EP0185573B1 - Expression and excretion of polypeptides in eucaryotes under the control of an adenovirus promoter - Google Patents

Expression and excretion of polypeptides in eucaryotes under the control of an adenovirus promoter Download PDF

Info

Publication number
EP0185573B1
EP0185573B1 EP85402261A EP85402261A EP0185573B1 EP 0185573 B1 EP0185573 B1 EP 0185573B1 EP 85402261 A EP85402261 A EP 85402261A EP 85402261 A EP85402261 A EP 85402261A EP 0185573 B1 EP0185573 B1 EP 0185573B1
Authority
EP
European Patent Office
Prior art keywords
adenovirus
genome
region
sequence
promoter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85402261A
Other languages
German (de)
French (fr)
Other versions
EP0185573A1 (en
Inventor
Michel Perricaudet
Pierre Tiollais
Massimo Levrero
Annick Ballay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Institut Pasteur de Lille
Institut National de la Sante et de la Recherche Medicale INSERM
Original Assignee
Centre National de la Recherche Scientifique CNRS
Institut Pasteur de Lille
Institut National de la Sante et de la Recherche Medicale INSERM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Institut Pasteur de Lille, Institut National de la Sante et de la Recherche Medicale INSERM filed Critical Centre National de la Recherche Scientifique CNRS
Priority to AT85402261T priority Critical patent/ATE76428T1/en
Publication of EP0185573A1 publication Critical patent/EP0185573A1/en
Application granted granted Critical
Publication of EP0185573B1 publication Critical patent/EP0185573B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10351Methods of production or purification of viral material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the invention relates to a recombinant DNA comprising a nucleotide sequence coding for a determined polypeptide under the control of an adenovirus promoter, vectors containing this recombinant DNA and eukaryotic cells transformed by this recombinant DNA, the products of excretion of these transformed cells and their applications, in particular to the constitution of vaccines.
  • Human adenoviruses have a long, linear, double-stranded genome (approximately 36,000 bp) that codes for at least 30 proteins.
  • the viral cycle during infection of permissive cells, is divided into two phases, early and late. It is known that the four regions of the viral genome expressed in the early phase are called regions E1, E2, E3 and E4, the respective positions of which in the entire viral genome are schematically represented in FIG. 1.
  • the E1 region located at the left end of the genome, is itself divided into two regions E1A and E1B.
  • the transition from the early to the late phase, marked by the replication of viral DNA, is characterized by a sudden change in the genetic program of the virus.
  • the expression of certain early genes is repressed whereas the transcription of late genes is mainly carried out from a single promoter, the major late promoter (fig. 1). In addition, there is a strong repression of protein synthesis in the host cell (1).
  • Ad2, Ad5 human adenoviruses type 2 or 5
  • Ad2, Ad5 human adenoviruses type 2 or 5
  • E3 region which represents 6% of the genome
  • Ad5 is not essential in vitro and can therefore be substituted in its entirety (2).
  • the size of the foreign DNA fragment that can be inserted into the genome of these viruses is large. Indeed, the virus can encapsulate a genome whose length exceeds by 5% that of the wild genome.
  • the promoter of the early E1A region of an adenovirus, transported in mouse cells in which replication of the retroviruses is not possible, has been shown to be able to exert its promoter activity there nevertheless.
  • a prokaryotic gene coding for chloramphenicol acetyltransferase could it be expressed in such a cellular system under the control of said promoter (Kruczek I. et al (1983), Proc. Natl. Acad. Sci. USA).
  • the invention stems from the observation that the promoter of the early E1A region of the genome of an adenovirus (hereinafter simply referred to as "E1A promoter”) could particularly effectively control the expression in a viral vector of a gene.
  • heterologous that is to say foreign with respect to the genes which are normally associated with it in the adenovirus
  • heterologous that is to say foreign with respect to the genes which are normally associated with it in the adenovirus
  • heterologous nucleotide sequence coding for a polypeptide sequence whose expression is sought Under the conditions defined below, the E1A promoter behaves like a strong promoter, and this more particularly when the E1A promoter-heterologous coding sequence assembly is inserted into this viral vector.
  • the invention stems from the observation that the promoter of the early E1A region of the genome of an adenovirus (hereinafter simply referred to as "E1A promoter”) could particularly effectively control the expression in a viral vector of a gene.
  • heterologous that is to say foreign with respect to the genes which are normally associated with it in the adenovirus
  • heterologous that is to say foreign with respect to the genes which are normally associated with it in the adenovirus
  • heterologous nucleotide sequence coding for a polypeptide sequence whose expression is sought Under the conditions defined below, the E1A promoter behaves like a strong promoter, and this more particularly when the E1A promoter-heterologous coding sequence assembly is inserted into this viral vector.
  • the invention therefore generally relates to a recombinant vector for the transformation of lines eukaryotic cells, in particular human or animal, chosen from those which are infectable by adenoviruses or whose endogenous polymerases are capable of recognizing the promoters of adenoviruses, this vector being further modified by an insertion nucleic acid containing a nucleotide sequence coding for a polypeptide sequence the expression of which in said cell lines is sought, characterized in that said insertion sequence is substituted for the E1A genes normally placed under the direct control of said early promoter of the E1A region, this insertion sequence being itself even placed under the direct control of this promoter and in that it comprises, downstream of the nucleic acid of insertion, all of the essential sequences of an adenovirus genome which are necessary for the replication of the corresponding adenoviruses that are normally located downstream of genes normally under the control of direct from the early promoter E1A in said genome, and in that the aforesaid
  • a viral vector Being a viral vector, derived from an adenovirus, one can also benefit from the advantage attaching to the E1A region of adenoviruses, namely that its expression is constitutive and permanent throughout the viral cycle ( 8, 9).
  • a particular preferred form of the recombinant DNA according to the invention is characterized in that it comprises, downstream of the nucleic acid of insertion, in the direction of transcription, a defective adenovirus genome nevertheless comprising l 'all of those essential sequences necessary for the replication of the corresponding adenovirus, which are normally located downstream of the genes normally under the direct control of the early promoter E1A in said genome.
  • the defective adenovirus genome with which the recombinant DNA in accordance with the invention is associated consists of a complete genome of adenovirus, however devoid of the anterior part of the E1A region of the viral genome, in particular of its fragment. 0-2.6% (percentage expressed relative to the total size of the adenovirus genome).
  • the recombinant DNAs of the invention associated with vector elements such as those which have been mentioned above, in fact constitute vectors containing said recombinant DNAs.
  • "defective recombinant viruses” when the vector elements associated with the DNA-recombinant according to the invention are derived from a defective adenovirus genome.
  • These defective recombinant viruses are advantageously used for the transformation of transformable cell lines of higher eukaryotes (in particular of human or animal origin) themselves comprising a distinct nucleotide sequence capable of complementing the part of the genome of the adenovirus including the above vector is lacking, said distinct sequence preferably being incorporated into the genome of cells of said cell line.
  • line 293 a human embryonic kidney line which contains, integrated into its genome, the first eleven percent of the left end of the genome of an Ad5. These make it possible to complement defective recombinant viruses which carry deletions from this region (10).
  • the S gene of the hepatitis B virus genome constitutes a nucleotide sequence of particular interest in this regard, for several reasons.
  • the expression product of the S gene in the cells which express it, HBsAg (11, 12) is secreted in the cell supernatant in the form of particles easy to detect and to quantify by radioimmunological assay, which allows a precise evaluation of the expression capacity of the viral vector.
  • the invention provides a recombinant viral vector allowing the study of the expression of HBV genes both at the level of transcription and of translation, which is all the more interesting since To date, there has been no cell culture system capable of spreading the hepatitis B virus (HBV).
  • cellular infection with the recombinant adenovirus-HBV virus illustrates in a particularly advantageous way the methodological basis of a process for manufacturing a vaccine against a determined pathogenic agent (in this case the hepatitis B virus in the 'example considered).
  • Another nucleotide sequence of the hepatitis B virus genome of particular interest is the S gene provided with its pre-S2 region which codes for the HBs antigen and for a receptor for polymerized human serum albumin (pHSA) (25 ), (26).
  • pHSA polymerized human serum albumin
  • the S gene can be substituted in the recombinant DNA by any other nucleotide sequence coding for a distinct protective antigen against another determined pathogenic agent, especially when this distinct protective antigen is itself normally capable of be secreted by cells transformed by recombinant DNA. It also goes without saying that the S gene and the pre-S2 region can be substituted in the recombinant DNA by any other nucleotide sequence coding for a distinct protective antigen against another determined pathogenic agent, especially when this distinct protective antigen is itself normally capable of being secreted by transformed cells by recombinant DNA.
  • the nucleotide sequence coding for this distinct protective antigen can moreover possibly be inserted into the recombinant DNA in phase with another gene, for example the HBsAg antigen, since this other gene can be used as a "locomotive" to promote the excretion also of this distinct antigen, in particular in the form of a hybrid protein.
  • another gene for example the HBsAg antigen
  • this other gene can be used as a "locomotive" to promote the excretion also of this distinct antigen, in particular in the form of a hybrid protein.
  • the separate antigens capable of being thus produced mention is made, for example, of glycoproteins of structure of the Epsteim-Barr virus.
  • the first nucleotides of the nucleotide sequence coding for a determined polypeptide (“simple” or hybrid protein) are placed, in particular by construction as close as possible to this promoter, in particular of the “TATA box”, characteristic of the promoter, it being understood however that the nucleotide sequence between the promoter and the ATG initiating the nucleotide sequence coding for said determined polypeptide must generally contain the triplets coding for the 5 'untranslated end of the messenger RNA normally corresponding to the coding sequence and containing the ribosome pairing sequences necessary for efficient translation.
  • This 5 'untranslated end of the messenger RNA can moreover be replaced by the 5' untranslated end of a messenger RNA distinct from that normally associated with a determined coding sequence.
  • a messenger RNA distinct from that normally associated with a determined coding sequence.
  • the S gene it is possible to replace the 5 'untranslated end containing the pre-S gene or adjoining it with the 5' untranslated end of the messenger RNA of the T antigen from SV40.
  • a DNA sequence containing the S and pre-S2 regions of the hepatitis B virus genome is used under the control of the strong E1A promoter, it is possible to obtain the expressions at the times from the pre-S2 region and from region S. Any other 5 'untranslated end of messenger RNA can be used, as long as it is compatible with the other similar end chosen.
  • the distance between the promoter's TATA box and the messenger RNA initiation site is approximately 30 nucleotides.
  • the promoter E1A of the recombinant DNA according to the invention and even more generally the vector according to the invention using larger parts of the genome of an adenovirus are preferably derived from an adenovirus belonging to category C, such that it has been defined by TOOZE. These adenoviruses have the known property of not being oncogenic.
  • the Ad2 or Ad5 subtypes of this category of adenovirus are characterized by a significant transforming power. The use of the latter type of recombinant DNA is therefore particularly recommended, when the expression product sought is intended for the production of protective antigens, in particular active principles of vaccines. This will be all the more true in the case where whole, and even infectious, adenoviruses will be used as active principles of live vaccines, in particular under the conditions which will be explained further below.
  • the invention naturally also relates to cell lines, in particular of human or animal origin, which are transformed by recombinant DNAs as defined above and which have been made capable of synthesizing a polypeptide encoded by the nucleotide sequence (or said sequences nucleotides) contained in these recombinant DNAs and placed under the direct control of said promoter.
  • the invention relates more particularly still to cell lines transformed with a recombinant vector in accordance with the invention and further characterized in that the cells of these cell lines themselves contain a distinct sequence of nucleotides capable of complementing the part of the genome of the adenovirus which the above vector does not have, said distinct sequence preferably being incorporated into the genome of the cells of said cell line .
  • the line 293 already mentioned above after having been transformed by the recombinant vectors, constitutes a preferred cell culture according to the invention. Thanks to the complementation sequence which the cells of this line contain, a significant viral multiplication is observed inside these cells and, consequently, an equally multiplied expression of the coding sequence for the predetermined polypeptide.
  • this coding sequence is the S gene
  • a high production of HBsAg antigens is excreted in the culture medium of these cells.
  • the recombinant adenovirus directs in vitro the synthesis of HBsAg particles having receptor activity for pHSA.
  • this recombinant virus When injected into rabbits, this recombinant virus produces anti-HBsAg and anti-pHSA antibodies.
  • the same vectors can be used for the transformation of Vero cells under analogous conditions.
  • the recombinant vectors according to the invention can also be used for the transformation of cells which do not itself have the complementation sequence under the conditions which have been indicated above. It may then be necessary to carry out a co-transformation of these latter types cells, on the one hand, with the recombinant vector according to the invention, on the other hand, with a non-defective adenovirus or a distinct recombinant DNA containing the adenovirus sequences which lack the recombinant vector according to the invention. It will certainly be observed in the latter case a simultaneous production of HBsAg antigens (when the coding sequence contains the S gene) and of the replicated adenovirus released by the cells thus transformed.
  • the protective antigen formed may, however, if necessary, be separated from the viral suspension, for example by bringing the culture medium into contact with anti-adenovirus antibodies, preferably immobilized on a solid support, such as cross-linked agarose. , marketed under the designation SEPHAROSE.
  • anti-adenovirus antibodies preferably immobilized on a solid support, such as cross-linked agarose. , marketed under the designation SEPHAROSE.
  • SEPHAROSE cross-linked agarose
  • adenoviruses more particularly those which belong to group C of human adenoviruses, makes it possible to envisage the constitution of "live vaccines".
  • These can be constituted by infectious adenoviruses modified in the E3 region by the insertion of the recombinant DNA according to the invention into the nonessential part of the adenovirus.
  • human group C adenoviruses have never been shown to be tumorigenic in animals (3).
  • These vectors or viruses will be of particular interest for the transformation of Vero cells, the non-tumorigenic character of which is now firmly established. Therefore they constitute a line of animal origin particularly favorable to the production of products for human use.
  • the numbers appearing in figs. 1 to 5 indicate the positions of the restriction sites in the viral sequences Ad5, SV40 and HBV.
  • the numbering of the positions of the restriction sites of Ad5 and SV450 are those of J. TOOZE (1), those of HBV are those of P. TIOLLAIS et al. (11).
  • 1st case Fragment of the hepatitis B virus genome containing the S gene.
  • hepatitis B virus (fig. 2). It is recalled that the hepatitis B virus genome is a partially single-stranded circular DNA molecule. Its length is approximately 3,200 bp. It consists of the pairing of two strands of unequal length called strands L (-) and S (+).
  • the S gene represents the coding sequence of the major polypeptide of the viral envelope which carries HBsAg.
  • the DNA fragment used in the constructions below is the XhoI127-BglII1984 fragment.
  • the polyadenylation site of the HBsAg messenger was located at position 1916.
  • 2nd case Fragment of the genome of the hepatitis B virus containing the S gene and the pre-S2 region.
  • the DNA fragment used is the MstII3161-BglII1982 fragment which codes both for the HBs antigen and for a polymerized human serum albumin receptor (pHSA).
  • the MstII site precedes the initiation codon of the pre-S2 region by 9 nucleotides.
  • the BglII site is located 64 nucleotides downstream of the poly A addition signal of the S gene (from the English "poly A addition signal").
  • a recombinant adenovirus comprising the S gene
  • the procedure is identical for obtaining a recombinant adenovirus, in accordance with the invention, having the S gene and the pre- S2, it being understood that, in this second case, it is the DNA fragment MstII-BglII which is inserted between the HindIII and BamHI restriction sites of the plasmid pK4, in place of the DNA fragment XhoI-BglII of which it is question below.
  • Ad5 the recombinant adenovirus having the S gene
  • Ad5 the recombinant adenovirus having the S gene
  • Ad5 the recombinant adenovirus having the S gene and the pre-S2 region.
  • the plasmid pE1A contains the first 632 nucleotides of the left end of the Ad5 genome. This fragment was obtained by cutting the purified restriction fragment SacI E (0 - 5.0%) of Ad5 by TaqI (FIG. 1). This fragment was inserted between the EcoRI and ClaI restriction sites of the plasmid pML2 (fig. 3) Le plasmid pML2 was opened by EcoRI and Clal. The Ad5 fragment was linked to the linearized plasmid at the TaqI end. The junction of the TaqI-ClaI ends recreates a ClaI restriction site. The EcoRI end of the recombinant was repaired with DNA polymerase I from E. coli (Klenow fragment) and the plasmid recircularized using T4 ligase. The EcoRI site has therefore been reconstructed.
  • the plasmid pAB1 was constructed from the plasmid pEIA (TaqI), so as to eliminate the coding part of the E1A region. This was done by isolating the PvuII-PvuII fragment (positions 452-623), cutting this fragment with the enzyme HaeIII (position 495), reinserting the PvuII452-HaeIII495 fragment at the PvuII623 site of the plasmid pE1A (TaqI). In other words, the HaeIII495-Pvu623 fragment has been deleted.
  • the plasmid pAB1 contains a HindIII site close to the transcription initiation site of the E1A region and a BamHI site (of pML2) located at a distance. These two restriction sites can be used to clone foreign genes without genetic fusion.
  • pAB1 was cut with HindIII and BamHI and the fragment containing the E1A promoter, derived from pAB1, was linked, at its BamHI end to the BglI-BamHI fragment (positions 5235-2533 of the SV40 virus genome) hereinafter called A (SV40) containing the gene coding for the T and t antigens of the SV40 virus.
  • A SV40
  • the plasmid is recircularized using T4 ligase.
  • the construction present in the plasmid pK4 was tested by bringing into play the transient expression of the T gene.
  • the plasmid pK4 directs the synthesis of the antigen T of SV40 which was detected by immunofluorescence. About 1% of the transfected cells showed clear fluorescence. The absence of fluorescence after cell transfection with a plasmid containing the fragment of SV40 inserted in the wrong orientation shows that the gene for T and t antigens is well placed under the control of the E1A promoter of Ad5.
  • the plasmid pK4 was digested with HindIII and BamHI.
  • the XhoI-BglII fragment (positions 125 to 1982) of the hepatitis B virus (HBV) genome (fig. 2) was inserted, in place of most of A (SV40) between the restriction sites HindIII and BamHI of the plasmid pK4, after repair of their respective ends by DNA polymerase I of E. coli (fragment of Kleenow) (fig. 3).
  • the XhoI, HindIII, BamHI and BglII restriction sites are lost after ligation.
  • the HindIII site was located 8 nucleotides upstream of the ATG initiating the T and t antigens. The insertion of the S gene into this site therefore makes it possible to conserve the 5 end of the early SV40 mRNA containing the "capping" site and the messenger pairing sequences to the ribosomes.
  • the HBV DNA fragment contains the coding sequence or S gene (position 155 to 833) of the major polypeptide of the viral envelope carrying HBsAg as well as the sequence located 3 ′ of the S gene and which includes the polyadenylation site of HBsAg messenger RNA at position 1916 (20, 21, 22). Two plasmids pK4S+ and pK4S ⁇ carrying the HBV fragment inserted in both directions were isolated.
  • 293 cells were grown in dishes 6 cm in diameter. 4 hours before transfection the culture supernatant was replaced with medium. 5 boxes of 293 cells at 70% confluence were then transfected with the ligation mixture according to the calcium phosphate technique then incubated for 4 hours at 37 ° C.
  • TS buffer NaCl 8000.0 mg / l, KCl 380.0 mg / l, Na2 HPO4 100.0 mg / l, CaCl2 100.0 mg / l, MgCl2, 6H2O 100.0 mg / l, Tris 3000.0 mg / l pH 7.4
  • 400 microliters of a TS solution containing 20% glycerol for 1 minute at ordinary temperature washed twice with 2 ml of TS buffer, then covered with 4 ml of MEM medium containing 1% noble agar, 1% fetal calf serum.
  • the cells were covered with 4 ml of the nutrient mixture. On day 10, the cells were stained with 4 ml of the nutrient medium supplemented with 0.01% neutral red. The plaques were observed on day 11. The viruses were resuspended in 1 ml of TS and amplified on 293 cells. The presence of HBsAG in the culture medium was tested by RIA (Austria II, laboratory ABBOTT). After amplification, the presence of HBV sequences in the recombinant was tested by hybridization. Five ranges were analyzed. Only one was against a recombinant HBsAg+ virus. This Ad5 clone (XB) as well as another clone were positive for the detection of HBV sequences.
  • Ad5 clone XB
  • the size of the recombinant viral genome exceeds that of the wild virus by 2100 bp. No deletion could be detected by analysis of restriction fragments of the recombinant genome. Furthermore, this analysis showed that the pML2 sequences located between the PstI restriction site and the Ad5 sequence were correctly excised during the propagation of the recombinant genome in line 293.
  • the synthesized HBsAg was purified by ultracentrifugation in CsCl. It has a density of 1.20. Typical particles of 22 nm have been observed by electron microscopy.
  • HBsAg purified from the culture medium of cells infected with adenovirus recombinant Ad5 (MB) consisted of a homogeneous population of particles having an average diameter of 22 nm. The density after centrifugation in CsCl was 1.21.
  • the HBsAg particles produced in Vero cells were tested by the hemagglutination technique of sheep red blood cells coated with pHSA and by radioimmunoassay (RIA) to detect the presence of pHSA receptor activity. Binding activity for pHSA was detected, but not for polymerized bovine albumin (Table II). Such activity was not detected with Vero cells infected with the recombinant Ad5 adenovirus (XB) containing only the S gene.
  • XB Ad5 adenovirus
  • Rabbits were intravenously inoculated with highly purified preparations of the recombinant Ad5 adenovirus (M-B) and the wild type adenovirus. Although the HBsAg antigen could not be detected in their serum, 5 out of 8 rabbits, inoculated with the recombinant virus, showed the appearance of an anti-HBs titer varying from 20 to 270 mIU / ml after 15 days (Table III). No anti-HBs antibodies were detected in rabbits injected with the wild type of adenovirus. After a second intravenous inoculation carried out 4 weeks after the first, a second peak was observed in the anti-HBs response reaching 440 mIU / ml for one of the animals.
  • anti-HBs titers varying from 6 mIU / ml to 360 mIU / ml were noted. Previous studies have indicated that the minimum level of anti-HBs still protective against HBV is 10 mIU / ml for humans.
  • Anti-pHSA antibodies were tested in rabbits inoculated in order to determine their relationship with the neutralization of HBV. These antibodies, detected by the inhibition of hemagglutination, were found in 5 animals out of 5 having a positive anti-HBs response (Table IV).
  • the recombinant adenovirus Ad5 therefore directs in vivo the synthesis of HBsAg particles having a receptor character for polymerized human serum albumin.
  • the invention therefore provides a methodological basis for the manufacture of a hepatitis B vaccine (or against other types of conditions) in cell cultures.
  • adenovirus type 5 as a vector is twofold.
  • this virus is a virus whose pathogenic power in humans is low. It only causes mild respiratory infections.
  • this serotype which belongs to group C of human adenoviruses is not tumorigenic in animals.
  • the rate of production of HBsAg obtained on Vero cells (approximately 1 microgram / 106 / per infectious cycle) is a priori sufficient for industrial exploitation.
  • this cell line is non-tumorigenic and for this reason, it constitutes the line of animal origin a priori the most favorable for the production of a product for human use.
  • 293 cells which have been mentioned above can be substituted for any other higher eukaryotic cells which can be infected with adenoviruses or which are capable of recognizing the E1A promoter of adenoviruses, these cells having been modified by prior incorporation into their own genomes, of a sequence containing the missing parts of the virus defective recombinant according to the invention of the genome of an adenovirus, in particular under the control of a promoter strongly recognized by these cells, for example a thymidine kinase promoter or an SV40 virus promoter.
  • a promoter strongly recognized by these cells for example a thymidine kinase promoter or an SV40 virus promoter.
  • the sequence originating from the adenovirus, then integrated into the genome of these higher eukaryotic cells, can therefore complement the defective viruses in accordance with the invention, under conditions analogous to those permitted by 293 cells. These methods are applicable with a particular advantage to Vero cells.
  • Ad5 adenovirus used was deposited on August 3, 1984 under the number I-322 at the C.N.C.M. ("National Collection of Cultures of Microorganisms from the INSTITUT PASTEUR of Paris.
  • the anti-pHSA receptor activity has been expressed as the reciprocal of the highest serum titer capable of providing 100% inhibition of hemagglutination.
  • the HBsAg particles having a receptor hemagglutination titer for the pHSA of 1: 128 were mixed with an equal volume of serial dilutions of inhibitory sera.

Abstract

Recombinant DNA modified by a nucleotide sequence coding for a specific polypeptide sequence whose expression is sought, this recombinant DNA being suitable for the transformation of eukaryot, especially human or animal, cell lines whose endogenic polymerases are capable of recognising adenovirus promoters. The DNA according to the invention is more particularly characterised in that the said nucleotide insertion sequence is placed under the direct control of the early promoter of the E1A region of the adenovirus genome.

Description

L'invention concerne un ADN recombinant comportant une séquence nucléotidique codant pour un polypeptide détermine sous le contrôle d'un promoteur d'adénovirus, des vecteurs contenant cet ADN recombinant et des cellules eucaryotes transformées par cet ADN recombinant, les produits d'excrétion de ces cellules transformées et leurs applications, notamment à la constitution de vaccins.The invention relates to a recombinant DNA comprising a nucleotide sequence coding for a determined polypeptide under the control of an adenovirus promoter, vectors containing this recombinant DNA and eukaryotic cells transformed by this recombinant DNA, the products of excretion of these transformed cells and their applications, in particular to the constitution of vaccines.

Les adénovirus humains possèdent un long génome (environ 36.000 pb) linéaire et double brin qui code pour au moins 30 protéines. Le cycle viral, au cours de l'infection de cellules permissives, est divisé en deux phases, précoce et tardive. Il est connu que les quatre régions du génome viral exprimées en phase précoce sont appelées régions E1, E2, E3 et E4, dont les positions respectives dans le génome viral entier sont schématiquement représentées dans la fig. 1. La région E1, située à l'extrémite gauche du génome, est elle-même divisée en deux régions E1A et E1B. Le passage de la phase précoce à la phase tardive, marque par la réplication du DNA viral, est caractérisé par un changement brutal du programme génétique du virus. L'expression de certains gènes précoces est réprimée alors que la transcription des gènes tardifs s'effectue principalement à partir d'un seul promoteur, le promoteur majeur tardif (fig. 1). De plus, on observe une forte répression de la synthèse des protéines de la cellule hôte (1).Human adenoviruses have a long, linear, double-stranded genome (approximately 36,000 bp) that codes for at least 30 proteins. The viral cycle, during infection of permissive cells, is divided into two phases, early and late. It is known that the four regions of the viral genome expressed in the early phase are called regions E1, E2, E3 and E4, the respective positions of which in the entire viral genome are schematically represented in FIG. 1. The E1 region, located at the left end of the genome, is itself divided into two regions E1A and E1B. The transition from the early to the late phase, marked by the replication of viral DNA, is characterized by a sudden change in the genetic program of the virus. The expression of certain early genes is repressed whereas the transcription of late genes is mainly carried out from a single promoter, the major late promoter (fig. 1). In addition, there is a strong repression of protein synthesis in the host cell (1).

L'organisation génétique des adénovirus humains de type 2 ou 5 (Ad2, Ad5) est suffisamment connue pour que l'on puisse manipuler leur génome in vitro et son utilisation comme vecteur d'expression d'un gène étranger dans une cellule animale en culture a déjà été envisagée. Il est en effet connu que la région E3, qui représente 6 % du génome, n'est pas essentielle in vitro et peut donc être substituée dans sa totalité (2). La taille du fragment de DNA étranger qu'il est possible d'insérer dans le génome de ces virus est grande. En effet, le virus peut encapsider un génome dont la longueur excède de 5 % celle du génome sauvage.The genetic organization of human adenoviruses type 2 or 5 (Ad2, Ad5) is sufficiently known that their genome can be manipulated in vitro and its use as a vector for expression of a foreign gene in an animal cell in culture has already been envisaged. It is indeed known that the E3 region, which represents 6% of the genome, is not essential in vitro and can therefore be substituted in its entirety (2). The size of the foreign DNA fragment that can be inserted into the genome of these viruses is large. Indeed, the virus can encapsulate a genome whose length exceeds by 5% that of the wild genome.

Le promoteur de la région précoce E1A d'un adénovirus, transporté dans des cellules de souris dans lesquelles la réplication des rétrovirus n'est pas possible, s'est avéré pouvoir y exercer quand même son activité promotrice. Ainsi un gène procaryote codant pour la chloramphénicol-acétyltransférase at'il pu être exprimé dans un tel système cellulaire sous le contrôle dudit promoteur (Kruczek I. et al (1983), Proc. Natl. Acad. Sci. USA).The promoter of the early E1A region of an adenovirus, transported in mouse cells in which replication of the retroviruses is not possible, has been shown to be able to exert its promoter activity there nevertheless. Thus a prokaryotic gene coding for chloramphenicol acetyltransferase could it be expressed in such a cellular system under the control of said promoter (Kruczek I. et al (1983), Proc. Natl. Acad. Sci. USA).

Différents vecteurs dérivés des adénovirus de type 2 ou 5 ont donc été construits. Dans ces recombinants, le gène étranger était exprimé sous le contrôle du promoteur majeur tardif. Ceci a permis d'obtenir dans certains cas une synthèse de la protéine codée par un gène étranger à un niveau comparable à celui des protéines virales tardives (4, 5, 6, 7), avec des efficacités de traduction in vivo faibles, notamment eu égard aux efficacités de transcription en ARNs également observées (6). En outre l'expression du gène étranger sous le contrôle du promoteur tardif ne peut se manifester que dans la phase tardive du cycle viral.Different vectors derived from type 2 or 5 adenoviruses have therefore been constructed. In these recombinants, the foreign gene was expressed under the control of the late major promoter. This made it possible in certain cases to obtain a synthesis of the protein encoded by a foreign gene at a level comparable to that of late viral proteins (4, 5, 6, 7), with low in vivo translation efficiencies, in particular eu with regard to the efficiency of transcription into RNAs also observed (6). Additionally the expression of the foreign gene under control of the late promoter can only manifest itself in the late phase of the viral cycle.

L'invention découle de la constatation que le promoteur de la région précoce E1A du génome d'un adénovirus (ci-après désigné simplement par "promoteur E1A") pouvait contrôler de façon particulièrement efficace l'expression dans un vecteur viral d'un gène hétérologue (c'est-à-dire étranger vis-à-vis des gènes qui lui sont normalement associés dans l'adénovirus) ou plus généralement d'une séquence nucléotidique hétérologue codant pour une séquence polypeptidique dont l'expression est recherchée. Dans les conditions définies ci-après, le promoteur E1A se comporte comme un promoteur fort, et ce plus particulièrement lorsque l'ensemble promoteur E1A-séquence codante hétérologue est inséré dans ce vecteur viral.The invention stems from the observation that the promoter of the early E1A region of the genome of an adenovirus (hereinafter simply referred to as "E1A promoter") could particularly effectively control the expression in a viral vector of a gene. heterologous (that is to say foreign with respect to the genes which are normally associated with it in the adenovirus) or more generally of a heterologous nucleotide sequence coding for a polypeptide sequence whose expression is sought. Under the conditions defined below, the E1A promoter behaves like a strong promoter, and this more particularly when the E1A promoter-heterologous coding sequence assembly is inserted into this viral vector.

L'invention découle de la constatation que le promoteur de la région précoce E1A du génome d'un adénovirus (ci-après désigné simplement par "promoteur E1A") pouvait contrôler de façon particulièrement efficace l'expression dans un vecteur viral d'un gène hétérologue (c'est-à-dire étranger vis-à-vis des gènes qui lui sont normalement associés dans l'adénovirus) ou plus généralement d'une séquence nucléotidique hétérologue codant pour une séquence polypeptidique dont l'expression est recherchée. Dans les conditions définies ci-après, le promoteur E1A se comporte comme un promoteur fort, et ce plus particulièrement lorsque l'ensemble promoteur E1A-séquence codante hétérologue est inséré dans ce vecteur viral.The invention stems from the observation that the promoter of the early E1A region of the genome of an adenovirus (hereinafter simply referred to as "E1A promoter") could particularly effectively control the expression in a viral vector of a gene. heterologous (that is to say foreign with respect to the genes which are normally associated with it in the adenovirus) or more generally of a heterologous nucleotide sequence coding for a polypeptide sequence whose expression is sought. Under the conditions defined below, the E1A promoter behaves like a strong promoter, and this more particularly when the E1A promoter-heterologous coding sequence assembly is inserted into this viral vector.

L'invention concerne donc de façon générale un vecteur recombinant pour la transformation de lignées cellulaires eucaryotes, notamment humaines ou animales, choisies parmi celles qui sont infectables par des adénovirus ou dont les polymérases endogènes sont susceptibles de reconnaître les promoteurs des adénovirus, ce vecteur étant en outre modifié par un acide nucléique d'insertion contenant une séquence nucléotidique codant pour une séquence polypeptidique dont l'expression dans lesdites lignées cellulaires est recherchée, caractérisé en ce que ladite séquence d'insertion est substituée aux gènes E1A normalement placés sous le contrôle direct dudit promoteur précoce de la région E1A, cette séquence d'insertion étant elle-même placée sous le contrôle direct de ce promoteur et en ce qu'il comporte, en aval de l'acide nucléique d'insertion, l'ensemble des séquences essentielles d'un génome d'adénovirus qui sont nécessaires à la réplication de l'adénovirus correspondant et qui sont normalement situées en aval des gènes normalement sous le contrôle direct du promoteur précoce E1A dans ledit génome, et en ce que la susdite séquence nucléotidique codant pour la séquence polypeptidique dont l'expression est recherchée est hétérologue vis-à-vis des gènes du susdit adénovirus.The invention therefore generally relates to a recombinant vector for the transformation of lines eukaryotic cells, in particular human or animal, chosen from those which are infectable by adenoviruses or whose endogenous polymerases are capable of recognizing the promoters of adenoviruses, this vector being further modified by an insertion nucleic acid containing a nucleotide sequence coding for a polypeptide sequence the expression of which in said cell lines is sought, characterized in that said insertion sequence is substituted for the E1A genes normally placed under the direct control of said early promoter of the E1A region, this insertion sequence being itself even placed under the direct control of this promoter and in that it comprises, downstream of the nucleic acid of insertion, all of the essential sequences of an adenovirus genome which are necessary for the replication of the corresponding adenoviruses that are normally located downstream of genes normally under the control of direct from the early promoter E1A in said genome, and in that the aforesaid nucleotide sequence coding for the polypeptide sequence whose expression is sought is heterologous with respect to the genes of the said adenovirus.

S'agissant d'un vecteur viral, dérivé d'un adénovirus, on peut alors également bénéficier de l'avantage s'attachant à la région E1A des adénovirus, à savoir que son expression est constitutive et permanente tout au long du cycle viral (8, 9).Being a viral vector, derived from an adenovirus, one can also benefit from the advantage attaching to the E1A region of adenoviruses, namely that its expression is constitutive and permanent throughout the viral cycle ( 8, 9).

Une forme particulière préférée de l'ADN recombinant selon l'invention est caractérisée par le fait qu'elle comporte, en aval de l'acide nucléique d'insertion, dans le sens de la transcription, un génome défectif d'adénovirus comprenant néanmoins l'ensemble de celles des séquences essentielles nécessaires à la réplication de l'adénovirus correspondant, qui sont normalement situées en aval des gènes normalement sous le contrôle direct du promoteur précoce E1A dans ledit génome.A particular preferred form of the recombinant DNA according to the invention is characterized in that it comprises, downstream of the nucleic acid of insertion, in the direction of transcription, a defective adenovirus genome nevertheless comprising l 'all of those essential sequences necessary for the replication of the corresponding adenovirus, which are normally located downstream of the genes normally under the direct control of the early promoter E1A in said genome.

Avantageusement, le génome défectif d'adénovirus avec lequel l'ADN recombinant conforme à l'invention est associé, est constitué par un génome complet d'adénovirus, cependant dépourvu de la partie antérieure de la région E1A du génome viral, notamment de son fragment 0-2,6 % (pourcentage exprimé par rapport à la taille totale du génome de l'adénovirus).Advantageously, the defective adenovirus genome with which the recombinant DNA in accordance with the invention is associated, consists of a complete genome of adenovirus, however devoid of the anterior part of the E1A region of the viral genome, in particular of its fragment. 0-2.6% (percentage expressed relative to the total size of the adenovirus genome).

Les ADNs recombinants de l'invention, associés avec des éléments de vecteurs tels que ceux qui ont été mentionnés ci-dessus, constituent en fait des vecteurs contenant lesdits ADNs recombinants. Il sera encore en ce qui les concerne fait référence à des "virus recombinants défectifs", lorsque les éléments de vecteurs associés à l'ADN-recombinant selon l'invention seront dérivés d'un génome défectif d'adénovirus. Ces virus recombinants défectifs sont avantageusement utilisés pour la transformation de lignées cellulaires transformables d'eucaryotes supérieurs (notamment d'origine humaine ou animale) comportant elles-mêmes une séquence distincte de nucléotides apte à complémenter la partie du génome de l'adénovirus dont le susdit vecteur est dépourvu, ladite séquence distincte étant de préférence incorporée au génome des cellules de ladite lignée cellulaire.The recombinant DNAs of the invention, associated with vector elements such as those which have been mentioned above, in fact constitute vectors containing said recombinant DNAs. As far as they are concerned, reference will also be made to "defective recombinant viruses" when the vector elements associated with the DNA-recombinant according to the invention are derived from a defective adenovirus genome. These defective recombinant viruses are advantageously used for the transformation of transformable cell lines of higher eukaryotes (in particular of human or animal origin) themselves comprising a distinct nucleotide sequence capable of complementing the part of the genome of the adenovirus including the above vector is lacking, said distinct sequence preferably being incorporated into the genome of cells of said cell line.

A titre d'exemple préféré de telles lignées cellulaires, on mentionnera la lignée 293, lignée de rein embryonnaire humain qui contient, intégrés dans son génome, les onze premiers pourcents de l'extrémité gauche du génome d'un Ad5. Ceux-ci permettent de complémenter des virus recombinants defectifs qui portent des délétions de cette région (10).As a preferred example of such cell lines, mention will be made of line 293, a human embryonic kidney line which contains, integrated into its genome, the first eleven percent of the left end of the genome of an Ad5. These make it possible to complement defective recombinant viruses which carry deletions from this region (10).

L'utilisation de ces systèmes vecteur virus défectif recombinant - cellules contenant une séquence capable de complémenter les virus recombinants défectifs, est d'un intérêt tout particulier, lorsque la séquence nucléotidique contenue dans l'acide nucléique d'insertion de l'ADN recombinant code pour une protéine qui, lorsqu'elle est exprimée dans un hôte cellulaire naturel sous le contrôle de son promoteur naturel, est excrétée dans le milieu d'une culture de cet hôte cellulaire naturel.The use of these recombinant defective virus vector systems - cells containing a sequence capable of complementing the defective recombinant viruses, is of very particular interest, when the nucleotide sequence contained in the nucleic acid of insertion of the recombinant DNA encodes for a protein which, when expressed in a natural cellular host under the control of its natural promoter, is excreted in the medium of a culture of this natural cellular host.

Le gène S du génome du virus de l'hépatite B constitue à cet égard une séquence nucléotidique d'un intérêt particulier, et ce pour plusieurs raisons. D'une part, le produit d'expression du gène S dans les cellules qui l'expriment, l'HBsAg (11, 12), est secrété dans le surnageant cellulaire sous forme de particules faciles à détecter et à quantifier par dosage radioimmunologique, ce qui permet une évaluation précise de la capacité d'expression du vecteur viral. D'autre part, l'invention fournit un vecteur viral recombinant permettant l'étude de l'expression des gènes de l'HBV tant au niveau de la transcription que de la traduction, ce qui est d'autant plus intéressant qu'il n'existait pas jusqu'à ce jour de système de culture cellulaire capable de propager le virus de l'hépatite B (HBV). Enfin, l'infection cellulaire par le virus recombinant adénovirus-HBV illustre de façon particulièrement avantageuse la base méthodologique d'un procédé de fabrication d'un vaccin contre un agent pathogène déterminé (en l'occurrence le virus de l'hépatite B dans l'exemple considéré).The S gene of the hepatitis B virus genome constitutes a nucleotide sequence of particular interest in this regard, for several reasons. On the one hand, the expression product of the S gene in the cells which express it, HBsAg (11, 12), is secreted in the cell supernatant in the form of particles easy to detect and to quantify by radioimmunological assay, which allows a precise evaluation of the expression capacity of the viral vector. On the other hand, the invention provides a recombinant viral vector allowing the study of the expression of HBV genes both at the level of transcription and of translation, which is all the more interesting since To date, there has been no cell culture system capable of spreading the hepatitis B virus (HBV). Finally, cellular infection with the recombinant adenovirus-HBV virus illustrates in a particularly advantageous way the methodological basis of a process for manufacturing a vaccine against a determined pathogenic agent (in this case the hepatitis B virus in the 'example considered).

Une autre séquence nucléotidique du génome du virus de l'hépatite B d'un intérêt particulier est le gène S muni de sa région pré-S2 qui code pour l'antigène HBs et pour un recepteur de la sérumalbumine humaine polymérisée (pHSA)(25),(26).Another nucleotide sequence of the hepatitis B virus genome of particular interest is the S gene provided with its pre-S2 region which codes for the HBs antigen and for a receptor for polymerized human serum albumin (pHSA) (25 ), (26).

Il va de soi que l'on peut substituer dans l'ADN recombinant le gène S par toute autre séquence nucléotidique codant pour un antigène protecteur distinct contre un autre agent pathogene déterminé, surtout lorsque cet antigène protecteur distinct est lui-même normalement susceptible d'être secrété par les cellules transformées par l'ADN recombinant. Il va de soi également que l'on peut substituer dans l'ADN recombinant le gène S et la région pré-S2 par toute autre séquence nucléotidique codant pour un antigène protecteur distinct contre un autre agent pathogène déterminé, surtout lorsque cet antigène protecteur distinct est lui-même normalement susceptible d'être sécrété par les cellules transformées par l'ADN recombinant. La séquence nucléotidique codant pour cet antigène protecteur distinct peut d'ailleurs éventuellement être insérée dans l'ADN recombinant en phase avec un autre gène, par exemple l'antigène HBsAg, dès lors que cet autre gène peut être utilisé comme "locomotive" pour promouvoir l'excrétion également de cet antigène distinct, notamment sous forme de protéine hybride. Au titre des antigènes distincts susceptibles d'être ainsi produits (le cas échéant sous forme de protéine hybride), on mentionne par exemple des glycoprotéines de structure du virus d'Epsteim-Barr.It goes without saying that the S gene can be substituted in the recombinant DNA by any other nucleotide sequence coding for a distinct protective antigen against another determined pathogenic agent, especially when this distinct protective antigen is itself normally capable of be secreted by cells transformed by recombinant DNA. It also goes without saying that the S gene and the pre-S2 region can be substituted in the recombinant DNA by any other nucleotide sequence coding for a distinct protective antigen against another determined pathogenic agent, especially when this distinct protective antigen is itself normally capable of being secreted by transformed cells by recombinant DNA. The nucleotide sequence coding for this distinct protective antigen can moreover possibly be inserted into the recombinant DNA in phase with another gene, for example the HBsAg antigen, since this other gene can be used as a "locomotive" to promote the excretion also of this distinct antigen, in particular in the form of a hybrid protein. By way of the separate antigens capable of being thus produced (where appropriate in the form of a hybrid protein), mention is made, for example, of glycoproteins of structure of the Epsteim-Barr virus.

Les premiers nucléotides de la séquence nucléotidique codant pour un polypeptide déterminé (protéine "simple" ou hybride) sont placés, notamment par construction aussi près que possible de ce promoteur, notamment de la "boite TATA" (TATA box), caractéristique du promoteur, étant cependant entendu que la séquence nucléotidique entre le promoteur et l'ATG initiateur de la séquence nucléotidique codant pour ledit polypeptide déterminé devra en général contenir les triplets codant pour l'extrémité 5' non traduite de l'ARN messager correspondant normalement à la séquence codante et contenant les séquences d'appariement aux ribosomes nécessaires à une traduction efficace. Cette extrémité 5' non traduite de l'ARN messager peut d'ailleurs être remplacée par l'extrémité 5' non traduite d'un ARN messager distinct de celui normalement associé a une séquence codante déterminée. Par exemple, on peut, dans le cas du gène S, remplacer l'extrémité 5' non traduite contenant le gène pré-S ou jouxtant celui-ci par l'extrémité 5' non traduite de l'ARN messager de l'antigène T de SV40. Mais on a aussi remarqué que lorsqu'on utilise une séquence d'ADN contenant les régions S et pré-S2 du génome du virus de l'hépatite B sous le contrôle du promoteur fort E1A, il est possible d'obtenir les expressions à la fois de la région pré-S2 et de la région S.
Toute autre extrémité 5' non traduite d'ARN messager peut être utilisée, dès lors qu'elle est compatible avec l'autre extrémité similaire choisie.
The first nucleotides of the nucleotide sequence coding for a determined polypeptide (“simple” or hybrid protein) are placed, in particular by construction as close as possible to this promoter, in particular of the “TATA box”, characteristic of the promoter, it being understood however that the nucleotide sequence between the promoter and the ATG initiating the nucleotide sequence coding for said determined polypeptide must generally contain the triplets coding for the 5 'untranslated end of the messenger RNA normally corresponding to the coding sequence and containing the ribosome pairing sequences necessary for efficient translation. This 5 'untranslated end of the messenger RNA can moreover be replaced by the 5' untranslated end of a messenger RNA distinct from that normally associated with a determined coding sequence. For example, in the case of the S gene, it is possible to replace the 5 'untranslated end containing the pre-S gene or adjoining it with the 5' untranslated end of the messenger RNA of the T antigen from SV40. However, it has also been noted that when a DNA sequence containing the S and pre-S2 regions of the hepatitis B virus genome is used under the control of the strong E1A promoter, it is possible to obtain the expressions at the times from the pre-S2 region and from region S.
Any other 5 'untranslated end of messenger RNA can be used, as long as it is compatible with the other similar end chosen.

Il est avantageux que la distance entre la boîte TATA du promoteur et le site d'initiation de l'ARN messager soit d'environ 30 nucléotides.It is advantageous that the distance between the promoter's TATA box and the messenger RNA initiation site is approximately 30 nucleotides.

Le promoteur E1A de l'ADN recombinant selon l'invention et encore plus généralement le vecteur selon l'invention mettant en oeuvre des parties plus importantes du génome d'un adénovirus sont de préférence issus d'un adénovirus appartenant à la catégorie C, telle qu'elle a été définie par TOOZE. Ces adénovirus ont la propriété connue de n'être pas oncogènes. Les sous-types Ad2 ou Ad5 de cette catégorie d'adénovirus se caractérisent par un pouvoir transformant important. L'utilisation de ce dernier type d'ADN recombinant est donc particulièrement recommandée, lorsque le produit d'expression recherché est destiné à la production d'antigènes protecteurs, notamment de principes actifs de vaccins. Cela sera encore d'autant plus vrai dans le cas où des adénovirus entiers, et même infectieux, seront utilisés comme principes actifs de vaccins vivants, notamment dans les conditions qui seront encore explicitées plus loin.The promoter E1A of the recombinant DNA according to the invention and even more generally the vector according to the invention using larger parts of the genome of an adenovirus are preferably derived from an adenovirus belonging to category C, such that it has been defined by TOOZE. These adenoviruses have the known property of not being oncogenic. The Ad2 or Ad5 subtypes of this category of adenovirus are characterized by a significant transforming power. The use of the latter type of recombinant DNA is therefore particularly recommended, when the expression product sought is intended for the production of protective antigens, in particular active principles of vaccines. This will be all the more true in the case where whole, and even infectious, adenoviruses will be used as active principles of live vaccines, in particular under the conditions which will be explained further below.

L'invention concerne naturellement également les lignées cellulaires, notamment d'origine humaine ou animale, qui sont transformées par des ADN recombinants tels que définis ci-dessus et qui ont été rendues capables de synthétiser un polypeptide codé par la séquence nucléotidique (ou lesdites séquences nucléotidiques) contenues dans ces ADNs recombinants et placées sous le contrôle direct dudit promoteur.The invention naturally also relates to cell lines, in particular of human or animal origin, which are transformed by recombinant DNAs as defined above and which have been made capable of synthesizing a polypeptide encoded by the nucleotide sequence (or said sequences nucleotides) contained in these recombinant DNAs and placed under the direct control of said promoter.

L'invention concerne plus particulièrement encore les lignées cellulaires transformées avec un vecteur recombinant conforme à l'invention et en outre caractérisées en ce que les cellules de ces lignées cellulaires contiennent elles-mêmes une séquence distincte de nucléotides aptes à complémenter la partie du génome de l'adénovirus dont le susdit vecteur est dépourvu, ladite séquence distincte étant de préférence incorporée au génome des cellules de ladite lignée cellulaire.The invention relates more particularly still to cell lines transformed with a recombinant vector in accordance with the invention and further characterized in that the cells of these cell lines themselves contain a distinct sequence of nucleotides capable of complementing the part of the genome of the adenovirus which the above vector does not have, said distinct sequence preferably being incorporated into the genome of the cells of said cell line .

A ce titre, la lignée 293 déjà mentionnée plus haut, après avoir été transformée par les vecteurs recombinants, constitue une culture cellulaire préférée selon l'invention. Grâce à la séquence de complémentation que contiennent les cellulles de cette lignée, on observe une multiplication virale importante à l'intérieur de ces cellules et, par voie de conséquence, une expression également multipliée de la séquence codante pour le polypeptide prédéterminé. Dans le premier cas où cette séquence codante est le gène S, on obtient une production importante d'antigènes HBsAg excrétés dans le milieu de culture de ces cellules. Dans le second cas où les séquences codantes sont constituées par le gène S et la région pré-S2 du virus de l'hépatite B, l'adénovirus recombinant dirige in vitro la synthèse des particules HBsAg possédant une activité de récepteur pour la pHSA. Injecté à des lapins, ce virus recombinant produit des anticorps anti-HBsAg et anti-pHSA. Ceci montre la possibilité d'utiliser un adénovirus recombinant pour exprimer un gène à la fois in vitro et in vivo. Les mêmes vecteurs peuvent être utilisés pour la transformation de cellules Vero dans des conditions analogues.As such, the line 293 already mentioned above, after having been transformed by the recombinant vectors, constitutes a preferred cell culture according to the invention. Thanks to the complementation sequence which the cells of this line contain, a significant viral multiplication is observed inside these cells and, consequently, an equally multiplied expression of the coding sequence for the predetermined polypeptide. In the first case where this coding sequence is the S gene, a high production of HBsAg antigens is excreted in the culture medium of these cells. In the second case where the coding sequences consist of the S gene and the pre-S2 region of the hepatitis B virus, the recombinant adenovirus directs in vitro the synthesis of HBsAg particles having receptor activity for pHSA. When injected into rabbits, this recombinant virus produces anti-HBsAg and anti-pHSA antibodies. This shows the possibility of using a recombinant adenovirus to express a gene both in vitro and in vivo . The same vectors can be used for the transformation of Vero cells under analogous conditions.

Les vecteurs recombinants selon l'invention peuvent également être utilisés pour la transformation de cellules ne possédant pas elle-même la séquence de complémentation dans les conditions qui ont été indiquées ci-dessus. Il pourra alors être nécessaire de procéder à une co-transformation de ces derniers types de cellules, d'une part, avec le vecteur recombinant selon l'invention, d'autre part, avec un adénovirus non défectif ou un ADN recombinant distinct contenant les séquences d'adénovirus dont est dépourvu le vecteur recombinant conforme à l'invention. Il pourra certes être observé dans ce dernier cas une production simultanée d'antigènes HBsAg (lorsque la séquence codante contient le gène S) et de l'adénovirus répliqué et libéré par les cellules ainsi transformées. L'antigène protecteur formé peut cependant, le cas échéant, être séparé de la suspension virale, par exemple par mise en contact du milieu de culture avec des anticorps anti-adénovirus, de préférence immobilisés sur un support solide, tel que l'agarose réticulée, commercialisée sous la désignation SEPHAROSE. De toute façon, la présence de quantités résiduelles de virus dans la préparation vaccinante n'est que d'une importance relativement mineure. En effet, l'adénovirus n'a qu'un pouvoir pathogène faible chez l'homme. Il n'entraîne que des infections respiratoires bénignes.The recombinant vectors according to the invention can also be used for the transformation of cells which do not itself have the complementation sequence under the conditions which have been indicated above. It may then be necessary to carry out a co-transformation of these latter types cells, on the one hand, with the recombinant vector according to the invention, on the other hand, with a non-defective adenovirus or a distinct recombinant DNA containing the adenovirus sequences which lack the recombinant vector according to the invention. It will certainly be observed in the latter case a simultaneous production of HBsAg antigens (when the coding sequence contains the S gene) and of the replicated adenovirus released by the cells thus transformed. The protective antigen formed may, however, if necessary, be separated from the viral suspension, for example by bringing the culture medium into contact with anti-adenovirus antibodies, preferably immobilized on a solid support, such as cross-linked agarose. , marketed under the designation SEPHAROSE. In any case, the presence of residual amounts of virus in the vaccine preparation is only of relatively minor importance. In fact, the adenovirus has only a weak pathogenic power in humans. It only causes mild respiratory infections.

La faible importance du pouvoir pathogène des adénovirus, plus particulièrement de ceux qui appartiennent au groupe C des adénovirus humains, permet d'envisager la constitution de "vaccins vivants". Ceux-ci peuvent être constitués par des adénovirus infectieux modifiés au niveau de la région E3 par l'insertion de l'ADN recombinant selon l'invention dans la partie non essentielle de l'adénovirus. A cet égard, il faut souligner le fait que les adénovirus humains du groupe C ne se sont jamais révélés tumorigènes chez l'animal (3). Ces vecteurs ou virus seront d'un intérêt tout particulier pour la transformation de cellules Vero, dont le caractère non tumorigène est maintenant solidement établi. De ce fait elles constituent une lignée d'origine animale particulièrement favorable à la production de produits à usage humain.The low importance of the pathogenic power of adenoviruses, more particularly those which belong to group C of human adenoviruses, makes it possible to envisage the constitution of "live vaccines". These can be constituted by infectious adenoviruses modified in the E3 region by the insertion of the recombinant DNA according to the invention into the nonessential part of the adenovirus. In this regard, it should be emphasized that human group C adenoviruses have never been shown to be tumorigenic in animals (3). These vectors or viruses will be of particular interest for the transformation of Vero cells, the non-tumorigenic character of which is now firmly established. Therefore they constitute a line of animal origin particularly favorable to the production of products for human use.

Des caractéristiques supplémentaires de l'invention apparaîtront encore au cours de la description qui suit de constructions préférées de vecteurs contenant l'ADN recombinant selon l'invention et des conditions dans lesquelles ces vecteurs sont utilisables. Il sera fait référence à cette occasion aux dessins dans lesquels :

  • la fig. 1 représente schématiquement les positions relatives des différentes régions du génome d'un adénovirus du sous-type Ad5, d'une part, et à échelle agrandie, de la région E1A de ce génome ;
  • la fig. 2 est un schéma désormais classique du génome du virus de l'hépatite B ;
  • les fig. 3 à 6 montrent les constructions successives qui ont conduit à la réalisation d'un plasmide contenant un premier ADN recombinant conforme à l'invention (fig. 6) et
  • la fig. 7 représente schématiquement la construction d'un "virus recombinant défectif" à partir du plasmide modifié de la fig. 5 et de génomes défectifs de Ad5.
Additional characteristics of the invention will become apparent during the following description of preferred constructions of vectors containing the recombinant DNA according to the invention and of the conditions under which these vectors can be used. Reference will be made on this occasion to the drawings in which:
  • fig. 1 schematically represents the relative positions of the different regions of the genome of an adenovirus of the Ad5 subtype, on the one hand, and on an enlarged scale, of the E1A region of this genome;
  • fig. 2 is a now classic diagram of the genome of the hepatitis B virus;
  • fig. 3 to 6 show the successive constructions which have led to the production of a plasmid containing a first recombinant DNA in accordance with the invention (FIG. 6) and
  • fig. 7 schematically represents the construction of a "defective recombinant virus" from the modified plasmid of FIG. 5 and defective genomes of Ad5.

On fera d'abord les observations suivantes à propos des figures, avant de décrire la réalisation de constructions d'ADNs recombinants selon l'invention.The following observations will first be made with regard to the figures, before describing the production of recombinant DNA constructions according to the invention.

Dans les fig. 3 à 6, les parties en trait fin correspondent à des séquences du plasmide pML2.In fig. 3 to 6, the parts in thin lines correspond to sequences of the plasmid pML2.

Les nombres apparaissant dans les fig. 1 à 5 indiquent les positions des sites de restriction dans les séquences virales Ad5, SV40 et HBV. Les numérotations des positions des sites de restriction de Ad5 et du SV450 sont celles de J. TOOZE (1), celles de l'HBV sont celles de P. TIOLLAIS et al. (11).The numbers appearing in figs. 1 to 5 indicate the positions of the restriction sites in the viral sequences Ad5, SV40 and HBV. The numbering of the positions of the restriction sites of Ad5 and SV450 are those of J. TOOZE (1), those of HBV are those of P. TIOLLAIS et al. (11).

Les raturations des désignations de sites dans les dessins témoignent de la présence antérieure des mêmes sites dans les parties correspondantes des ADNs qui seront décrits ci-après. Ces sites ont cependant été délétés, supprimés par réparation des extrémités cohésives des fragments ouverts ou fragmentés à l'aide des enzymes de restriction correspondasntes, ou par tout autre moyen tel qu'envisagé dans la description qui suit des constructions qui ont été faites.The erasures of the site designations in the drawings testify to the previous presence of the same sites in the corresponding parts of the DNAs which will be described below. These sites were however deleted, removed by repairing the cohesive ends of the fragments open or fragmented using the corresponding restriction enzymes, or by any other means as envisaged in the description which follows of the constructions which have been made.

1. Rappel des principaux éléments de la structure et de l'organisation du génome de l'adénovirus Ad5 (ci-après souvent simplement désigné par la désignation Ad5) :1. Reminder of the main elements of the structure and organization of the Ad5 adenovirus genome (hereinafter often simply designated by the designation Ad5) :

Ils résultent des parties 1A et 1B de la fig. 1.

  • 1A : Le génome est une molécule de DNA linéaire double brin longue d'environ 36.000 pb. Les flèches indiquent la position et le sens des transcriptions des régions précoces E1a, E1b, E2, E3 et E4. Le promoteur majeur tardif PMt et l'unité de transcription qui lui est associée sont également montrés. Les numérotations de 10 en 10, de 0 à 100, correspondent à des tailles exprimées en % de la taille du génome total.
  • 1B : La région E1A. Les transcripts de cette région ont tous des extrémités 5'P (position 499) et 3'OH (position 1632) identiques. Le premier T de l'élément TATA du promoteur est situé à la position 468. Les sites de restriction utilisés dans les constrructions des plasmides sont indiqués. Les tailles sont exprimées par des nombres de paires de bases.
They result from parts 1A and 1B of FIG. 1.
  • 1A : The genome is a double stranded linear DNA molecule approximately 36,000 bp long. The arrows indicate the position and the direction of the transcriptions of the early regions E1a, E1b, E2, E3 and E4. The late major promoter PM t and the associated transcription unit are also shown. The numbers from 10 to 10, from 0 to 100, correspond to sizes expressed in% of the size of the total genome.
  • 1B : The E1A region. The transcripts of this region all have identical 5'P (position 499) and 3'OH ends (position 1632). The first T of the TATA element of the promoter is located at position 468. The restriction sites used in the construction of the plasmids are indicated. Sizes are expressed by numbers of base pairs.

2. Origine des fragments contenant le gène S ou le gène S et la région pré-S2 utilisés dans les constructions qui suivent.2. Origin of the fragments containing the S gene or the S gene and the pre-S2 region used in the constructions which follow . 1° cas : Fragment du génome du virus de l'hépatite B contenant le gène S. 1st case : Fragment of the hepatitis B virus genome containing the S gene.

Il est issu du génome du virus de l'hépatite B (fig. 2). Il est rappelé que le génome du virus de l'hépatite B est une molécule de DNA circulaire partiellement simple brin. Sa longueur est d'environ 3.200 pb. Il est constitué par l'appariement de deux brins de longueur inégale appelés brins L(-) et S(+). Le gène S représente la séquence codante du polypeptide majeur de l'enveloppe virale qui porte l'HBsAg. Le fragment d'ADN utilisé dans les constructions ci-après est le fragment XhoI₁₂₇-BglII₁₉₈₄. Le site de polyadénylation du messager de l'HBsAg a été localisé à la position 1916.It comes from the genome of the hepatitis B virus (fig. 2). It is recalled that the hepatitis B virus genome is a partially single-stranded circular DNA molecule. Its length is approximately 3,200 bp. It consists of the pairing of two strands of unequal length called strands L (-) and S (+). The S gene represents the coding sequence of the major polypeptide of the viral envelope which carries HBsAg. The DNA fragment used in the constructions below is the XhoI₁₂₇-BglII₁₉₈₄ fragment. The polyadenylation site of the HBsAg messenger was located at position 1916.

2° cas : Fragment du génome du virus de l'hépatite B contenant le gène S et la région pré-S2. 2nd case : Fragment of the genome of the hepatitis B virus containing the S gene and the pre-S2 region.

Le fragment d'ADN utilisé est le fragment MstII₃₁₆₁-BglII₁₉₈₂ qui code à la fois pour l'antigène HBs et pour un récepteur de la sérumalbumine humaine polymérisée (pHSA). Le site MstII précède le codon d'initiation de la région pré-S2 de 9 nucléotides. Le site BglII est situé à 64 nucléotides en aval du signal de poly A addition du gène S (de l'anglais "poly A addition signal").The DNA fragment used is the MstII₃₁₆₁-BglII₁₉₈₂ fragment which codes both for the HBs antigen and for a polymerized human serum albumin receptor (pHSA). The MstII site precedes the initiation codon of the pre-S2 region by 9 nucleotides. The BglII site is located 64 nucleotides downstream of the poly A addition signal of the S gene (from the English "poly A addition signal").

Il est question dans ce qui suit de la construction et de la propagation d'un adénovirus recombinant comportant le gène S. Le mode opératoire est identique pour obtenir un adénovirus recombinant, conforme à l'invention, possédant le gène S et la région pré-S2, étant entendu que, dans ce second cas, c'est le fragment d'ADN MstII-BglII qui est inséré entre les sites de restriction HindIII et BamHI du plasmide pK4, à la place du fragment d'ADN XhoI-BglII dont il est question ci-après.The construction and the propagation of a recombinant adenovirus comprising the S gene are discussed in the following. The procedure is identical for obtaining a recombinant adenovirus, in accordance with the invention, having the S gene and the pre- S2, it being understood that, in this second case, it is the DNA fragment MstII-BglII which is inserted between the HindIII and BamHI restriction sites of the plasmid pK4, in place of the DNA fragment XhoI-BglII of which it is question below.

On désignera dans ce qui suit par Ad5(X-B) l'adénovirus recombinant possédant le gène S et par Ad5(M-B) l'adénovirus recombinant possédant le gène S et la région pré-S2.The following will denote by Ad5 (X-B) the recombinant adenovirus having the S gene and by Ad5 (M-B) the recombinant adenovirus having the S gene and the pre-S2 region.

3. Construction du plasmide pE1A(TagI) (fig. 3). 3. Construction of the plasmid pE1A (TagI) (fig. 3).

Le plasmide pE1A(TaqI) contient les 632 premiers nucléotides de l'extrémité gauche du génomé de l'Ad5. Ce fragment a été obtenu par coupure du fragment de restriction purifié SacI E (0 - 5,0 %) de l'Ad5 par TaqI (fig. 1). Ce fragment a été inséré entre les sites de restriction EcoRI et ClaI du plasmide pML2 (fig. 3) Le plasmide pML2 a été ouvert par EcoRI et Clal. Le fragment de Ad5 a été lié au plasmide linéarisé au niveau de l'extrémité TaqI. La jonction des extrémités TaqI-ClaI recrée un site de restriction ClaI. L'extrémité EcoRI du recombinant a été réparée avec la DNA-polymérase I de E. coli (fragment de Klenow) et le plasmide recircularisé au moyen de la ligase T4. Le site EcoRI a donc été reconstitue.The plasmid pE1A (TaqI) contains the first 632 nucleotides of the left end of the Ad5 genome. This fragment was obtained by cutting the purified restriction fragment SacI E (0 - 5.0%) of Ad5 by TaqI (FIG. 1). This fragment was inserted between the EcoRI and ClaI restriction sites of the plasmid pML2 (fig. 3) Le plasmid pML2 was opened by EcoRI and Clal. The Ad5 fragment was linked to the linearized plasmid at the TaqI end. The junction of the TaqI-ClaI ends recreates a ClaI restriction site. The EcoRI end of the recombinant was repaired with DNA polymerase I from E. coli (Klenow fragment) and the plasmid recircularized using T4 ligase. The EcoRI site has therefore been reconstructed.

4. Fabrication du plasmide pAB1 (fig. 4). 4. Manufacture of the plasmid pAB1 (FIG. 4).

Le plasmide pAB1 a été construit à partir du plasmide pEIA(TaqI), de façon à éliminer la partie codante de la région E1A. Ceci a été effectué par isolement du fragment PvuII-PvuII (positions 452-623), coupure de ce fragment par l'enzyme HaeIII (position 495), réinsertion du fragment PvuII₄₅₂-HaeIII₄₉₅ au niveau du site PvuII₆₂₃ du plasmide pE1A(TaqI). En d'autres termes, le fragment HaeIII₄₉₅-Pvu₆₂₃ a eté délété. Le plasmide pAB1 contient un site HindIII proche du site d'initiation de transcription de la région E1A et un site BamHI (de pML2) situé à distance. Ces deux sites de restriction peuvent être utilisés pour cloner des genes étrangers sans qu'il y ait fusion génétique.The plasmid pAB1 was constructed from the plasmid pEIA (TaqI), so as to eliminate the coding part of the E1A region. This was done by isolating the PvuII-PvuII fragment (positions 452-623), cutting this fragment with the enzyme HaeIII (position 495), reinserting the PvuII₄₅₂-HaeIII₄₉₅ fragment at the PvuII₆₂₃ site of the plasmid pE1A (TaqI). In other words, the HaeIII₄₉₅-Pvu₆₂₃ fragment has been deleted. The plasmid pAB1 contains a HindIII site close to the transcription initiation site of the E1A region and a BamHI site (of pML2) located at a distance. These two restriction sites can be used to clone foreign genes without genetic fusion.

5. Production du plasmide pK4 (fig. 5). 5. Production of the plasmid pK4 (FIG. 5).

pAB1 a été coupé par HindIII et BamHI et le fragment contenant le promoteur de E1A, issu de pAB1, a été lié, au niveau de son extrémité BamHI au fragment BglI-BamHI (positions 5235-2533 du génome du virus SV40) ci-après dénommé A(SV40) contenant le gène codant pour les antigènes T et t du virus SV40. Après réparation des extrémités BglI et HindIII du reconstituant par le fragment de Kleenow, le plasmide est recircularisé au moyen de la ligase T4. La construction présente dans le plasmide pK4 a été testée en mettant en jeu l'expression transitoire du gène T. Introduit dans des cellules HeLa par transfection selon la technique au phosphate de calcium (19), le plasmide pK4 dirige la synthèse de l'antigène T de SV40 qui a été détectée par immunofluorescence. Environ 1 % des cellules transfectées présentaient une fluorescence nette. L'absence de fluorescence après transfection cellulaire par un plasmide contenant le fragment de SV40 inséré dans la mauvaise orientation montre que le gène des antigènes T et t est bien placé sous le contrôle du promoteur E1A de l'Ad5.pAB1 was cut with HindIII and BamHI and the fragment containing the E1A promoter, derived from pAB1, was linked, at its BamHI end to the BglI-BamHI fragment (positions 5235-2533 of the SV40 virus genome) hereinafter called A (SV40) containing the gene coding for the T and t antigens of the SV40 virus. After repair of the BglI and HindIII ends of the reconstitutor with the Kleenow fragment, the plasmid is recircularized using T4 ligase. The construction present in the plasmid pK4 was tested by bringing into play the transient expression of the T gene. Introduced into HeLa cells by transfection according to the calcium phosphate technique (19), the plasmid pK4 directs the synthesis of the antigen T of SV40 which was detected by immunofluorescence. About 1% of the transfected cells showed clear fluorescence. The absence of fluorescence after cell transfection with a plasmid containing the fragment of SV40 inserted in the wrong orientation shows that the gene for T and t antigens is well placed under the control of the E1A promoter of Ad5.

C'est le site HindIII, à la position 5171 du fragment A(SV40) qui est ensuite utilisé pour substituer le susdit fragment contenant le gène 5 à la majeure partie de A(SV40).It is the HindIII site, at position 5171 of fragment A (SV40) which is then used to substitute the aforementioned fragment containing the gene 5 for most of A (SV40).

6. Production du plasmide pK4S (X-B)(fig. 6). 6. Production of the plasmid pK4S (XB) (fig. 6).

Le plasmide pK4 a été digéré par HindIII et BamHI. Le fragment XhoI-BglII (positions 125 à 1982) du génome du virus de l'hépatite B (HBV) (fig. 2) a été inséré, en lieu et place de la majeure partie de A(SV40) entre les sites de restriction HindIII et BamHI du plasmide pK4, après réparation de leurs extrémités respectives par la DNA polymérase I d'E. coli (fragment de Kleenow) (fig. 3). Les sites de restriction XhoI, HindIII, BamHI et BglII sont perdus après ligature.The plasmid pK4 was digested with HindIII and BamHI. The XhoI-BglII fragment (positions 125 to 1982) of the hepatitis B virus (HBV) genome (fig. 2) was inserted, in place of most of A (SV40) between the restriction sites HindIII and BamHI of the plasmid pK4, after repair of their respective ends by DNA polymerase I of E. coli (fragment of Kleenow) (fig. 3). The XhoI, HindIII, BamHI and BglII restriction sites are lost after ligation.

Le site HindIII était situé à 8 nucléotides en amont de l'ATG initiateur des antigenes T et t. L'insertion du gène S dans ce site permet donc de conserver l'extrémité 5 du mRNA précoce de SV40 contenant le site de "capping" et les séquences d'appariement du messager aux ribosomes. Le fragment de DNA HBV contient la séquence codante ou gène S (position 155 à 833) du polypeptide majeur de l'enveloppe virale porteur de l'HBsAg ainsi que la séquence située en 3' du gène S et qui inclut le site de polyadénylation de l'ARN messager de l'HBsAg à la position 1916 (20, 21, 22). Deux plasmides pK4S⁺ et pK4S⁻ porteurs du fragment HBV inséré dans les deux sens ont été isolés. Des cellules 293 ont été transfectées par ces deux plasmides et la synthèse d'HBsAg a été recherchée dans le surnageant cellulaire 3 jours après la transfection. Seul le plasmide pK4S⁺ qui possède le promoteur E1A à l'extrémité 5' du gène S est capable de diriger la synthèse d'HBsAg. Ceci montre que l'expression du gène S est bien sous le contrôle du promoteur E1A de l'Ad5. Finalement, un site de restriction ClaI non méthylé dans E. coli a été introduit dans le plasmide pK4S⁺ (X-B) au niveau du site NruI de la séquence pML₂. Le site est nécessaire à la construction du virus recombinant.The HindIII site was located 8 nucleotides upstream of the ATG initiating the T and t antigens. The insertion of the S gene into this site therefore makes it possible to conserve the 5 end of the early SV40 mRNA containing the "capping" site and the messenger pairing sequences to the ribosomes. The HBV DNA fragment contains the coding sequence or S gene (position 155 to 833) of the major polypeptide of the viral envelope carrying HBsAg as well as the sequence located 3 ′ of the S gene and which includes the polyadenylation site of HBsAg messenger RNA at position 1916 (20, 21, 22). Two plasmids pK4S⁺ and pK4S⁻ carrying the HBV fragment inserted in both directions were isolated. 293 cells were transfected with these two plasmids and the synthesis of HBsAg was sought in the cell supernatant 3 days after the transfection. Only the plasmid pK4S⁺ which has the promoter E1A at the 5 'end of the S gene is capable of directing the synthesis of HBsAg. This shows that the expression of the S gene is well under the control of the E1A promoter of Ad5. Finally, a ClaI restriction site not methylated in E. coli was introduced into the plasmid pK4S⁺ (XB) at the NruI site of the sequence pML₂. The site is necessary for the construction of the recombinant virus.

C'est finalement le fragment délimité par des extrémités PstI et ClaI, et obtenu à partir de pK4S⁺ (X-B), qui a été utilisé pour la fabrication d'un "virus recombinant défectif" conforme à l'invention.It is finally the fragment delimited by PstI and ClaI ends, and obtained from pK4S⁺ (X-B), which was used for the manufacture of a "defective recombinant virus" in accordance with the invention.

7. Construction du virus recombinant défectif (fig. 7). 7. Construction of the defective recombinant virus (fig. 7).

3 microgrammes du fragment de restriction Pst1-ClaI purifié à partir du plasmide pK4S⁺ (X-B) ont été ligaturés à 20 microgrammes du fragment de restriction ClaI (2,6 % - 100 %) de l'Ad5 purifié par ultracentrifugation en gradient de saccharose pour fournir le "virus défectif recombinant" Ad5.3 micrograms of the Pst1-ClaI restriction fragment purified from the plasmid pK4S⁺ (XB) were ligated to 20 micrograms of the ClaI restriction fragment (2.6% - 100%) of the Ad5 purified by sucrose gradient ultracentrifugation to provide the "recombinant defective virus" Ad5.

8. Pronagation du virus recombinant. 8. Pronation of the recombinant virus.

Les cellules 293 ont été cultivées dans des boîtes de 6 cm de diamètre. 4 heures avant la transfection le surnageant de culture a été remplacé par du milieu. 5 boîtes de cellules 293 à 70 % de confluence ont alors été transfectées avec le mélange de ligation selon la technique au phosphate de calcium puis incubées pendant 4 heures à 37°C. Après adsorption, les cellules contenues dans chaque boîte ont été lavées avec 2 ml de tampon TS (NaCl 8000,0 mg/l, KCl 380,0 mg/l, Na₂ HPO₄ 100,0 mg/l, CaCl₂ 100,0 mg/l, MgCl₂, 6H₂O 100,0 mg/l, Tris 3000,0 mg/l pH 7,4), traitées avec 400 microlitres d'une solution TS contenant 20 % de glycérol pendant 1 minute à température ordinaire, lavées deux fois avec 2 ml de tampon TS, puis recouverte avec 4 ml de milieu MEM contenant 1 % d'agar noble, 1 % de sérum de veau foetal. Aux jours 4 et 7, les cellules ont été recouvertes avec 4 ml du mélange nutritif. Aujour 10, les cellules ont été colorées avec 4 ml du milieu nutritif supplémenté avec 0,01 % de rouge neutre. Les plages ont été observées au jour 11. Les virus ont été resuspendus dans 1 ml de TS et amplifié sur cellules 293. La présence de HBsAG dans le milieu de culture a été testée par RIA (Austria II, laboratoire ABBOTT). Après amplification, la présence de séquences HBV dans le recombinant a été testée par hybridation. Cinq plages ont été analysées. Une seule contrenait un virus recombinant HBsAg⁺. Ce clone Ad5(X-B) ainsi qu'un autre clone étaient positifs pour la détection de séquences HBV. La taille du génome viral recombinant excède celle du virus sauvage de 2100 pb. Aucune délétion n'a pu être détectée par analyse de fragments de restriction du génome recombinant. Par ailleurs, cette analyse a montré que les séquences du pML2 situées entre le site de restriction PstI et la séquence d'Ad5 ont été correctement excisées au cours de la propagation du génome recombinant dans la lignée 293.293 cells were grown in dishes 6 cm in diameter. 4 hours before transfection the culture supernatant was replaced with medium. 5 boxes of 293 cells at 70% confluence were then transfected with the ligation mixture according to the calcium phosphate technique then incubated for 4 hours at 37 ° C. After adsorption, the cells contained in each dish were washed with 2 ml of TS buffer (NaCl 8000.0 mg / l, KCl 380.0 mg / l, Na₂ HPO₄ 100.0 mg / l, CaCl₂ 100.0 mg / l, MgCl₂, 6H₂O 100.0 mg / l, Tris 3000.0 mg / l pH 7.4), treated with 400 microliters of a TS solution containing 20% glycerol for 1 minute at ordinary temperature, washed twice with 2 ml of TS buffer, then covered with 4 ml of MEM medium containing 1% noble agar, 1% fetal calf serum. On days 4 and 7, the cells were covered with 4 ml of the nutrient mixture. On day 10, the cells were stained with 4 ml of the nutrient medium supplemented with 0.01% neutral red. The plaques were observed on day 11. The viruses were resuspended in 1 ml of TS and amplified on 293 cells. The presence of HBsAG in the culture medium was tested by RIA (Austria II, laboratory ABBOTT). After amplification, the presence of HBV sequences in the recombinant was tested by hybridization. Five ranges were analyzed. Only one was against a recombinant HBsAg⁺ virus. This Ad5 clone (XB) as well as another clone were positive for the detection of HBV sequences. The size of the recombinant viral genome exceeds that of the wild virus by 2100 bp. No deletion could be detected by analysis of restriction fragments of the recombinant genome. Furthermore, this analysis showed that the pML2 sequences located between the PstI restriction site and the Ad5 sequence were correctly excised during the propagation of the recombinant genome in line 293.

9. La synthèse d'HBsAg dirigée par le vecteur Ad5(X-B). 9. The synthesis of HBsAg directed by the vector Ad5 (XB).

Des cellules 293 et des cellules Vero ont été infectées par le virus Ad5(X-B). Les niveaux d'expression de HBsAg synthétisé sont montrés dans le tableau I. Des échantillons du surnageant cellulaire ont été prélevés 3 jours après l'infection et l'HBsAg a été recherché par essai radioimmunologique ("radio-immunoassay : RIA). Les résultats montrent que le vecteur Ad5(X-B) est capable de diriger la synthèse d'HBsAg dans ces deux lignées cellulaires, et l'excrétion d'HBsAg par les lignées cellulaires dans leurs milieux de culture respectifs.293 cells and Vero cells were infected with the Ad5 virus (XB). The expression levels of synthesized HBsAg are shown in Table I. Des samples of the cell supernatant were taken 3 days after infection and the HBsAg was sought by radioimmunoassay ("radioimmunoassay: RIA). The results show that the vector Ad5 (XB) is capable of directing the synthesis of HBsAg in these two cell lines, and the excretion of HBsAg by the cell lines in their respective culture media.

L'HBsAg synthétisé a été purifié par ultracentrifugation en CsCl. Il a une densité de 1,20. Des particules typiques de 22 nm ont été observées par microscopie électronique.The synthesized HBsAg was purified by ultracentrifugation in CsCl. It has a density of 1.20. Typical particles of 22 nm have been observed by electron microscopy.

10. Synthèse d'HBsAg dirigée par les vecteurs Ad5(M-B). 10. Synthesis of HBsAg directed by the Ad5 vectors (MB).

Les niveaux d'expression de l'HBsAg synthétisé après l'infection de cellules 293 et de cellules Vero par Ad5(M-B) sont montrés dans le tableau I.The expression levels of the HBsAg synthesized after infection of 293 cells and of Vero cells with Ad5 (M-B) are shown in Table I.

La cinétique de la distribution extra- et intracellulaire de HBsAg à partir de cellules Vero infectées par Ad5(M-B) a indiqué que la synthèse d'HBsAg a commencé 3 heures après l'infection et a pu être détectée dans le milieu après 8 heures. L'infection par le virus recombinant Ad5(M-B) a conduit à une accumulation de HBsAg de 0,5 à 1 µg/10⁶ cellules dans le milieu après 120 heures. Des expériences répétées ont montré que le virus recombinant contenant la région pré-S2 synthétise de plus grandes quantités de HBsAg que le virus recombinant ne contenant que le gène S. L'HBsAg purifiée à partir du milieu de culture de cellules infectées par l'adénovirus recombinant Ad5(M-B) a consisté en une population homogène de particules ayant un diamètre moyen de 22 nm. La densité après centrifugation en CsCl a été de 1,21.The kinetics of the extra- and intracellular distribution of HBsAg from Ver5 cells infected with Ad5 (M-B) indicated that the synthesis of HBsAg began 3 hours after infection and could be detected in the medium after 8 hours. Infection with the recombinant Ad5 virus (M-B) led to an accumulation of HBsAg of 0.5 to 1 µg / 10⁶ cells in the medium after 120 hours. Repeated experiments have shown that the recombinant virus containing the pre-S2 region synthesizes greater amounts of HBsAg than the recombinant virus containing only the S gene. HBsAg purified from the culture medium of cells infected with adenovirus recombinant Ad5 (MB) consisted of a homogeneous population of particles having an average diameter of 22 nm. The density after centrifugation in CsCl was 1.21.

11. Activité de récepteur pour la pHSA des particules HBsAq issues de cellules Vero. 11. Receptor activity for pHSA of HBsAq particles from Vero cells.

Les particules HBsAg produites dans les cellules Vero ont été testées par la technique d'hémagglutination de globules rouges de moutons recouverts de pHSA et par essai radioimmunologique (RIA) pour déceler la présence d'une activité de récepteur pour la pHSA. Une activité de fixation pour la pHSA a été détectée, mais pas pour l'albumine bovine polymérisée (tableau II). Une telle activité n'a pas été décelée avec les cellules Vero infectées par l'adénovirus recombinant Ad5(X-B) contenant seulement le gène S.The HBsAg particles produced in Vero cells were tested by the hemagglutination technique of sheep red blood cells coated with pHSA and by radioimmunoassay (RIA) to detect the presence of pHSA receptor activity. Binding activity for pHSA was detected, but not for polymerized bovine albumin (Table II). Such activity was not detected with Vero cells infected with the recombinant Ad5 adenovirus (XB) containing only the S gene.

12. Activité in vivo du virus recombinant.12. In vivo activity of the recombinant virus .

Des lapins ont été inoculés intraveineusement avec des préparations hautement purifiées de l'adénovirus recombinant Ad5(M-B) et de l'adénovirus sauvage. Bien que l'antigène HBsAg n'ait pu être détecté dans leur sérum, 5 lapins sur 8, inoculés avec le virus recombinant, ont montré l'apparition d'un titre anti-HBs variant de 20 à 270 mIU/ml après 15 jours (tableau III). Aucun anticorps anti-HBs n'a été détecté dans les lapins auxquels on a injecté le type sauvage d'adénovirus. Après une seconde inoculation intraveineuse réalisée 4 semaines après la première, un second pic a été observé dans la réponse anti-HBs atteignant 440 mIU/ml pour l'un des animaux. 4 semaines après la seconde injection, des titres d'anti-HBs variant de 6 mIU/ml à 360 mIU/ml étaient relevés. Des études antérieures ont indiqué que le niveau minimum d'anti-HBs encore protecteur contre l'HBV est de 10 mIU/ml pour l'homme. Les anticorps anti-pHSA ont été recherchés chez les lapins inoculés dans le but de déterminer leur rapport avec la neutralisation de l'HBV. Ces anticorps, détectés par l'inhibition de l'hémagglutination, ont été trouvés dans 5 animaux sur 5 ayant une réponse anti-HBs positive (tableau IV).Rabbits were intravenously inoculated with highly purified preparations of the recombinant Ad5 adenovirus (M-B) and the wild type adenovirus. Although the HBsAg antigen could not be detected in their serum, 5 out of 8 rabbits, inoculated with the recombinant virus, showed the appearance of an anti-HBs titer varying from 20 to 270 mIU / ml after 15 days (Table III). No anti-HBs antibodies were detected in rabbits injected with the wild type of adenovirus. After a second intravenous inoculation carried out 4 weeks after the first, a second peak was observed in the anti-HBs response reaching 440 mIU / ml for one of the animals. 4 weeks after the second injection, anti-HBs titers varying from 6 mIU / ml to 360 mIU / ml were noted. Previous studies have indicated that the minimum level of anti-HBs still protective against HBV is 10 mIU / ml for humans. Anti-pHSA antibodies were tested in rabbits inoculated in order to determine their relationship with the neutralization of HBV. These antibodies, detected by the inhibition of hemagglutination, were found in 5 animals out of 5 having a positive anti-HBs response (Table IV).

L'adénovirus recombinant Ad5(M-B) dirige donc in vivo la synthèse de particules HBsAg ayant un caractère récepteur pour la sérumalbumine humaine polymérisée.The recombinant adenovirus Ad5 (MB) therefore directs in vivo the synthesis of HBsAg particles having a receptor character for polymerized human serum albumin.

L'invention fournit donc une base méthodologique pour la fabrication d'un vaccin contre l'hépatite B (ou contre d'autres types d'affections) dans des cultures cellulaires.The invention therefore provides a methodological basis for the manufacture of a hepatitis B vaccine (or against other types of conditions) in cell cultures.

L'intérêt de l'utilisation de l'adénovirus de type 5 comme vecteur est double. D'une part, ce virus est un virus dont le pouvoir pathogène chez l'homme est faible. Il n'entraîne que des infections respiratoires bénignes. D'autre part, ce sérotype qui appartient au groupe C des adénovirus humains n'est pas tumorigène chez l'animal. D'autre part, le taux de production d'HBsAg obtenu sur cellules Vero (environ 1 microgramme/10⁶/par cycle infectieux) est a priori suffisant pour une exploitation industrielle. Or cette lignée cellulaire est non tumorigène et pour cette raison, elle constitue la lignée d'origine animale a priori la plus favorable à la production d'un produit à usage humain.The advantage of using adenovirus type 5 as a vector is twofold. On the one hand, this virus is a virus whose pathogenic power in humans is low. It only causes mild respiratory infections. On the other hand, this serotype which belongs to group C of human adenoviruses is not tumorigenic in animals. On the other hand, the rate of production of HBsAg obtained on Vero cells (approximately 1 microgram / 10⁶ / per infectious cycle) is a priori sufficient for industrial exploitation. However, this cell line is non-tumorigenic and for this reason, it constitutes the line of animal origin a priori the most favorable for the production of a product for human use.

Il va également de soi que peuvent être substitués aux cellules 293 qui ont été mentionnées plus haut toutes autres cellules d'eucaryotes supérieurs infectables par des adénovirus ou susceptibles de reconnaître le promoteur E1A des adénovirus, ces cellules ayant été modifiées, par incorporation au préalable dans leurs propres génomes, d'une séquence contenant les parties manquantes au virus recombinant défectif selon l'invention du génome d'un adénovirus, notamment sous le contrôile d'un promoteur fort reconnu par ces cellules, par exemple d'un promoteur de la thymidine kinase ou d'un promoteur de virus SV40. La séquence originaire de l'adénovirus, alors intégrée dans le génome de ces cellules d'eucaryotes supérieurs, pourra donc complémenter les virus défectifs conformes à l'invention, dans des conditions analogues à celles permises par les cellules 293. Ces méthodes sont applicables avec un avantage particulier à des cellules Vero.It also goes without saying that 293 cells which have been mentioned above can be substituted for any other higher eukaryotic cells which can be infected with adenoviruses or which are capable of recognizing the E1A promoter of adenoviruses, these cells having been modified by prior incorporation into their own genomes, of a sequence containing the missing parts of the virus defective recombinant according to the invention of the genome of an adenovirus, in particular under the control of a promoter strongly recognized by these cells, for example a thymidine kinase promoter or an SV40 virus promoter. The sequence originating from the adenovirus, then integrated into the genome of these higher eukaryotic cells, can therefore complement the defective viruses in accordance with the invention, under conditions analogous to those permitted by 293 cells. These methods are applicable with a particular advantage to Vero cells.

L'adénovirus Ad5 mis en oeuvre a été déposé le 3 août 1984 sous le n° I-322 à la C.N.C.M. ("Collection Nationale de Cultures de Micro-organismes de l'INSTITUT PASTEUR de Paris.The Ad5 adenovirus used was deposited on August 3, 1984 under the number I-322 at the C.N.C.M. ("National Collection of Cultures of Microorganisms from the INSTITUT PASTEUR of Paris.

La lignée 293 a été déposée à la C.N .C.M. le 3 août 1984 sous le n° I-323. TABLEAU I Production de HBsAg extracellulaire en fonction du temps Jour Ad5(X-B) Cellules Vero infectées Ad5(X-B) Cellules 293 infectées Ad5(M-B) Cellules Vero infectées Ad5(M-B) Cellules 293 infectées 1 13 15 106 35 2 17 90 N.D. N.D. 3 45 110 349 56 4 110 100 668 60 5 320 130 1 057 63 6 470 120 1 153 N.D. 7 550 120 900 N.D. Line 293 was deposited with the CN .CM on August 3, 1984 under the n ° I-323. TABLE I Production of extracellular HBsAg as a function of time Day Ad5 (XB) Infected Vero cells Ad5 (XB) 293 infected cells Ad5 (MB) Infected Vero cells Ad5 (MB) 293 infected cells 1 13 15 106 35 2 17 90 ND ND 3 45 110 349 56 4 110 100 668 60 5 320 130 1,057 63 6 470 120 1,153 ND 7 550 120 900 ND

Les quantités cumulatives de HBsAg (en ng) produites après infection de cellules 293 et de cellules Vero, soit par Ad5(X-B), soit par Ad5(M-B) sont indiquées.

Figure imgb0001
TABLEAU III Réponse anti-HBs (mIU ml⁻¹) chez les lapins inoculés. Semaines Lapins 1 2 3 4 5 6 7 8 9 10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 30 8 6 12 20 2 2 0 2 0 2 15 20 270 70 85 3 0 2 0 0 5 18 13 48 15 11 4 1 0 0 0 2 21 15 27 17 7 5 0 0 2 0 2 99 52 440 146 136 6 0 0 0 0 0 78 26 401 151 148 7 0 0 0 0 0 20 27 325 58 42 8 0 0 0 0 0 20 40 367 35 6
On a fait une injection intraveineuse de 10⁹ pfu de l'adénovirus Ad5 sauvage purifié à des lapins (lapins 1 et 2) et 10⁹ pfu d'adénovirus recombinant Ad5(M-B) purifié à des lapins (lapins 3 à 10) immédiatement après le prélèvement du sang à la semaine 0 et à la semaine 4. La quantité d'anticorps anti-HBs a été mesurée en utilisant le système RIA AUSAB de Abbott et exprimée en unités internationales (3,5 RIA équivalant à 1 mIU). (pfu = plage formant unité). TABLEAU IV Réponse immunogène du recepteur anti-pHSA (réciproque du titre). Semaines Lapins 6 7 8 9 10 0 0 0 0 0 0 1 16 2 2 2 2 2 4 16 16 16 16 3 4 4 16 8 8 4 2 2 4 4 4 5 16 32 32 32 32 6 16 32 32 16 32 7 8 8 32 8 16 8 4 4 8 4 8 The cumulative amounts of HBsAg (in ng) produced after infection of 293 cells and Vero cells, either by Ad5 (XB) or by Ad5 (MB) are indicated.
Figure imgb0001
TABLE III Anti-HBs response (mIU ml⁻¹) in inoculated rabbits. Weeks Rabbits 1 2 3 4 5 6 7 8 9 10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 30 8 6 12 20 2 2 0 2 0 2 15 20 270 70 85 3 0 2 0 0 5 18 13 48 15 11 4 1 0 0 0 2 21 15 27 17 7 5 0 0 2 0 2 99 52 440 146 136 6 0 0 0 0 0 78 26 401 151 148 7 0 0 0 0 0 20 27 325 58 42 8 0 0 0 0 0 20 40 367 35 6
An intravenous injection of 10⁹ pfu of the purified wild-type Ad5 adenovirus was given to rabbits (rabbits 1 and 2) and 10⁹ pfu of the purified recombinant ad5 adenovirus (MB) to rabbits (rabbits 3 to 10) immediately after collection. blood at week 0 and at week 4. The amount of anti-HBs antibodies was measured using the AUSAB RIA system from Abbott and expressed in international units (3.5 RIA equivalent to 1 mIU). (pfu = range forming unit). Immunogenic response of the anti-pHSA receptor (reciprocal of the titer). Weeks Rabbits 6 7 8 9 10 0 0 0 0 0 0 1 16 2 2 2 2 2 4 16 16 16 16 3 4 4 16 8 8 4 2 2 4 4 4 5 16 32 32 32 32 6 16 32 32 16 32 7 8 8 32 8 16 8 4 4 8 4 8

On a infecté, d'une manière intraveineuse, des lapins avec 10⁹ pfu d'adénovirus recombinant Ad5(M-B) purifiés aux semaines 0 et 4. Les animaux ont été identifiés par les mêmes numéros que dans le tableau III.Rabbits were infected intravenously with 10⁹ pfu of purified Ad5 (M-B) recombinant adenovirus at weeks 0 and 4. The animals were identified by the same numbers as in Table III.

L'activité de récepteur anti-pHSA a été exprimée comme la réciproque du titre de sérum le plus élevé capable de fournir une inhibition à 100 % de l'hémagglutination. Les particules d'HBsAg possédant un titre d'hémagglutination récepteur pour la pHSA de 1:128 ont été mélangées avec un volume égal de dilutions en séries de sérums inhibiteurs.The anti-pHSA receptor activity has been expressed as the reciprocal of the highest serum titer capable of providing 100% inhibition of hemagglutination. The HBsAg particles having a receptor hemagglutination titer for the pHSA of 1: 128 were mixed with an equal volume of serial dilutions of inhibitory sera.

REFERENCESREFERENCES

  • (1) Edited by Tooze, DNA Tumor Viruses (part II), Cold Spring Harbor Laboratory, 1980.(1) Edited by Tooze, DNA Tumor Viruses (part II), Cold Spring Harbor Laboratory, 1980.
  • (2) Berkner, K. and Sharp, P. (1983) Nucleic Acids Res. 11, 6003-6020.(2) Berkner, K. and Sharp, P. (1983) Nucleic Acids Res. 11 , 6003-6020.
  • (3) Jones, N. and Shenk, T. (1978) Cell 13, 181-188.(3) Jones, N. and Shenk, T. (1978) Cell 13 , 181-188.
  • (4) Solnick, D. (1983) The Embo Journal 2, 845-851.(4) Solnick, D. (1983) The Embo Journal 2 , 845-851.
  • (5) Thummel, C., Tjian, R. and Grodzicker, T. (1981) Cell 23, 825-836.(5) Thummel, C., Tjian, R. and Grodzicker, T. (1981) Cell 23 , 825-836.
  • (6) Berkner, K. and Sharp, P. (1984) Nucleic Acids Res. 12, 1925-1941.(6) Berkner, K. and Sharp, P. (1984) Nucleic Acids Res. 12 , 1925-1941.
  • (7) Thummel, C., Tjian, R., Shiu-Lok Hu and Grodzicker, T. (1983) Cell 33, 455-464.(7) Thummel, C., Tjian, R., Shiu-Lok Hu and Grodzicker, T. (1983) Cell 33 , 455-464.
  • (8) Spector, D., Mc Grogan, M. and Raskas, H. (1978) J. Mol. Biol. 126, 395-414.(8) Spector, D., Mc Grogan, M. and Raskas, H. (1978) J. Mol. Biol. 126 , 395-414.
  • (9) Shan, A. R. and Ziff, E. B. (1980) Cell 22, 905-916.(9) Shan, AR and Ziff, EB (1980) Cell 22 , 905-916.
  • (10) Graham, F.L., Smiley, J., Russel, W.C. and Nairn, R. (1977) J. Gen. Virol. 36, 59-72.(10) Graham, FL, Smiley, J., Russel, WC and Nairn, R. (1977) J. Gen. Virol. 36 , 59-72.
  • (11) Tiollais, P., Charnay, P. and Vyas, G. (1981) Science 213, 406-411.(11) Tiollais, P., Charnay, P. and Vyas, G. (1981) Science 213 , 406-411.
  • (12) Peterson, D.L. (1981) J. Biol. Chem. 256, 6975-6983.(12) Peterson, DL (1981) J. Biol. Chem. 256 , 6975-6983.
  • (13) Lusky, M. and Botchan, M. (1981) Nature 293, 79-81.(13) Lusky, M. and Botchan, M. (1981) Nature 293 , 79-81.
  • (14) Enns, R., Challberg, M., Ahern, K., Chow, K., Mathews, C., Astell, R. and Pearson, G. (1983) Gene, 23, 307-313.(14) Enns, R., Challberg, M., Ahern, K., Chow, K., Mathews, C., Astell, R. and Pearson, G. (1983) Gene, 23 , 307-313.
  • (15) Tibbetts, C. (1977) Cell 12, 243-249.(15) Tibbetts, C. (1977) Cell 12 , 243-249.
  • (16) Hammarskjùld, M.L. and Winberg, G. (1980) Cell 20, 787-795.(16) Hammarskjùld, ML and Winberg, G. (1980) Cell 20 , 787-795.
  • (17) Stow, N. (1981) J. Virol. 37, 171-180.(17) Stow, N. (1981) J. Virol. 37 , 171-180.
  • (18) D'Halluin, J.C., Milleville, M. and Boulanger, P. (1983) Gene 21, 165-169.(18) D'Halluin, JC, Milleville, M. and Boulanger, P. (1983) Gene 21 , 165-169.
  • (19) Graham, F.L. and Van Der Eb, A.J. (1973) Virology 52, 456-467.(19) Graham, F.L. and Van Der Eb, A.J. (1973) Virology 52, 456-467.
  • (20) Charnay, P., Mandart, E., Hampe, A., Fitoussi, F., Tiollais, P., and Galibert, F. (1979) Nucl. Acids Res. 7, 335-346.(20) Charnay, P., Mandart, E., Hampe, A., Fitoussi, F., Tiollais, P., and Galibert, F. (1979) Nucl. Acids Res. 7 , 335-346.
  • (21) Valenzuela, P., Gray, P., Quiroga, M., Zaldivar, J., Goodman, H.M., Rotter, W.J. (1979) Nature 280, 815-819.(21) Valenzuela, P., Gray, P., Quiroga, M., Zaldivar, J., Goodman, HM, Rotter, WJ (1979) Nature 280 , 815-819.
  • (22) Pourcel, C., Louise, A., Gervais, M., Chensiner, N., Dubois, M.F., Tiollais, P. (1982), J. Virol. 42, 100-105.(22) Pourcel, C., Louise, A., Gervais, M., Chensiner, N., Dubois, MF, Tiollais, P. (1982), J. Virol. 42 , 100-105.
  • (23) Stenlund, A., Lamy, D., Moreno-Lopez, S., Ahola, H., Petterson, U. and Tiollais, P. (1982) EMBO J2, 669-673.(23) Stenlund, A., Lamy, D., Moreno-Lopez, S., Ahola, H., Petterson, U. and Tiollais, P. (1982) EMBO J2 , 669-673.
  • (24) Moriarty, A.M., Hoyer, B.H., Shih, J.W.K., Guérin, J.L. and Hamer, D.H. (1981) Proc. Natl. Acad. Sci. 78, 2606-2610.(24) Moriarty, AM, Hoyer, BH, Shih, JWK, Guérin, JL and Hamer, DH (1981) Proc. Natl. Acad. Sci. 78 , 2606-2610.
  • (25) Heermann, K.H., Goldmann, V., Schwartz, W., Seyffarth, T., Baumgarten, H., et Gerlich, W.H. J. Virol. 52, 396-402, 1984.(25) Heermann, KH, Goldmann, V., Schwartz, W., Seyffarth, T., Baumgarten, H., and Gerlich, WHJ Virol. 52 , 396-402, 1984.
  • (26) Standring, D.N., Rutter, W.J., Varmus, H.E., et Ganem, D. J. Virol. 50, 563-571, 1984.(26) Standring, DN, Rutter, WJ, Varmus, HE, and Ganem, DJ Virol. 50 , 563-571, 1984.

Claims (23)

  1. Recombinant vector containing the early promoter of the E1A region of the genome of an adenovirus for the transformation of eucaryotic, particularly human or animal cell lines, selected among those which are infectable by adenoviruses or whose endogenous polymerases are liable of recognizing the promoters of adenoviruses, said vector being further modified by a nucleic acid insertion containing a nucleotide sequence coding for a polypeptide sequence whose expression in said eucaryotic cell lines is sought, characterized in that said insertion sequence is substituted for the E1A genes normally placed under the direct control of said early promoter of the E1A region, said insertion sequence being itself placed under the direct control of said promoter, and in that it comprises, downstream of said nucleic acid insertion, all of the essential sequences of an adenovirus genome which are necessary for the replication of the corresponding adenovirus and which are normally located downstream of the genes normally under the direct control of the E1A early promoter in said genome, and in that said nucleotide sequence coding for the polypeptide sequence whose expression is sought is heterologous with respect to the genes of said adenovirus.
  2. Recombinant vector according to claim 1, characterized in that the genome of the adenovirus with which it is associated is defective, in that it is deprived of the anterior part of the E1A region of the viral genome, particularly of its 0-2,6 % fragment.
  3. Recombinant vector according to claim 1, characterized in that the recombinant DNA formed by said early promoter of the E1A region and the insertion nucleic sequence is incorporated in the non-essential region of an adenovirus, particularly in the non-essential part of the E3 region of said adenovirus.
  4. Recombinant vector according to claim 1, characterized in that it consists of an infectious adenovirus comprising the recombinant DNA formed by the early promoter of the E1A region and the nucleic sequence insertion, incorporated in one of its non-essential regions, particularly in the non-essential part of the E3 region.
  5. Recombinant vector according to any one of claims 1 to 4, characterized in that its promoter originates from an adenovirus of category C, belonging to sub-type Ad2 or Ad5.
  6. Recombinant vector according to any one of claims 1 to 5, characterized in that the nucleotide sequence contained in the aforesaid nucleic acid insertion codes for a protein which, when it is expressed in a natural cellular host under the control of its natural promoter, is excreted into the culture medium of this natural cellular host.
  7. Recombinant vector according to any one of claims 1 to 6, characterized in that the aforesaid nucleotide sequence codes for a protective antigen against a given pathogenic agent, particularly for the HBsAg antigen.
  8. Recombinant vector according to claim 7, characterized in that said nucleic acid sequence comprises the S gene and the pre-S2 region of the genome of hepatitis B.
  9. A cell line of human or animal origin, characterized in that it is transformed by a recombinant vector according to any one of claims 1 to 8, and in that it synthesizes the polypeptide coded by the aforesaid nucleotide sequence.
  10. The cell line according to claim 9 considered in combination with claim 1 or claim 2 or both at once, and, as the case may be, with any one of claims 5 to 8, characterized in that it itself contains a distinct sequence of nucleotides able to complement the part of the genome of the adenovirus which the aforesaid vector is deprived of, the said distinct sequence preferably being incorporated into the genome of the cells of said cell line.
  11. A process of production of a determined polypeptide including the transformation by a recombinant vector containing a nucleotide sequence coding for said polypeptide of the cells of a eucaryotic, particularly animal of human cell line, chosen among those which are infectable by the adenoviruses or whose endogenous polymerases are able to recognize the promoters of the adenoviruses, characterized by the fact that the transforming DNA is in accordance with any one of claims 1 to 8 and in that the expression products, including said specified polypeptide of these cells are recovered.
  12. The process according to claim 11, characterized in that the recombinant vector is in accordance with any one of claims 5 to 8.
  13. The process according to claim 11, characterized by the fact that the aforesaid transformed eucaryotic cells are in accordance with claim 10.
  14. The process according to claim 11, characterized by the fact that the aforesaid transformed eucaryotic cells are simultaneously transformed with the corresponding infectious adenovirus.
  15. The process according to any one of claims 11 to 14, characterized in that the specific nucleotide sequence is in accordance with that defined in claim 7.
  16. A process of production of a polypeptide possessing the immunogenic properties characteristic of the virus of hepatitis B including the transformation of a line of eucaryotic, particularly animal or human cells, chosen from among those which are infectable by adenoviruses of whose endogenous polymerases are able to recognize the adenovirus promoters, by a recombinant vector containing an insert itself containing a nucleotide sequence coding for an immunogenic polypeptide characteristic of the virus of hepatitis B, characterized in that the aforesaid nucleotide sequence is substituted for the E1A genes normally placed under the direct control of the early promoter of the E1A region of the genome of an adenovirus, said insertion sequence being itself placed under the direct control of said promoter and said recombinant vector further containing, downstream of said nucleic acid insertion, all of the sequences of an adenovirus genome which are essential and necessary for the replication of the corresponding adenovirus and which are normally located downstream of the genes normally under the direct control of the early E1A promoter in said genome.
  17. The process according to claim 16, characterized in that the recombinant vector consists of a defective andenovirus which can be replicated in said cell lines, said adenovirus being deprived of the anterior part of the E1A region of the viral genome, particularly of its 0-2,6 % fragment, and in that one recovers in the culture medium the expression products of the eucaryotic cell lines transformed by the recombinant DNA, including the polypeptide coded by the aforesaid nucleotide sequence and synthesized by said cell lines.
  18. The process according to claims 16 to 17, characterized in that the promoter of the recombinant DNA originates from an adenovirus of category C, belonging to sub-type Ad2 or Ad5.
  19. The process according to any one of claims 16 to 18, characterized in that the recombinant DNA formed by said early promoter and said insertion sequence is incorporated into a non-essential region of the adenovirus, particularly into the non-essential part of the E3 region of this adenovirus.
  20. The process according to any one of claims 16 to 19, characterized in that the eucaryotic cell line itself contains a distinct sequence of nucleotides able to complement the part of the genome of the adenovirus of which the aforesaid vector is deprived, the said sequence preferably being incorporated into the genome of the cells of said cell line.
  21. The process according to any one of claims 16 to 20, characterized in that the recombinant DNA includes a nucleotide sequence corresponding to the S gene of the genome of the virus of hepatitis B.
  22. The process according to any one of claims 16 to 20, characterized in that the recombinant DNA includes the sequence corresponding to the S gene and the pre-S2 region of the genome of the virus of hepatitis B.
  23. Vaccine whose active principle consists of an adenovirus which is infectious and can be replicated and which comprises, incorporated into one of its non-essential regions, particularly the non-essential part of its E3 region, a DNA recombinant formed between the early promoter of the E1A region and a nucleic sequence insertion coding for a protective antigen against the pathogenic agent selected, and particularly against the hepatitis B virus, said nucleic sequence insertion being substituted for the E1A genes normally under the control of said promoter.
EP85402261A 1984-11-20 1985-11-20 Expression and excretion of polypeptides in eucaryotes under the control of an adenovirus promoter Expired - Lifetime EP0185573B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85402261T ATE76428T1 (en) 1984-11-20 1985-11-20 EXPRESSION AND SECRETION OF POLYPEPTIDES IN EUKARYOTS UNDER CONTROL OF AN ADENOVIRUS PROMOTER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8417674 1984-11-20
FR8417674A FR2573436B1 (en) 1984-11-20 1984-11-20 RECOMBINANT DNA COMPRISING A NUCLEOTIDE SEQUENCE ENCODING A DETERMINED POLYPEPTIDE UNDER THE CONTROL OF AN ADENOVIRUS PROMOTER, VECTORS CONTAINING THIS RECOMBINANT DNA, EUKARYOT CELLS TRANSFORMED BY THIS RECOMBINANT DNA, THE CONSTITUTION OF VACCINES

Publications (2)

Publication Number Publication Date
EP0185573A1 EP0185573A1 (en) 1986-06-25
EP0185573B1 true EP0185573B1 (en) 1992-05-20

Family

ID=9309766

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85402261A Expired - Lifetime EP0185573B1 (en) 1984-11-20 1985-11-20 Expression and excretion of polypeptides in eucaryotes under the control of an adenovirus promoter

Country Status (6)

Country Link
EP (1) EP0185573B1 (en)
JP (1) JP2610015B2 (en)
AT (1) ATE76428T1 (en)
CA (1) CA1266627A (en)
DE (1) DE3586092D1 (en)
FR (1) FR2573436B1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6939862B2 (en) 1997-06-30 2005-09-06 Aventis Pharma S.A. Method for transferring nucleic acid into striated muscles
US7008776B1 (en) 1996-12-06 2006-03-07 Aventis Pharmaceuticals Inc. Compositions and methods for effecting the levels of high density lipoprotein (HDL) cholesterol and apolipoprotein AI very low density lipoprotein (VLDL) cholesterol and low density lipoprotein (LDL) cholesterol
US8236293B2 (en) 1995-06-15 2012-08-07 Crucell Holland B.V. Means and methods for nucleic acid delivery vehicle design and nucleic acid transfer
US8563007B1 (en) 2001-10-11 2013-10-22 Wyeth Holdings Corporation Immunogenic compositions for the prevention and treatment of meningococcal disease
US8574597B2 (en) 2006-12-22 2013-11-05 Wyeth Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
US8986710B2 (en) 2012-03-09 2015-03-24 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US9556240B2 (en) 2010-08-23 2017-01-31 Wyeth Llc Stable formulations of Neisseria meningitidis rLP2086 antigens
US9757443B2 (en) 2010-09-10 2017-09-12 Wyeth Llc Non-lipidated variants of Neisseria meningitidis ORF2086 antigens
US9802987B2 (en) 2013-03-08 2017-10-31 Pfizer Inc. Immunogenic fusion polypeptides
US9822150B2 (en) 2013-09-08 2017-11-21 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US10183070B2 (en) 2017-01-31 2019-01-22 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US10196429B2 (en) 2012-03-09 2019-02-05 Pfizer Inc. Neisseria meningitidis composition and methods thereof
US10214730B2 (en) 2011-04-19 2019-02-26 The Research Foundation For The State University Of New York Adeno-associated-virus Rep sequences, vectors and viruses
US10888611B2 (en) 2015-02-19 2021-01-12 Pfizer Inc. Neisseria meningitidis compositions and methods thereof

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL76751A (en) * 1984-11-01 1991-04-15 American Home Prod Method and oral vaccines against infectious organisms using live,recombinant adenovirus for the production of antibodies
FR2642767B1 (en) * 1989-01-19 1993-10-01 Transgene Sa VECTORS FOR EXPRESSION OF HETEROLOGOUS PROTEINS IN EUKARYOTIC CELLS, CELL LINES OBTAINED AND PROCESS FOR THEIR PREPARATION
US20020164782A1 (en) 1999-02-10 2002-11-07 Gregory Richard J. Adenovirus vectors for gene therapy
US5670488A (en) * 1992-12-03 1997-09-23 Genzyme Corporation Adenovirus vector for gene therapy
FR2681786A1 (en) * 1991-09-27 1993-04-02 Centre Nat Rech Scient RECOMBINANT VECTORS OF VIRAL ORIGIN, PROCESS FOR OBTAINING SAME AND THEIR USE FOR THE EXPRESSION OF POLYPEPTIDES IN MUSCLE CELLS.
US6099831A (en) * 1992-09-25 2000-08-08 Centre National De La Recherche Scientifique Viral recombinant vectors for expression in muscle cells
US6743623B2 (en) 1991-09-27 2004-06-01 Centre National De La Recherche Scientifique Viral recombinant vectors for expression in muscle cells
US6013638A (en) * 1991-10-02 2000-01-11 The United States Of America As Represented By The Department Of Health And Human Services Adenovirus comprising deletions on the E1A, E1B and E3 regions for transfer of genes to the lung
FR2688514A1 (en) * 1992-03-16 1993-09-17 Centre Nat Rech Scient Defective recombinant adenoviruses expressing cytokines and antitumour drugs containing them
EP1024198A3 (en) * 1992-12-03 2002-05-29 Genzyme Corporation Pseudo-adenoviral vectors for the gene therapy of haemophiliae
FR2707880B1 (en) * 1993-06-30 1995-10-06 Rhone Poulenc Rorer Sa Pharmaceutical compositions and their use, in particular for the treatment of neurodegenerative diseases.
FR2711670B1 (en) 1993-10-22 1996-01-12 Pasteur Institut Nucleotide vector, composition containing it and vaccine for immunization against hepatitis.
US5820868A (en) * 1993-12-09 1998-10-13 Veterinary Infectious Disease Organization Recombinant protein production in bovine adenovirus expression vector system
IL113052A0 (en) 1994-03-23 1995-06-29 Rhone Poulenc Rorer Sa Recombinant viruses, their preparation and their use in gene therapy
FR2730637B1 (en) 1995-02-17 1997-03-28 Rhone Poulenc Rorer Sa PHARMACEUTICAL COMPOSITION CONTAINING NUCLEIC ACIDS, AND USES THEREOF
FR2732357B1 (en) * 1995-03-31 1997-04-30 Rhone Poulenc Rorer Sa VIRAL VECTORS AND USE FOR THE TREATMENT OF HYPERPROLIFERATIVE DISORDERS, ESPECIALLY RESTENOSIS
SK287687B6 (en) 1996-12-06 2011-06-06 Aventis Pharmaceuticals Inc. Polypeptides encoded by a human lipase-like gene, compositions and methods
US6884430B1 (en) 1997-02-10 2005-04-26 Aventis Pharma S.A. Formulation of stabilized cationic transfection agent(s) /nucleic acid particles
CA2288306A1 (en) 1997-04-28 1998-11-05 Rhone-Poulenc Rorer S.A. Adenovirus-mediated intratumoral delivery of an angiogenesis antagonist for the treatment of tumors
CA2294649C (en) 1997-06-23 2007-09-25 University Of Saskatchewan Bovine adenovirus type 3 genome
US6653088B1 (en) 1997-10-24 2003-11-25 Aventis Pharma S.A. Interaction test for the investigation of inhibitory molecules of the interaction between a presenilin and the β-amyloid peptide
US6225456B1 (en) 1998-05-07 2001-05-01 University Technololy Corporation Ras suppressor SUR-5
US6506889B1 (en) 1998-05-19 2003-01-14 University Technology Corporation Ras suppressor SUR-8 and related compositions and methods
US6441156B1 (en) 1998-12-30 2002-08-27 The United States Of America As Represented By The Department Of Health And Human Services Calcium channel compositions and methods of use thereof
US7297680B2 (en) 1999-04-15 2007-11-20 Crucell Holland B.V. Compositions of erythropoietin isoforms comprising Lewis-X structures and high sialic acid content
US6855544B1 (en) 1999-04-15 2005-02-15 Crucell Holland B.V. Recombinant protein production in a human cell
US7604960B2 (en) 1999-04-15 2009-10-20 Crucell Holland B.V. Transient protein expression methods
US8236561B2 (en) 1999-04-15 2012-08-07 Crucell Holland B.V. Efficient production of IgA in recombinant mammalian cells
CN100457914C (en) * 1999-04-15 2009-02-04 荷兰克鲁塞尔公司 Recombinant protein production in human cell using sequences encoding adenovirus E1 protein
FR2799472B1 (en) 1999-10-07 2004-07-16 Aventis Pharma Sa PREPARATION OF RECOMBINANT ADENOVIRUSES AND ADENOVIRAL BANKS
US7192759B1 (en) 1999-11-26 2007-03-20 Crucell Holland B.V. Production of vaccines
US7521220B2 (en) 1999-11-26 2009-04-21 Crucell Holland B.V. Production of vaccines
US7527961B2 (en) 1999-11-26 2009-05-05 Crucell Holland B.V. Production of vaccines
DE01918975T1 (en) 2000-03-24 2006-04-13 Biosphere Medical, Inc., Rockland Microspheres for active embolization
DK1290023T3 (en) 2000-03-31 2011-02-14 Aventis Pharma Inc Nuclear factor KB inducing factor
GB0018307D0 (en) 2000-07-26 2000-09-13 Aventis Pharm Prod Inc Polypeptides
ES2617692T3 (en) 2000-07-21 2017-06-19 Revance Therapeutics, Inc. Multi-component biological agent transport systems
US6916635B2 (en) 2000-10-02 2005-07-12 The Research Foundation Of State University Of New York Hybrid adenovirus/adeno-associated virus vectors and methods of use thereof
US7060442B2 (en) 2000-10-30 2006-06-13 Regents Of The University Of Michigan Modulators on Nod2 signaling
DK1355918T5 (en) 2000-12-28 2012-02-20 Wyeth Llc Recombinant protective protein of streptococcus pneumoniae
FR2829136B1 (en) 2001-08-29 2006-11-17 Aventis Pharma Sa LIPID DERIVATIVES OF AMINOGLYCOSIDES
KR100979025B1 (en) 2001-12-07 2010-08-30 크루셀 홀란드 비.브이. Production of viruses, viral isolates and vaccines
WO2003060411A1 (en) 2002-01-17 2003-07-24 York Refrigeration Aps Submerged evaporator with integrated heat exchanger
EP2316922B1 (en) 2002-05-24 2013-05-22 Merck Sharp & Dohme Corp. Neutralizing human anti-IGFR antibody
US7785608B2 (en) 2002-08-30 2010-08-31 Wyeth Holdings Corporation Immunogenic compositions for the prevention and treatment of meningococcal disease
ATE414144T1 (en) 2003-05-09 2008-11-15 Crucell Holland Bv CULTURES OF E1-IMMORALIZED CELLS AND METHOD FOR CULTIVATION THEM TO INCREASE THE PRODUCT YIELDS THEREOF
US7432057B2 (en) 2004-01-30 2008-10-07 Michigan State University Genetic test for PSE-susceptible turkeys
WO2006020071A2 (en) 2004-07-16 2006-02-23 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Vaccines against aids comprising cmv/r-nucleic acid constructs
KR101137454B1 (en) 2006-07-28 2012-04-20 사노피 Composition and method for treatment of tumors
EP2829551B1 (en) 2006-10-19 2017-12-13 CSL Limited High affinity antibody antagonists of interleukin-13 receptor alpha 1
CA2666682C (en) 2006-10-19 2014-07-08 Merck & Co., Inc. Anti-il-13r.alpha.1 antibodies and their uses thereof
WO2010026537A1 (en) 2008-09-05 2010-03-11 Institut National De La Sante Et De La Recherche Medicale (Inserm) Novel multimodular assembly useful for intracellular delivery
CN102203122A (en) 2008-11-05 2011-09-28 惠氏有限责任公司 Multicomponent immunogenic composition for the prevention of beta-hemolytic streptococcal (bhs) disease
WO2010096561A1 (en) 2009-02-18 2010-08-26 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Synthetic hiv/siv gag proteins and uses thereof
EP2812012A1 (en) 2012-02-07 2014-12-17 Global Bio Therapeutics USA, Inc. Compartmentalized method of nucleic acid delivery and compositions and uses thereof
CA2940513C (en) 2013-03-11 2023-08-15 University Of Florida Research Foundation, Inc. Delivery of card protein as therapy for ocular inflammation
WO2015127094A1 (en) 2014-02-19 2015-08-27 University Of Florida Research Foundation, Inc. Delivery of nrf2 as therapy for protection against reactive oxygen species
FR3028527A1 (en) 2014-11-13 2016-05-20 Pivert IDENTIFICATION OF TRANSCRIPTION FACTORS OF YARROWIA LIPOLYTICA
WO2016075314A1 (en) 2014-11-13 2016-05-19 Institut National De La Recherche Agronomique Identification of yarrowia lipolytica transcription factors that affect protein production
FR3081169B1 (en) 2018-05-15 2020-06-19 Messenger Biopharma SUBSTITUTION OF THE HAT OF MESSENGER RNAS BY TWO RNA SEQUENCES INTRODUCED AT THEIR 5 'END
EP4340855A1 (en) 2021-08-13 2024-03-27 Triovance Holding LLC A skin substitute composition and methods of producing and using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4593002A (en) * 1982-01-11 1986-06-03 Salk Institute Biotechnology/Industrial Associates, Inc. Viruses with recombinant surface proteins
FR2521165A1 (en) * 1982-02-08 1983-08-12 Pasteur Institut DNA FRAGMENTS ENCODING AN IMMUNOGENIC PEPTIDE LIKELY TO INTRODUCE IN VIVO SYNTHESIS OF ANTI-POLIOVIRUS ANTIBODIES

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Cell vol.23 pp 825-36 (1981) *
Nuclear Acids Research vol. 12 n0.4 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236293B2 (en) 1995-06-15 2012-08-07 Crucell Holland B.V. Means and methods for nucleic acid delivery vehicle design and nucleic acid transfer
US7008776B1 (en) 1996-12-06 2006-03-07 Aventis Pharmaceuticals Inc. Compositions and methods for effecting the levels of high density lipoprotein (HDL) cholesterol and apolipoprotein AI very low density lipoprotein (VLDL) cholesterol and low density lipoprotein (LDL) cholesterol
US6939862B2 (en) 1997-06-30 2005-09-06 Aventis Pharma S.A. Method for transferring nucleic acid into striated muscles
US11116829B2 (en) 2001-10-11 2021-09-14 Wyeth Holdings Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
US9757444B2 (en) 2001-10-11 2017-09-12 Wyeth Holdings Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
US8563007B1 (en) 2001-10-11 2013-10-22 Wyeth Holdings Corporation Immunogenic compositions for the prevention and treatment of meningococcal disease
US8563006B2 (en) 2001-10-11 2013-10-22 Wyeth Holdings Corporation Immunogenic compositions for the prevention and treatment of meningococcal disease
US9107873B2 (en) 2001-10-11 2015-08-18 Wyeth Holdings Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
US9132182B2 (en) 2001-10-11 2015-09-15 Wyeth Holdings Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
US9168293B2 (en) 2001-10-11 2015-10-27 Wyeth Holdings Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
US9623101B2 (en) 2001-10-11 2017-04-18 Wyeth Holdings Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
US8574597B2 (en) 2006-12-22 2013-11-05 Wyeth Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
US9556240B2 (en) 2010-08-23 2017-01-31 Wyeth Llc Stable formulations of Neisseria meningitidis rLP2086 antigens
US11077180B2 (en) 2010-09-10 2021-08-03 Wyeth Llc Non-lipidated variants of Neisseria meningitidis ORF2086 antigens
US10512681B2 (en) 2010-09-10 2019-12-24 Wyeth Llc Non-lipidated variants of Neisseria meningitidis ORF2086 antigens
US9757443B2 (en) 2010-09-10 2017-09-12 Wyeth Llc Non-lipidated variants of Neisseria meningitidis ORF2086 antigens
US10214730B2 (en) 2011-04-19 2019-02-26 The Research Foundation For The State University Of New York Adeno-associated-virus Rep sequences, vectors and viruses
US8986710B2 (en) 2012-03-09 2015-03-24 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US10829521B2 (en) 2012-03-09 2020-11-10 Pfizer Inc. Neisseria meningitidis composition and methods thereof
US10196429B2 (en) 2012-03-09 2019-02-05 Pfizer Inc. Neisseria meningitidis composition and methods thereof
US11472850B2 (en) 2012-03-09 2022-10-18 Pfizer Inc. Neisseria meningitidis composition and methods thereof
US9561269B2 (en) 2012-03-09 2017-02-07 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US9724402B2 (en) 2012-03-09 2017-08-08 Pfizer Inc. Neisseria meningitidis composition and methods thereof
US10550159B2 (en) 2012-03-09 2020-02-04 Pfizer Inc. Neisseria meningitidis composition and methods thereof
US9802987B2 (en) 2013-03-08 2017-10-31 Pfizer Inc. Immunogenic fusion polypeptides
US10899802B2 (en) 2013-09-08 2021-01-26 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US9822150B2 (en) 2013-09-08 2017-11-21 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US11680087B2 (en) 2013-09-08 2023-06-20 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US10888611B2 (en) 2015-02-19 2021-01-12 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US10813989B2 (en) 2017-01-31 2020-10-27 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US10543267B2 (en) 2017-01-31 2020-01-28 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US10183070B2 (en) 2017-01-31 2019-01-22 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US11730800B2 (en) 2017-01-31 2023-08-22 Pfizer Inc. Neisseria meningitidis compositions and methods thereof

Also Published As

Publication number Publication date
ATE76428T1 (en) 1992-06-15
CA1266627A (en) 1990-03-13
JPS61158795A (en) 1986-07-18
JP2610015B2 (en) 1997-05-14
DE3586092D1 (en) 1992-06-25
FR2573436A1 (en) 1986-05-23
FR2573436B1 (en) 1989-02-17
EP0185573A1 (en) 1986-06-25

Similar Documents

Publication Publication Date Title
EP0185573B1 (en) Expression and excretion of polypeptides in eucaryotes under the control of an adenovirus promoter
EP0667912B1 (en) Defective adenovirus vectors and use thereof in gene therapy
EP0038765B1 (en) Vaccine against viral hepatitis b, method and transformed eucaryotic cells for the preparation of this vaccine
EP0991763B1 (en) Modified adenoviral fiber and target adenoviruses
EP0742834B1 (en) Method of preparing a viral vector of at least 20kb by intermolecular recombination in a procaryotic cell
FR2726285A1 (en) ADENOVIRUSES CONTAINING VIABLE CONTAMINANT PARTICLES, PREPARATION AND USE
EP0291586A2 (en) Recombinant hepatitis B surface antigen and vaccine containing it
FR2707664A1 (en) Viral vectors and use in gene therapy
EP0988391B1 (en) Recombinant adenoviral vectors comprising a splicing sequence
FR2581394A1 (en) PARTICLES HAVING IMMUNOGENIC PROPERTIES OF THE HBS ANTIGEN AND CARRYING A FOREIGN ANTIGENIC SITE TO THE EPITOPES CARRIED BY THE HBS ANTIGEN, ANIMAL VECTORS AND CELLS FOR THE PRODUCTION OF SUCH PARTICLES AND COMPOSITIONS CONTAINING SUCH PARTICLES FOR THE PRODUCTION
EP0155198A1 (en) Yeast cloning and expression vectors for a protein in an eucaryotic cell, containing at least a part of a retrovirus genome; transfected eucaryotic cells; process using these cells and obtained proteins
CA2176585A1 (en) Recombinant adenoviruses for gene therapy in cancers
FR2480780A1 (en) Transforming cells with hepatitis virus DNA - so they express surface antigen but not core antigen or entire Dane particles
EP0783585B1 (en) DEFFECTIVE RECOMBINANT ADENOVIRUSES WITH INACTIVATED IVa2 GENE
CA1262532A (en) Composition useful for the production of vaccines containing particles with the surface antigen of the hepatitis b virus and the receptor of the polymerized human serum albumin, animal cells capable of producing such particles and process for their obtention
US6426216B1 (en) Defective recombinant adenovirus lacking E1A coding sequence and comprising a heterologous nucleotide sequence under control of the E1A promoter
JP2004175665A (en) Protein hollow nanoparticle and drug using the same
WO1999061638A1 (en) Chimeric adenoviral vectors
FR2642767A1 (en) Vectors for expressing heterologous proteins in eucaryotic cells, cell lines obtained and process for preparing them
EP0906443A1 (en) Generating replicating molecules in vivo
WO1997044475A1 (en) Adenovirus vectors for gene therapy
FR2718749A1 (en) New defective recombinant adenovirus for gene therapy
FR2743818A1 (en) DNA CONSTRUCTS AND EXPRESSION VECTORS DERIVED FROM ADENOVIRUS VA I RNA GENE
Liu et al. EXPRESSION OF HEPATITIS B SURFACE ANTIGEN IN MAMMALIAN CELLS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19861222

17Q First examination report despatched

Effective date: 19880822

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920520

REF Corresponds to:

Ref document number: 76428

Country of ref document: AT

Date of ref document: 19920615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3586092

Country of ref document: DE

Date of ref document: 19920625

ITF It: translation for a ep patent filed

Owner name: STUDIO CONS. BREVETTUALE S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19921130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 85402261.3

REG Reference to a national code

Ref country code: NL

Ref legal event code: AC1

Free format text: NLAC1 930096, 930624

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020912

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031107

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20031112

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20031118

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20031208

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041123

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20041124

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

BERE Be: lapsed

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE *CNRS

Effective date: 20041130

Owner name: INSTITUT *PASTEUR

Effective date: 20041130

Owner name: INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE M

Effective date: 20041130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050729

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20051119

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

BERE Be: lapsed

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE *CNRS

Effective date: 20041130

Owner name: INSTITUT *PASTEUR

Effective date: 20041130

Owner name: INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE M

Effective date: 20041130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130