EP0111116A2 - Plasma torch having a conical electrode and a nozzle, the inner surface of which is at least in part conical - Google Patents

Plasma torch having a conical electrode and a nozzle, the inner surface of which is at least in part conical Download PDF

Info

Publication number
EP0111116A2
EP0111116A2 EP83110451A EP83110451A EP0111116A2 EP 0111116 A2 EP0111116 A2 EP 0111116A2 EP 83110451 A EP83110451 A EP 83110451A EP 83110451 A EP83110451 A EP 83110451A EP 0111116 A2 EP0111116 A2 EP 0111116A2
Authority
EP
European Patent Office
Prior art keywords
electrode
nozzle
plasma torch
arc
torch according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83110451A
Other languages
German (de)
French (fr)
Other versions
EP0111116A3 (en
EP0111116B1 (en
Inventor
Hans Josef Dr. Bebber
Heinrich-Otto Rossner
Gebhard Tomalla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Fried Krupp AG
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fried Krupp AG, Mannesmann AG filed Critical Fried Krupp AG
Priority to AT83110451T priority Critical patent/ATE46419T1/en
Publication of EP0111116A2 publication Critical patent/EP0111116A2/en
Publication of EP0111116A3 publication Critical patent/EP0111116A3/en
Application granted granted Critical
Publication of EP0111116B1 publication Critical patent/EP0111116B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3436Hollow cathodes with internal coolant flow
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3478Geometrical details

Definitions

  • the application relates to a method for introducing ionizable gas into a plasma of an arc burner, which is equipped with an optionally liquid-cooled electrode, which is located within a nozzle that conducts an ionizable gas into the arc, possibly also liquid-cooled, with a narrowed outlet, in which the electrode tip protrudes and a plasma torch to carry out the method.
  • Plasma torches of this type are known per se.
  • the durability of the electrodes and nozzles is particularly important in their operation.
  • the problems associated with this come to the fore wherever longer arc lengths of sometimes far more than 200 mm have to be used and where the atmosphere surrounding the torch contains gases that chemically, e.g. B. can attack by oxidation.
  • Such difficult conditions occur very often, for example, when operating metal melting furnaces with plasma torches.
  • the object is achieved by a method in which the ionizable gas is introduced into the plasma of the arc burner at an acute angle.
  • the acute angle is formed by the gas jet and the longitudinal axis of the plasma torch and is 6 to 40 °, preferably 12 °.
  • a plasma torch is used to carry out this method, which has an electrode which tapers conically towards the arc side and which is enclosed by the inner jacket of the nozzle.
  • the jacket of the electrode and the inner jacket of the nozzle with their conical boundary surfaces and their concentric arrangement, form an annular channel which directs the ionizable gas into the arc at an acute angle.
  • the conical outer surfaces of the electrode and nozzle lying opposite one another are arranged at least partially, preferably in the region of the electrode tip p, parallel to one another, or that the annular channel formed by them has a tapering profile towards the arc side.
  • the inner shell of the nozzle can change into a cylindrical shape.
  • the described shape of the nozzle and the electrode gives the gas flowing out through the ring channel a direction which ultimately brings about a decisive improvement in both the arc stability and the electrode protection against oxidation.
  • the cone angle of the electrode jacket is 12 to 60 °, that of the inner jacket of the nozzle 12 to 80 °.
  • a cone angle of 24 ° is preferably selected in each case.
  • the otherwise plane-shaped arc-side end of the electrode has a chamfer, or the electrode is concave or convex in the region of the electrode tip and provided with a chamfer.
  • the electrode can additionally have one or more channels for the flow of part of the ionizable gas.
  • a high-melting metal such as molybdenum, tantalum or tungsten is preferably used for the inner jacket of the nozzle.
  • the front part of the nozzle can consist of an insert which is connected to the plasma torch or the entire nozzle by screwing, welding, .soldering, press fitting or as a removable part by screwing.
  • the plasma torch shown in Fig. 1 consists essentially of an electrode 2 which is attached to a liquid-cooled electrode holder 1.
  • the electrode 2 has the shape of a truncated cone in the front region with a radius decreasing towards the end on the arc side.
  • the end of the electrode on the arc side which is essentially planar, has a circumferential chamfer 3.
  • the electrode can also have a concave or convex shape. Since it is known that tapered ends round off after prolonged use, corner and edge-shaped designs should be avoided.
  • the length of the electrode 2 is between 10 and 20 mm.
  • the cone angle ⁇ of the electrode 2 like the cone angle ⁇ which the inner jacket of the nozzle 9 forms, is 24 °.
  • the jacket 8 of the electrode 2 is enveloped by the inner jacket 4 of the nozzle 9, so that an annular channel 10 is formed therebetween, the boundary surfaces of which run parallel to one another in the region of the electrode tip or converge towards one another in the direction of the arc.
  • the ring channel 10 is dimensioned such that the radial exit velocity of the ionizable gas flowing through in the cold state is between 3 and 17 m / s.
  • the outlet 5 of the nozzle channel located in front of the electrode 2 is cylindrical in the exemplary embodiment, but can also be conical.
  • the electrode should protrude by about 1/4 to 1/3 of its smallest diameter behind the front end of the nozzle channel. This corresponds to e.g. B. at 20 mm diameter an amount of 5 to 6.5 mm. However, this amount should not be significantly greater than 6.5 mm, since then the cooling losses due to the part of the arc running in the channel become too high and, above all, there is the risk that the arc jumps to the nozzle and secondary arcs form.
  • the ratio of the free channel length to the electrode diameter can be reduced to values from 1/6 to 1/8 with approximately the same electrode protection, so that even with electrode diameters of more than 40 mm can achieve the desired advantages.
  • the nozzles are not made of copper, copper alloys or steel, as is generally the case, but instead have an insert made of a high-melting metal, preferably tungsten.
  • This insert which forms the inner jacket of the nozzle, can be connected to the plasma torch by pouring, welding, soldering, pressing in or as a removable part by screwing.
  • FIG. 2 An exemplary embodiment of a nozzle with a screwed insert 7 made of tungsten is shown in FIG. 2, for example.
  • This device has the particular advantage that a worn nozzle insert can be replaced within a short time and thus the replacement of the entire nozzle is not necessary.

Abstract

A plasma burner for introducing an ionizable gas stream into an electric arc comprises a nozzle having an outlet opening for discharging the gas stream. The outlet opening is defined by an outlet part of the nozzle; the outlet part has an inner nozzle face conically tapering, at an acute first cone angle, in a direction of the outlet opening. The plasma burner further has an electrode surrounded by the outlet part and having an outer electrode face conically tapering, at an acute second cone angle, in the direction of the outlet opening. The inner nozzle face and the outer electrode face together define a conical annular channel.

Description

Verfahren zur Einleitung von ionisierbarem Gas in ein Plasma eines Lichtbogenbrenners und Plasmabrenner zur Durchführung des VerfahrensProcess for introducing ionizable gas into a plasma of an arc torch and plasma torch for carrying out the process

Die Anmeldung betrifft ein Verfahren zur Einleitung von ionisierbarem Gas in ein Plasma eines Lichtbogenbrenners, der mit einer ggf. flüssigkeitsgekühlten Elektrode ausgestattet ist, die sich innerhalb einer ein ionisierbares Gas in den Lichtogen leitenden, ggf. ebenfalls flüssigkeitsgekühlten Düse mit verengtem Ausgang befindet, in welchen die Elektrodenspitze hineinragt und einen Plasmabrenner zur Durchführung des Verfahrens.The application relates to a method for introducing ionizable gas into a plasma of an arc burner, which is equipped with an optionally liquid-cooled electrode, which is located within a nozzle that conducts an ionizable gas into the arc, possibly also liquid-cooled, with a narrowed outlet, in which the electrode tip protrudes and a plasma torch to carry out the method.

Plasmabrenner dieses Typs sind an sich bekannt. Bei ihrem Betrieb ist die Haltbarkeit der Elektroden und Düsen besonders wichtig. Die damit verbundenen Probleme treten vor allem dort in den Vordergrund, wo mit größeren Lichtbogenlängen von teilweise weit mehr als 200 mm gearbeitet werden muß und wo die den Brenner umgebende Atmosphäre Gase enthält, die die Elektroden chemisch, z. B. durch Oxidation, angreifen können. Derartig erschwerende Verhältnisse treten beispielsweise beim Betrieb von Metallschmelzöfen mit Plasmabrennern sehr häufig auf. Hier besteht oft die Forderung, daß die Lichtbögen auch bei sehr großen Längen, z. B. bis 700 mm und mehr, sicher, d. h. ohne die Gefahr des Bogenabrisses, brennen.Plasma torches of this type are known per se. The durability of the electrodes and nozzles is particularly important in their operation. The problems associated with this come to the fore wherever longer arc lengths of sometimes far more than 200 mm have to be used and where the atmosphere surrounding the torch contains gases that chemically, e.g. B. can attack by oxidation. Such difficult conditions occur very often, for example, when operating metal melting furnaces with plasma torches. Here there is often the requirement that the arcs even at very long lengths, for. B. up to 700 mm and more, safely, d. H. burn without the risk of tearing the bow.

Hierzu, wie auch im Hinblick auf die Düsenhaltbarkeit, muß eine hohe Stabilität des Plasmalichtbogens sichergestellt werden. Je instabi'ler nämlich der Lichtbogen ausgebildet ist, je weniger straff und scharf begrenzt er ist, um so größer ist die Gefahr der Ausbildung von Nebenlichtbögen, die auf den Außenmantel der Düse springen und zum Schmelzgut oder zum Hauptlichtbogen brennen. Durch solche Nebenlichtbögen aber wird-die Düse meist augenblicklich zerstört.For this, as well as in terms of nozzle durability, a high stability of the plasma arc must be ensured be put. The more instable the arc is formed, the less tight and sharply defined it is, the greater the risk of secondary arcs forming which jump onto the outer jacket of the nozzle and burn to the melting material or to the main arc. Such secondary arcs, however, usually destroy the nozzle instantaneously.

Der hauptsächliche Verschleißmechanismus für gut gekühlte Elektroden, die aus hochschmelzenden Metallen wie Molybdän, Tantal oder Wolfram mit kleinen Beträgen von Emissionsmaterial, wie Thoriumoxid oder Zirkonoxid, hergestellt sind, besteht, soweit die Brenner nicht in einer den Elektroden gegenüber inerten Umgebung arbeiten, in der chemischen Zerstörung der Elektroden.The main wear mechanism for well-cooled electrodes made of refractory metals such as molybdenum, tantalum or tungsten with small amounts of emission material such as thorium oxide or zirconium oxide, as far as the burners do not work in an environment inert to the electrodes, is chemical Destruction of the electrodes.

Da beim Erschmelzen von Metallen meist oxidische Gase freigesetzt werden und sich im Ofenraum noch Restluft befindet, handelt es sich hierbei in der Regel um Oxidation. Diese wird allerdings durch das aus-der Düse ausströmende, die Elektrode umgebende inerte Plasmagas mehr oder weniger gemindert.Since oxidic gases are mostly released when metals are melted and there is still residual air in the furnace chamber, this is usually oxidation. However, this is more or less reduced by the inert plasma gas flowing out of the nozzle and surrounding the electrode.

In besonderem Maße nehmen die anderen Verschleißfaktoren, wie Schmelzen, Verdampfen, Sputtern, mit steigender Temperatur zu. Daher ist vor allem bei sehr hohen Stromstärken für eine intensive Elektrodenkühlung zu sorgen.The other wear factors, such as melting, evaporation, sputtering, increase in particular with increasing temperature. Therefore, intensive electrode cooling must be ensured, especially at very high currents.

Zum Zwecke der Elektrodenkühlung ist bereits in der DE-PS 14 40 628 vorgeschlagen worden, durch eine zentrale Bohrung in der Elektrodenspitze dem Lichtbogen ein Anteil des ionisierbaren Gases zuzuleiten. Die Elektrode ist im wesentlichen zylindrisch und an ihrem vorderen Ende mit einer Spitze versehen. Durch die zusätzliche Kühlung infolge des zentralen Gastromes wird zwar die Elektrodenerosion durch hohe Stromstärken erniedrigt. Jedoch ist bei einer solchen Anordnung die Elektrode gegen chemische Erosion unzureichend geschützt. Darüber hinaus kann diese Maßnahme auch die Erzeugung langer stabiler Lichtbögen nicht gewährleisten. Mit Wechselstrom können solche Brenner nur begrenzt eingesetzt werden.For the purpose of electrode cooling, it has already been proposed in DE-PS 14 40 628 to supply a portion of the ionizable gas to the arc through a central bore in the electrode tip. The electrode is essentially cylindrical and has a tip at its front end. Due to the additional cooling due to the central gastrom, electrode erosion is caused by high current intensities low. However, with such an arrangement, the electrode is insufficiently protected against chemical erosion. In addition, this measure cannot guarantee the generation of long, stable arcs. Such burners can only be used to a limited extent with alternating current.

Es ist daher Aufgabe der Erfindung, einen Plasmabrenner zu schaffen, der die vorerwähnten Nachteile nicht besitzt und auch unter den erschwerten Bedingungen beim Betrieb in Schrottschmelzöfen mit Lichtbogenlängen über 200 mm und vornehmlich auch beim Betrieb mit Wechsel- bzw. Drehstrom hohe Düsen- und Elektrodenstandzeiten aufweist.It is therefore an object of the invention to provide a plasma torch which does not have the aforementioned disadvantages and which also has long nozzle and electrode service lives, even under the difficult conditions when operating in scrap melting furnaces with arc lengths over 200 mm and primarily also when operating with alternating or three-phase current .

Die Aufgabe wird durch ein Verfahren gelöst, bei dem das ionisierbare Gas unter einem spitzen Winkel in das Plasma des Lichtbogenbrenners eingeleitet wird. Der spitze Winkel wird von dem Gasstrahl und der Plasmabrennerlängsachse gebildet und beträgt 6 bis 40°, vorzugsweise'12°.The object is achieved by a method in which the ionizable gas is introduced into the plasma of the arc burner at an acute angle. The acute angle is formed by the gas jet and the longitudinal axis of the plasma torch and is 6 to 40 °, preferably 12 °.

Nach einer Weiterbildung der Erfindung wird zur Durchführung dieses Verfahrens ein Plasmabrenner verwendet, der eine sich zur Lichtbogenseite hin konisch verjüngende Elektrode aufweist, die von dem Innenmantel der Düse umschlossen wird. Der Mantel der Elektrode und der Innenmantel der Düse bilden mit ihren kegelförmigen Begrenzungsflächen und ihrer konzentrischen Anordnung einen Ringkanal, der das ionisierbare Gas unter spitzem Winkel in den Lichtbogen leitet. Hierzu ist es erforderlich, daß die sich gegenüberliegenden kegelförmigen Mantelflächen von Elektrode und Düse zumindest teilweise, bevorzugt im Bereich der Elektrodenspitzepparallel zueinander angeordnet sind bzw. der durch sie gebildete Ringkanal einen sich zur Lichtbogenseite hin verjüngenden Verlauf hat. In dem die Elektrodenvorderseite zur Lichtbogenseite hin überragenden Teil der Düse kann der Innenmantel der Düse in eine Zylinderform übergehen. Durch die geschilderte Gestalt der Düse und der Elektrode erhält das durch den.Ringkanal ausströmende Gas eine Richtung, die letztlich eine entscheidende Verbesserung sowohl der Bogenstabilität als auch des Elektrodenschutzes vor Oxidation bewirkt.According to a development of the invention, a plasma torch is used to carry out this method, which has an electrode which tapers conically towards the arc side and which is enclosed by the inner jacket of the nozzle. The jacket of the electrode and the inner jacket of the nozzle, with their conical boundary surfaces and their concentric arrangement, form an annular channel which directs the ionizable gas into the arc at an acute angle. For this purpose, it is necessary that the conical outer surfaces of the electrode and nozzle lying opposite one another are arranged at least partially, preferably in the region of the electrode tip p, parallel to one another, or that the annular channel formed by them has a tapering profile towards the arc side. In which the electrode front to the arc side The protruding part of the nozzle, the inner shell of the nozzle can change into a cylindrical shape. The described shape of the nozzle and the electrode gives the gas flowing out through the ring channel a direction which ultimately brings about a decisive improvement in both the arc stability and the electrode protection against oxidation.

Der Kegelwinkel des Elektrodenmantels beträgt nach einer weiteren Ausgestaltung der Erfindung 12 bis 60°, der des Innenmantels der Düse 12 bis 80°. Vorzugsweise werden jedoch jeweils Kegelwinkel von 24° gewählt.According to a further embodiment of the invention, the cone angle of the electrode jacket is 12 to 60 °, that of the inner jacket of the nozzle 12 to 80 °. However, a cone angle of 24 ° is preferably selected in each case.

Vorteilhafterweise weist das ansonsten plangestaltete lichtbogenseitige Ende der Elektrode eine Fase auf oder die Elektrode ist im Bereich der Elektrodenspitze konkav oder konvex geformt und mit einer Fase versehen. Je nach Größe des Plasmabrenners bzw. der Lichtbogenstärke kann die Elektrode zusätzlich ein oder mehrere Kanäle zum Durchströmen mit einem Teil des ionisierbaren Gases aufweisen.Advantageously, the otherwise plane-shaped arc-side end of the electrode has a chamfer, or the electrode is concave or convex in the region of the electrode tip and provided with a chamfer. Depending on the size of the plasma torch or the strength of the arc, the electrode can additionally have one or more channels for the flow of part of the ionizable gas.

Für den Innenmantel der Düse wird bevorzugt ein hochschmelzendes Metall wie beispielsweise Molybdän, Tantal oder Wolfram verwendet. Der Düsenvorderteil kann aus einem Einsatz bestehen, der durch Eingießen, Schweißen, .Löten, Preßpassung oder als herausnehmbares Teil durch Verschraubung mit dem Plasmabrenner bzw. der gesamten Düse verbunden ist.A high-melting metal such as molybdenum, tantalum or tungsten is preferably used for the inner jacket of the nozzle. The front part of the nozzle can consist of an insert which is connected to the plasma torch or the entire nozzle by screwing, welding, .soldering, press fitting or as a removable part by screwing.

Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt.An embodiment of the invention is shown in the drawings.

Es zeigen

  • Fig. 1, 2 jeweils eine Querschnittsansicht einer Düse mit mittig angeordneter Elektrode.
Show it
  • 1, 2 each show a cross-sectional view of a nozzle with a centrally arranged electrode.

Der in Fig. 1 dargestellte Plasmabrenner besteht im wesentlichen aus einer Elektrode 2, die an einem flüssigkeitsgekühlten Elektrodenhalter 1 befestigt ist. Die Elektrode 2 hat im vorderen Bereich die Form eines Kegelstumpfes mit zum lichtbogenseitigen Ende abnehmendem Radius. Das lichtbogenseitige Ende der Elektrode, das.im wesentlichen eben gestaltet ist, weist eine umlaufende Fase 3 auf. In diesem Bereich kann die Elektrode auch konkav oder konvex geformt sein. Da bekannt ist, daß sich spitz zulaufende Enden nach längerem Gebrauch abrunden, sollte allerdings auf ecken- und kantenförmige Ausbildungen verzichtet werden. Die Länge der Elektrode 2 beträgt zwischen 10 und 20 mm. Kürzere Elektroden haben den Nachteil, daß sie trotz eines etwas langsameren Rückbrandes früher ausgetauscht werden müssen, zu lange Elektroden dagegen werden an der Lichtbogenseite zu heiß und verschleißen daher schneller. Der Kegelwinkel α der Elektrode 2 beträgt, ebenso wie der Kegelwinkel β, den der Innenmantel der Düse 9 bildet, 24°. Der Mantel 8 der Elektrode 2 wird von dem Innenmantel 4 der Düse 9 umhüllt, so daß sich dazwischen ein-Ringkanal 10 bildet, dessen Begrenzungsflächen im Bereich der Elektrodenspitze parallel zueinander verlaufen oder in Richtung auf den Lichtbogen aufeinander zulaufen. Der Ringkanal 10 ist so bemessen, daß die radiale Austrittsgeschwindigkeit des durchströmenden ionisierbaren Gases im kalten Zustand zwischen 3 und 17 m/s beträgt. Der vor der Elektrode 2 befindliche Auslauf 5 des Düsenkanals ist im Ausführungsbeispiel zylindrisch, kann aber auch konisch ausgebildet sein.The plasma torch shown in Fig. 1 consists essentially of an electrode 2 which is attached to a liquid-cooled electrode holder 1. The electrode 2 has the shape of a truncated cone in the front region with a radius decreasing towards the end on the arc side. The end of the electrode on the arc side, which is essentially planar, has a circumferential chamfer 3. In this area, the electrode can also have a concave or convex shape. Since it is known that tapered ends round off after prolonged use, corner and edge-shaped designs should be avoided. The length of the electrode 2 is between 10 and 20 mm. Shorter electrodes have the disadvantage that they have to be replaced earlier despite a somewhat slower burn-back, while electrodes that are too long become too hot on the arc side and therefore wear out faster. The cone angle α of the electrode 2, like the cone angle β which the inner jacket of the nozzle 9 forms, is 24 °. The jacket 8 of the electrode 2 is enveloped by the inner jacket 4 of the nozzle 9, so that an annular channel 10 is formed therebetween, the boundary surfaces of which run parallel to one another in the region of the electrode tip or converge towards one another in the direction of the arc. The ring channel 10 is dimensioned such that the radial exit velocity of the ionizable gas flowing through in the cold state is between 3 and 17 m / s. The outlet 5 of the nozzle channel located in front of the electrode 2 is cylindrical in the exemplary embodiment, but can also be conical.

Durch diese erfindungsgemäße Ausführung von Düse 9 und Elektrode 2 erhält das durch den Ringspalt ausströmende Gas eine Richtung, die, wie zahlreiche Versuche zeigten, eine entscheidende Verbesserung sowohl der Bogenstabilität als auch des Elektrodenschutzes vor Oxidation bewirkt. So wurden beim Betrieb mit Wechselstrom bis zu 700 mm lange, stabil brennende Lichtbögen erzeugt. Hierbei zeigten Elektroden mit einem stirnseitigen Durchmesser bis zu 19 mm auch nach einigen Stunden Betriebszeit keinerlei Oxidationsspuren.This inventive design of nozzle 9 and electrode 2 gives the gas flowing out through the annular gap a direction which, as numerous tests have shown, improves decisively both the arc stability and the electrode protection against oxidation causes. In this way, when the system was operated with alternating current, up to 700 mm long, stable burning arcs were generated. Here, electrodes shown with an end-side diameter up to 19 mm even after several hours of operating time acids p Oxidationss no.

Bei Verwendung von Elektroden größeren Durchmessers bzw. Querschnittes, z. B. zum Zwecke einer Erhöhung der Stromstärke, kann es zweckmäßig sein, einen Anteil des ionisierbaren Gases durch eine oder mehrere Bohrungen 6 in der Elektrode zuzuführen. Es hat sich zwar herausgestellt, daß die alleinige Zuführung eines Anteils an ionisierbarem Gas durch Bohrungen in der Elektrode nicht ausreicht, um die erfindungsgemäße Aufgabe zu lösen, jedoch bewirkt die erfindungsgemäße Gaszuführung kombiniert mit der zusätzlichen Zuführung durch eine oder mehrere Bohrungen in der Elektrode einen vorteilhaften Schutz für die Elektrode.When using electrodes of larger diameter or cross-section, e.g. B. for the purpose of increasing the current, it may be appropriate to supply a portion of the ionizable gas through one or more holes 6 in the electrode. It has been found that the sole supply of a portion of ionizable gas through holes in the electrode is not sufficient to achieve the object according to the invention, but the gas supply according to the invention combined with the additional supply through one or more holes in the electrode has an advantageous effect Protection for the electrode.

Bei der erfindungsgemäßen Ausführung ohne zentrale Gaszufuhr soll die Elektrode um etwa 1/4 bis 1/3 ihres kleinsten Durchmessers hinter dem vorderen Ende des Düsenkanals zurückstehen. Dies entspricht z. B. bei 20 mm Durchmesser einem Betrag von 5 bis 6,5 mm. Wesentlich größer als 6,5 mm sollte dieser Betrag allerdings nicht sein, da dann die Kühlverluste durch den im Kanal verlaufenden Teil des Lichtbogens zu hoch werden und vor allem auch die Gefahr besteht, daß der Bogen zur Düse springt und sich Nebenbögen bilden. Durch die genannte Kombination der Gaszufuhr durch den Ringkanal und durch Bohrungen in der Elektrode kann aber das Verhältnis der freien Kanallänge zum Elektrodendurchmesser.auf Werte von 1/6 bis 1/8 bei etwa gleich gutem Elektrodenschutz vermindert werden, so daß sich auch bei Elektrodendurchmessern von mehr als 40 mm die angestrebten Vorteile erzielen lassen.In the embodiment according to the invention without a central gas supply, the electrode should protrude by about 1/4 to 1/3 of its smallest diameter behind the front end of the nozzle channel. This corresponds to e.g. B. at 20 mm diameter an amount of 5 to 6.5 mm. However, this amount should not be significantly greater than 6.5 mm, since then the cooling losses due to the part of the arc running in the channel become too high and, above all, there is the risk that the arc jumps to the nozzle and secondary arcs form. Through the combination of the gas supply through the ring channel and through bores in the electrode, the ratio of the free channel length to the electrode diameter can be reduced to values from 1/6 to 1/8 with approximately the same electrode protection, so that even with electrode diameters of more than 40 mm can achieve the desired advantages.

Um auch bei längerer Betriebszeit die Form des Ringkanals weitgehend bestehen zu lassen, werden die Düsen, nicht wie allgemein üblich,aus Kupfer, Kupferlegierungen oder Stahl hergestellt, sondern erhalten einen Einsatz aus einem hochschmelzenden Metall, vorzugsweise Wolfram. Dieser den Innenmantel der Düse bildende Einsatz kann durch Eingießen, Schweißen, Löten, Einpressen oder als herausnehmbares Teil durch Verschraubung mit dem Plasmabrenner verbunden werden.In order to largely maintain the shape of the ring channel even during a long period of operation, the nozzles are not made of copper, copper alloys or steel, as is generally the case, but instead have an insert made of a high-melting metal, preferably tungsten. This insert, which forms the inner jacket of the nozzle, can be connected to the plasma torch by pouring, welding, soldering, pressing in or as a removable part by screwing.

Ein Ausführungsbeispiel einer Düse mit geschraubtem Einsatz 7 aus Wolfram ist beispielsweise in Fig. 2 dargestellt. Diese Vorrichtung hat insbesondere den Vorteil, daß ein verschlissener Düseneinsatz innerhalb kurzer Zeit gewechselt werden kann und somit der Ersatz der gesamten Düse nicht erforderlich wird.An exemplary embodiment of a nozzle with a screwed insert 7 made of tungsten is shown in FIG. 2, for example. This device has the particular advantage that a worn nozzle insert can be replaced within a short time and thus the replacement of the entire nozzle is not necessary.

Claims (11)

1. Verfahren zur Einleitung von ionisierbarem Gas in ein Plasma eines Lichtbogenbrenners, der mit einer ggf. flüssigkeitsgekühlten Elektrode ausgestattet ist, die sich innerhalb einer das ionisierbare Gas in den Lichtbogen leitenden ggf. ebenfalls flüssigkeitsgekühlten Düse mit verengtem Ausgang befindet, in welchen die Elektrodenspitze hineinragt, dadurch gekennzeichnet, daß das ionisierbare Gas unter einem spitzen Winkel in das Plasma des Lichtbogenbrenners eingeleitet wird.1. Method for introducing ionizable gas into a plasma of an arc burner, which is equipped with a possibly liquid-cooled electrode, which is located within a possibly liquid-cooled nozzle with a narrowed outlet that conducts the ionizable gas into which the electrode tip protrudes , characterized in that the ionizable gas is introduced into the plasma of the arc burner at an acute angle. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der zwischen dem Gasstrahl und der Plasmabrennerlängsachse gebildete spitze Winkel zwischen 6° und 400, vorzugsweise bei 12° liegt.2. The method according to claim 1, characterized in that the acute angle formed between the gas jet and the plasma torch longitudinal axis is between 6 ° and 40 0 , preferably at 12 °. 3. Plasmabrenner zur Durchführung des Verfahrens nach Ansprüchen 1 und 2, dadurch gekennzeichnet, daß der Mantel (8) der sich zur Lichtbogenseite hin konisch verjüngenden Elektrode (2) und der diesen umschließende Innenmantel (4) der Düse (9) als konzentrisch angeordnete, zumindest teilweise kegelförmige Begrenzungsflächen einen Ringkanal (10) bilden, durch den das Inertgas unter spitzem Winkel in den Lichtbogen geleitet wird.3. Plasma torch for performing the method according to claims 1 and 2, characterized in that the jacket (8) of the conically tapering towards the arc side electrode (2) and the inner jacket surrounding this (4) of the nozzle (9) as a concentrically arranged, at least partially conical boundary surfaces form an annular channel (10) through which the inert gas is conducted into the arc at an acute angle. 4. Plasmabrenner nach Anspruch 3, dadurch gekennzeichnet, daß sich der Ringkanal (10) zur Lichtbogenseite hin verjüngt.4. Plasma torch according to claim 3, characterized in that the annular channel (10) tapers towards the arc side. 5. Plasmabrenner nach Ansprüchen 3 und 4, dadurch gekennzeichnet, daß der Kegelwinkel (α) der konisch ausgebildeten Elektrode (2) zwischen 12 und 600, vorzugsweise bei 24° liegt.5. Plasma torch according to claims 3 and 4, characterized in that the cone angle (α) of the conical electrode (2) is between 12 and 60 0 , preferably at 24 °. 6. Plasmabrenner nach Ansprüchen 3 und 4, dadurch gekennzeichnet, daß der durch den Innenmantel (4) der Düse (9) gebildete Kegelwinkel (β) zwischen 12 und 800, vorzugsweise bei 24° liegt.6. Plasma torch according to claims 3 and 4, characterized in that the cone angle (β) formed by the inner jacket (4) of the nozzle (9) is between 12 and 80 0 , preferably at 24 °. 7. Plasmabrenner nach Ansprüchen 3 bis 5, dadurch gekennzeichnet, daß das ansonsten plangestaltete lichtbogenseitige Ende der Elektrode (2) eine Fase (3) aufweist.7. Plasma torch according to claims 3 to 5, characterized in that the otherwise plan-shaped arc-side end of the electrode (2) has a chamfer (3). 8. Plasmabrenner nach Ansprüchen 3 bis 5, dadurch gekennzeichnet, daß das lichtbogenseitige Ende der Elektrode (2) konkave oder konvexe Konturen aufweist und mit einer Fase (3) versehen ist.8. Plasma torch according to claims 3 to 5, characterized in that the arc-side end of the electrode (2) has concave or convex contours and is provided with a chamfer (3). 9. Plasmabrenner nach Ansprüchen 3, 4, 5 und 8, dadurch gekennzeichnet, daß der Innenmantel der Düse (9) aus einem hochschmelzenden Metall besteht.9. Plasma torch according to claims 3, 4, 5 and 8, characterized in that the inner jacket of the nozzle (9) consists of a high-melting metal. 10. Plasmabrenner nach Anspruch 9, dadurch gekenn- .zeichnet, daß der Düsenvorderteil einen Einsatz (7) enthält, der durch Eingießen, Schweißen, Löten, Preßpassung oder als herausnehmbares Teil durch Verschraubung mit der Düse (9) verbunden ist.10. A plasma torch according to claim 9, characterized in that the nozzle front part contains an insert (7) which is connected by pouring, welding, soldering, press fitting or as a removable part by screwing with the nozzle (9). 11. Plasmabrenner nach einem der Ansprüche 3 bis 10, dadurch gekennzeichnet, daß die Elektrode zusätzlich einen oder mehrere Kanäle (6) zum Durchströmen mit einem Teil des ionisierbaren Gases aufweist.11. Plasma torch according to one of claims 3 to 10, characterized in that the electrode additionally has one or more channels (6) for flow with part of the ionizable gas.
EP83110451A 1982-11-10 1983-10-20 Plasma torch having a conical electrode and a nozzle, the inner surface of which is at least in part conical Expired EP0111116B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83110451T ATE46419T1 (en) 1982-11-10 1983-10-20 PLASMA TORCH WITH A CONICAL ELECTRODE AND A NOZZLE WITH AT LEAST PARTIALLY CONICAL INNER JACKET.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3241476 1982-11-10
DE19823241476 DE3241476A1 (en) 1982-11-10 1982-11-10 METHOD FOR INTRODUCING IONIZABLE GAS INTO A PLASMA OF AN ARC BURNER, AND PLASMA TORCHER FOR CARRYING OUT THE METHOD

Publications (3)

Publication Number Publication Date
EP0111116A2 true EP0111116A2 (en) 1984-06-20
EP0111116A3 EP0111116A3 (en) 1985-10-09
EP0111116B1 EP0111116B1 (en) 1989-09-13

Family

ID=6177711

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83110451A Expired EP0111116B1 (en) 1982-11-10 1983-10-20 Plasma torch having a conical electrode and a nozzle, the inner surface of which is at least in part conical

Country Status (7)

Country Link
US (1) US4594496A (en)
EP (1) EP0111116B1 (en)
JP (1) JPS5999700A (en)
AT (1) ATE46419T1 (en)
DE (1) DE3241476A1 (en)
FI (1) FI84548C (en)
ZA (1) ZA838333B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176004A2 (en) * 1984-09-28 1986-04-02 MANNESMANN Aktiengesellschaft Plasma torch
EP0178288A2 (en) * 1984-10-11 1986-04-16 VOEST-ALPINE INDUSTRIEANLAGENBAU GESELLSCHAFT m.b.H. Plasma burner
FR2726964A1 (en) * 1994-11-11 1996-05-15 Sulzer Metco Ag NOZZLE FOR BURNER HEAD OF A PLASMA SPRAYING APPARATUS
GB2363957A (en) * 2000-06-21 2002-01-09 Inocon Technologie Gmbh Plasma torch nozzle/electrode arrangement

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3642375A1 (en) * 1986-12-11 1988-06-23 Castolin Sa METHOD FOR APPLYING AN INTERNAL COATING INTO TUBES OD. DGL. CAVITY NARROW CROSS SECTION AND PLASMA SPLASH BURNER DAFUER
US4926632A (en) * 1988-02-01 1990-05-22 Olin Corporation Performance arcjet thruster
JPH0355792A (en) * 1989-07-25 1991-03-11 Ebara Infilco Co Ltd Plasma generator for fusion furnace
JP2681251B2 (en) * 1993-07-14 1997-11-26 動力炉・核燃料開発事業団 Restraint tip for plasma jet torch
US6215089B1 (en) * 1998-06-02 2001-04-10 Inocon Technologie Gesellschaft M.B.H. Plasma welding torch
US6180911B1 (en) * 1999-06-02 2001-01-30 Retech Services, Inc. Material and geometry design to enhance the operation of a plasma arc
TW469757B (en) * 1999-12-13 2001-12-21 Nippon Steel Corp A transferred plasma heating anode
DE10047696A1 (en) * 2000-09-25 2002-04-18 Dilthey Ulrich Plasma positive pole torch for high performance ranges
ITRM20010291A1 (en) * 2001-05-29 2002-11-29 Ct Sviluppo Materiali Spa PLASMA TORCH
US6963045B2 (en) 2003-11-14 2005-11-08 Tatras, Inc. Plasma arc cutting torch nozzle
US20060091117A1 (en) * 2004-11-04 2006-05-04 United Technologies Corporation Plasma spray apparatus
EP1689216A1 (en) * 2005-02-04 2006-08-09 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Atmospheric-pressure plasma jet
TWI352368B (en) * 2007-09-21 2011-11-11 Ind Tech Res Inst Plasma head and plasma-discharging device using th
US10716199B2 (en) * 2013-07-25 2020-07-14 Hypertherm, Inc. Devices for gas cooling plasma arc torches and related systems and methods
EP3083064B1 (en) * 2013-12-19 2020-04-22 Oerlikon Metco (US) Inc. Long-life plasma nozzle with liner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3027447A (en) * 1960-10-17 1962-03-27 Thermal Dynamics Corp Electric arc torch
FR1375669A (en) * 1962-01-25 1964-10-23 Plasmadyne Corp Methods and apparatus for welding and cutting
GB995152A (en) * 1962-05-01 1965-06-16 British Oxygen Co Ltd Improvements in electric arc cutting apparatus
US3214623A (en) * 1962-02-12 1965-10-26 Sheer Korman Associates Fluid transpiration plasma jet
US3790742A (en) * 1971-08-24 1974-02-05 Messer Griesheim Gmbh Nozzle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3147329A (en) * 1955-07-26 1964-09-01 Union Carbide Corp Method and apparatus for heating metal melting furnaces
DE1440628B2 (en) * 1955-07-26 1971-04-22 Union Carbide Corp , New York, N Y (V St A) ARC BURNER FOR AN ARC FURNACE
BE470715A (en) * 1960-08-01 1900-01-01
US3644782A (en) * 1969-12-24 1972-02-22 Sheet Korman Associates Inc Method of energy transfer utilizing a fluid convection cathode plasma jet
JPS4834045A (en) * 1971-09-06 1973-05-15
JPS5145638B2 (en) * 1974-06-07 1976-12-04
HU172563B (en) * 1975-01-27 1978-09-28 Villamos Ipari Kutato Intezet Method and plasma generator for surface melting solid bulding units
JPS5546266A (en) * 1978-09-28 1980-03-31 Daido Steel Co Ltd Plasma torch
JPS564352A (en) * 1979-06-20 1981-01-17 Nippon Steel Corp Electromagnetic rabbling method in continuous casting
DD151249A1 (en) * 1979-12-18 1981-10-08 Armin Gruenler DUESE FOR A HIGH-POWER PLASMATRON

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3027447A (en) * 1960-10-17 1962-03-27 Thermal Dynamics Corp Electric arc torch
FR1375669A (en) * 1962-01-25 1964-10-23 Plasmadyne Corp Methods and apparatus for welding and cutting
US3214623A (en) * 1962-02-12 1965-10-26 Sheer Korman Associates Fluid transpiration plasma jet
GB995152A (en) * 1962-05-01 1965-06-16 British Oxygen Co Ltd Improvements in electric arc cutting apparatus
US3790742A (en) * 1971-08-24 1974-02-05 Messer Griesheim Gmbh Nozzle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176004A2 (en) * 1984-09-28 1986-04-02 MANNESMANN Aktiengesellschaft Plasma torch
EP0176004A3 (en) * 1984-09-28 1988-05-25 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Plasma torch
EP0178288A2 (en) * 1984-10-11 1986-04-16 VOEST-ALPINE INDUSTRIEANLAGENBAU GESELLSCHAFT m.b.H. Plasma burner
EP0178288A3 (en) * 1984-10-11 1988-08-03 Voest-Alpine Aktiengesellschaft Plasma burner
FR2726964A1 (en) * 1994-11-11 1996-05-15 Sulzer Metco Ag NOZZLE FOR BURNER HEAD OF A PLASMA SPRAYING APPARATUS
GB2363957A (en) * 2000-06-21 2002-01-09 Inocon Technologie Gmbh Plasma torch nozzle/electrode arrangement
GB2363957B (en) * 2000-06-21 2005-04-13 Inocon Technologie Gmbh Plasma torch apparatus

Also Published As

Publication number Publication date
FI834038A0 (en) 1983-11-03
DE3241476A1 (en) 1984-05-10
US4594496A (en) 1986-06-10
EP0111116A3 (en) 1985-10-09
FI84548C (en) 1991-12-10
DE3241476C2 (en) 1990-02-22
JPS5999700A (en) 1984-06-08
FI84548B (en) 1991-08-30
EP0111116B1 (en) 1989-09-13
ATE46419T1 (en) 1989-09-15
ZA838333B (en) 1984-07-25

Similar Documents

Publication Publication Date Title
EP0111116B1 (en) Plasma torch having a conical electrode and a nozzle, the inner surface of which is at least in part conical
EP1797747B1 (en) Plasma torch
DE4105407C2 (en)
DE1244627B (en) Plasma spray device
DE2306022C3 (en) Plasma torch with axial supply of the stabilizing gas
EP0178288B1 (en) Plasma burner
EP2457681B1 (en) Torch for tungsten inert gas welding and electrode to be used in such torch
EP0168810B1 (en) Torch for plasma-mig welding
DE4407913A1 (en) Plasma burner and a method for carrying out plasma burning, especially for hollowing-out workpieces
EP2667689B1 (en) Electrode for plasma cutting torch and use of same
DE2448620A1 (en) MULTIPLE ELECTRODE WELDING TORCHES
DE1940040A1 (en) Plasma torch
DE102007041329B4 (en) Plasma torch with axial powder injection
EP0050683A1 (en) Electrode for arc furnaces
DE2951121C2 (en) Method and device for protecting the nozzle of a high power plasma torch
EP0962277B1 (en) Plasma welding torch
DE1540779A1 (en) Welding torch for shielding gas arc welding with a melting electrode
DE2430817A1 (en) Arc furnace electrode made in sections - with upper part made of metal to ensure good electric contact with clamps
EP4065309B1 (en) Nozzle for a laser machining device and laser machining device comprising same
DE1940040C (en) Vortex stabilized arc plasma torch
AT407022B (en) Plasma welding torch
DE1271855B (en) Device for cutting workpieces by means of a plasma jet
DE1790209B1 (en) GAS TABILIZED ARC BURNER
DE1615365A1 (en) Electric welding torch
WO2021047708A2 (en) Wear part for an arc torch and plasma torch, arc torch and plasma torch comprising same, method for plasma cutting and method for producing an electrode for an arc torch and plasma torch

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE FR GB IT LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19860312

17Q First examination report despatched

Effective date: 19861203

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 46419

Country of ref document: AT

Date of ref document: 19890915

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MANNESMANN AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;MANNESMANN AG

NLS Nl: assignments of ep-patents

Owner name: MANNESMANN AKTIENGESELLSCHAFT TE DUESSELDORF, BOND

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920921

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920922

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19920924

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920928

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921031

Year of fee payment: 10

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19931020

Ref country code: AT

Effective date: 19931020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931021

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19931031

BERE Be: lapsed

Owner name: MANNESMANN AKTIENGESELLSCHAFT

Effective date: 19931031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EUG Se: european patent has lapsed

Ref document number: 83110451.8

Effective date: 19940510

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020925

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021009

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20031019

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20