EP0267403A2 - Capacitive separating circuit - Google Patents

Capacitive separating circuit Download PDF

Info

Publication number
EP0267403A2
EP0267403A2 EP87114108A EP87114108A EP0267403A2 EP 0267403 A2 EP0267403 A2 EP 0267403A2 EP 87114108 A EP87114108 A EP 87114108A EP 87114108 A EP87114108 A EP 87114108A EP 0267403 A2 EP0267403 A2 EP 0267403A2
Authority
EP
European Patent Office
Prior art keywords
outer conductor
capacitive
capacitor
isolating element
isolating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87114108A
Other languages
German (de)
French (fr)
Other versions
EP0267403A3 (en
Inventor
Walter Dr. Buck
Dieter Schenkyr
Werner Heiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirschmann Electronics GmbH and Co KG
Original Assignee
Hirschmann Electronics GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirschmann Electronics GmbH and Co KG filed Critical Hirschmann Electronics GmbH and Co KG
Publication of EP0267403A2 publication Critical patent/EP0267403A2/en
Publication of EP0267403A3 publication Critical patent/EP0267403A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/202Coaxial filters

Definitions

  • the invention relates to a capacitive isolating element for the galvanic isolation of a coaxial cable with at least one isolating capacitor in the inner and outer conductors.
  • a capacitive isolating element of this type is known from DE-C2-33 17 202.
  • Such isolators are intended to be used, for example, in broadband communication systems as a separation point between the signal providers and the signal consumers, for example between the broadband communication network of the Post and the private home distribution systems. With such isolating devices it is prevented that voltages which can occur due to incorrect switching in house systems or due to potential differences from house to house are transmitted to the communication network.
  • a capacitor with the highest possible capacitance should be used.
  • such a separator with capacitors also causes a coupling to occur to the outside, ie to a power system formed by the distant earth; in other words, the degree of shielding of the outer conductor is noticeably less at the location of the separator than in the rest of the area of the coaxial cable.
  • the coupling attenuation between the outer conductor and the line system formed by the distant earth are, however, in principle limited when using such annularly arranged capacitors. If one divides the high-frequency coupling resistance between the outer conductor and the far earth in terms of an equivalent circuit into a loss resistance component R C , an inductance component L C and a capacitive component C C , one can see that these parts of the coupling impedance are only practical in can be reduced to a limited extent.
  • the capacity component C C can only be reduced by large capacitors, which are, however, expensive. There are also limits to the reduction of the loss resistance portion R C , because this value - apart from the frequency - essentially depends on the loss angle and thus on the dielectric material of the capacitor.
  • the line inductance component L C cannot be reduced beyond a certain level either, since a certain distance must be maintained in order to ensure a required dielectric strength of approximately 2000 volts.
  • the line inductance L C is relatively high, especially in the case of capacitors with a thick dielectric. On the other hand, such capacitors with a thick dielectric are required for such separators because of the high dielectric strength.
  • each individual current path that runs over the respective capacitors must be considered, so that the shielding effect at high frequencies decreases sharply even at a distance of a few millimeters.
  • the invention is therefore based on the object of providing a capacitive isolating element which has better shielding properties while overcoming conventional limits.
  • this object is achieved in that the at least one isolating capacitor in the outer conductor is part of a high-frequency filter.
  • the coupling loss between the outer conductor and the distant earth is significantly improved in this way. In this way it is possible to exceed the limits of achievable damping, which were determined by the material properties and dimensions of conventional separators. With the measure according to the invention it is therefore possible to increase the damping quality of the isolating element as desired.
  • the at least one coupling capacitor in the outer conductor is preferably part of a low-pass filter, although it is also possible to use a band-pass filter in this context and under appropriate conditions.
  • a particularly advantageous embodiment of the invention consists in cascading together at least two high-frequency filters. In this way it is possible to over the shielding dimension to increase any frequency range as required. Expensive capacitors with large capacities are no longer required, since simple capacitors can now be used. It is also no longer necessary to ensure that the isolating element is optimally manufactured with regard to coupling damping, so that the isolating element according to the invention can be manufactured much more cost-effectively with the same shielding properties. Instead of special, expensive components, cheaper series components can now be used.
  • a further development of the invention is particularly advantageous in which the coaxial cable is wound in a coil-like manner in at least one turn and the turn is part of the high-frequency filter. It is advantageous to have this winding form the longitudinal branch of a pi filter, the isolating capacitors being the transverse branches of the pi filter.
  • a semi-rigid coaxial cable or one with a solid copper jacket is preferably used as the coaxial cable at least in the region of the capacitive isolating element.
  • the design of the respective filter or the cascade-connected filter can be carried out according to the existing wishes and requirements as with the usual filter technology. By cascading appropriate filters, any damping can theoretically be achieved.
  • a capacitive isolating element for the electrical isolation of a coaxial cable with at least one isolating capacitor in the inner and outer conductor
  • electrical isolation of the outer and inner conductor is provided in a housing, and in this housing there is for the outer conductor at least one additional Lich high frequency filter.
  • the high-frequency filter is preferably a low-pass filter, but depending on the application, it can also be a band-pass filter.
  • the galvanic isolation is initially carried out using a conventional, simple isolating element, to which no claims need be made with regard to the attenuation requirements.
  • a high-frequency filter is provided which very effectively improves the coupling attenuation to the outside.
  • the galvanic isolation and measures to increase the shielding can be implemented in separate components.
  • the high-frequency filter for the outer conductor for coupling damping consists of at least one winding of the coaxial cable and one capacitor each, which are connected on the one hand to the outer conductor and on the other hand to the conductive housing.
  • the circuit board can be a customary printed circuit board made of epoxy resin, on both sides of which conductor surfaces are provided, one side of the circuit board being connected to the outer conductor and the other side of the circuit board being connected to the housing.
  • the line inductance component of the high-frequency resistor can be kept small in this way in accordance with the equivalent circuit diagram.
  • the electrical isolation of the inner conductor is advantageously provided at a different location than the electrical isolation of the outer conductor. This gives greater design freedom in the construction of the isolator.
  • the capacitive isolating element according to the invention results in the simplest embodiment, i.e. without cascade connection, a shield dimension of over 90 dB in the VHF range and over 70 dB in the UHF range.
  • Fig. 1 shows a schematic representation of a capacitive isolating element 1, which is connected via galvanic connections 2, each with a coaxial cable end 3.
  • the inner conductor 4 is located inside the coaxial cable.
  • the outer conductor is provided with the reference symbol 5.
  • the isolating element is electrically isolated from the outer conductor 5 via a schematically illustrated capacitor C A , which, as described in DE-C2-33 17 202, can consist of several capacitors, for example chip capacitors.
  • the inner conductor 4 is electrically isolated via a capacitor C I , which is also located in the isolating element 1.
  • the impedance of the capacitor C A in the outer conductor 5 of the coaxial cable or the isolating element simultaneously represents the coupling impedance between the inside of the coaxial cable and a conductor system formed from the outside of the sheath of the coaxial line and the distant earth.
  • a good coupling loss or a high shielding degree is then given when the coupling between the coaxial cable interior and said line system, ie the interference is low.
  • a power source 21 is connected to a load 22 via the capacitor C I of the inner conductor.
  • the coupling impedance in the outer conductor consists of the capacitance component C A , the loss resistance component R A and the component of the lead inductance L A.
  • the reference numeral 23 denotes the impedance of the external system, which is parallel to the impedance component shown schematically in series and acts as a sink for the interference radiation. In order to make the shielding as good as possible, it is necessary to keep the coupling impedance consisting of the components C A , R A and L A as small as possible.
  • FIG. 3 shows an equivalent circuit diagram of the arrangement according to the invention. Circuit elements which correspond to those of FIG. 2 are again provided with the same reference symbols.
  • the coupling impedance according to FIG. 2 which consists of the components C A , R A and L A
  • the entire aforementioned elements form a low-pass filter, with which the damping can be significantly improved compared to a circuit arrangement according to the equivalent circuit diagram of FIG. 2.
  • the achievable degree of shielding is therefore no longer limited by the material of the components or the geometric dimensions in the isolating element, but only depends on the dimensioning of the low-pass filter. Any damping effect can be achieved by appropriate filter design, but also by cascading.
  • a practical embodiment of the invention is shown as a basic structure in Fig. 4.
  • a coaxial cable 43 is shown in a conductive, high-frequency-tight housing 41 and is wound up into a coil.
  • the outer conductor of the coaxial cable is galvanically isolated via one or more isolating capacitors C A.
  • the outer conductor lying on the left side of the isolating capacitor C A is connected to the outer conductor part via at least one further capacitor C Genzouse and via the conductive housing 41, which is located to the right of the isolating capacitor C A.
  • the inner conductor 4 is likewise galvanically isolated with a separating capacitor C I.
  • the embodiment shown in FIG. 4 corresponds to the equivalent circuit diagram of FIG.
  • the capacitor C4 of FIG Capacitor C A in FIG. 3 and the coaxial cable part 42 wound as a coil represent the coil L S in the longitudinal branch of the equivalent circuit according to FIG. 3.
  • the components used for the capacitors C A and C4 can be cheap series parts.
  • the capacitive separator 51 has a housing 52.
  • a coaxial cable 53 runs through the housing 52 and is wound into a coil 54 in the housing.
  • Contacts 55 are used for the galvanic connection to the coaxial line to be connected.
  • the outer conductor 56 of the coaxial cable 53 is electrically connected on one entry side to the housing 52 made of a conductive material (cf. FIG. 5, the left entry of the coaxial cable into the housing 52).
  • the coaxial cable emerges from the housing 52 without the outer conductor being in contact with it at this point.
  • the housing 52 is connected only via capacitors C5 to this part of the outer conductor of the coaxial cable.
  • a separator 57 which is located within the housing 52 and consists of the outer conductor capacitors 58 and the inner conductor capacitor 59, represents the electrical isolation of the coaxial cable.
  • the coaxial cable 53 in the interior of the housing 52 is mechanically connected to the housing 52 via pressure circuit boards 60 and 61 .
  • the conductor surfaces of the pressure circuits 60 and 61 applied to the outer surfaces of the pressure circuit are electrically connected to the outer conductor of the coaxial cable 53 and to the housing 52 in the manner shown in FIG. 5, for example by soldering, in such a way that these pressure circuit connections each have one Form a capacitor via which the outer conductor 56 of the coaxial cable 53 is connected to the conductive housing 52.
  • the isolator 57 can be a simple, conventional isolator with capacitor components and Ab measurements where only little importance is attached to a good shielding effect.
  • the actual shielding is carried out by the low-pass filter, which consists of the printed circuit boards 60 and 61, which each represent capacitors, and the coaxial cable winding 54, the capacitors consisting of the printing plates 60 and 61 each in transverse branches and the coaxial conductor winding 54 in the longitudinal branch of the low pass filter.

Abstract

In the capacitive isolating section for DC isolation of a coaxial cable, a radio-frequency filter, preferably a low-pass filter, is provided in addition to an isolating capacitor in the outer conductor, by means of which the shielding characteristics of the isolating section are considerably improved. The isolating capacitor in the outer conductor can be a part of the radio-frequency filter. The attenuation characteristics of the isolating section can be improved even further by means of several radio-frequency filters connected in the manner of a cascade. <IMAGE>

Description

Die Erfindung betrifft ein kapazitives Trennglied zur galvanischen Trennung eines Koaxialkabels mit wenigstens einem Trennkondensator im Innen- und Außenleiter.The invention relates to a capacitive isolating element for the galvanic isolation of a coaxial cable with at least one isolating capacitor in the inner and outer conductors.

Ein kapazitives Trennglied dieser Art ist aus der DE-C2-33 17 202 bekannt. Solche Trennglieder sind dazu vorgesehen, beispielsweise bei Breitband-Kommunikationsanlagen als Trennstelle zwischen den Signal-Anbietern und den Signal-Abnehmern, etwa zwischen dem Breit­band-Kommunikationsnetz der Post und den privaten Hausverteil-An­lagen eingesetzt zu werden. Mit derartigen Trenneinrichtungen wird verhindert, daß Spannungen, die aufgrund von Fehlschaltungen in Hausanlagen oder aufgrund von Potentialunterschieden von Haus zu Haus auftreten können, auf das Kommunikationsnetz übertragen werden.A capacitive isolating element of this type is known from DE-C2-33 17 202. Such isolators are intended to be used, for example, in broadband communication systems as a separation point between the signal providers and the signal consumers, for example between the broadband communication network of the Post and the private home distribution systems. With such isolating devices it is prevented that voltages which can occur due to incorrect switching in house systems or due to potential differences from house to house are transmitted to the communication network.

Um mit dem kapazitiven Trennglied eine möglichst optimale Verbin­dung des Außenleiters des Koaxialkabels zu erhalten, sollte ein Kondensator mit möglichst hoher Kapazität verwendet werden. Darü­berhinaus bewirkt ein derartiges Trennglied mit Kondensatoren je­doch auch, daß zum Außenraum, d.h. zu einem durch die ferne Erde gebildeten Leistungssystem eine Kopplung auftritt; oder anders ausgedrückt, das Schirmungsmaß des Außenleiters ist an der Stelle des Trennstücks merklich geringer als im übrigen Bereich des Koaxialkabels. Zur Verbesserung des Schirmungsmaßes bzw. der Stör­strahlunterdrückung ist gemäß der genannten DE-C2-33 17 202 vorge­sehen, die Trennkapazität des Außenleiters in der Form ringförmig angeordneter Chip-Kondensatoren auszubilden, deren Anschlüsse mit gegenüberliegenden Ringbünden der Außenleiterkontaktteile verlötet sind. Es ist weiterhin vorgesehen, die äußere Kapazität als ge­schlossenen Ringkondensator zu bilden. Auf diese Weise werden Um­wege der Hochfrequenzströme vermieden und es wird eine weitgehend gleichmäßige Feldverteilung erreicht, so daß das Schirmungsmaß auch im Bereich des Trennglieds selbst möglichst groß ist.In order to obtain the best possible connection of the outer conductor of the coaxial cable with the capacitive isolating element, a capacitor with the highest possible capacitance should be used. In addition, however, such a separator with capacitors also causes a coupling to occur to the outside, ie to a power system formed by the distant earth; in other words, the degree of shielding of the outer conductor is noticeably less at the location of the separator than in the rest of the area of the coaxial cable. In order to improve the degree of shielding or the interference suppression it is provided according to DE-C2-33 17 202 mentioned to form the separating capacitance of the outer conductor in the form of annularly arranged chip capacitors, the connections of which opposite ring collars of the outer conductor contact parts are soldered. It is also intended to form the external capacitance as a closed ring capacitor. In this way, detours of the high-frequency currents are avoided and a largely uniform field distribution is achieved, so that the degree of shielding is also as large as possible in the area of the isolating element itself.

Der Koppeldämpfung zwischen dem Außenleiter und dem durch die fer­ne Erde gebildeten Leitungssystem sind jedoch bei der Verwendung auch derartiger ringförmig angeordneter Kondensatoren prinzipiell Grenzen gesetzt. Teilt man den Hochfrequenz-Kopplungswiderstand zwischen dem Außenleiter und der fernen Erde ersatzschaltmäßig in einen Verlustwiderstands-Anteil RC, einen Induktivitäts-Anteil LC und einen kapazitiven Anteil CC auf, so erkennt man, daß diese Teile der Koppelimpedanz im praktischen Falle nur in begrenztem Maße reduziert werden können.The coupling attenuation between the outer conductor and the line system formed by the distant earth are, however, in principle limited when using such annularly arranged capacitors. If one divides the high-frequency coupling resistance between the outer conductor and the far earth in terms of an equivalent circuit into a loss resistance component R C , an inductance component L C and a capacitive component C C , one can see that these parts of the coupling impedance are only practical in can be reduced to a limited extent.

Der Kapazitäts-Anteil CC läßt sich nur durch große Kondensatoren verringern, die jedoch teuer sind. Der Verringerung der Verlustwi­derstands-Anteils RC sind ebenfalls Grenzen gesetzt, weil dieser Wert - abgesehen von der Frequenz - im wesentlichen vom Verlust­winkel und damit von dem Dielektrikums-Material des Kondensators abhängt. Der Leitungsinduktivitäts-Anteil LC läßt sich über ein bestimmtes Maß hinaus ebenfalls nicht verringern, da ein bestimm­ter Abstand beibehalten bleiben muß, um eine geforderte Spannungs­festigkeit von ca. 2000 Volt sicherzustellen. Darüberhinaus ist die Leitungsinduktivität LC vor allem bei Kondensatoren mit dickem Dielektrikum relativ hoch. Andererseits werden derartige Kondensa­toren mit dickem Dielektrikum jedoch wegen der hohen Spannungsfes­tigkeit für derartige Trennstücke benötigt. Darüberhinaus muß hin­sichtlich der Koppelinduktivitäten jeder einzelne Strompfad, der über die jeweiligen Kondensatoren läuft, betrachtet werden, so daß bereits bei wenigen Millimetern Abstand die Schirmwirkung bei ho­hen Frequenzen stark abnimmt.The capacity component C C can only be reduced by large capacitors, which are, however, expensive. There are also limits to the reduction of the loss resistance portion R C , because this value - apart from the frequency - essentially depends on the loss angle and thus on the dielectric material of the capacitor. The line inductance component L C cannot be reduced beyond a certain level either, since a certain distance must be maintained in order to ensure a required dielectric strength of approximately 2000 volts. In addition, the line inductance L C is relatively high, especially in the case of capacitors with a thick dielectric. On the other hand, such capacitors with a thick dielectric are required for such separators because of the high dielectric strength. In addition, with regard to the coupling inductances, each individual current path that runs over the respective capacitors must be considered, so that the shielding effect at high frequencies decreases sharply even at a distance of a few millimeters.

Auch mit höchstem Aufwand gefertigte Trennglieder, bei denen die zuvor beschriebenen Kriterien so weit wie möglich berücksichtigt sind, ist die Abschirmdämpfung also begrenzt, und auch sehr gute Trennglieder weisen Schirmungsmaße auf, die über 60 dB im VHF-Be­reich und über 45 dB im UHF-Bereich nicht hinausgehen.Even with the greatest effort, separators that take into account the criteria described above as much as possible shielding attenuation is limited, and even very good isolators have shielding dimensions that do not exceed 60 dB in the VHF range and 45 dB in the UHF range.

Es wurden auch Untersuchungen angestellt, Ferrite und Absorber zu verwenden. Damit läßt sich jedoch das Schirmungsmaß nicht weiter erhöhen, da dadurch dem an sich sehr niedrigen Koppelwiderstand ein weiterer Widerstand parallel gelegt wird, so daß über diesen weiteren Widerstand Strom fließt und abgestrahlt wird. Auf diese Weise kann zum Beispiel die an sich gute Wirkung eines optimal ausgesuchten Kondensators insofern wieder zunichte gemacht werden.Studies have also been made to use ferrites and absorbers. However, this does not allow the shielding dimension to be increased further, since as a result a further resistor is placed in parallel with the coupling resistor, which is very low per se, so that current flows and is emitted via this additional resistor. In this way, for example, the good effect of an optimally selected capacitor can be negated.

Der Erfindung liegt daher die Aufgabe zugrunde, ein kapazitives Trennglied zu schaffen, das unter Überwindung herkömmlicher Gren­zen bessere Abschirmeigenschaften aufweist.The invention is therefore based on the object of providing a capacitive isolating element which has better shielding properties while overcoming conventional limits.

Ausgehend von dem eingangs genannten Trennglied wird diese Aufgabe dadurch gelöst, daß der wenigstens ein Trennkondensator im Außen­leiter Teil eines Hochfrequenzfilters ist.Starting from the isolating element mentioned at the outset, this object is achieved in that the at least one isolating capacitor in the outer conductor is part of a high-frequency filter.

Die Kopplungsdämpfung zwischen dem Außenleiter und der fernen Erde wird auf diese Weise entscheidend verbessert. Auf diese Weise ist es möglich, die Grenzen erreichbarer Dämpfungen zu überschreiten, die bei herkömmlichen Trennstücken durch die Materialeigenschaften und Dimensionierungen festgelegt waren. Mit der erfindungsgemäßen Maßnahme ist es also möglich, die Dämpfungsgüte des Trennglieds beliebig zu steigern.
Vorzugsweise ist der wenigstens eine Koppelkondensator im Außen­leiter Teil eines Tiefpaßfilters, obgleich es in diesem Zusammen­hang und bei entsprechenden Voraussetzungen auch möglich ist, ein Bandpaßfilter zu verwenden.
The coupling loss between the outer conductor and the distant earth is significantly improved in this way. In this way it is possible to exceed the limits of achievable damping, which were determined by the material properties and dimensions of conventional separators. With the measure according to the invention it is therefore possible to increase the damping quality of the isolating element as desired.
The at least one coupling capacitor in the outer conductor is preferably part of a low-pass filter, although it is also possible to use a band-pass filter in this context and under appropriate conditions.

Eine besonders vorteilhafte Ausführungsform der Erfindung besteht darin, wenigstens zwei Hochfrequenzfilter kaskadenartig zusammen­zuschalten. Auf diese Weise ist es möglich, das Schirmungsmaß über beliebige Frequenzbereiche hinweg je nach Aufwand beliebig zu steigern.
Teuere Kondensatoren mit großen Kapazitäten sind dabei nicht mehr erforderlich, da jetzt einfache Kondensatoren verwendet werden können. Auch ist nicht mehr auf eine optimale Fertigung des Trenn­glieds im Hinblick auf die Kopplungsdämpfung zu achten, so daß das erfindungsgemäße Trennglied bei gleichen Schirmungseigenschaften wesentlich kostengünstiger hergestellt werden kann. Statt speziel­ler, teuerer Bauelemente können jetzt preiswertere Serienbauteile verwendet werden.
A particularly advantageous embodiment of the invention consists in cascading together at least two high-frequency filters. In this way it is possible to over the shielding dimension to increase any frequency range as required.
Expensive capacitors with large capacities are no longer required, since simple capacitors can now be used. It is also no longer necessary to ensure that the isolating element is optimally manufactured with regard to coupling damping, so that the isolating element according to the invention can be manufactured much more cost-effectively with the same shielding properties. Instead of special, expensive components, cheaper series components can now be used.

Besonders vorteilhaft ist eine Weiterbildung der Erfindung, bei der das Koaxialkabel in wenigstens einer Windung spulenartig auf­gewickelt und die Windung Teil des Hochfrequenzfilters ist. Vor­teilhaft ist dabei, diese Windung den Längszweig eines Pi-Filters bilde zu lassen, wobei die Trennkondensatoren die Querzweige des Pi-Filters sind. Als Koaxialkabel zumindest im Bereich des kapazi­tiven Trennglieds wird dabei vorzugsweise ein halbstarres Koaxial­kabel oder ein solches mit massivem Kupfermantel verwendet. Selbst­verständlich ist es je nach den Anforderungen an die Dämpfungsgüte auch möglich, hintereinander mehrere Koaxialkabel-Windungsbereiche vorzusehen, die jeweils Kondensatoren als Querzweige aufweisen, so daß auf diese Weise eine Siebkette bzw. eine Kaskadenschaltung mit beliebig hoher Dämpfungsgüte geschaffen werden kann. Die Bemessung des jeweiligen Filters bzw. der kaskadenartig ver­bundenen Filter kann entsprechend den vorliegenden Wünschen und Forderungen wie bei der üblichen Filtertechnik durchgeführt wer­den. Durch Kaskadieren entsprechender Filter ist theoretisch jede beliebige Dämpfung erreichbar.A further development of the invention is particularly advantageous in which the coaxial cable is wound in a coil-like manner in at least one turn and the turn is part of the high-frequency filter. It is advantageous to have this winding form the longitudinal branch of a pi filter, the isolating capacitors being the transverse branches of the pi filter. A semi-rigid coaxial cable or one with a solid copper jacket is preferably used as the coaxial cable at least in the region of the capacitive isolating element. Of course, depending on the requirements for the damping quality, it is also possible to provide a plurality of coaxial cable winding areas one behind the other, each of which has capacitors as transverse branches, so that a sieve chain or a cascade circuit with any desired high damping quality can be created in this way. The design of the respective filter or the cascade-connected filter can be carried out according to the existing wishes and requirements as with the usual filter technology. By cascading appropriate filters, any damping can theoretically be achieved.

Gemäß einer auf dem Grundgedanken der Erfindung beruhenden Aus­führungsform eines kapazitiven Trennglieds zur galvanischen Tren­nung eines Koaxialkabels mit wenigstens je einem Trenn-Kondensator im Innen- und Außenleiter ist eine galvanische Trennung des Außen- und Innenleiters in einem Gehäuse vorgesehen, und in diesem Ge­häuse befindet sich für den Außenleiter wenigstens ein zusätz­ liches Hochfrequenzfilter. Vorzugsweise ist das Hochfrequenzfilter ein Tiefpaßfilter, je nach Anwendungsfall kann es jedoch auch ein Bandpaßfilter sein. Bei dieser Ausführungsform der Erfindung er­folgt die galvanische Trennung zunächst mit einem herkömmlichen, einfachen Trennglied, an das hinsichtlich der Dämpfungsforderungen keinerlei Ansprüche gestellt zu werden brauchen. Zusätzlich ist ein Hochfrequenzfilter vorgesehen, das die Koppeldämpfung nach außen sehr wirkungsvoll verbessert. Oder anders ausgedrückt, die galvanische Trennung und Maßnahmen zur Erhöhung des Schirmungs­maßes können in getrennten Bauelementen verwirklicht werden. Auch hier ist es selbstverständlich möglich und bei hohen Anforderungen an die Koppeldämpfung nötig, mehrere Hochfrequenzfilter kaskaden­artig in Form von Siebketten zusammenzuschalten.According to an embodiment of a capacitive isolating element for the electrical isolation of a coaxial cable with at least one isolating capacitor in the inner and outer conductor, electrical isolation of the outer and inner conductor is provided in a housing, and in this housing there is for the outer conductor at least one additional Lich high frequency filter. The high-frequency filter is preferably a low-pass filter, but depending on the application, it can also be a band-pass filter. In this embodiment of the invention, the galvanic isolation is initially carried out using a conventional, simple isolating element, to which no claims need be made with regard to the attenuation requirements. In addition, a high-frequency filter is provided which very effectively improves the coupling attenuation to the outside. In other words, the galvanic isolation and measures to increase the shielding can be implemented in separate components. Here, too, it is of course possible and with high demands on the coupling attenuation, it is necessary to interconnect several high-frequency filters in a cascade form in the form of sieve chains.

Gemäß einer weiteren Ausführungsform der Erfindung besteht das Hochfrequenzfilter für den Außenleiter zur Kopplungsdämpfung aus wenigstens einer Wicklung des Koaxialkabels und je einem Kondensa­tor, die einerseits jeweils mit dem Außenleiter und andererseits mit dem leitenden Gehäuse in Verbindung stehen. Auf diese Weise ergibt sich eine für den praktischen Aufbau vorteilhafte An­ordnung. Selbstverständlich ist es auch hier wieder möglich, meh­rere dieser Anordnungen kaskadenartig hintereinander zu schalten.According to a further embodiment of the invention, the high-frequency filter for the outer conductor for coupling damping consists of at least one winding of the coaxial cable and one capacitor each, which are connected on the one hand to the outer conductor and on the other hand to the conductive housing. This results in an arrangement which is advantageous for practical construction. Of course, it is again possible to cascade several of these arrangements in series.

In diesem Zusammenhang ist es vorteilhaft, wenigstens einen Kon­densator, der ein Teil eines Hochfrequenzfilters bildet, als Lei­terplatte auszubilden. Die Leiterplatte kann dabei eine gebräuch­liche Druckschaltungsplatte aus Epoxyharz sein, auf der von beiden Seiten Leiterflächen vorgesehen sind, wobei die eine Seite der Leiterplatte mit dem Außenleiter und die andere Seite der Leiter­platte mit dem Gehäuse verbunden ist. Abgesehen von der sehr kostengünstigen Bauweise ergeben sich sehr kurze Anschlüsse, die die Dämpfungswirkung weiter verbessern, da, wie eingangs bereits erläutert, der Leitungsinduktivitäts-Anteil des Hochfrequenzwider­stands ersatzschaltbildmäßig auf diese Weise klein gehalten werden kann.In this context, it is advantageous to design at least one capacitor, which forms part of a high-frequency filter, as a printed circuit board. The circuit board can be a customary printed circuit board made of epoxy resin, on both sides of which conductor surfaces are provided, one side of the circuit board being connected to the outer conductor and the other side of the circuit board being connected to the housing. Apart from the very cost-effective design, there are very short connections which further improve the damping effect, since, as already explained at the beginning, the line inductance component of the high-frequency resistor can be kept small in this way in accordance with the equivalent circuit diagram.

Vorteilhafterweise ist die galvanische Trennung des Innenleiters an einer anderen Stelle als die galvanische Trennung des Außen­leiters vorgesehen. Auf diese Weise erhält man eine größere kon­struktive Freiheit bei der Konstruktion des Trennglieds.The electrical isolation of the inner conductor is advantageously provided at a different location than the electrical isolation of the outer conductor. This gives greater design freedom in the construction of the isolator.

Um bei Spannungsspitzen oder Überspannungen das Durchschlagen der Kondensatoren zu vermeiden, ist weiterhin vorgesehen, den Konden­satoren Überspannungsschalter parallel zu legen.In order to prevent the capacitors from breaking through in the event of voltage peaks or overvoltages, provision is also made to place overvoltage switches in parallel with the capacitors.

Das erfindungsgemäße kapazitive Trennglied ergibt in einfachster Ausführungsform, d.h. ohne Kaskadenschaltung, ein Schirmmaß von über 90 dB im VHF-Bereich und von über 70 dB im UHF-Bereich.The capacitive isolating element according to the invention results in the simplest embodiment, i.e. without cascade connection, a shield dimension of over 90 dB in the VHF range and over 70 dB in the UHF range.

Die Erfindung wird nachstehend anhand der Zeichnungen beispiels­weise näher erläutert. Es zeigen:

  • Fig. 1 die schematische Darstellung einer kapazitiven Trennung eines Koaxialkabels in herkömmlicher Weise,
  • Fig. 2 das Ersatzschaltbild der in Fig. 1 dargestellten her­kömmlichen Trennweise,
  • Fig. 3 das Ersatzschaltbild eines Trennglieds gemäß der Erfindung,
  • Fig. 4 ein schematisch dargestelltes Ausführungsbeispiel der Er­findung mit einem als Spule aufgewickelten Koaxialkabelbe­reich und
  • Fig. 5 eine weitere Ausführungsform des erfindungsgemäßen Trenn­glieds.
The invention is explained in more detail below with reference to the drawings, for example. Show it:
  • 1 is a schematic representation of a capacitive separation of a coaxial cable in a conventional manner,
  • 2 shows the equivalent circuit diagram of the conventional disconnection method shown in FIG. 1,
  • 3 shows the equivalent circuit diagram of an isolating element according to the invention,
  • Fig. 4 is a schematically illustrated embodiment of the invention with a coaxial cable region wound as a coil and
  • Fig. 5 shows another embodiment of the separator according to the invention.

Fig. 1 zeigt als schematische Darstellung ein kapazitives Trenn­glied 1, das über galvanische Verbindungen 2 mit jeweils einem Koaxialkabel-Ende 3 verbunden ist. Im Innern des Koaxialkabels befindet sich der Innenleiter 4. Der Außenleiter ist mit dem Be­zugszeichen 5 versehen. Das Trennglied besitzt eine galvanische Trennung des Außenleiters 5 über einen schematisch dargestellten Kondensator CA, der, wie in der DE-C2-33 17 202 beschrieben ist, aus mehreren Kondensatoren, beispielsweise Chip-Kondensatoren be­stehen kann. Der Innenleiter 4 ist über einen Kondensator CI, der sich ebenfalls im Trennglied 1 befindet, galvanisch getrennt.Fig. 1 shows a schematic representation of a capacitive isolating element 1, which is connected via galvanic connections 2, each with a coaxial cable end 3. The inner conductor 4 is located inside the coaxial cable. The outer conductor is provided with the reference symbol 5. The isolating element is electrically isolated from the outer conductor 5 via a schematically illustrated capacitor C A , which, as described in DE-C2-33 17 202, can consist of several capacitors, for example chip capacitors. The inner conductor 4 is electrically isolated via a capacitor C I , which is also located in the isolating element 1.

Die Impedanz des Kondensators CA im Außenleiter 5 des Koaxialka­bels bzw. des Trennglieds stellt gleichzeitig die Koppelimpedanz zwischen dem Innern des Koaxialkabels und einem aus der Außenseite des Mantels der Koaxialleitung und der fernen Erde gebildeten Lei­tersysteme dar. Eine gute Koppeldämpfung bzw. ein hohes Schirmungs­maß ist dann gegeben, wenn die Kopplung zwischen dem Koaxialkabel-­Innern und dem besagten Leitungssystem, d.h. die Störeinstrahlung gering ist.The impedance of the capacitor C A in the outer conductor 5 of the coaxial cable or the isolating element simultaneously represents the coupling impedance between the inside of the coaxial cable and a conductor system formed from the outside of the sheath of the coaxial line and the distant earth. A good coupling loss or a high shielding degree is then given when the coupling between the coaxial cable interior and said line system, ie the interference is low.

Anhand des in Fig. 2 dargestellten Ersatzschaltbildes wird dies nochmals erläutert. Eine Leistungsquelle 21 ist über den Kondensa­tor CI des Innenleiters mit einer Last 22 verbunden. Die Koppel­impedanz im Außenleiter besteht aus dem Kapazitätsanteil CA, dem Verlustwiderstandsanteil RA und dem Anteil der Zuleitungsinduk­tivität LA. Mit dem Bezugszeichen 23 ist der Scheinwiderstand des äußeren Systems bezeichnet, der dem schematisch in Reihe darge­stellten Impedanzanteil parallel liegt und als Senke für die Stör­strahlung wirkt. Um die Schirmung möglichst gut zu machen, ist es erforderlich, die aus den Anteilen CA, RA und LA bestehende Koppelimpedanz möglichst klein zu halten. Eine Verringerung der kapazitiven Impedanz ist nur mit großem Aufwand und teueren Kon­densatoren möglich, da die Kapazität des Kondensators CA möglichst groß sein muß. Der Verlustwiderstandsanteil RA ist neben der Fre­quenz eine Funktion des Verlustwinkels, der wiederum vom Material des Dielektrikums abhängt und daher unter ein bestimmtes Maß nicht verkleinert werden kann.
Schließlich ist die Induktivität LA von der Zuleitungslänge ab­hängig, die jedoch nicht beliebig verringert werden kann, weil ein bestimmter Abstand gewahrt bleiben muß, um die Spannungsfestigkeit zu gewährleisten. Selbst bei Bauteilen ohne Anschlußdrähten, z.B. Chip-Kondensatoren, ist eine durch die Dicke des Dielektrikums be­stimmte Induktivität gegeben. Derartige Kondensatoren werden aber für Trennglieder benötigt, um die Spannungsfestigkeit zu gewähr­leisten. Bei der Verwendung mehrerer in einem Kranz angeordneten Induktivitäten ist hinsichtlich der Induktivität jeder Strompfad für sich zu betrachten. Dabei genügen bereits wenige Millimeter, um die Schirmwirkung bei hohen Frequenzen zunichte zu machen.
This is explained again using the equivalent circuit diagram shown in FIG. 2. A power source 21 is connected to a load 22 via the capacitor C I of the inner conductor. The coupling impedance in the outer conductor consists of the capacitance component C A , the loss resistance component R A and the component of the lead inductance L A. The reference numeral 23 denotes the impedance of the external system, which is parallel to the impedance component shown schematically in series and acts as a sink for the interference radiation. In order to make the shielding as good as possible, it is necessary to keep the coupling impedance consisting of the components C A , R A and L A as small as possible. A reduction in the capacitive impedance is only possible with great effort and expensive capacitors, since the capacitance of the capacitor C A must be as large as possible. In addition to the frequency, the loss resistance portion R A is a function of the loss angle, which in turn depends on the material of the dielectric and therefore cannot be reduced to a certain extent.
Finally, the inductance L A depends on the length of the lead, which cannot be reduced arbitrarily, however, because a certain distance must be maintained in order to ensure the dielectric strength. Even in the case of components without connecting wires, for example chip capacitors, there is an inductance determined by the thickness of the dielectric. However, such capacitors are required for isolators to ensure dielectric strength. When using several inductors arranged in a ring, each current path must be considered individually with regard to the inductance. A few millimeters are sufficient to nullify the shielding effect at high frequencies.

Ersichtlich ist es also nicht möglich, auch bei größtem Aufwand und besten Trenngliedern sowohl hinsichtlich der Wahl des Ma­terials als auch der Verarbeitung, die Schirmwirkung über ein bestimmtes Maß hinaus zu verbessern.Obviously, it is not possible to improve the shielding effect beyond a certain amount, even with the greatest effort and the best separators, both in terms of the choice of material and the processing.

Fig. 3 zeigt ein Ersatzschaltbild de erfindungsgemäßen Anordnung. Schaltungselemente, die denen von Fig. 2 entsprechen, sind wiede­rum mit denselben Bezugszeichen versehen. Zusätzlich zur Koppel­impedanz gemäß Fig. 2, die aus den Anteilen CA, RA und LA besteht, ist in einem Längszweig eine Spule LS und in einem weiteren Quer­zweig ein Kondensator CʹA, sowie dazu in Reihe die zugehörigen Wi­derstands-Anteile RʹA und LʹA dargestellt. Die gesamten zuvor ge­nannten Elemente bilden ein Tiefpaßfilter, mit dem die Dämpfung gegenüber einer Schaltungsanordnung gemäß dem Ersatzschaltbild von Fig. 2 wesentlich verbessert werden kann. Das erreichbare Schir­mungsmaß ist also nicht mehr vom Material der Bauelemente oder von geometrischen Abmessungen im Trennglied her begrenzt, sondern nur noch von der Bemessung des Tiefpaßfilters abhängig. Durch entspre­chende Filterbemessung, aber auch durch Kaskadierung ist jede be­liebige Dämpfungswirkung erreichbar.3 shows an equivalent circuit diagram of the arrangement according to the invention. Circuit elements which correspond to those of FIG. 2 are again provided with the same reference symbols. In addition to the coupling impedance according to FIG. 2, which consists of the components C A , R A and L A , there is a coil L S in a series branch and a capacitor Cʹ A in a further cross branch, as well as the associated resistance components Rʹ in series A and Lʹ A shown. The entire aforementioned elements form a low-pass filter, with which the damping can be significantly improved compared to a circuit arrangement according to the equivalent circuit diagram of FIG. 2. The achievable degree of shielding is therefore no longer limited by the material of the components or the geometric dimensions in the isolating element, but only depends on the dimensioning of the low-pass filter. Any damping effect can be achieved by appropriate filter design, but also by cascading.

Eine praktische Ausführungsform der Erfindung ist als Prinzipauf­bau in Fig. 4 dargestellt. In einem leitenden, hochfrequenzdichten Gehäuse 41 ist ein Koaxialkabel 43 dargestellt, das zu einer Spule aufgewickelt ist. Der Außenleiter des Koaxialkabels ist über einen oder mehrere Trennkondensatoren CA galvanisch getrennt. Der auf der linken Seite des Trennkondensators CA liegende Außenleiter ist über wenigstens einen weiteren Kondensator C₄ und über das leiten­de Gehäuse 41 mit dem Außenleiterteil verbunden, das sich rechts vom Trennkondensator CA befindet. An irgendeiner Stelle im Innern des Koaxialkabels ist der Innenleiter 4 ebenfalls mit einem Trenn­kondensator CI galvanisch getrennt.
Das in Fig. 4 dargestellte Ausführungsbeispiel entspricht ersatz­schaltbildmäßig Fig. 3, wobei der Kondensator C₄ von Fig. 4 den Kondensator CA in Fig. 3 und das als Spule gewickelte Koaxial­kabelteil 42 die Spule LS im Längszweig der Ersatzschaltung gemäß Fig. 3 darstellt. Auf diese Weise ergibt sich ein äußerst einfa­ches kapazitives Trennglied gemäß der Erfindung, das bei einfachem Aufbau eine gute Dämpfungswirkung aufweist. Die für die Kondensa­toren CA und C₄ verwendeten Bauelemente können dabei billige Serienteile sein.
A practical embodiment of the invention is shown as a basic structure in Fig. 4. A coaxial cable 43 is shown in a conductive, high-frequency-tight housing 41 and is wound up into a coil. The outer conductor of the coaxial cable is galvanically isolated via one or more isolating capacitors C A. The outer conductor lying on the left side of the isolating capacitor C A is connected to the outer conductor part via at least one further capacitor C Gehäuse and via the conductive housing 41, which is located to the right of the isolating capacitor C A. At some point in the interior of the coaxial cable, the inner conductor 4 is likewise galvanically isolated with a separating capacitor C I.
The embodiment shown in FIG. 4 corresponds to the equivalent circuit diagram of FIG. 3, the capacitor C₄ of FIG Capacitor C A in FIG. 3 and the coaxial cable part 42 wound as a coil represent the coil L S in the longitudinal branch of the equivalent circuit according to FIG. 3. This results in an extremely simple capacitive isolating element according to the invention, which has a good damping effect with a simple structure. The components used for the capacitors C A and C₄ can be cheap series parts.

Fig. 5 zeigt eine weitere Ausführungsform der Erfindung. Das kapa­zitive Trennglied 51 weist ein Gehäuse 52 auf. Durch das Gehäuse 52 verläuft ein Koaxialkabel 53, das im Gehäuse zu einer Spule 54 aufgewickelt ist. Kontakte 55 dienen dem galvanischen Anschluß an die zu verbindende Koaxialleitung. Der Außenleiter 56 des Koaxial­kabels 53 ist auf der einen Eintrittsseite mit dem aus einem lei­tenden Material bestehenden Gehäuse 52 elektrisch verbunden (vgl. Fig. 5, den linken Eintritt des Koaxialkabels in das Gehäuse 52). Auf der anderen Seite tritt das Koaxialkabel aus dem Gehäuse 52 aus, ohne daß der Außenleiter an dieser Stelle mit ihm in Kontakt steht. Das Gehäuse 52 ist lediglich über Kondensatoren C₅ mit diesem Teil des Außenleiters des Koaxialkabels verbunden. Ein Trennglied 57, das sich innerhalb des Gehäuses 52 befindet und aus den Außenleiterkondensatoren 58 und dem Innenleiterkondensator 59 besteht, stellt die galvanische Trennung des Koaxialkabels dar. Das Koaxialkabel 53 im Innern des Gehäuses 52 ist über Druckschal­tungsplatten 60 und 61 mechanisch mit dem Gehäuse 52 verbunden. Die auf den Außenflächen der Druckschaltung aufgebrachten Leiter­flächen der Druckschaltungen 60 und 61 sind mit dem Außenleiter des Koaxialkabels 53 bzw. mit dem Gehäuse 52 in der in Fig. 5 dargestellten Weise, beispielsweise durch Lötung, derart elek­trisch verbunden, daß diese Druckschaltungs-Verbindungen jeweils einen Kondensator bilden, über den der Außenleiter 56 des Koaxial­kabels 53 mit dem leitenden Gehäuse 52 verbunden ist. Oder anders ausgedrückt, die eine Seite der Druckschaltung ist nur mit dem Außenleiter 56 und die andere Seite der Druckschaltung nur mit dem Gehäuse 52 elektrisch verbunden. Das Trennglied 57 kann ein einfa­ches, herkömmliches Trennglied mit Kondensator-Bauteilen und Ab­ messungen sein, bei denen auf eine gute Schirmwirkung nur geringer Wert gelegt zu werden braucht. Die eigentliche Schirmung erfolgt durch das Tiefpaßfilter, das aus den Druckschaltungsplatten 60 und 61, die jeweils Kondensatoren darstellen, und der Koaxialkabel-­Wicklung 54 besteht, wobei die aus den Druckplatten 60 und 61 be­stehenden Kondensatoren jeweils in Querzweigen und die Koaxial­leiter-Wicklung 54 im Längszweig des Tiefpaßfilters liegen.5 shows a further embodiment of the invention. The capacitive separator 51 has a housing 52. A coaxial cable 53 runs through the housing 52 and is wound into a coil 54 in the housing. Contacts 55 are used for the galvanic connection to the coaxial line to be connected. The outer conductor 56 of the coaxial cable 53 is electrically connected on one entry side to the housing 52 made of a conductive material (cf. FIG. 5, the left entry of the coaxial cable into the housing 52). On the other hand, the coaxial cable emerges from the housing 52 without the outer conductor being in contact with it at this point. The housing 52 is connected only via capacitors C₅ to this part of the outer conductor of the coaxial cable. A separator 57, which is located within the housing 52 and consists of the outer conductor capacitors 58 and the inner conductor capacitor 59, represents the electrical isolation of the coaxial cable. The coaxial cable 53 in the interior of the housing 52 is mechanically connected to the housing 52 via pressure circuit boards 60 and 61 . The conductor surfaces of the pressure circuits 60 and 61 applied to the outer surfaces of the pressure circuit are electrically connected to the outer conductor of the coaxial cable 53 and to the housing 52 in the manner shown in FIG. 5, for example by soldering, in such a way that these pressure circuit connections each have one Form a capacitor via which the outer conductor 56 of the coaxial cable 53 is connected to the conductive housing 52. In other words, one side of the pressure circuit is only electrically connected to the outer conductor 56 and the other side of the pressure circuit is only connected to the housing 52. The isolator 57 can be a simple, conventional isolator with capacitor components and Ab measurements where only little importance is attached to a good shielding effect. The actual shielding is carried out by the low-pass filter, which consists of the printed circuit boards 60 and 61, which each represent capacitors, and the coaxial cable winding 54, the capacitors consisting of the printing plates 60 and 61 each in transverse branches and the coaxial conductor winding 54 in the longitudinal branch of the low pass filter.

Mit diesem Aufbau ergibt sich ein sehr einfaches, kostengünstiges Trennglied mit optimaler Dämpfungswirkung, wobei der Anteil der Leitungsinduktivität aufgrund der Verwendung der Druckschaltungen als Kondensatoren sehr gering ist. Aufgrund der ausgezeichneten Filterwirkung des Trennglieds ist es nicht erforderlich, bezüglich der Dämpfungseigenschaften besondere Forderungen an die Bauteile des einfachen Trennglieds 57 zu stellen.This construction results in a very simple, inexpensive isolating element with an optimal damping effect, the proportion of the line inductance being very low due to the use of the pressure circuits as capacitors. Because of the excellent filter effect of the separating element, it is not necessary to make special demands on the components of the simple separating element 57 with regard to the damping properties.

Die Erfindung wurde anhand bevorzugter Ausführungsbeispiele er­läutert. Dem Fachmann sind jedoch Abwandlungen und Ausgestaltungen dieser Ausführungsformen möglich, ohne daß dadurch der Erfindungs­gedanke verlassen wird. Beispielsweise können parallel zu den je­weiligen Kondensatoren und/oder zu den in Fig. 5 dargestellten Kondensatoren bildenden Druckschaltungen zusätzlich Überspannungs­schalter vorgesehen sein, um eine Zerstörung der Kondensatoren bei Überspannungen zu vermeiden. Weiterhin ist es möglich, den Trenn­kondensator 59 (vgl. Fig. 5) des Innenleiters an irgendeiner Stel­le des Trennglieds vorzusehen, so daß eine hohe Konstruktionsfrei­heit gewährleistet ist.The invention has been explained on the basis of preferred exemplary embodiments. However, modifications and refinements of these embodiments are possible for the person skilled in the art without departing from the inventive concept. For example, in addition to the respective capacitors and / or to the pressure circuits forming the capacitors shown in FIG. 5, additional overvoltage switches can be provided in order to avoid destruction of the capacitors in the event of overvoltages. Furthermore, it is possible to provide the isolating capacitor 59 (cf. FIG. 5) of the inner conductor at any point on the isolating element, so that a high degree of design freedom is ensured.

Claims (11)

1. Kapazitives Trennglied zur galvanischen Trennung eines Koaxial­kabels mit wenigstens einem Trennkondensator im Innen- und Außenleiter,
dadurch gekennzeichnet, daß der wenigstens eine Trennkondensator (CA) im Außenleiter (5) Teil eines Hochfrequenzfilters (CA, LS, CʹA) ist.
1. capacitive isolating element for the galvanic isolation of a coaxial cable with at least one isolating capacitor in the inner and outer conductor,
characterized in that the at least one isolating capacitor (C A ) in the outer conductor (5) is part of a high-frequency filter (C A , L S , Cʹ A ).
2. Kapazitives Trennglied nach Anspruch 1, dadurch gekennzeichnet, daß das Hochfrequenzfilter (CA, LS, CʹA) ein Tiefpaß ist.2. Capacitive isolating element according to claim 1, characterized in that the high-frequency filter (C A , L S , Cʹ A ) is a low-pass filter. 3. Kapazitives Trennglied nach Anspruch 1, dadurch gekennzeichnet, daß das Hochfrequenzfilter (CA, LS, CʹA) ein Bandpaß ist.3. Capacitive isolating element according to claim 1, characterized in that the high-frequency filter (C A , L S , Cʹ A ) is a bandpass filter. 4. Kapazitives Trennglied nach einem der Ansprüche 1 bis 3, da­durch gekennzeichnet, daß wenigstens zwei Hochfrequenzfilter kaskadenartig zusammengeschaltet sind.4. Capacitive isolating element according to one of claims 1 to 3, characterized in that at least two high-frequency filters are cascaded together. 5. Kapazitives Trennglied nach einem der Ansprüche 1 bis 4, da­durch gekennzeichnet, daß das Koaxialkabel in wenigstens einer Windung (42; 54) spulenartig aufgewickelt und die Windung (42; 54) Teil des Hochfrequenzfilters (C₄, 42, CA; 60, 54, 61) ist (Fig. 4 und 5).5. Capacitive isolating element according to one of claims 1 to 4, characterized in that the coaxial cable is wound in a coil-like manner in at least one turn (42; 54) and the turn (42; 54) is part of the high-frequency filter (C₄, 42, C A ; 60, 54, 61) (Figs. 4 and 5). 6. Kapazitives Trennglied nach einem der Ansprüche 1 bis 5, da­durch gekennzeichnet, daß die wenigstens eine Windung (42, 54) den Längszweig eines Pi-Filters und die Trennkondensatoren die Querzweige eines Pi-Filters bildet bzw. bilden.6. Capacitive isolating element according to one of claims 1 to 5, characterized in that the at least one turn (42, 54) forms the longitudinal branch of a pi filter and the isolating capacitors form the transverse branches of a pi filter. 7. Kapazitives Trennglied zur galvanischen Trennung eines Koaxial­kabels mit wenigstens einem Trennkondensator im Innen- und Außenleiter,
dadurch gekennzeichnet, daß in einem leitenden Gehäuse eine gal­vanische Trennung (57 bzw. 58, 59) des Innen- und Außenleiters, und für den Außenleiter (56) wenigstens ein zusätzliches Hoch­frequenzfilter (60, 54, 61) vorgesehen ist.
7. capacitive isolating element for the galvanic isolation of a coaxial cable with at least one isolating capacitor in the inner and outer conductor,
characterized in that a galvanic isolation (57 or 58, 59) of the inner and outer conductor, and for the outer conductor (56) at least one additional high-frequency filter (60, 54, 61) is provided in a conductive housing.
8. Kapazitives Trennglied nach Anspruch 7, dadurch gekennzeichnet, daß das zusätzliche Hochfrequenzfilter (60, 54, 61) aus wenig­stens einer Windung (54) des Hochfrequenzkabels und je einem Kondensator (60, 61) besteht, die einerseits jeweils mit dem Außenleiter (56) und andererseits jeweils mit dem leitenden Ge­häuse (52) in Verbindung stehen.8. Capacitive isolating element according to claim 7, characterized in that the additional high-frequency filter (60, 54, 61) consists of at least one turn (54) of the high-frequency cable and one capacitor (60, 61), each with the outer conductor (56 ) and on the other hand are connected to the conductive housing (52). 9. Kapazitives Trennglied nach Anspruch 7 oder 8, dadurch gekenn­zeichnet, daß wenigstens ein den Teil eines Hochfrequenzfilters (60, 54, 61) bildender Kondensator (60, 61) als Leiterplatte ausgebildet ist (Fig. 5).9. Capacitive isolating element according to claim 7 or 8, characterized in that at least one part of a high-frequency filter (60, 54, 61) forming capacitor (60, 61) is designed as a printed circuit board (Fig. 5). 10.Kapazitives Trennglied nach einem der Ansprüche 1 bis 9, da­durch gekennzeichnet, daß die galvanische Trennung des Innen­leiters an einer anderen Stelle des Koaxialkabels als die gal­vanische Trennung des Außenleiters vorgesehen ist.10.Capacitive isolating element according to one of claims 1 to 9, characterized in that the galvanic isolation of the inner conductor is provided at a different location on the coaxial cable than the galvanic isolation of the outer conductor. 11.Kapazitives Trennglied nach einem der Ansprüche 1 bis 10, da­durch gekennzeichnet, daß den Kondensatoren Überspannungsschal­ter parallel geschaltet sind.11.Capacitive isolating element according to one of claims 1 to 10, characterized in that the capacitors overvoltage switches are connected in parallel.
EP87114108A 1986-11-13 1987-09-26 Capacitive separating circuit Withdrawn EP0267403A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863638748 DE3638748A1 (en) 1986-11-13 1986-11-13 CAPACITIVE DISCONNECT
DE3638748 1986-11-13

Publications (2)

Publication Number Publication Date
EP0267403A2 true EP0267403A2 (en) 1988-05-18
EP0267403A3 EP0267403A3 (en) 1989-09-27

Family

ID=6313849

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87114108A Withdrawn EP0267403A3 (en) 1986-11-13 1987-09-26 Capacitive separating circuit

Country Status (2)

Country Link
EP (1) EP0267403A3 (en)
DE (1) DE3638748A1 (en)

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2733639A1 (en) * 1995-04-28 1996-10-31 Daimler Benz Ag ARRANGEMENT FOR REDUCING INTERFERED SIGNALS ON LINES IN CABLE BEAMS
EP2161055A1 (en) * 2008-09-03 2010-03-10 Vivant Medical, Inc. Shielding for an isolation apparatus used in a microwave generator
US8172836B2 (en) 2008-08-11 2012-05-08 Tyco Healthcare Group Lp Electrosurgical system having a sensor for monitoring smoke or aerosols
US8454590B2 (en) 2010-02-26 2013-06-04 Covidien Lp Enhanced lossless current sense circuit
US8542019B2 (en) 2008-09-30 2013-09-24 Covidien Lp Microwave ablation generator control system
US8617154B2 (en) 2010-06-25 2013-12-31 Covidien Lp Current-fed push-pull converter with passive voltage clamp
US8623007B2 (en) 2010-06-30 2014-01-07 Covidien Lp Electrosurgical generator to ablation device adaptor
US8653994B2 (en) 2012-03-21 2014-02-18 Covidien Lp System and method for detection of ADC errors
US8664934B2 (en) 2012-01-27 2014-03-04 Covidien Lp System and method for verifying the operating frequency of digital control circuitry
US8668690B2 (en) 2010-06-03 2014-03-11 Covidien Lp Apparatus and method for optimal tissue separation
US8932291B2 (en) 2012-04-13 2015-01-13 Covidien Lp Electrosurgical systems
US8944834B2 (en) 2004-10-13 2015-02-03 Covidien Ag Universal foot switch contact port
US8968290B2 (en) 2012-03-14 2015-03-03 Covidien Lp Microwave ablation generator control system
US8968293B2 (en) 2011-04-12 2015-03-03 Covidien Lp Systems and methods for calibrating power measurements in an electrosurgical generator
US9028479B2 (en) 2011-08-01 2015-05-12 Covidien Lp Electrosurgical apparatus with real-time RF tissue energy control
US9028481B2 (en) 2011-01-05 2015-05-12 Covidien Lp System and method for measuring current of an electrosurgical generator
US9033973B2 (en) 2011-08-30 2015-05-19 Covidien Lp System and method for DC tissue impedance sensing
US9037447B2 (en) 2012-01-27 2015-05-19 Covidien Lp Systems and methods for phase predictive impedance loss model calibration and compensation
US9050089B2 (en) 2011-05-31 2015-06-09 Covidien Lp Electrosurgical apparatus with tissue site sensing and feedback control
US9099863B2 (en) 2011-09-09 2015-08-04 Covidien Lp Surgical generator and related method for mitigating overcurrent conditions
US9186201B2 (en) 2008-09-05 2015-11-17 Covidien Lp Electrosurgical apparatus with high speed energy recovery
US9192424B2 (en) 2012-05-31 2015-11-24 Covidien Lp AC active load
US9192425B2 (en) 2012-06-26 2015-11-24 Covidien Lp System and method for testing electrosurgical generators
US9198711B2 (en) 2012-03-22 2015-12-01 Covidien Lp Electrosurgical system for communicating information embedded in an audio tone
US9270202B2 (en) 2013-03-11 2016-02-23 Covidien Lp Constant power inverter with crest factor control
US9265560B2 (en) 2011-02-25 2016-02-23 Covidien Lp System and method for detecting and suppressing arc formation during an electrosurgical procedure
US9283028B2 (en) 2013-03-15 2016-03-15 Covidien Lp Crest-factor control of phase-shifted inverter
US9375249B2 (en) 2012-05-11 2016-06-28 Covidien Lp System and method for directing energy to tissue
US9375250B2 (en) 2012-04-09 2016-06-28 Covidien Lp Method for employing single fault safe redundant signals
US9375247B2 (en) 2011-03-16 2016-06-28 Covidien Lp System and method for electrosurgical generator power measurement
US9456862B2 (en) 2013-02-19 2016-10-04 Covidien Lp Electrosurgical generator and system
US9480523B2 (en) 2012-01-27 2016-11-01 Covidien Lp Systems and methods for phase predictive impedance loss model calibration and compensation
US9498276B2 (en) 2013-03-15 2016-11-22 Covidien Lp Systems and methods for narrowband real impedance control in electrosurgery
US9504516B2 (en) 2013-05-31 2016-11-29 Covidien LLP Gain compensation for a full bridge inverter
US9519021B2 (en) 2013-03-11 2016-12-13 Covidien Lp Systems and methods for detecting abnormalities within a circuit of an electrosurgical generator
US9529025B2 (en) 2012-06-29 2016-12-27 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US9539050B2 (en) 2011-04-12 2017-01-10 Covidien Lp System and method for process monitoring and intelligent shut-off
US9559594B2 (en) 2013-06-24 2017-01-31 Covidien Lp Dead-time optimization of resonant inverters
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9642670B2 (en) 2013-10-29 2017-05-09 Covidien Lp Resonant inverter with a common mode choke
US9768373B2 (en) 2003-10-30 2017-09-19 Covidien Ag Switched resonant ultrasonic power amplifier system
US9770283B2 (en) 2013-09-24 2017-09-26 Covidien Lp Systems and methods for improving efficiency of electrosurgical generators
US9782212B2 (en) 2014-12-02 2017-10-10 Covidien Lp High level algorithms
US9839469B2 (en) 2013-09-24 2017-12-12 Covidien Lp Systems and methods for improving efficiency of electrosurgical generators
US9861425B2 (en) 2012-10-02 2018-01-09 Covidien Lp System and method for using resonance phasing for measuring impedance
US9867651B2 (en) 2013-09-26 2018-01-16 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9895186B2 (en) 2013-03-11 2018-02-20 Covidien Systems and methods for detecting abnormalities within a circuit of an electrosurgical generator
US9901386B2 (en) 2014-01-13 2018-02-27 Covidien Lp Systems and methods for multifrequency cable compensation
US9913679B2 (en) 2013-10-16 2018-03-13 Covidien Lp Electrosurgical systems and methods for monitoring power dosage
US9921243B2 (en) 2012-12-17 2018-03-20 Covidien Lp System and method for voltage and current sensing
US9949783B2 (en) 2014-04-04 2018-04-24 Covidien Lp Systems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US9974595B2 (en) 2014-04-04 2018-05-22 Covidien Lp Systems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US9987068B2 (en) 2014-04-04 2018-06-05 Covidien Lp Systems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US10039588B2 (en) 2009-12-16 2018-08-07 Covidien Lp System and method for tissue sealing
US10058374B2 (en) 2013-09-26 2018-08-28 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
US10105172B2 (en) 2013-10-16 2018-10-23 Covidien Lp Radiofrequency amplifier impedance optimization
US10130412B2 (en) 2013-09-26 2018-11-20 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US10188448B2 (en) 2014-11-21 2019-01-29 Covidien Lp Electrosurgical system for multi-frequency interrogation of parasitic parameters of an electrosurgical instrument
US10188446B2 (en) 2013-10-16 2019-01-29 Covidien Lp Resonant inverter
US10281496B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
US10278764B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
US10285750B2 (en) 2013-07-29 2019-05-14 Covidien Lp Systems and methods for operating an electrosurgical generator
US10292753B2 (en) 2014-12-02 2019-05-21 Covidien Lp Electrosurgical generators and sensors
CN109844246A (en) * 2016-08-18 2019-06-04 博泽车锁系统有限公司 Lock logic module
US10376301B2 (en) 2011-09-28 2019-08-13 Covidien Lp Logarithmic amplifier, electrosurgical generator including same, and method of controlling electrosurgical generator using same
US10376309B2 (en) 2016-08-02 2019-08-13 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US10492850B2 (en) 2014-04-04 2019-12-03 Covidien Lp Systems and methods for calculating tissue impedance in electrosurgery
US10610287B2 (en) 2016-05-05 2020-04-07 Covidien Lp Advanced simultaneous activation algorithm
US10610285B2 (en) 2013-07-19 2020-04-07 Covidien Lp Electrosurgical generators
US10617463B2 (en) 2015-04-23 2020-04-14 Covidien Lp Systems and methods for controlling power in an electrosurgical generator
US10729484B2 (en) 2013-07-16 2020-08-04 Covidien Lp Electrosurgical generator with continuously and arbitrarily variable crest factor
US10772673B2 (en) 2016-05-02 2020-09-15 Covidien Lp Surgical energy system with universal connection features
US10842563B2 (en) 2013-03-15 2020-11-24 Covidien Lp System and method for power control of electrosurgical resonant inverters
US10869712B2 (en) 2016-05-02 2020-12-22 Covidien Lp System and method for high frequency leakage reduction through selective harmonic elimination in electrosurgical generators
US11006997B2 (en) 2016-08-09 2021-05-18 Covidien Lp Ultrasonic and radiofrequency energy production and control from a single power converter
US11065053B2 (en) 2016-08-02 2021-07-20 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11090106B2 (en) 2015-04-23 2021-08-17 Covidien Lp Control systems for electrosurgical generator
US11197715B2 (en) 2016-08-02 2021-12-14 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11272975B2 (en) 2017-09-22 2022-03-15 Covidien Lp Systems and methods for controlled electrosurgical dissection
US11534226B2 (en) 2017-09-22 2022-12-27 Covidien Lp Systems and methods for minimizing arcing of bipolar forceps
US11744631B2 (en) 2017-09-22 2023-09-05 Covidien Lp Systems and methods for controlled electrosurgical coagulation
US11969201B2 (en) 2021-08-17 2024-04-30 Covidien Lp Control systems for electrosurgical generator

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3706922A1 (en) * 1987-03-04 1988-09-15 Hirschmann Radiotechnik Capacitive isolating element
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
DE19925909A1 (en) * 1999-06-07 2000-12-21 Siemens Audiologische Technik Interface for electrical isolation and for the transmission of digital signals
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US8152800B2 (en) 2007-07-30 2012-04-10 Vivant Medical, Inc. Electrosurgical systems and printed circuit boards for use therewith
US9039693B2 (en) 2011-09-20 2015-05-26 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US9039692B2 (en) 2011-09-20 2015-05-26 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US9033970B2 (en) 2011-09-20 2015-05-19 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US9023025B2 (en) 2011-09-20 2015-05-05 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3879691A (en) * 1971-07-28 1975-04-22 Amp Inc Pluggable filter unit
US3908176A (en) * 1973-03-12 1975-09-23 Nederlanden Staat Galvanic isolator for a frequency range of 40 to 900 MHZ
US3913038A (en) * 1974-08-21 1975-10-14 Rca Corp Electromagnetic radiation filter for coaxially fed hot chassis television receiver
DE3509962A1 (en) * 1985-03-20 1986-10-16 ATT Audio Teile Team Vertriebs GmbH, 6927 Bad Rappenau Decoupling filter, preferably for decoupling receiving devices sensitive to radiated interference from receiving antennas

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD137519A1 (en) * 1978-06-30 1979-09-05 Gerd Duennbier BROADBAND NOISE FILTER
DE3317202C2 (en) * 1983-05-11 1985-02-28 Richard Hirschmann Radiotechnisches Werk, 7300 Esslingen Capacitive separator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3879691A (en) * 1971-07-28 1975-04-22 Amp Inc Pluggable filter unit
US3908176A (en) * 1973-03-12 1975-09-23 Nederlanden Staat Galvanic isolator for a frequency range of 40 to 900 MHZ
US3913038A (en) * 1974-08-21 1975-10-14 Rca Corp Electromagnetic radiation filter for coaxially fed hot chassis television receiver
DE3509962A1 (en) * 1985-03-20 1986-10-16 ATT Audio Teile Team Vertriebs GmbH, 6927 Bad Rappenau Decoupling filter, preferably for decoupling receiving devices sensitive to radiated interference from receiving antennas

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SIEMENS-BAUTELLE-INFORMATIONEN, Band 5, Nr. 4, Oktober 1967, Seiten 115-119; H.-P. KAISERSWERTH: "Funk-Entstörfilter und -geräte" *
TECHNISCHES MESSEN T.M., Band 53, Nr. 7/8, 1986, Seiten 266-280, München, DE; H. MEYER: "Störfestigkeit von Messsystemen" *

Cited By (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2733639A1 (en) * 1995-04-28 1996-10-31 Daimler Benz Ag ARRANGEMENT FOR REDUCING INTERFERED SIGNALS ON LINES IN CABLE BEAMS
US9768373B2 (en) 2003-10-30 2017-09-19 Covidien Ag Switched resonant ultrasonic power amplifier system
US8944834B2 (en) 2004-10-13 2015-02-03 Covidien Ag Universal foot switch contact port
US8652128B2 (en) 2008-08-11 2014-02-18 Covidien Lp Electrosurgical system having a sensor for monitoring smoke or aerosols
US8172836B2 (en) 2008-08-11 2012-05-08 Tyco Healthcare Group Lp Electrosurgical system having a sensor for monitoring smoke or aerosols
EP2161055A1 (en) * 2008-09-03 2010-03-10 Vivant Medical, Inc. Shielding for an isolation apparatus used in a microwave generator
US8403924B2 (en) 2008-09-03 2013-03-26 Vivant Medical, Inc. Shielding for an isolation apparatus used in a microwave generator
US9254172B2 (en) 2008-09-03 2016-02-09 Covidien Lp Shielding for an isolation apparatus used in a microwave generator
US9186201B2 (en) 2008-09-05 2015-11-17 Covidien Lp Electrosurgical apparatus with high speed energy recovery
US10070922B2 (en) 2008-09-30 2018-09-11 Covidien Lp Microwave ablation generator control system
US8542019B2 (en) 2008-09-30 2013-09-24 Covidien Lp Microwave ablation generator control system
US10743935B2 (en) 2008-09-30 2020-08-18 Covidien Lp Microwave ablation generator control system
US8797039B2 (en) 2008-09-30 2014-08-05 Covidien Lp Microwave ablation generator control system
US9526576B2 (en) 2008-09-30 2016-12-27 Covidien Lp Microwave ablation generator control system
US10039588B2 (en) 2009-12-16 2018-08-07 Covidien Lp System and method for tissue sealing
US11154345B2 (en) 2009-12-16 2021-10-26 Covidien Lp System and method for tissue sealing
US8454590B2 (en) 2010-02-26 2013-06-04 Covidien Lp Enhanced lossless current sense circuit
US8668690B2 (en) 2010-06-03 2014-03-11 Covidien Lp Apparatus and method for optimal tissue separation
US8617154B2 (en) 2010-06-25 2013-12-31 Covidien Lp Current-fed push-pull converter with passive voltage clamp
US9522041B2 (en) 2010-06-25 2016-12-20 Covidien Lp Current-fed push-pull converter with passive voltage clamp
US8623007B2 (en) 2010-06-30 2014-01-07 Covidien Lp Electrosurgical generator to ablation device adaptor
US9987069B2 (en) 2011-01-05 2018-06-05 Covidien Lp System and method for measuring current of an electrosurgical generator
US9028481B2 (en) 2011-01-05 2015-05-12 Covidien Lp System and method for measuring current of an electrosurgical generator
US9265560B2 (en) 2011-02-25 2016-02-23 Covidien Lp System and method for detecting and suppressing arc formation during an electrosurgical procedure
US10507054B2 (en) 2011-02-25 2019-12-17 Covidien Lp System and method for detecting and supressing arc formation during an electrosurgical procedure
US9739814B2 (en) 2011-03-16 2017-08-22 Covidien Lp System and method for electrosurgical generator power management
US9375247B2 (en) 2011-03-16 2016-06-28 Covidien Lp System and method for electrosurgical generator power measurement
US9539050B2 (en) 2011-04-12 2017-01-10 Covidien Lp System and method for process monitoring and intelligent shut-off
US10543038B2 (en) 2011-04-12 2020-01-28 Covidien Lp System and method for process monitoring and intelligent shut-off
US9918775B2 (en) 2011-04-12 2018-03-20 Covidien Lp Systems and methods for calibrating power measurements in an electrosurgical generator
US8968293B2 (en) 2011-04-12 2015-03-03 Covidien Lp Systems and methods for calibrating power measurements in an electrosurgical generator
US9050089B2 (en) 2011-05-31 2015-06-09 Covidien Lp Electrosurgical apparatus with tissue site sensing and feedback control
US10413347B2 (en) 2011-08-01 2019-09-17 Covidien Lp Electrosurgical apparatus with real-time RF tissue energy control
US10993761B2 (en) 2011-08-01 2021-05-04 Covidien Lp Electrosurgical apparatus with real-time RF tissue energy control
US9028479B2 (en) 2011-08-01 2015-05-12 Covidien Lp Electrosurgical apparatus with real-time RF tissue energy control
US9033973B2 (en) 2011-08-30 2015-05-19 Covidien Lp System and method for DC tissue impedance sensing
US9099863B2 (en) 2011-09-09 2015-08-04 Covidien Lp Surgical generator and related method for mitigating overcurrent conditions
US9543750B2 (en) 2011-09-09 2017-01-10 Covidien Lp Surgical generator and related method for mitigating overcurrent conditions
US10376301B2 (en) 2011-09-28 2019-08-13 Covidien Lp Logarithmic amplifier, electrosurgical generator including same, and method of controlling electrosurgical generator using same
US11076906B2 (en) 2011-09-28 2021-08-03 Covidien Lp Logarithmic amplifier, electrosurgical generator including same, and method of controlling electrosurgical generator using same
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
US9037447B2 (en) 2012-01-27 2015-05-19 Covidien Lp Systems and methods for phase predictive impedance loss model calibration and compensation
US9480523B2 (en) 2012-01-27 2016-11-01 Covidien Lp Systems and methods for phase predictive impedance loss model calibration and compensation
US8664934B2 (en) 2012-01-27 2014-03-04 Covidien Lp System and method for verifying the operating frequency of digital control circuitry
US9116184B2 (en) 2012-01-27 2015-08-25 Covidien Lp System and method for verifying the operating frequency of digital control circuitry
US8968290B2 (en) 2012-03-14 2015-03-03 Covidien Lp Microwave ablation generator control system
US10022185B2 (en) 2012-03-14 2018-07-17 Covidien Lp Microwave ablation generator control system
US9375277B2 (en) 2012-03-14 2016-06-28 Covidien Lp Microwave ablation generator control system
US8653994B2 (en) 2012-03-21 2014-02-18 Covidien Lp System and method for detection of ADC errors
US9198711B2 (en) 2012-03-22 2015-12-01 Covidien Lp Electrosurgical system for communicating information embedded in an audio tone
US10799282B2 (en) 2012-04-09 2020-10-13 Covidien Lp Method for employing single fault safe redundant signals
US9375250B2 (en) 2012-04-09 2016-06-28 Covidien Lp Method for employing single fault safe redundant signals
US10105174B2 (en) 2012-04-09 2018-10-23 Covidien Lp Method for employing single fault safe redundant signals
US8932291B2 (en) 2012-04-13 2015-01-13 Covidien Lp Electrosurgical systems
US9770284B2 (en) 2012-05-11 2017-09-26 Covidien Lp System and method for directing energy to tissue
US9375249B2 (en) 2012-05-11 2016-06-28 Covidien Lp System and method for directing energy to tissue
US9192424B2 (en) 2012-05-31 2015-11-24 Covidien Lp AC active load
US9763726B2 (en) 2012-06-26 2017-09-19 Covidien Lp System and method for testing electrosurgical generators
US9192425B2 (en) 2012-06-26 2015-11-24 Covidien Lp System and method for testing electrosurgical generators
US10682173B2 (en) 2012-06-26 2020-06-16 Covidien Lp System and method for testing electrosurgical generators
US10338115B2 (en) 2012-06-29 2019-07-02 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US10073125B2 (en) 2012-06-29 2018-09-11 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US9529025B2 (en) 2012-06-29 2016-12-27 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US9861425B2 (en) 2012-10-02 2018-01-09 Covidien Lp System and method for using resonance phasing for measuring impedance
US9921243B2 (en) 2012-12-17 2018-03-20 Covidien Lp System and method for voltage and current sensing
US10258407B2 (en) 2013-02-19 2019-04-16 Covidien Lp Electrosurgical generator and system
US9456862B2 (en) 2013-02-19 2016-10-04 Covidien Lp Electrosurgical generator and system
US9895186B2 (en) 2013-03-11 2018-02-20 Covidien Systems and methods for detecting abnormalities within a circuit of an electrosurgical generator
US9270202B2 (en) 2013-03-11 2016-02-23 Covidien Lp Constant power inverter with crest factor control
US9519021B2 (en) 2013-03-11 2016-12-13 Covidien Lp Systems and methods for detecting abnormalities within a circuit of an electrosurgical generator
US9283028B2 (en) 2013-03-15 2016-03-15 Covidien Lp Crest-factor control of phase-shifted inverter
US9498276B2 (en) 2013-03-15 2016-11-22 Covidien Lp Systems and methods for narrowband real impedance control in electrosurgery
US10842563B2 (en) 2013-03-15 2020-11-24 Covidien Lp System and method for power control of electrosurgical resonant inverters
US10603098B2 (en) 2013-05-31 2020-03-31 Covidien Lp Gain compensation for a full bridge inverter
US9504516B2 (en) 2013-05-31 2016-11-29 Covidien LLP Gain compensation for a full bridge inverter
US9559594B2 (en) 2013-06-24 2017-01-31 Covidien Lp Dead-time optimization of resonant inverters
US11191584B2 (en) 2013-06-24 2021-12-07 Covidien Lp Dead-time optimization of resonant inverters based on an input voltage of a tank
US10729484B2 (en) 2013-07-16 2020-08-04 Covidien Lp Electrosurgical generator with continuously and arbitrarily variable crest factor
US10610285B2 (en) 2013-07-19 2020-04-07 Covidien Lp Electrosurgical generators
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US11135001B2 (en) 2013-07-24 2021-10-05 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US10285750B2 (en) 2013-07-29 2019-05-14 Covidien Lp Systems and methods for operating an electrosurgical generator
US9655670B2 (en) 2013-07-29 2017-05-23 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9839469B2 (en) 2013-09-24 2017-12-12 Covidien Lp Systems and methods for improving efficiency of electrosurgical generators
US9770283B2 (en) 2013-09-24 2017-09-26 Covidien Lp Systems and methods for improving efficiency of electrosurgical generators
US9867651B2 (en) 2013-09-26 2018-01-16 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US11717339B2 (en) 2013-09-26 2023-08-08 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US10058374B2 (en) 2013-09-26 2018-08-28 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US10980595B2 (en) 2013-09-26 2021-04-20 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US10130412B2 (en) 2013-09-26 2018-11-20 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US9913679B2 (en) 2013-10-16 2018-03-13 Covidien Lp Electrosurgical systems and methods for monitoring power dosage
US10105172B2 (en) 2013-10-16 2018-10-23 Covidien Lp Radiofrequency amplifier impedance optimization
US10188446B2 (en) 2013-10-16 2019-01-29 Covidien Lp Resonant inverter
US10898257B2 (en) 2013-10-29 2021-01-26 Covidien Lp Resonant inverter with a common mode choke
US9642670B2 (en) 2013-10-29 2017-05-09 Covidien Lp Resonant inverter with a common mode choke
US9901385B2 (en) 2014-01-13 2018-02-27 Covidien Lp Systems and methods for multifrequency cable compensation
US9901386B2 (en) 2014-01-13 2018-02-27 Covidien Lp Systems and methods for multifrequency cable compensation
US10492850B2 (en) 2014-04-04 2019-12-03 Covidien Lp Systems and methods for calculating tissue impedance in electrosurgery
US9987068B2 (en) 2014-04-04 2018-06-05 Covidien Lp Systems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US11607264B2 (en) 2014-04-04 2023-03-21 Covidien Lp Systems and methods for calculating tissue impedance in electrosurgery
US9974595B2 (en) 2014-04-04 2018-05-22 Covidien Lp Systems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US9949783B2 (en) 2014-04-04 2018-04-24 Covidien Lp Systems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US10568680B2 (en) 2014-11-21 2020-02-25 Covidien Lp Electrosurgical system for multi-frequency interrogation of parasitic parameters of an electrosurgical instrument
US10188448B2 (en) 2014-11-21 2019-01-29 Covidien Lp Electrosurgical system for multi-frequency interrogation of parasitic parameters of an electrosurgical instrument
US10292753B2 (en) 2014-12-02 2019-05-21 Covidien Lp Electrosurgical generators and sensors
US10278764B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
US10281496B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
US10987154B2 (en) 2014-12-02 2021-04-27 Covidien Lp Electrosurgical generators and sensors
US9782212B2 (en) 2014-12-02 2017-10-10 Covidien Lp High level algorithms
US11129667B2 (en) 2015-04-23 2021-09-28 Covidien Lp Systems and methods for controlling power in an electrosurgical generator
US10617463B2 (en) 2015-04-23 2020-04-14 Covidien Lp Systems and methods for controlling power in an electrosurgical generator
US11090106B2 (en) 2015-04-23 2021-08-17 Covidien Lp Control systems for electrosurgical generator
US10772673B2 (en) 2016-05-02 2020-09-15 Covidien Lp Surgical energy system with universal connection features
US10869712B2 (en) 2016-05-02 2020-12-22 Covidien Lp System and method for high frequency leakage reduction through selective harmonic elimination in electrosurgical generators
US11806067B2 (en) 2016-05-05 2023-11-07 Covidien Lp Advanced simultaneous activation algorithm
US11369429B2 (en) 2016-05-05 2022-06-28 Covidien Lp Advanced simultaneous activation algorithm
US10610287B2 (en) 2016-05-05 2020-04-07 Covidien Lp Advanced simultaneous activation algorithm
US10376309B2 (en) 2016-08-02 2019-08-13 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11065053B2 (en) 2016-08-02 2021-07-20 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11197715B2 (en) 2016-08-02 2021-12-14 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11006997B2 (en) 2016-08-09 2021-05-18 Covidien Lp Ultrasonic and radiofrequency energy production and control from a single power converter
CN109844246A (en) * 2016-08-18 2019-06-04 博泽车锁系统有限公司 Lock logic module
CN109844246B (en) * 2016-08-18 2021-06-11 博泽车锁系统有限公司 Lock logic assembly
US11534226B2 (en) 2017-09-22 2022-12-27 Covidien Lp Systems and methods for minimizing arcing of bipolar forceps
US11272975B2 (en) 2017-09-22 2022-03-15 Covidien Lp Systems and methods for controlled electrosurgical dissection
US11744631B2 (en) 2017-09-22 2023-09-05 Covidien Lp Systems and methods for controlled electrosurgical coagulation
US11969201B2 (en) 2021-08-17 2024-04-30 Covidien Lp Control systems for electrosurgical generator

Also Published As

Publication number Publication date
EP0267403A3 (en) 1989-09-27
DE3638748C2 (en) 1988-10-06
DE3638748A1 (en) 1988-06-01

Similar Documents

Publication Publication Date Title
DE3638748C2 (en)
DE3433068C2 (en)
DE2201814A1 (en) Filter connection arrangement
DE102013213981A1 (en) Coil for switching device with high RF power
EP0090774B1 (en) Device for protecting an electrical apparatus against disturbances
DE10062567A1 (en) Modular channel distributor for a cable set-top box
DE3731394C2 (en) High-frequency interference filter for a circuit to be connected to a line, in particular for two-wire sensors
DE3028925A1 (en) Quarter wave branch connector for HF aerials - has junction with coupling loops at input resonators of twin parallel filters
DE3326629A1 (en) Interference suppressor filter for electronic control devices in motor vehicles
DE4034548C2 (en) Automotive windshield antenna for frequencies above the high frequency range
CH690146A5 (en) EMP filter in a coaxial line.
EP0066010B1 (en) Cross-over network for the separation of a signal current and a supply current
DE3630519A1 (en) Window pane antenna parallel to the window frame
DE10240084A1 (en) Feedthrough component, filter circuit with the feedthrough component and screen wall for shielded rooms
DE2744862C2 (en) High-frequency transformer formed from pieces of coaxial line
DE1942178C3 (en) Bandpass filter designed as a comb line or interdigital filter
DE4238328A1 (en) Capacitive separator for HF coaxial cable link - provides galvanic isolation of cable outer and inner conductors by capacitors and ferrite-loaded section of semi-rigid cable
DE3413242C2 (en)
DE3706922C2 (en)
DE69912318T2 (en) Remote Feeder Reactance Coil
AT252336B (en) Equipment for community antenna systems
DE4311125A1 (en) EMC filters for plants, systems and shielded rooms
DE955966C (en) Device for high-frequency short-circuiting of a pair of conductors
DE2458878C3 (en) Switching device for switching signals in the VHF and UHF frequency range
DE1240599B (en) Electrical delay line

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE ES FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RICHARD HIRSCHMANN GMBH & CO.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19900403

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HEINER, WERNER

Inventor name: SCHENKYR, DIETER

Inventor name: BUCK, WALTER, DR.