EP0194172A1 - Process for manufacturing an article such as a wave guide comprising at least one very smooth surface - Google Patents

Process for manufacturing an article such as a wave guide comprising at least one very smooth surface Download PDF

Info

Publication number
EP0194172A1
EP0194172A1 EP86400213A EP86400213A EP0194172A1 EP 0194172 A1 EP0194172 A1 EP 0194172A1 EP 86400213 A EP86400213 A EP 86400213A EP 86400213 A EP86400213 A EP 86400213A EP 0194172 A1 EP0194172 A1 EP 0194172A1
Authority
EP
European Patent Office
Prior art keywords
support
produced
glass
deposited
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86400213A
Other languages
German (de)
French (fr)
Inventor
Robert Gervais
Paul Ageron
Hugo Nagel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INSTITUT MAX VON LAUE - PAUL LANGEVIN
Original Assignee
INSTITUT MAX VON LAUE - PAUL LANGEVIN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INSTITUT MAX VON LAUE - PAUL LANGEVIN filed Critical INSTITUT MAX VON LAUE - PAUL LANGEVIN
Publication of EP0194172A1 publication Critical patent/EP0194172A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/02Tubes; Rings; Hollow bodies

Definitions

  • the present invention relates to a method of producing a part comprising at least one surface of very low roughness.
  • the invention relates to the manufacture of parts or elements of all shapes and surface conditions.
  • it applies to the production of parabolic mirrors, superconductive cavities or not, conduits used for the flow of fluids (liquids, gases, double phase, fluids charged with particles), for the transfer or the guiding of an energy beam or a beam of particles such as a beam of neutrons, protons, electrons, alpha, neutrinos, etc. but also of electromagnetic radiation such as visible radiation, ultraviolet, infrared, gamma, X and even microwaves.
  • Certain nuclear installations like certain research reactors, use conduits to transmit particles and in particular neutrons from the place where they are emitted to the place where they are used, in experimental devices.
  • the transfer conduits or neutron guides are sections of closed straight cylinders, with a rectangular or circular base, arranged end to end and suitably aligned.
  • the internal surfaces of these guides must be reflective and present to the neutrons a material well known for this use, nickel.
  • certain requirements will be indicated below with regard to the roughness and flatness of the metal surfaces so that they have sufficient reflective qualities.
  • the roughness RA when the guide is in the form of a tube of rectangular section, the roughness RA must be between 1 and 15 nm and the flatness of the faces is determined by the following condition: all the parallels led from a point at all the normals on the surface must be contained in a cone of angle at the summit equal to 2.10- ⁇ radians.
  • the roughness RA must be between 15 and 20 nm, while the condition on the straightness of the generatrices of the cylinder is as follows: all the parallels led from a point to all the normals for each element of the interior wall must be external to a cone of angle at the top of ⁇ -2.10 -4 radians.
  • the walls of these guides must be made of a stable material capable of maintaining the surface qualities defined above. The assembly is maintained under vacuum so as to ensure correct transmission of the neutrons.
  • FIG. 1 illustrates such an embodiment of a neutron guide according to the prior art.
  • the guide is arranged inside a sealed casing 2, shown schematically in phantom in Figure 1.
  • two glass plates 4 and 6 are assembled on two strips also made of glass 8 and 10 , by means of adhesive layers such as 12 so as to produce a guide of rectangular section.
  • the adjustment screws 14 make it possible to adjust the position of the assembly, which is held by elastic devices 1 6. This produces several sections which are then aligned one after the other so as to constitute the complete guide.
  • the first consists in using stainless steel tubes which are ground and then internally polished by electrolytic means.
  • the disadvantages of this method are on the one hand that the surface condition obtained on stainless steel is not as good as that obtained on glass and, when the neutron guide is placed very close to the reactor core , the heating is such that its thickness must be reduced. The required thicknesses may be too small for the implementation of mechanical and electrolytic polishing to be possible.
  • Another method consists in using a glass tube internally coated with a layer of thin nickel, for example by vacuum evaporation.
  • the main drawbacks of this process come from the incompatibility of the glass with the high irradiation doses, the risks of overheating and the risks of breaking the glass.
  • the object of the present invention is precisely to remedy these drawbacks by means of a process for producing a metal part such as a neutron guide which makes it possible to obtain guides having an excellent surface quality and which can be placed in the vicinity of the reactor core.
  • the material constituting the support is chosen from the group consisting of glass, ceramics, silica and silicon.
  • the second material constituting the thin layer is nickel.
  • the third material is also nickel.
  • the thin layer is deposited by vacuum evaporation.
  • the adhesion between the two layers is greater than the adhesion on the support, in particular in glass, of the layer deposited under vacuum: thus, the assembly of the two layers is easily separated from the support and the thin layer has exactly the same surface condition as the support.
  • the method comprises an additional step consisting in assembling several pieces or elements in the form of a plate thus produced in order to constitute a conduit, and more especially a particle guide having the form of a hollow tube.
  • the support is in the form of a solid mandrel of elongated shape, which makes it possible to directly produce a conduit such as a guide of particles of tubular shape, the inner section corresponds to that of the mandrel.
  • the invention essentially uses two methods.
  • the first consists in choosing for the support a material whose coefficient of thermal expansion is lower than that of the materials constituting the guide so that the separation can be done by heating the assembly.
  • the other method consists in dissolving the support by means of a product which dissolves the material constituting the support without dissolving the material constituting the two layers.
  • FIG. 2a schematically illustrate the principle of the process which is the subject of the invention.
  • FIG. 2a it can be seen that one starts from a glass plate 18, one face 20 of which has been carefully polished in order to obtain qualities of roughness and flatness identical to those of the element which one wishes. achieve. It is understood that the conditions set out in the introductory part of this description are only given as an indication and that the roughness and flatness values may vary depending on the intended use for the different guides that are wants to achieve.
  • FIG. 2b illustrates the second step where it can be seen that the glass plate 18 is bonded to a metal plate 22 having a peripheral groove 24, the usefulness of which will be indicated below.
  • a layer of nickel 26 is deposited, for example by vacuum evaporation.
  • the assembly is then immersed in an electroforming bath, which may be based on nickel.
  • a layer of metal 28 is formed from the thin layer of nickel 26 by strongly adhering thereto.
  • the utility of the peripheral groove 24 is to maintain the deposit against the glass plate during its formation (FIG. 2c).
  • the assembly formed by the layers 26 and 28 is cut, for example using grinding wheels such as 30 (FIG. 2d), in order to obtain a plate with the desired dimensions.
  • This produces a plate 32 formed of layers 26 and 28 which adhere to each other, this plate 32 constituting the particle guide element. It is the thin layer 26 which adheres directly to the glass which, in the particle guide, will be exposed to neutrons.
  • a metallic surface is thus obtained, the qualities of which are identical to those of the face 20 of the glass plate 18.
  • Several plates such as 32 can be produced and assembled to form a neutron guide with a square or rectangular section.
  • FIG. 3a shows that a support 34 is used which can be, for example, a hollow aluminum profile whose external section corresponds to the internal section of the guide to be produced.
  • the various plates 32 are arranged in contact with the support 34 (figure 3d) then they are welded to each other in their junction zone as indicated in 36 (figure 3c).
  • the welding is carried out by a high energy density process - (electron beam, plasma, laser ...) to avoid deformation of the plates.
  • the plates 32 can be arranged so that the support 34 can be extracted without friction on the plates 32 or, if an aluminum alloy profile is used, the assembly of the plates 32 and the support 34 is immersed in a soda bath which dissolves the aluminum but does not attack the materials constituting the guide.
  • FIGS. 4a to 4c illustrate a variant allowing a tubular guide to be produced directly without having to assemble several plates.
  • FIG. 4a it can be seen that one starts from a glass support 38 having a rectangular section corresponding to the interior section of the guide to be produced.
  • the four faces 40 of the support 38 undergo careful polishing so as to give it the desired surface condition for the guide to be produced.
  • the mandrel 38 is then metallized on its four faces 40 and its four chamfers 42, for example by evaporation under vacuum of a thin layer of nickel. Then a metal deposition is carried out by electroforming. There are thus obtained not plates such as the plates 32 described above, but directly a metal tube 44 of rectangular section.
  • the following operation consists in extracting the mandrel 38 from the tube 44. To do this, one begins by cutting the end faces of the mandrel with the metal deposit which covers them. In the case where glass is used to form the support 38, the mandrel is extracted using the differences in expansion coefficient between the glass and the metal deposit. Indeed. the glass having a lower coefficient of thermal expansion than the metal constituting the tube 44, the latter expands much more than the support if the temperature of the assembly is increased. In addition, delamination is facilitated by the fact that the thin layer of nickel deposited by vacuum evaporation does not adhere well to the glass. This can be done in hot water or hot oil.
  • FIG. 5a to 5c illustrate a variant similar to that described with reference to Figures 4a to 4c but in this case the solid mandrel 38 is replaced by a set of crystal 4 6 has made of plates secured to one another by gussets d aluminum 48.
  • the plates 46 define a hollow profile, the gussets 48 being inside this profile. Since the metal deposits are made on the external face of this profile, it is necessary that all the faces of the supports 46 on which metal is to be deposited undergo careful polishing as a function of the surface state desired for the guide to be produced. It should be noted that, in this case also the external angles of the profile are provided with chamfers 42 for the reasons explained above.
  • FIG. 5b illustrates how the tube 44 is produced by depositing metal on the plates 46.
  • the last operation consists in extracting the support from the interior of the tube 4 4 .
  • glass plates made integral with aluminum gussets are used, one begins by dipping the assembly in soda in order to eliminate the gussets by dissolving the aluminum. It remains to remove the glass plates.
  • a closed tube is obtained directly without the need to weld different plates together.
  • FIG. 6 shows that a number of protrusions can be provided on the tube 44 thus produced in order to facilitate subsequent machining thereof.
  • the tube 44 has two protrusions 50 at each of its ends and a protrusion 52 in the middle. The latter facilitate not only the machining, but also the handling and positioning of the guide 44 while giving it improved rigidity.
  • These outgrowths can be provided either on the plates in the case of the method illustrated in FIGS. 2 and 3, or on the tubes in the variants illustrated in FIGS. 4 and 5. They can be machined with precision from references carried on the plates models or on the mandrels, before their separation from the metal deposited by effectroforming.
  • the process which is the subject of the invention has particularly advantageous advantages since it makes it possible to produce neutron guides or other particles in which the surfaces exposed to the neutrons or to these particles have qualities of roughness and flatness identical to those obtained on the glass. Such surface qualities are not possible to obtain with conventional methods of metal polishing.
  • the inventors have shown that an optical polishing carried out on nickel plates 500 ⁇ 60 mm and 7 mm thick made it possible to obtain a roughness of the order of 0.01 to 0.0 4 ⁇ m, whereas with the process object of the invention it was possible to obtain a roughness of the order of 10 nm, that is to say about ten times lower.
  • guides can be obtained with good rigidity either because their walls are relatively thick (if the thickness of the layer of nickel deposited by vacuum evaporation is very small, the thickness of the layer deposited by electroforming can be whatever) or thanks to the reinforcements such as those illustrated in FIG. 6.
  • metal guides are less bulky than the glass guides manufactured according to the methods of the prior art.
  • the separation is facilitated by the fact that the two layers of nickel adhere strongly to one another while the nickel evaporated under vacuum adheres poorly to the glass. It is the combination of the two layers which separates from the support and the layer deposited under vacuum which has the same surface condition as the latter. In the particular case of the production of neutron or particle guides, it is this thin layer which is in contact with the particles and the fact that it is nickel evaporated under vacuum gives it excellent physical and chemicals for this use.
  • the invention is not limited to the production of a particle guide as well as to the only embodiments which have just been described here, but that variants can be envisaged without however departing from part of the invention.
  • glass and nickel are the materials used in most cases, other materials are possible.
  • the support can be made of ceramic (nitride, carbide, silicide), silica (quartz) or silicon.
  • the two metallic layers forming the guide can be independently of one another in gold, copper, silver, aluminum, platinum, isotope 58 of nickel.

Abstract

Process for producing a component for guiding particles. Onto a glass substrate (18) which has a face (20) with a polish of optical quality, a first metal layer (26) is deposited by vacuum evaporation, and then a second metal layer (28) by electroforming; a plate (32) is then cut off, which can be easily separated from the glass because the mutual adhesiveness of the two layers (26, 28) is greater than that of the first layer (26) to the glass; a metal component which has the same surface quality as the glass is thus obtained. Application to the production of particle guides. <IMAGE>

Description

La présente invention a pour objet un procédé de réalisation d'une pièce comportant au moins une surface de très faible rugosité. De façon générale, t'invention se rapporte à la fabrication de pièces ou d'éléments de toutes les formes et états de surface. Par exemple, elle s'applique à la réalisation de miroirs paraboliques, de cavités supraconductrices ou non, de conduits servant a l'écoulement de fluides (liquides, gaz, double phase, fluides chargés de particules), au transfert ou au guidage d'un faisceau énergétique ou d'un faisceau de particules tel qu'un faisceau de neutrons, de protons, d'électrons, d'alphas, de neutrinos, etc... mais aussi d'un rayonnement électromagnétique tel qu'un rayonnement visible, ultraviolet, infrarouge, gamma, X et même des micro-ondes.The present invention relates to a method of producing a part comprising at least one surface of very low roughness. In general, the invention relates to the manufacture of parts or elements of all shapes and surface conditions. For example, it applies to the production of parabolic mirrors, superconductive cavities or not, conduits used for the flow of fluids (liquids, gases, double phase, fluids charged with particles), for the transfer or the guiding of an energy beam or a beam of particles such as a beam of neutrons, protons, electrons, alpha, neutrinos, etc. but also of electromagnetic radiation such as visible radiation, ultraviolet, infrared, gamma, X and even microwaves.

Certaines installations nucléaires, .comme certains réacteurs de recherche, utilisent des conduits pour transmettre des particules et notamment des neutrons depuis l'endroit où ils sont émis jusqu'à l'endroit où ils sont utilisés, dans les dispositifs expérimentaux. Les conduits de transfert ou guides de neutrons sont des tronçons de cylindres droits fermés, à base rectangulaire ou circulaire, disposés bout à bout et convenablement alignés.Certain nuclear installations, like certain research reactors, use conduits to transmit particles and in particular neutrons from the place where they are emitted to the place where they are used, in experimental devices. The transfer conduits or neutron guides are sections of closed straight cylinders, with a rectangular or circular base, arranged end to end and suitably aligned.

Pour assurer une transmission correcte des neutrons, les surfaces internes de ces guides doivent étre réfléchissantes et présenter aux neutrons un matériau bien connu pour cet usage, le nickel. A titre d'exemple, on indiquera ci-après certaines exigences en ce qui concerne la rugosité et la planéité des surfaces métalliques afin que celles-ci présentent des qualités de réflexion suffisantes. En général, lorsque le guide se présente sous la forme d'un tube de section rectangulaire, la rugosité RA doit être comprise entre 1 et 15 nm et la planéité des faces est déterminée par la condition suivante : toutes les parallèles menées à partir d'un point à toutes les normales à la surface doivent être contenues dans un cône d'angle au sommet égal à 2.10-` radians. Dans le cas d'un tube de section circulaire, la rugosité RA doit être comprise entre 15 et 20 nm, tandis que la condition sur la rectitude des génératrices du cylindre est la suivante : toutes les parallèles menées à partir d'un point à toutes les normales à chaque élément de la paroi intérieure doivent être extérieures à un cône d'angle au sommet de π-2.10-4 radians. Les parois de ces guides doivent être constituées d'un matériau stable capable de maintenir les qualités de surface définies ci-dessus. L'ensemble est maintenu sous vide de façon à assurer une transmission correcte des neutrons.To ensure correct transmission of the neutrons, the internal surfaces of these guides must be reflective and present to the neutrons a material well known for this use, nickel. By way of example, certain requirements will be indicated below with regard to the roughness and flatness of the metal surfaces so that they have sufficient reflective qualities. In general, when the guide is in the form of a tube of rectangular section, the roughness RA must be between 1 and 15 nm and the flatness of the faces is determined by the following condition: all the parallels led from a point at all the normals on the surface must be contained in a cone of angle at the summit equal to 2.10-`radians. In the case of a tube of circular section, the roughness RA must be between 15 and 20 nm, while the condition on the straightness of the generatrices of the cylinder is as follows: all the parallels led from a point to all the normals for each element of the interior wall must be external to a cone of angle at the top of π-2.10 -4 radians. The walls of these guides must be made of a stable material capable of maintaining the surface qualities defined above. The assembly is maintained under vacuum so as to ensure correct transmission of the neutrons.

En général, on utilise le verre pour constituer les guides de neutrons car il est apte à subir un polissage qui satisfait aux exigences de rugosité et de planéité indiquées ci-dessus. De plus, il peut être revêtu par évaporation sous vide d'une couche de nickel ayant l'épaisseur requise. Les guides de neutrons sont alors constitués pas des dalles en verre poli et revêtu de nickel, puis assemblées par collage après une préparation appropriée. La figure 1 illustre un tel mode de réalisation d'un guide de neutrons selon fart antérieur. Le guide est disposé à l'intérieur d'un carter étanche 2, représenté schématiquement en traits mixtes sur la figure 1. Dans le cas particulier décrit ici, on assemble deux plaques de verre 4 et 6 sur deux réglettes également en verre 8 et 10, au moyen de couches adhésives telles que 12 de manière à réaliser un guide de section rectangulaire. Les vis de réglage 14 permettent d'ajuster la position de l'ensemble, qui est maintenu par des dispositifs élastiques 16. On réalise ainsi plusieurs tronçons qui sont ensuite alignés les uns après les autres de manière à constituer le guide completIn general, glass is used to form the neutron guides because it is capable of undergoing a polishing which satisfies the requirements of roughness and flatness indicated above. In addition, it can be coated by vacuum evaporation with a layer of nickel having the required thickness. The neutron guides are then made up of polished glass slabs coated with nickel, then assembled by gluing after appropriate preparation. FIG. 1 illustrates such an embodiment of a neutron guide according to the prior art. The guide is arranged inside a sealed casing 2, shown schematically in phantom in Figure 1. In the particular case described here, two glass plates 4 and 6 are assembled on two strips also made of glass 8 and 10 , by means of adhesive layers such as 12 so as to produce a guide of rectangular section. The adjustment screws 14 make it possible to adjust the position of the assembly, which is held by elastic devices 1 6. This produces several sections which are then aligned one after the other so as to constitute the complete guide.

De tels dispositifs donnent satisfaction lorsque les doses d'irradiation ne sont pas destructrices pour le verre et les colles utilisés. Or, dans certaines applications, on cherche à capter les neutrons le plus près possible de leur zone d'émission. Il est donc nécessaire d'approcher les guides de neutrons le plus près possible du coeur du réacteur et les doses d'irradiation sont telles que le verre et la colle subissent des dommages qui les rendent impropres à l'usage recherché.Such devices are satisfactory when the irradiation doses are not destructive for the glass and the adhesives used. However, in certain applications, it is sought to capture the neutrons as close as possible to their emission zone. It is therefore necessary to approach the neutron guides as close as possible to the reactor core and the irradiation doses are such that the glass and the adhesive undergo damage which makes them unsuitable for the intended use.

Dans le cas des guides de neutrons à section cylindrique, on utilise deux méthodes principales. La première consiste à utiliser des tubes en acier inoxydable qui sont rodés puis polis intérieurement par voie électrolytique. Les inconvénients de cette méthode sont d'une part que l'état de surface obtenu sur de l'acier inoxydable n'est pas aussi bon que celui obtenu sur le verre et, lorsque le guide de neutrons est disposé très près du coeur du réacteur, l'échauffement est tel qu'il faut réduire son épaisseur. Les épaisseurs requises risquent d'être trop faibles pour que la mise en oeuvre des polissages mécaniques et électrolytiques soit possible.In the case of cylindrical section neutron guides, two main methods are used. The first consists in using stainless steel tubes which are ground and then internally polished by electrolytic means. The disadvantages of this method are on the one hand that the surface condition obtained on stainless steel is not as good as that obtained on glass and, when the neutron guide is placed very close to the reactor core , the heating is such that its thickness must be reduced. The required thicknesses may be too small for the implementation of mechanical and electrolytic polishing to be possible.

Une autre méthode consiste à utiliser un tube de verre revêtu intérieurement d'une couche de nickel mince, par exemple par évaporation sous vide. Les principaux inconvénients de ce procédé viennent de l'incompatibilité du verre avec les doses d'irradiation élevées, les risques d'échauffement et les risques de rupture du verre.Another method consists in using a glass tube internally coated with a layer of thin nickel, for example by vacuum evaporation. The main drawbacks of this process come from the incompatibility of the glass with the high irradiation doses, the risks of overheating and the risks of breaking the glass.

La présente invention a justement pour but de remédier à ces inconvénients grâce à un procédé de réalisation d'une pièce métallique telle qu'un guide de neutrons qui permet d'obtenir des guides ayant une excellente qualité de surface et pouvant être placés au voisinage du coeur du réacteur.The object of the present invention is precisely to remedy these drawbacks by means of a process for producing a metal part such as a neutron guide which makes it possible to obtain guides having an excellent surface quality and which can be placed in the vicinity of the reactor core.

Selon la principale caractéristique du procédé objet de l'invention, celui-ci comprend les étapes suivantes :

  • -on réalise un support en un premier matériau, ce support présentant au moins une surface ayant le même état de surface et la forme que la pièce à réaliser,
  • -sur ladite surface on dépose une couche d'un deuxième matériau métallique, et
  • -on élimine le support, ladite couche constituant la pièce dont la surface lisse est celle qui était en contact avec le support
According to the main characteristic of the process which is the subject of the invention, it comprises the following steps:
  • a support is made of a first material, this support having at least one surface having the same surface condition and the shape as the part to be produced,
  • on said surface a layer of a second metallic material is deposited, and
  • the support is eliminated, said layer constituting the part whose smooth surface is that which was in contact with the support

Selon un mode préféré de mise en oeuvre du procédé de l'invention, celui-ci comprend les étapes suivantes :

  • -on réalise un support en un premier matériau, ce support présentant au moins une surface ayant le même état de surface et la forme que la pièce à réaliser,
  • -sur ladite surface on dépose une couche mince d'un deuxième matériau électroconducteur,
  • -sur cette couche mince, on dépose une couche d'un troisième matériau par voie électrolytique, et
  • -on élimine le support, l'ensemble des deux couches constituant la pièce dont la surface lisse est celle qui était en contact avec le support.
According to a preferred embodiment of the method of the invention, it comprises the following steps:
  • a support is made of a first material, this support having at least one surface having the same surface condition and the shape as the part to be produced,
  • on said surface a thin layer of a second electroconductive material is deposited,
  • -on this thin layer, a layer of a third material is deposited electrolytically, and
  • the support is eliminated, the assembly of the two layers constituting the part whose smooth surface is that which was in contact with the support.

De préférence, le matériau constituant le support est choisi dans le groupe constitué par le verre, les céramiques, la silice et le silicium. Le deuxième matériau constituant la couche mince est le nickel. Enfin, le troisième matériau est aussi le nickel.Preferably, the material constituting the support is chosen from the group consisting of glass, ceramics, silica and silicon. The second material constituting the thin layer is nickel. Finally, the third material is also nickel.

De préférence, on dépose la couche mince par évaporation sous vide.Preferably, the thin layer is deposited by vacuum evaporation.

De façon avantageuse, l'adhérence entre les deux couches est supérieure à l'adhérence sur le support, notamment en verre, de la couche déposée sous vide : ainsi, l'ensemble des deux couches se sépare facilement du support et la couche mince a exactement le même état de surface que le support.Advantageously, the adhesion between the two layers is greater than the adhesion on the support, in particular in glass, of the layer deposited under vacuum: thus, the assembly of the two layers is easily separated from the support and the thin layer has exactly the same surface condition as the support.

En général, le procédé comporte une étape supplémentaire consistant à assembler plusieurs pièces ou éléments en forme de plaque ainsi réalisés afin de constituer un conduit, et plus spécialement un guide de particules ayant la forme d'un tube creux.In general, the method comprises an additional step consisting in assembling several pieces or elements in the form of a plate thus produced in order to constitute a conduit, and more especially a particle guide having the form of a hollow tube.

Dans un autre mode de mise en oeuvre du procédé de l'invention, le support se présente sous la forme d'un mandrin plein de forme allongée, ce qui permet de réaliser directement un conduit tel qu'un guide de particules de forme tubulaire dont la section intérieure correspond à celle du mandrin.In another embodiment of the method of the invention, the support is in the form of a solid mandrel of elongated shape, which makes it possible to directly produce a conduit such as a guide of particles of tubular shape, the inner section corresponds to that of the mandrel.

On peut également remplacer le support plein par un ensemble de plusieurs plaques assemblées entre elles de manière à former un profilé creux, ce qui permet de réaliser un guide de forme tubulaire dont la section intérieure correspond à la section extérieure du profilé.One can also replace the solid support by a set of several plates assembled together so as to form a hollow profile, which makes it possible to produce a tubular guide whose internal section corresponds to the external section of the profile.

Pour séparer les pièces comme par exemple les éléments de guidage ou les guides ainsi réalisés de leur support, l'invention utilise essentiellement deux méthodes. La première consiste à choisir pour le support un matériau dont le coefficient de dilatation thermique est inférieur à celui des matériaux constituant le guide afin que la séparation puisse se faire par chauffage de l'ensemble. L'autre méthode consiste à dissoudre le support au moyen d'un produit qui dissout le matériau constituant le support sans dissoudre le matériau constituant les deux couches.To separate the parts such as for example the guide elements or the guides thus produced from their support, the invention essentially uses two methods. The first consists in choosing for the support a material whose coefficient of thermal expansion is lower than that of the materials constituting the guide so that the separation can be done by heating the assembly. The other method consists in dissolving the support by means of a product which dissolves the material constituting the support without dissolving the material constituting the two layers.

L'invention apparaîtra mieux à la lecture de la description qui va suivre, donnée à titre d'exemple purement illustratif et nullement limitatif. En vue d'une simplification, cette description est faite pour un procédé de fabrication d'un élément de guidage d'un faisceau de neutrons. Mais, bien entendu, comme on l'a dit précédemment, l'invention est d'application beaucoup plus générale.The invention will appear better on reading the description which follows, given by way of purely illustrative and in no way limiting example. For the sake of simplification, this description is made for a method of manufacturing an element for guiding a neutron beam. But, of course, as said above, the invention is of much more general application.

La description est faite en référence aux dessins annexés dans lesquels:

  • -la figure 1, déjà décrite, est une vue schématique en perspective illustrant un procédé de réalisation d'un guide de neutrons selon l'art antérieur,
  • -les figures 2a à 2e sont des vues schématiques en perspective illustrant les principales étapes du procédé objet de l'invention,
  • -les figures 3a à 3d sont des vues schématiques illustrant l'assemblage de plusieurs éléments ainsi réalisés afin de constituer un guide tubulaire,
  • -les figures 4a à 4c sont des vues schématiques en perspective illustrant une variante du procédé objet de l'invention dans laquelle le support se présente sous la forme d'un mandrin allongé,
  • -les figures 5a à 5c sont des vues schématiques en perspective illustrant le cas où le support est constitué d'un ensemble de plaques assemblées les unes aux autres pour former un profilé creux, et
  • -la figure 6 est une vie schématique en perspective montrant comment un guide ainsi réalisé peut être muni de renforcements destinés à en faciliter l'usinage et la manipulation.
The description is made with reference to the accompanying drawings in which:
  • FIG. 1, already described, is a schematic perspective view illustrating a process for producing a neutron guide according to the prior art,
  • FIGS. 2a to 2e are schematic perspective views illustrating the main steps of the process which is the subject of the invention,
  • FIGS. 3a to 3d are schematic views illustrating the assembly of several elements thus produced in order to constitute a tubular guide,
  • FIGS. 4a to 4 c are schematic perspective views illustrating a variant of the process which is the subject of the invention in which the support is in the form of an elongated mandrel,
  • FIGS. 5a to 5c are schematic perspective views illustrating the case where the support consists of a set of plates assembled together to form a hollow profile, and
  • FIG 6 is a schematic perspective life showing how a guide thus produced can be provided with reinforcements intended to facilitate machining and handling.

Les figures 2a à 2e illustrent schématiquement le principe du procédé objet de l'invention. Sur la figure 2a, on voit que l'on part d'une plaque de verre 18 dont une face 20 a subi un polissage soigné afin d'obtenir des qualités de rugosité et de planéité identiques à celles de l'élément qu'on veut réaliser. Il est bien entendu que les conditions énoncées dans la partie introductive de la présente description ne sont données qu'à titre indicatif et que les valeurs de rugosité et de planéité peuvent varier en fonction de l'utilisation prévue pour les différents guides que l'on veut réaliser.Figures 2a to 2e schematically illustrate the principle of the process which is the subject of the invention. In FIG. 2a, it can be seen that one starts from a glass plate 18, one face 20 of which has been carefully polished in order to obtain qualities of roughness and flatness identical to those of the element which one wishes. achieve. It is understood that the conditions set out in the introductory part of this description are only given as an indication and that the roughness and flatness values may vary depending on the intended use for the different guides that are wants to achieve.

La figure 2b illustre la deuxième étape où l'on voit que la plaque de verre 18 est collée sur une plaque métallique 22 présentant une gorge périphérique 24 dont l'utilité sera indiquée ci-après. Sur la face 20 de la plaque 18, on dépose, par exemple par évaporation sous vide, une couche de nickel 26. L'ensemble est ensuite immergé dans un bain d'électroformage, qui peut être à base de nickel. Une couche de métal 28 se forme à partir de la couche mince de nickel 26 en adhérant fortement à celle-ci. L'utilité de la gorge périphérique 24 est de maintenir le dépôt contre la plaque de verre au cours de sa formation (figure 2c). Une fois que la couche 28 est déposée, on découpe l'ensemble formé par les couches 26 et 28, par exemple à l'aide de meules telles que 30 (figure 2d), afin d'obtenir une plaque aux dimensions voulues. On réalise ainsi une plaque 32 formée des couches 26 et 28 qui adhérent l'une à l'autre, cette plaque 32 constituant l'élément de guidage de particules. C'est la couche mince 26 qui adhérait directement au verre qui, dans le guide de particules, sera exposée aux neutrons.FIG. 2b illustrates the second step where it can be seen that the glass plate 18 is bonded to a metal plate 22 having a peripheral groove 24, the usefulness of which will be indicated below. On the face 20 of the plate 18, a layer of nickel 26 is deposited, for example by vacuum evaporation. The assembly is then immersed in an electroforming bath, which may be based on nickel. A layer of metal 28 is formed from the thin layer of nickel 26 by strongly adhering thereto. The utility of the peripheral groove 24 is to maintain the deposit against the glass plate during its formation (FIG. 2c). Once the layer 28 is deposited, the assembly formed by the layers 26 and 28 is cut, for example using grinding wheels such as 30 (FIG. 2d), in order to obtain a plate with the desired dimensions. This produces a plate 32 formed of layers 26 and 28 which adhere to each other, this plate 32 constituting the particle guide element. It is the thin layer 26 which adheres directly to the glass which, in the particle guide, will be exposed to neutrons.

On obtient ainsi une surface métallique dont les qualités sont identiques à celles de la face 20 de la plaque de verre 18. On peut réaliser plusieurs plaques telles que 32 et les assembler pour former un guide de neutrons à section carrée ou rectangulaire.A metallic surface is thus obtained, the qualities of which are identical to those of the face 20 of the glass plate 18. Several plates such as 32 can be produced and assembled to form a neutron guide with a square or rectangular section.

Les figures 3a à 3d illustrent l'assemblage de telles plaques afin de former un guide de section carrée. La figure 3a montre que l'on utilise un support 34 qui peut être par exemple un profilé creux en aluminium dont la section extérieure correspond à la section intérieure du guide à réaliser. Les différentes plaques 32 sont disposées en contact avec le support 34 (figure 3d) puis elles sont soudées les unes aux autres dans leur zone de jonction comme indiqué en 36 (figure 3c). De préférence, on effectue le soudage par un procédé à haute densité d'énergie - (faisceau d'électrons, plasma, laser...) pour éviter la déformation des plaques. On peut disposer les plaques 32 de manière que le support 34 puisse être extrait sans frottement sur les plaques 32 ou, si l'on utilise un profilé en alliage d'aluminium, l'ensemble des plaques 32 et du support 34 est immergé dans un bain de soude qui dissout l'aluminium mais n'attaque pas les matériaux constituant le guide.Figures 3a to 3d illustrate the assembly of such plates to form a square section guide. FIG. 3a shows that a support 34 is used which can be, for example, a hollow aluminum profile whose external section corresponds to the internal section of the guide to be produced. The various plates 32 are arranged in contact with the support 34 (figure 3d) then they are welded to each other in their junction zone as indicated in 36 (figure 3c). Preferably, the welding is carried out by a high energy density process - (electron beam, plasma, laser ...) to avoid deformation of the plates. The plates 32 can be arranged so that the support 34 can be extracted without friction on the plates 32 or, if an aluminum alloy profile is used, the assembly of the plates 32 and the support 34 is immersed in a soda bath which dissolves the aluminum but does not attack the materials constituting the guide.

Les figures 4a à 4c illustrent une variante permettant de réaliser directement un guide de forme tubulaire sans avoir à assembler plusieurs plaques. Sur la figure 4a, on voit que l'on part d'un support en verre 38 ayant une section rectangulaire correspondant à la section intérieure du guide à réaliser. Les quatre faces 40 du support 38 subissent un polissage soigné de manière à lui conférer l'état de surface voulu pour le guide à réaliser. Dans ce cas, on a intérêt à prévoir des chanfreins 42 ayant pour rôle d'éviter la subsistance des quatre arêtes fragiles après polissage des quatre faces et d'éviter, au cours de l'évaporation sous vide qui va suivre, un défaut de dépôt sur les arêtes qui, au cours de l'opération suivante d'électroformage, risque de créer des irrégularités dans le dépôt Le mandrin 38 est ensuite métallisé sur ses quatre faces 40 et ses quatre chanfreins 42, par exemple par évaporation sous vide d'une couche mince de nickel. Puis on effectue un dépôt métallique par électroformage. On obtient ainsi non pas des plaques telles que les plaques 32 décrites précédemment, mais directement un tube métallique 44 de section rectangulaire.FIGS. 4a to 4c illustrate a variant allowing a tubular guide to be produced directly without having to assemble several plates. In FIG. 4a, it can be seen that one starts from a glass support 38 having a rectangular section corresponding to the interior section of the guide to be produced. The four faces 40 of the support 38 undergo careful polishing so as to give it the desired surface condition for the guide to be produced. In this case, it is advantageous to provide chamfers 42 having the role of avoiding the subsistence of the four fragile edges after polishing of the four faces and of avoiding, during the evaporation under vacuum which will follow, a deposit defect. on the edges which, during the next electroforming operation, risk creating irregularities in the deposit The mandrel 38 is then metallized on its four faces 40 and its four chamfers 42, for example by evaporation under vacuum of a thin layer of nickel. Then a metal deposition is carried out by electroforming. There are thus obtained not plates such as the plates 32 described above, but directly a metal tube 44 of rectangular section.

L'opération suivante consiste à extraire le mandrin 38 du tube 44. Pour cela, on commence par tronçonner les faces d'extrémité du mandrin avec le dépôt métallique qui les recouvre. Dans le cas où l'on utilise du verre pour constituer le support 38, on extrait le mandrin en utilisant les différences de coefficient de dilatation entre le verre et le dépôt métallique. En effet. le verre ayant un plus faible coefficient de dilatation thermique que le métal constituant le tube 44, ce dernier se dilate beaucoup plus que le support si on augmente la température de l'ensemble. De plus, le décollement est facilité par le fait que la couche mince de nickel déposée par évaporation sous vide adhère mal sur le verre. Cette opération peut se dérouler dans de l'eau chaude ou de l'huile chaude. On peut également faciliter l'extraction du mandrin en lui donnant une légère pente ou une lègère conicité, c'est-à-dire que sa section varie linéairement mais faiblement le long de son axe. Cette méthode peut être utilisée s'il n'est pas nécessaire dans l'application envisagée que le guide 44 garde une section rigoureusement constante. On obtient ainsi directement un tube fermé sans qu'il soit nécessaire de souder différentes plaques dans les angles. Cette méthode s'applique à la réalisation de guides tubulaires de section quelconque, polygonale ou circulaire.The following operation consists in extracting the mandrel 38 from the tube 44. To do this, one begins by cutting the end faces of the mandrel with the metal deposit which covers them. In the case where glass is used to form the support 38, the mandrel is extracted using the differences in expansion coefficient between the glass and the metal deposit. Indeed. the glass having a lower coefficient of thermal expansion than the metal constituting the tube 44, the latter expands much more than the support if the temperature of the assembly is increased. In addition, delamination is facilitated by the fact that the thin layer of nickel deposited by vacuum evaporation does not adhere well to the glass. This can be done in hot water or hot oil. It is also possible to facilitate the extraction of the mandrel by giving it a slight slope or a slight taper, that is to say that its section varies linearly but slightly along its axis. This method can be used if it is not necessary in the intended application for the guide 44 to keep a strictly constant section. A closed tube is thus obtained directly without the need to weld different plates in the corners. This method applies to the production of tubular guides of any cross-section, polygonal or circular.

Les figures 5a à 5c illustrent Une variante proche de celle décrite en référence aux figures 4a à 4c mais, dans ce cas, le mandrin plein 38 est remplacé par un ensemble de plaques de verre 46 rendues solidaires les unes des autres par des goussets d'aluminium 48. Les plaques 46 définissent un profilé creux, les goussets 48 se trouvant à l'intérieur de ce profilé. Les dépôts métalliques étant effectués sur la face externe de ce profilé, il est nécessaire que toutes les faces des supports 46 sur lesquelles du métal doit être déposé subissent un polissage soigné en fonction de l'etat de surface voulu pour le guide à réaliser. Il est à remarquer que, dàns ce cas également les angles externes du profilé sont munis de chanfreins 42 pour les raisons exposées ci-dessus. La figure 5b illustre comment on réalise le tube 44 par dépôt de métal sur les plaques 46.5a to 5c illustrate a variant similar to that described with reference to Figures 4a to 4c but in this case the solid mandrel 38 is replaced by a set of crystal 4 6 has made of plates secured to one another by gussets d aluminum 48. The plates 46 define a hollow profile, the gussets 48 being inside this profile. Since the metal deposits are made on the external face of this profile, it is necessary that all the faces of the supports 46 on which metal is to be deposited undergo careful polishing as a function of the surface state desired for the guide to be produced. It should be noted that, in this case also the external angles of the profile are provided with chamfers 42 for the reasons explained above. FIG. 5b illustrates how the tube 44 is produced by depositing metal on the plates 46.

La dernière opération consiste à extraire le support de l'intérieur du tube 44. Dans le cas où l'on utilise des plaques de verre rendues solidaires par des goussets d'aluminium, on commence par tremper l'ensemble dans de la soude afin d'éliminer les goussets par dissolution de l'aluminium. Il reste à éliminer les plaques de verre. Pour cela, on peut utiliser la méthode de séparation par différence de dilatation thermique décrite plus haut ou briser les quatre plaques de verre en introduisant à l'intérieur du profilé ou outil chauffant, les morceaux de verre étant extraits par l'intérieur. Cette séparation est facilitée par le fait que le nickel évaporé sous vide adhère moins sur le verre que sur le nickel déposé par électroformage. Là aussi, on obtient directement un tube fermé sans qu'il soit nécessaire de souder entre elles des plaques différentes.The last operation consists in extracting the support from the interior of the tube 4 4 . In the case where glass plates made integral with aluminum gussets are used, one begins by dipping the assembly in soda in order to eliminate the gussets by dissolving the aluminum. It remains to remove the glass plates. For this, one can use the separation method by difference in thermal expansion described above or break the four glass plates by introducing inside the profile or heating tool, the pieces of glass being extracted from the inside. This separation is facilitated by the fact that the nickel evaporated under vacuum adheres less to the glass than to the nickel deposited by electroforming. Here too, a closed tube is obtained directly without the need to weld different plates together.

Enfin, la vue en perspective de la figure 6 montre que l'on peut prévoir un certain nombre d'excroissances sur le tube 44 ainsi réalisé afin d'en faciliter l'usinage ultérieur. Dans l'example représenté à la figure 6, le tube 44 présente deux excroissances 50 à chacune de ses extrémités et une excroissance 52 au milieu. Ces dernières facilitent non seulement l'usinage, mais aussi la manutention et le positionnement du guide 44 tout en lui conférant une rigidité améliorée. Ces excroissances peuvent être prévues soit sur les plaques dans le cas de le méthode illustrée aux figures 2 et 3, soit sur les tubes dans les variantes illustrées aux figures 4 et 5. Elles peuvent être usinées avec précision à partir de références portées sur les plaques modèles ou sur les mandrins, avant la séparation de ceux- ci d'avec le métal déposé par éfectroformage.Finally, the perspective view of FIG. 6 shows that a number of protrusions can be provided on the tube 44 thus produced in order to facilitate subsequent machining thereof. In the example shown in Figure 6, the tube 44 has two protrusions 50 at each of its ends and a protrusion 52 in the middle. The latter facilitate not only the machining, but also the handling and positioning of the guide 44 while giving it improved rigidity. These outgrowths can be provided either on the plates in the case of the method illustrated in FIGS. 2 and 3, or on the tubes in the variants illustrated in FIGS. 4 and 5. They can be machined with precision from references carried on the plates models or on the mandrels, before their separation from the metal deposited by efectroforming.

Ainsi, le procédé objet de l'invention présente des avantages particulièrement intéressants puisqu permet de réaliser des guides de neutrons ou autres particules dans lesquels les surfaces exposées aux neutrons ou à ces particules présentent des qualités de rugosité et de planéité identiques à celles obtenues sur le verre. De telles qualités de surface ne sont pas possibles à obtenir avec les méthodes classiques de polissage des métaux. Les inventeurs ont montré qu'un polissage optique effectué sur des plaques de nickel de 500x60 mm et de 7 mm d'épaisseur permettait d'obtenir une rugosité de l'ordre de 0,01 à 0,04 µm alors qu'avec le procédé objet de l'invention on a pu obtenir une rugosité de l'ordre de 10 nm, c'est-à-dire environ dix fois plus faible. On élimine ainsi tous les inconvénients dus aux risques de détérioration du verre dans le cas où le dispositif est placé dans une zone fortement irradiée, tout en ayant une excellente qualité de surface. De plus, on peut obtenir des guides ayant une bonne rigidité soit parce que leurs parois sont relativement épaisses (si l'épaisseur de la couche de nickel déposée par évaporation sous vide est très faible, l'épaisseur de la couche déposée par électroformage peut être quelconque) soit grâce aux renforcements tels que ceux illustrés à la figure 6. De plus, de tels guides métalliques sont moins encombrants que les guides en verre fabriqués selon les méthodes de l'art antérieur.Thus, the process which is the subject of the invention has particularly advantageous advantages since it makes it possible to produce neutron guides or other particles in which the surfaces exposed to the neutrons or to these particles have qualities of roughness and flatness identical to those obtained on the glass. Such surface qualities are not possible to obtain with conventional methods of metal polishing. The inventors have shown that an optical polishing carried out on nickel plates 500 × 60 mm and 7 mm thick made it possible to obtain a roughness of the order of 0.01 to 0.0 4 μm, whereas with the process object of the invention it was possible to obtain a roughness of the order of 10 nm, that is to say about ten times lower. This eliminates all the disadvantages due to the risk of deterioration of the glass in the case where the device is placed in a highly irradiated area, while having an excellent surface quality. In addition, guides can be obtained with good rigidity either because their walls are relatively thick (if the thickness of the layer of nickel deposited by vacuum evaporation is very small, the thickness of the layer deposited by electroforming can be whatever) or thanks to the reinforcements such as those illustrated in FIG. 6. In addition, such metal guides are less bulky than the glass guides manufactured according to the methods of the prior art.

Dans la cas où l'on réalise la pièce présentant une surface de très faible rugosité par dépôt, sur un support en verre, d'une couche mince de nickel par évaporation sous vide, puis d'une deuxième couche de nickel déposée par voie électrolytique, la séparation est facilitée par le fait que les deux couches de nickel adhèrent fortement l'une à l'autre alors que le nickel évaporé sous vide adhère mal sur le verre. C'est l'ensemble des deux couches qui se sépare du support et la couche déposée sous vide qui a le même état de surface que celui-ci. Dans le cas particulier de la réalisation de guides de neutrons ou de particules, c'est cette couche mince qui est en contact avec les particules et le fait qα'il s'agisse de nickel évaporé sous vide lui confère d'excellentes propriétés physico-chimiques pour cet usage.In the case where the part having a surface of very low roughness is produced by depositing, on a glass support, a thin layer of nickel by evaporation under vacuum, then a second layer of nickel deposited by electrolytic means , the separation is facilitated by the fact that the two layers of nickel adhere strongly to one another while the nickel evaporated under vacuum adheres poorly to the glass. It is the combination of the two layers which separates from the support and the layer deposited under vacuum which has the same surface condition as the latter. In the particular case of the production of neutron or particle guides, it is this thin layer which is in contact with the particles and the fact that it is nickel evaporated under vacuum gives it excellent physical and chemicals for this use.

Enfin, il est bien entendu que l'invention ne se limite pas à la réalisation de guide de particules ainsi qu'aux seuls modes de réalisation qui viennent d'être décrits ici, mais qu'on peut envisager des variantes sans sortir pour autant de cadre du l'invention. Par exemple, on peut donner aux guides une sectibn polygonale quelconque et pas uniquement circulaire ou rectangulaire. D'autre part, si le verre et le nickel sont les matériaux utilisés dans la plupart des cas, d'autres matériaux sont possibles. L'homme de l'art les choisira en fonction de chaque application envisagée, l'essentiel étant que les plaques ou les guides eux-mêmes se séparent facilement du support et que ce dernier puisse acquérir un excellent état de surface. En particulier, le support peut être réalisé en céramique (nitrure, carbure, siliciure), en silice (quartz) ou en silicium. De même les deux couches métalliques formant le guide peuvent être indépendamment l'une de l'autre en or, en cuivre, en argent, en aluminium, en platine, en isotope 58 du nickel.Finally, it is understood that the invention is not limited to the production of a particle guide as well as to the only embodiments which have just been described here, but that variants can be envisaged without however departing from part of the invention. For example, we can give to the guides any polygonal sectibn any and not only circular or rectangular. On the other hand, if glass and nickel are the materials used in most cases, other materials are possible. Those skilled in the art will choose them according to each application envisaged, the main thing being that the plates or guides themselves are easily separated from the support and that the latter can acquire an excellent surface condition. In particular, the support can be made of ceramic (nitride, carbide, silicide), silica (quartz) or silicon. Likewise, the two metallic layers forming the guide can be independently of one another in gold, copper, silver, aluminum, platinum, isotope 58 of nickel.

Claims (12)

1. Procédé de réalisation d'une pièce métallique présentant au moins une surface de très faible rugosité, caractérisé en ce qu'il comprend les étapes suivantes : -on réalise un support (18) en un premier matériau, ce support (18) présentant au moins une surface (20) ayant le même état de surface et la forme que la pièce à réaliser, -sur ladite surface (20) on dépose une couche (26) d'un deuxième matériau métallique, et -on élimine le support (18), ladite couche (26) constituant la pièce dont la surface lisse est celle qui était en contact avec le support (18). 1 . Process for producing a metal part having at least one surface of very low roughness, characterized in that it comprises the following steps: a support (18) is produced from a first material, this support (18) having at least one surface (20) having the same surface state and shape as the part to be produced, on said surface (20) a layer (26) of a second metallic material is deposited, and the support (18) is eliminated, said layer (26) constituting the part whose smooth surface is that which was in contact with the support (18). 2. Procédé selon la revendication 1, caractérisé en ce qu'il comprend les étapes suivantes : -on réalise un support (18) en un premier matériau, ce support (18) présentant au moins une surface (20) ayant le même état de surface et la forme que la pièce à réaliser, -sur ladite surface (20) on dépose une couche mince (26) d'un deuxième matériau électroconducteur, -sur cette couche mince (26), on dépose une couche (28) d'un troisième matériau, par voie électrolytique, et - on élimine le support (18), l'ensemble des deux couches - (26, 28) constituant la pièce dont la surface lisse est celle qui était en contact avec le support (18). 2. Method according to claim 1, characterized in that it comprises the following steps: a support (18) is produced from a first material, this support (18) having at least one surface (20) having the same surface state and shape as the part to be produced, on said surface (20) a thin layer (26) of a second electroconductive material is deposited, on this thin layer (26), a layer (28) of a third material is deposited, by electrolytic means, and - The support (18) is eliminated, the assembly of the two layers - (26, 28) constituting the part whose smooth surface is that which was in contact with the support (18). 3. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce que le premier matériau constituant le support (18) est choisi dans le groupe constitué par le verre, les céramiques, la silice et le silicium.3. Method according to any one of claims 1 and 2, characterized in that the first material constituting the support (18) is chosen from the group consisting of glass, ceramics, silica and silicon. 4. Procédé selon l'une quelconque des revendications 2 et 3, caractérisé en ce que le deuxième matériau est le nickel.4. Method according to any one of claims 2 and 3, characterized in that the second material is nickel. 5. Procédé selon l'une quelconque des revendications 2 à 4, caractérisé en ce que le troisième matériau est le nickel.5. Method according to any one of claims 2 to 4, characterized in that the third material is nickel. 6. Procédé selon l'une quelconque des revendications 2 à 5, caractérisé en ce qu'on dépose ladite couche mince - (26) par évaporation sous vide.6. Method according to any one of claims 2 to 5, characterized in that said thin layer is deposited - (26) by vacuum evaporation. 7. Procédé selon l'une quelconque des revendications 2 à 6, caractérisé en ce que le matériau constituant le support7. Method according to any one of claims 2 to 6, characterized in that the material constituting the support (38) a un coefficient de dilatation thermique inférieur à celui des deuxième et troisième matériaux, permettant ainsi l'élimination du support par chauffage de l'ensemble.(38) has a coefficient of thermal expansion lower than that of the second and third materials, thus allowing the elimination of the support by heating the assembly. 8. Procédé selon l'une quelconque des revendications 2 à 7, caractérisé en ce qu'on effectue l'élimination du support en utilisant un produit qui dissout le premier matériau et non les deux autres.8. Method according to any one of claims 2 to 7, characterized in that the removal of the support is carried out using a product which dissolves the first material and not the other two. 9. Procédé selon l'une quelconque des revendications 1 à 8 appliqué à la réalisation d'un conduit, caractérisé en ce . qu'il comporte une étape supplémentaire consistant à assembler plusieurs pièces (32) ainsi réalisées afin de constituer un conduit ayant la forme d'un tube creux.9. Method according to any one of claims 1 to 8 applied to the production of a conduit, characterized in that. that it comprises an additional step consisting in assembling several parts (32) thus produced in order to constitute a conduit having the form of a hollow tube. 10. Procédé selon l'une quelconque des revendications 1 à 8 appliqué à la réalisation d'un conduit, caractérisé en ce que ledit support se présente sous la forme d'un mandrin plein (38) de forme allongée, permettant de réaliser directement le conduit (4') de forme tubulaire dont la section intérieure correspond à celle du mandrin.10. Method according to any one of claims 1 to 8 applied to the production of a conduit, characterized in that said support is in the form of a solid mandrel (38) of elongated shape, making it possible to directly carry out the conduit (4 ') of tubular shape whose internal section corresponds to that of the mandrel. 11. Procédé selon l'une quelconque des revendications 1 à 8 appliqué à la réalisation d'un conduit, caractérisé en ce que ledit support se présente sous la forme-de plusieurs plaques (46) assemblées entre elles de manière à former un profilé, permettant de réaliser un guide (44) de forme tubulaire dont la section intérieure correspond à la section extérieure dudit profilé.11. Method according to any one of claims 1 to 8 applied to the production of a conduit, characterized in that said support is in the form of several plates (46) assembled together so as to form a profile, making it possible to produce a guide (44) of tubular shape, the internal section of which corresponds to the external section of said profile.
EP86400213A 1985-02-06 1986-01-31 Process for manufacturing an article such as a wave guide comprising at least one very smooth surface Withdrawn EP0194172A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8501650A FR2576921B1 (en) 1985-02-06 1985-02-06 PROCESS FOR PRODUCING A PART SUCH AS A CONDUIT OF A BEAM HAVING AT LEAST ONE SURFACE OF VERY LOW ROUGHNESS
FR8501650 1985-02-06

Publications (1)

Publication Number Publication Date
EP0194172A1 true EP0194172A1 (en) 1986-09-10

Family

ID=9315987

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86400213A Withdrawn EP0194172A1 (en) 1985-02-06 1986-01-31 Process for manufacturing an article such as a wave guide comprising at least one very smooth surface

Country Status (2)

Country Link
EP (1) EP0194172A1 (en)
FR (1) FR2576921B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2294227A (en) * 1994-10-19 1996-04-24 Rover Group The production of an article using a thermal spray technique
US6120539A (en) * 1997-05-01 2000-09-19 C. R. Bard Inc. Prosthetic repair fabric

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR407518A (en) * 1900-01-01
US1694962A (en) * 1928-12-11 Metal tubing
DE736713C (en) * 1940-02-25 1943-06-29 Erich Kruppa Process for the production of cobalt tubes by electrolytic means

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR407518A (en) * 1900-01-01
US1694962A (en) * 1928-12-11 Metal tubing
DE736713C (en) * 1940-02-25 1943-06-29 Erich Kruppa Process for the production of cobalt tubes by electrolytic means

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P. SPIRO: "Electroforming", 1968, pages 138-148, Robert Draper Ltd., Teddington, GB; "Waveguides" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2294227A (en) * 1994-10-19 1996-04-24 Rover Group The production of an article using a thermal spray technique
GB2294227B (en) * 1994-10-19 1998-05-27 Rover Group The production of an article using a thermal spray technique
US6120539A (en) * 1997-05-01 2000-09-19 C. R. Bard Inc. Prosthetic repair fabric

Also Published As

Publication number Publication date
FR2576921A1 (en) 1986-08-08
FR2576921B1 (en) 1990-04-06

Similar Documents

Publication Publication Date Title
EP0660140B1 (en) Method for making a relief structure on a substrate from semiconductor material
EP0732635B1 (en) Process for the manufacture of a micromechanical element
EP0363256B1 (en) Method of making electrical connections through a substrate
EP0323317A1 (en) Method of manufacturing micro light guides having a low optical propagation loss by depositing multiple layers
EP3320403B1 (en) Method for fixing by anodic bonding
FR2462021A1 (en) ROTATING ANODE FOR RONTGEN TUBE, AND METHOD FOR MANUFACTURING THE SAME
EP2065906B1 (en) Process for moderating deformation
EP0194172A1 (en) Process for manufacturing an article such as a wave guide comprising at least one very smooth surface
EP0016693B1 (en) Solar-energy collector device and process for manufacturing such a device
EP0265912A1 (en) Multidielectrical mirror, especially for the middle infrared spectrum, in particular for a carbon dioxide laser
WO2017017000A1 (en) Spiral spring and method for producing the spiral spring
EP3670440A1 (en) Method for manufacturing a clock component
FR2619226A1 (en) Method of producing an aspherical surface on an optical element and composite optical component obtained by implementing the method
CA2014519C (en) Process for making a choice using a thin layared film structure
EP0618648B1 (en) Process for manufacturing a rotor of a rotating electrical collector
WO2006131639A1 (en) Nanometric emitter/receiver guides
EP0943946A1 (en) Manufacturing method for a multiribbon of optical fibres separable in at least two ribbons of optical fibres
EP1448805B1 (en) Improved method for coating a support with a material
FR2903810A1 (en) METHOD FOR NANOSTRUCTURING THE SURFACE OF A SUBSTRATE
EP0143014A1 (en) Precision machining method, application to the machining of the reflecting surface of a mirror and mirror machined according to this method
FR3062398A1 (en) PROCESS FOR PRODUCING A SUBSTRATE FOR GROWING A TWO-DIMENSIONAL FILM OF HEXAGONAL CRYSTALLINE STRUCTURE
EP3465788B1 (en) Method for producing a layer
EP0348265A1 (en) Process for producing a magnetic recording/reading head from a magnetic substrate
EP0085599A2 (en) Method for mass-manufacturing piezoelectric transducers, transducers made by this method and utilisation of this method
WO1995035642A1 (en) Ultrasonic transducer and method for making same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB IT NL SE

17P Request for examination filed

Effective date: 19870211

17Q First examination report despatched

Effective date: 19890316

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19890717

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GERVAIS, ROBERT

Inventor name: NAGEL, HUGO

Inventor name: AGERON, PAUL