bis 24, wobei entsprechend der verschiedenen Windungszahlen der Metallfolien der Abschnitte 16 bis 24 der Verwirbelungsbeginn zeitlich verzögert wird.This process is repeated in the following sections 16 to 24, the start of the swirling being delayed in accordance with the different number of turns of the metal foils in the sections 16 to 24.

Beim Abschnitt 16 mit Windungszahl = 1,2 wirken die zusammengepressten Dipole 10 als Federelement. Dieses Federelement wirkt in radialer Richtung indem sich der Dipol-Verband radial ausdehnt. Dadurch wirken sie auf die Metallfolie 31 ein und verkleinern die Windungszahl, bis die Metallfolie 31 umfangseitig die Dipole freigibt. Dann erst beginnt die Verwirbelung der Dipole 10 durch die angreifende Luftströmung. Dabei wird auch die aufgewundene Metallfolie 31 von den Dipolen entfernt.In section 16 with a number of turns = 1.2, the compressed dipoles 10 act as a spring element. This spring element acts in the radial direction in that the dipole assembly expands radially. As a result, they act on the metal foil 31 and reduce the number of turns until the metal foil 31 releases the dipoles on the circumference. Only then does the swirling of the dipoles 10 by the attacking air flow begin. The wound metal foil 31 is also removed from the dipoles.

Durch die in Richtung des Kolbens 25 zunehmende Windungszahl der Metallfolien 31 bis 39 wird eine entsprechend zunehmende Verzögerung für den Verwirbelungsbeginn der Dipole 10 erreicht. Dies führt entsprechend der Fig. zu einer langgestreckten Dipol-Wolke 8 bzw. 9, die nach Durchmesser 100, Höhe 110 und Länge 120 wesentlich grösser ist, als die entsprechenden Masse des Flugzeuges 6.Due to the increasing number of turns of the metal foils 31 to 39 in the direction of the piston 25, a correspondingly increasing delay for the start of swirling of the dipoles 10 is achieved. According to the FIG., This leads to an elongated dipole cloud 8 or 9, which is considerably larger in diameter 100, height 110 and length 120 than the corresponding mass of the aircraft 6.

Die gemäss dem geforderten Frequenzband unterschiedlich ausgebildeten langen Dipol-Abschnitte 15 bis 24, die in der Hülse 14 etwa intervallweise angeordnet sind, wird erreicht, dass die Wolke 8 bzw. 9 mit jeder Flächeneinheit das geforderte Frequenzspektrum aufweist.The long dipole sections 15 to 24, which are designed differently in accordance with the required frequency band and are arranged approximately at intervals in the sleeve 14, ensure that the cloud 8 or 9 has the required frequency spectrum with each surface unit.

Nach Fig. 4 sind Dipol-Abschnitte 46 bis 52 einer Dipol-Anordnung 44 als gleich lange Pakete ausgebildet. Der an der Mündung 45 der Hülse 14 liegende Abschnitt 46 ist entsprechend der Windungszahl = 0,75 mit Metallfolie 56 nur teilweise umwickelt. Dies bedeutet, dass 25% der Paketoberfläche direkt an der Innenfläche 27 der Hülse 14 anliegen, während 75% der Oberfläche von der Metallfolie 56 umfasst sind.4, dipole sections 46 to 52 of a dipole arrangement 44 are configured as packets of the same length. The section 46 lying at the mouth 45 of the sleeve 14 is only partially wrapped with metal foil 56 in accordance with the number of turns = 0.75. This means that 25% of the package surface lies directly against the inner surface 27 of the sleeve 14, while 75% of the surface is covered by the metal foil 56.

Um ein gefordertes Frequenzspektrum zu erreichen, sind die Dipol-Abschnitte 47, 49, 51 - mit in Längsrichtung der Hülse 14 liegenden Dipolen - quer zur Längsachse der Hülse 14 eingeschnitten (Schnittlinie 54). Der Schnitt (Schnittiefe 53) durch die Metallfolie und die Dipole ist so ausgeführt, dass die Dipole 12 (jedes Abschnittes 47, 49, 51) mit der kürzesten Länge (Teilmenge 65) bezüglich ihrer Zahl etwa einen Quadratmeter Wolkenfläche radar-relevant abdecken.In order to achieve a required frequency spectrum, the dipole sections 47, 49, 51 - with dipoles lying in the longitudinal direction of the sleeve 14 - are cut transversely to the longitudinal axis of the sleeve 14 (section line 54). The cut (depth of cut 53) through the metal foil and the dipoles is carried out in such a way that the dipoles 12 (each section 47, 49, 51) with the shortest length (subset 65) cover about one square meter of cloud surface with regard to radar in terms of their number.

Damit ist auch gewährleistet, dass die in gleicher Anzahl vorhandenen Dipole 11 (Teilmenge 66) die vorgenannte Bedingung erfüllen. Die restliche Teilmenge 67 der Dipole 10 ergibt zwar - für sich gesehen - keine relevante Radarfläche von einem Quadratmeter. Diese Teilmenge 67 wird jedoch durch die benachbarten Dipole 10 der Abschnitte 48 und 50 ergänzt.This also ensures that the same number of dipoles 11 (subset 66) meet the aforementioned condition. The remaining subset 67 of the dipoles 10 does not - seen by itself - result in a relevant radar area of one square meter. However, this subset 67 is supplemented by the adjacent dipoles 10 of sections 48 and 50.

Nach Fig. 5 ist die Schnittiefe mit 53 und die Schnittlinie mit 54 bezeichnet. Der Schnitt wird mittels einer geeigneten Vorrichtung vor dem Einfüllen der Abschnitte 46 bis 52 in die Hülse 14 durch die umhüllende Metallfolie und die betreffenden Dipole durchgeführt. Die nicht geschnittenen Dipole 10 ergeben dann die Teilmenge 67. Die im Oberteil der Fig. 4 angegebene Kurve 70 ist analog zu Fig. festgelegt. Die Kurve 70 gibt die Anzahl der Windungen der Metallfolie in Bezug der jeweiligen Abschnitte 46 bis 52 an.5, the depth of cut is designated 53 and the cut line 54. The cut is carried out by means of a suitable device before the sections 46 to 52 are filled into the sleeve 14 through the enveloping metal foil and the relevant dipoles. The non-cut dipoles 10 then result in the subset 67. The curve 70 indicated in the upper part of FIG. 4 is defined analogously to FIG. The curve 70 indicates the number of turns of the metal foil in relation to the respective sections 46 to 52.

Die Wirkungsweise der Dipol-Anordnung nach Fig. 4 entspricht der zu den Figuren 3 und 4 geschilderten Funktion.The mode of operation of the dipole arrangement according to FIG. 4 corresponds to the function described for FIGS. 3 and 4.

Durch die Teilumwicklung, Windungszahl = 0,75 des Abschnittes 46 wird nach dessen Ausstoss in Pfeilrichtung 7 (Fig. 1) zwar in gleicher Weise wie zu Fig. 2 beschrieben, die Verwirbelung der Dipole sofort begonnen, jedoch nur an der von der Folie 56 nicht bedeckten Oberfläche. Erst nachdem die Folie 56 abgelöst ist, ist die vollständige Auflösung des Abschnittes 46 möglich. Die Verwirbelung der Dipole 10 wird daher durch die Metallfolie 56 zeitlich gestreckt.Due to the partial wrapping, number of turns = 0.75 of section 46, after it has been ejected in the direction of arrow 7 (FIG. 1) in the same way as described in FIG. 2, the swirling of the dipoles begins immediately, but only on that of film 56 uncovered surface. Only after the film 56 has been removed is the complete dissolution of the section 46 possible. The swirling of the dipoles 10 is therefore stretched in time by the metal foil 56.

Bei den Abschnitten 47, 49 und 51, bei denen jeder Abschnitt Dipole 10 bis 12 verschiedener Längen aufweist, wird nach dem Ausstoss aus der Hülse 14 aufgrund des Radialdruckes der Dipole 10 bis 12 die Metallfolie bis zu einer Windungszahl < 1 aufgezogen und zwar soweit, bis die anströmende Luft die Folie gelöst hat und die Dipole herauslöst und verteilt.In sections 47, 49 and 51, in which each section has dipoles 10 to 12 of different lengths, the metal foil is pulled up to a number of turns <1 after ejection from sleeve 14 due to the radial pressure of dipoles 10 to 12, to the extent that until the inflowing air has loosened the film and loosens and distributes the dipoles.

Bei einer Hülse mit quadratischem Innenquerschnitt, deren innere Kantenlänge 22 mm beträgt und die in Achsrichtung auf eine Länge von ca. 180 mm mit den beschriebenen Dipol-Abschnitten versehen ist und wobei pro Abschnitt ca. 400 000 Dipole vorhanden sind, wurde mit einer einzigen Dipol-Anordnung beim Ausstoss von einem Flugzeug mit Fluggeschwindigkeit von V = 300 m/s eine radar-relevante Wolke mit maximalen Abmessungen von ca. 16 m Länge, 4,5 m Höhe und 4,5 m Durchmesser erreicht.In the case of a sleeve with a square inner cross section, the inner edge length of which is 22 mm and which is provided with the described dipole sections in the axial direction over a length of approximately 180 mm and with approximately 400,000 dipoles per section, a single dipole was used - Arranging a radar-relevant cloud with maximum dimensions of approx. 16 m in length, 4.5 m in height and 4.5 m in diameter when ejecting an aircraft with a flight speed of V = 300 m / s.

Bei den Anordnungen nach den Figuren 2 bis 5 liegen die Dipole 10 bis 12 sämtlicher Abschnitte in Achsrichtung der Hülse 14. Daneben ist es bei sämtlichen Abschnitten, mit Ausnahme der Abschnitte 47, 49 und 51, auch möglich, die Dipole der Abschnitte quer zur Längsrichtung der Hülse 14 anzuordnen. Weiter kann anstelle des quadratischen Innenquerschnittes der Hülse 14 auch ein kreisförmiger Querschnitt verwendet werden.In the arrangements according to FIGS. 2 to 5, the dipoles 10 to 12 of all sections lie in the axial direction of the sleeve 14. In addition, with all sections, with the exception of sections 47, 49 and 51, the dipoles of the sections are transverse to the longitudinal direction to arrange the sleeve 14. Furthermore, a circular cross-section can also be used instead of the square inner cross-section of the sleeve 14.

Sämtliche Abschnitte 15 bis 24 und 46 bis 52 enthalten als «Federelemente» wirkende Dipole 10 bzw. 10, 11, 12.All sections 15 to 24 and 46 to 52 contain dipoles 10 and 10, 11, 12 which act as “spring elements”.

Nach Fig. 6 weist ein Dipol-Abschnitt 70 Dipole 10 und eine Metallfolie 71 auf. Die Folie 71 ist mit einer einstückigen Luftbremse 72 versehen. Die Luftbremse 72 besteht aus zwei Bremsflächen 73, 74. Die Bremsflächen sind durch Kanten 75, 76 der Folie 71 bestimmt.6, a dipole section 70 has dipoles 10 and a metal foil 71. The film 71 is provided with an integral air brake 72. The air brake 72 consists of two braking surfaces 73, 74. The braking surfaces are determined by edges 75, 76 of the film 71.

Die Luftbremse 72 liegt in der Hülse 14 entsprechend gefaltet, so dass sie nach dem Ausstoss durch die in Pfeilrichtung 77 strömende Luft den Abwickelvorgang der Folie 71 von dem Abschnitt 70 unterstützt. Wesentlicher Gedanke dieser Lösung ist, dass durch das zweimal geknickte Ende der Folie 71 eine sehr wirksame Luftbremse geschaffen wird.The air brake 72 is folded in the sleeve 14 accordingly, so that it supports the unwinding of the film 71 from the section 70 after the ejection by the air flowing in the direction of arrow 77. The essential idea of this solution is that the twice-bent end of the film 71 creates a very effective air brake.

Es wird der Beginn des Abwickelvorgangs beschleunigt. Die Zeitdauer des Abwickelvorgangs wird jedoch nicht wesentlich beschleunigt, da ein freies Folienende ähnlich einer «Fahne» aufgrund der Luftwirbel bereits als Bremse wirkt. Diese Luftbremse 72 ist platzsparend und beeinflusst daher nicht die Anzahl der Dipole 10 des Abschnittes 70.The start of the unwinding process is accelerated. The duration of the unwinding process is not significantly accelerated, however, since a free film end, similar to a “flag”, already acts as a brake due to the air vortex. This air brake 72 saves space and therefore does not influence the number of dipoles 10 in section 70.

Die vorbeschriebene Massnahme ist auch bei den eingeschnittenen Abschnitten 47, 49, 51 einsetzbar.The measure described above can also be used for the incised sections 47, 49, 51.

Claims (8)

1. Apparatus for the distribution of dipoles which are arranged ejectably in an ejection sleeve (14) in the form of several portions (15-24, 46-52), in which respect the individual portions consist respectively of bunched, and centripetally biassed dipoles in a sheathing (36), characterised in that the portions (15-24; 46-52) are of different length and the sheathing thereof consists of thin metal foil (31-39; 56-62) which is smooth on both sides, the number of turns of which decreases considered in the ejection direction and the sleeve (14) is provided with a polished inner surface and an ejection mouth (45).
2. Apparatus according to Claim 1, characterised in that the numbers of turns of the sheath- ings amount to 4.2-1.2, or respectively 4.5 up to 0.75.
3. Apparatus according to claim 1, characterised in that a portion (15) without a sheathing, but with centripetally biassed dipoles (10) is arranged at the mouth (45) of the sleeve (14) and portions (16-24) having a sheathing (31-39) lie subsequently.
4. Apparatus according to claims 1 and 2, characterised in that in accordance with the predetermined frequency spectrum, in the portions (47-52) with dipoles (10) of the same length, by incisions (54) transversely to the longitudinal axis of the sleeve (14), beside dipoles of the same length also dipoles (11, 12) of different length are contained; and the depth of cut (53) is dependent upon the required number of the dipoles for the highest frequency surface-area unit.
5. Apparatus according to claim 1, characterised in that the metal foil (31-39; 56-62) is only plastically deformable and has mirror-finished surfaces on both sides.
6. Apparatus according to claim 1, characterised in that the metal foil (31-39) consists of aluminium and is about 0.1 mm thick.
7. Apparatus according to claim 1, characterised in that the metal foil per portion (16-24; 46-52) is in one piece.
8. Apparatus according to claim 1, characterised in that an air brake (72) through two edges (75, 76) lying transversely to the winding direction (77) is provided at the free end (42) of the metal foil (71).
EP83105651A 1982-06-16 1983-06-09 Chaff dispensing device Expired EP0096847B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823222584 DE3222584A1 (en) 1982-06-16 1982-06-16 DIPOL ARRANGEMENT IN A SLEEVE
DE3222584 1982-06-16

Publications (3)

Publication Number Publication Date
EP0096847A2 EP0096847A2 (en) 1983-12-28
EP0096847A3 EP0096847A3 (en) 1986-03-12
EP0096847B1 true EP0096847B1 (en) 1989-02-08

Family

ID=6166176

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83105651A Expired EP0096847B1 (en) 1982-06-16 1983-06-09 Chaff dispensing device

Country Status (7)

Country Link
US (1) US4630055A (en)
EP (1) EP0096847B1 (en)
DE (2) DE3222584A1 (en)
DK (1) DK278183A (en)
GB (1) GB2124740B (en)
IL (1) IL69005A (en)
NO (1) NO162138C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809692B2 (en) 2000-04-19 2004-10-26 Advanced Automotive Antennas, S.L. Advanced multilevel antenna for motor vehicles
US7920097B2 (en) 2001-10-16 2011-04-05 Fractus, S.A. Multiband antenna
US7932870B2 (en) 1999-10-26 2011-04-26 Fractus, S.A. Interlaced multiband antenna arrays
US8009111B2 (en) 1999-09-20 2011-08-30 Fractus, S.A. Multilevel antennae
US8207893B2 (en) 2000-01-19 2012-06-26 Fractus, S.A. Space-filling miniature antennas
US9099773B2 (en) 2006-07-18 2015-08-04 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2924798A1 (en) * 1997-10-09 2009-06-12 Lacroix Soc E Metallized or metallic chaff container-dispenser device for deception of weapon guidance system, has confinement band wound around packet of chaffs, where band has free end provided with ballast, and tape spirally wound in mass of chaffs
US9755314B2 (en) 2001-10-16 2017-09-05 Fractus S.A. Loaded antenna
ES2190749B1 (en) 2001-11-30 2004-06-16 Fractus, S.A "CHAFF" MULTINIVEL AND / OR "SPACE-FILLING" DISPERSORS, AGAINST RADAR.
FR2991666B1 (en) * 2012-06-07 2015-02-27 Mbda France METHOD, DEVICE AND SYSTEM FOR SINKING FOR THE PROTECTION OF AN AIRCRAFT

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3023703A (en) * 1955-08-24 1962-03-06 Beatty John William Chaff dispensing device
GB834596A (en) * 1957-01-14 1960-05-11 Chemring Ltd Improvements in and relating to radar responsive means
US3500409A (en) * 1963-02-05 1970-03-10 Us Air Force Means for packaging and dispensing chaff
GB1598423A (en) * 1967-11-03 1981-09-23 Gen Dynamics Corp Decoy round
GB1302872A (en) * 1969-06-12 1973-01-10 Schermuly Ltd
US3765336A (en) * 1972-01-28 1973-10-16 Us Navy Chaff bullet
GB1434034A (en) * 1972-07-11 1976-04-28 Bender Ltd F Method and equipment for forming a single cloud of radar reflecting chaff within the atmosphere
FR2427573B1 (en) * 1978-05-30 1985-12-13 Lacroix Tous Artifices E ALARM DEVICE WITH PYROTECHNIC ACTUATION AND MANUAL TRIGGERING, PARTICULARLY BY ELECTROMAGNETIC LURES
US4195571A (en) * 1979-04-02 1980-04-01 The United States Of America As Represented By The Secretary Of The Army Modular wheel dispenser
DE3015719C2 (en) * 1980-04-24 1984-03-01 Diehl GmbH & Co, 8500 Nürnberg Chaff cartridge for aircraft self-protection
EP0055139A1 (en) * 1980-12-23 1982-06-30 Wallop Industries Ltd Chaff rocket

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9240632B2 (en) 1999-09-20 2016-01-19 Fractus, S.A. Multilevel antennae
US9362617B2 (en) 1999-09-20 2016-06-07 Fractus, S.A. Multilevel antennae
US8009111B2 (en) 1999-09-20 2011-08-30 Fractus, S.A. Multilevel antennae
US8154462B2 (en) 1999-09-20 2012-04-10 Fractus, S.A. Multilevel antennae
US8154463B2 (en) 1999-09-20 2012-04-10 Fractus, S.A. Multilevel antennae
US9054421B2 (en) 1999-09-20 2015-06-09 Fractus, S.A. Multilevel antennae
US9000985B2 (en) 1999-09-20 2015-04-07 Fractus, S.A. Multilevel antennae
US8330659B2 (en) 1999-09-20 2012-12-11 Fractus, S.A. Multilevel antennae
US8976069B2 (en) 1999-09-20 2015-03-10 Fractus, S.A. Multilevel antennae
US8941541B2 (en) 1999-09-20 2015-01-27 Fractus, S.A. Multilevel antennae
US7932870B2 (en) 1999-10-26 2011-04-26 Fractus, S.A. Interlaced multiband antenna arrays
US8896493B2 (en) 1999-10-26 2014-11-25 Fractus, S.A. Interlaced multiband antenna arrays
US8228256B2 (en) 1999-10-26 2012-07-24 Fractus, S.A. Interlaced multiband antenna arrays
US8207893B2 (en) 2000-01-19 2012-06-26 Fractus, S.A. Space-filling miniature antennas
US8610627B2 (en) 2000-01-19 2013-12-17 Fractus, S.A. Space-filling miniature antennas
US8558741B2 (en) 2000-01-19 2013-10-15 Fractus, S.A. Space-filling miniature antennas
US8471772B2 (en) 2000-01-19 2013-06-25 Fractus, S.A. Space-filling miniature antennas
US8212726B2 (en) 2000-01-19 2012-07-03 Fractus, Sa Space-filling miniature antennas
US9331382B2 (en) 2000-01-19 2016-05-03 Fractus, S.A. Space-filling miniature antennas
US6809692B2 (en) 2000-04-19 2004-10-26 Advanced Automotive Antennas, S.L. Advanced multilevel antenna for motor vehicles
US8723742B2 (en) 2001-10-16 2014-05-13 Fractus, S.A. Multiband antenna
US8228245B2 (en) 2001-10-16 2012-07-24 Fractus, S.A. Multiband antenna
US7920097B2 (en) 2001-10-16 2011-04-05 Fractus, S.A. Multiband antenna
US9099773B2 (en) 2006-07-18 2015-08-04 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices

Also Published As

Publication number Publication date
NO162138B (en) 1989-07-31
EP0096847A2 (en) 1983-12-28
NO831897L (en) 1983-12-19
EP0096847A3 (en) 1986-03-12
US4630055A (en) 1986-12-16
IL69005A (en) 1987-03-31
DK278183A (en) 1983-12-17
DE3379188D1 (en) 1989-03-16
DK278183D0 (en) 1983-06-16
DE3222584A1 (en) 1983-12-22
NO162138C (en) 1989-11-08
GB2124740A (en) 1984-02-22
GB2124740B (en) 1985-12-11

Similar Documents

Publication Publication Date Title
DE2936554C2 (en) Device for distributing interfering material particles
EP0096847B1 (en) Chaff dispensing device
EP0806623A1 (en) Spin stabilised carrier projectile
DE4419788C2 (en) Device for non-lethal combat against aircraft
DE3608107C1 (en) Carrier projectile for submunition
DE1204974B (en) Control wire winding of a rocket projectile controlled from the ground
DE3327043A1 (en) Device for scattering electromagnetic decoy material, particularly from a rocket
EP0069949A1 (en) Projectile assembly for a barrel-type weapon
DE4303076A1 (en) Missile
DE2936861A1 (en) CARTRIDGE FOR SPREADING ELECTROMAGNETIC SPARKLING TARGETS, IN PARTICULAR FROM AN AIRCRAFT
EP0355257A1 (en) Ammunition cluster
DE2150517A1 (en) Target missiles, especially for the training of air defense troops
DE1808779A1 (en) Wing stabilized sub-caliber bullet
DE2330045A1 (en) MISSILE FOR FIRE AND PROPERTY REFLECTIVE MATERIAL
DE2554600C1 (en) Balancing bullet
DE2321746C3 (en) Sabot bullet with wings attached to pivoting supports
DE3116347C2 (en) Canister for doubling
DE1019184B (en) Wire unwinding device for remote control of missiles
DE2757764C2 (en)
DE1942440C3 (en) Tail pipe with fold-out guide surfaces to create a stable trajectory for projectiles without twist
DE1958355A1 (en) Missile system
AT158405B (en) High performance stage rocket.
DE2435523A1 (en) Damping arrangement for recoilless barrel - has radial packed strips for decelerating blast of propellant charge
AT375462B (en) SPLIT DATES
EP0001790A1 (en) Wire tension device, in particular for winding machines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE FR LI NL SE

17P Request for examination filed

Effective date: 19860224

17Q First examination report despatched

Effective date: 19870728

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR LI NL SE

REF Corresponds to:

Ref document number: 3379188

Country of ref document: DE

Date of ref document: 19890316

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890627

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890630

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900630

Ref country code: CH

Effective date: 19900630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910530

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930226

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EAL Se: european patent in force in sweden

Ref document number: 83105651.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980430

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980630

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980827

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

BERE Be: lapsed

Owner name: DIEHL STIFTUNG & CO.

Effective date: 19990630

EUG Se: european patent has lapsed

Ref document number: 83105651.0

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000503