EP0312850A1 - X-ray diagnostic apparatus - Google Patents

X-ray diagnostic apparatus Download PDF

Info

Publication number
EP0312850A1
EP0312850A1 EP88116591A EP88116591A EP0312850A1 EP 0312850 A1 EP0312850 A1 EP 0312850A1 EP 88116591 A EP88116591 A EP 88116591A EP 88116591 A EP88116591 A EP 88116591A EP 0312850 A1 EP0312850 A1 EP 0312850A1
Authority
EP
European Patent Office
Prior art keywords
detector
semiconductor detector
ray
image intensifier
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88116591A
Other languages
German (de)
French (fr)
Other versions
EP0312850B1 (en
Inventor
Horst Dr. Aichinger
Karlheinz Dipl.-ing.(FH) Köhler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0312850A1 publication Critical patent/EP0312850A1/en
Application granted granted Critical
Publication of EP0312850B1 publication Critical patent/EP0312850B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/64Circuit arrangements for X-ray apparatus incorporating image intensifiers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/36Temperature of anode; Brightness of image power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/38Exposure time
    • H05G1/42Exposure time using arrangements for switching when a predetermined dose of radiation has been applied, e.g. in which the switching instant is determined by measuring the electrical energy supplied to the tube
    • H05G1/44Exposure time using arrangements for switching when a predetermined dose of radiation has been applied, e.g. in which the switching instant is determined by measuring the electrical energy supplied to the tube in which the switching instant is determined by measuring the amount of radiation directly

Definitions

  • the invention relates to an X-ray diagnostic system with an image intensifier television chain and a detector for the average image brightness on the output fluorescent screen of the X-ray image intensifier in a predetermined range, in which the detector is a semiconductor detector with an area on which the entire output image of the X-ray image intensifier can be imaged, and at the means for selecting a predetermined area of the semiconductor detector for signal generation are present.
  • An X-ray diagnostic system of this type is described in EP-A-0 217 456.
  • An array of individual detectors is provided as the detector, which permits the formation of a brightness signal for a measuring field in the output image of the X-ray image intensifier.
  • a downstream amplifier must be provided for each detector element, which means a considerable outlay in terms of circuitry.
  • the invention is based on the object of designing an X-ray diagnostic system of the type mentioned at the outset in such a way that a lower circuit complexity than that of the prior art is provided for forming a large number of measuring fields with a variable shape.
  • the detector is a large-area semiconductor detector, in front of which there is an aperture made of a liquid crystal matrix, which can be controlled by a control device for selecting a predetermined area on the semiconductor detector that is hit by the light.
  • This solution results in a particularly low outlay for signal processing.
  • the measuring field is selected electronically using the liquid crystal matrix.
  • the formation of the measurement signal is not like that of a matrix photosensitive elements a variety of amplifiers, but only a single amplifier required.
  • FIG. 1 shows an X-ray tube 1, which is fed by an X-ray generator 2.
  • a patient 3 is irradiated by the X-rays.
  • the x-ray image is amplified by an x-ray image intensifier 4.
  • the amplified x-ray image appearing on the output screen of the x-ray image intensifier 4 is recorded by a television camera 5 and displayed on a display unit 7 via a television center 6.
  • a semiconductor detector 8 is provided as an actual value transmitter, which feeds a corresponding signal to the actual value input of a comparator 9 via a measuring transducer 10.
  • the comparator 9 has a setpoint input 11, at which there is a signal corresponding to the setpoint of the average image brightness in the measuring field of the output screen of the X-ray image intensifier 4.
  • the x-ray generator 2 is influenced by a brightness control device 13 in the sense of an adjustment of the actual value to the target value.
  • a setpoint generator 12 is provided for setting the setpoint.
  • the semiconductor detector 8 has an area on which the entire output image of the X-ray image intensifier 4 can be reproduced, with the aid of a partially transparent mirror 14 in the beam path between the exit fluorescent screen of the X-ray image intensifier 4 and the television camera 5.
  • a control device 15 selects electronically a predetermined area of the semiconductor detector 8 corresponding to the desired measuring field.
  • the semiconductor detector 8 allows the selection of a large number of measuring fields, both with regard to their position and their shape and size.
  • Fig. 2 shows an embodiment of a semiconductor detector 8 as a large-area detector, which is composed of a single detector element, e.g. is formed by a single photodiode.
  • a semiconductor detector 8 is composed of a single detector element, e.g. is formed by a single photodiode.
  • an aperture made of a liquid crystal matrix with liquid crystals 17 is arranged in the beam path in front of the semiconductor detector 8.
  • the light transmission of the individual liquid crystals 17 can be controlled by the control device 15 to select a predetermined area hit by the light on the semiconductor detector 8. 2 shows, for example, the choice of three measuring fields, a central measuring field and two lateral measuring fields.
  • signal evaluation within the measurement field is also possible.
  • the measuring signal of each individual photodiode of the measuring field matrix is electronically multiplied by a weighting factor before being added to the total actual value signal.
  • the weighting factors can be selected on an X-ray system with organ operation depending on the object.
  • a corresponding evaluation is possible in the detector embodiment according to FIG. 2, in that not all liquid crystals 17 of the liquid crystal matrix within the measuring surface are controlled for light transmission. By varying the liquid crystals controlled for permeability per unit area in the area of the measuring field, an adaptation to the object to be examined is possible.
  • peak value regulation can also take place, in that the signals of the individual matrix elements of the selected measuring field are read out serially and only the maximum value of the determined signal distribution is used for the actual value formation becomes.
  • methods of pattern recognition can also be used when selecting the matrix elements that contribute to the actual value signal formation.
  • the technique of measuring field formation shown here for a television camera can also be used in the indirect technique with a sheet film camera.
  • the semiconductor detector is also used for direct recording instead of an ionization chamber, the advantages mentioned (flexible measurement field formation, signal evaluation, mean value / peak value control) can also be used here.
  • exposure corrections are necessary for all hardening effects which occur when the radiation passes through the cassette, e.g. can be stored in tabular form in the memory of the exposure machine. If the patient transparency is determined by a previous fluoroscopy before the direct exposure is triggered and the selected display is also reported by the device to the automatic exposure device, the appropriate exposure correction can be found in the table.

Abstract

In order to regular the dose power of an X-ray diagnostic apparatus with an image intensifier-television chain, a semiconductor detector (8) with a surface is provided, on which surface the complete output image of the X-ray image intensifier can be depicted. Means (17) are present for selecting a predetermined region of the large-area semiconductor detector (8) for generating the actual-value signal for the mean image brightness in the selected measurement field. The selection of the predetermined region is made with the aid of a liquid crystal matrix (17). …<IMAGE>…

Description

Die Erfindung betrifft eine Röntgendiagnostikanlage mit einer Bildverstärker-Fernsehkette und einem Detektor für die mittlere Bildhelligkeit auf dem Ausgangsleuchtschirm des Röntgenbildver­stärkers in einem vorbestimmten Bereich, bei der der Detektor ein Halbleiterdetektor mit einer Fläche ist, auf der das ganze Ausgangsbild des Röntgenbildverstärkers abbildbar ist, und bei der Mittel zur Auswahl eines vorbestimmten Bereiches des Halb­leiterdetektors für die Signalerzeugung vorhanden sind.The invention relates to an X-ray diagnostic system with an image intensifier television chain and a detector for the average image brightness on the output fluorescent screen of the X-ray image intensifier in a predetermined range, in which the detector is a semiconductor detector with an area on which the entire output image of the X-ray image intensifier can be imaged, and at the means for selecting a predetermined area of the semiconductor detector for signal generation are present.

Eine Röntgendiagnostikanlage dieser Art ist in der EP-A-­0 217 456 beschrieben. Als Detektor ist dabei ein Array aus Einzeldetektoren vorgesehen, das die Bildung eines Helligkeits­signals für ein Meßfeld im Ausgangsbild des Röntgenbildverstär­kers erlaubt. Dabei muß für jedes Detektorelement ein nachge­schalteter Verstärker vorgesehen werden, was einen erheblichen schaltungstechnischen Aufwand bedeutet.An X-ray diagnostic system of this type is described in EP-A-0 217 456. An array of individual detectors is provided as the detector, which permits the formation of a brightness signal for a measuring field in the output image of the X-ray image intensifier. A downstream amplifier must be provided for each detector element, which means a considerable outlay in terms of circuitry.

Der Erfindung liegt die Aufgabe zugrunde, eine Röntgendiagno­stikanlage der eingangs genannten Art so auszubilden, daß zur Bildung einer Vielzahl von Meßfeldern mit variabler Form ein gegenüber dem Stand der Technik geringerer schaltungstechni­scher Aufwand vorgesehen ist.The invention is based on the object of designing an X-ray diagnostic system of the type mentioned at the outset in such a way that a lower circuit complexity than that of the prior art is provided for forming a large number of measuring fields with a variable shape.

Diese Aufgabe ist erfindungsgemäß dadurch gelöst, daß der De­tektor ein großflächiger Halbleiterdetektor ist, vor dem eine Blende aus einer Flüssigkristall-Matrix liegt, die durch eine Steuervorrichtung zur Auswahl eines vorbestimmten, vom Licht getroffenen Bereiches auf dem Halbleiterdetektor ansteuerbar ist. Bei dieser Lösung ergibt sich ein besonders geringer Auf­wand für die Signalaufbereitung. Die Meßfeldwahl erfolgt mit Hilfe der Flüssigkristall-Matrix in elektronischer Weise. Für die Bildung des Meßsignales ist nicht wie bei einer Matrix aus lichtempfindlichen Elementen eine Vielzahl von Verstärkern, sondern nur ein einziger Verstärker erforderlich.This object is achieved in that the detector is a large-area semiconductor detector, in front of which there is an aperture made of a liquid crystal matrix, which can be controlled by a control device for selecting a predetermined area on the semiconductor detector that is hit by the light. This solution results in a particularly low outlay for signal processing. The measuring field is selected electronically using the liquid crystal matrix. The formation of the measurement signal is not like that of a matrix photosensitive elements a variety of amplifiers, but only a single amplifier required.

Die Erfindung ist nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:

  • Fig. 1 eine Röntgendiagnostikanlage nach der Erfindung, und
  • Fig. 2 eine Ausführungsform für einen Detektor, der Röntgen­diagnostikanlage gemäß Fig. 1.
The invention is explained below with reference to an embodiment shown in the drawing. Show it:
  • Fig. 1 is an X-ray diagnostic system according to the invention, and
  • FIG. 2 shows an embodiment for a detector, the X-ray diagnostic system according to FIG. 1.

In der Fig. 1 ist eine Röntgenröhre 1 dargestellt, die von ei­nem Röntgengenerator 2 gespeist wird. Ein Patient 3 wird von der Röntgenstrahlung durchstrahlt. Das Röntgenbild wird von ei­nem Röntgenbildverstärker 4 verstärkt. Das am Ausgangsbild­schirm des Röntgenbildverstärkers 4 erscheinende, verstärkte Röntgenbild wird von einer Fernsehkamera 5 aufgenommen und über eine Fernsehzentrale 6 auf einem Sichtgerät 7 wiedergegeben.1 shows an X-ray tube 1, which is fed by an X-ray generator 2. A patient 3 is irradiated by the X-rays. The x-ray image is amplified by an x-ray image intensifier 4. The amplified x-ray image appearing on the output screen of the x-ray image intensifier 4 is recorded by a television camera 5 and displayed on a display unit 7 via a television center 6.

Zur Konstanthaltung der mittleren Bildhelligkeit in einem Meß­feld des Ausgangsschirms des Röntgenbildverstärkers 4 ist ein Halbleiterdetektor 8 als Istwertgeber vorgesehen, der ein ent­sprechendes Signal dem Istwerteingang eines Vergleicher 9 über einen Meßwandler 10 zuführt. Der Vergleicher 9 weist einen Sollwerteingang 11 auf, an dem ein dem Sollwert der mittleren Bildhelligkeit im Meßfeld des Ausgangsschirms des Röngtgenbild­verstärkers 4 entsprechendes Signal liegt. In Abhängigkeit von der Differenz zwischen Ist- und Sollwert wird der Röntgengene­rator 2 von einer Helligkeitsregeleinrichtung 13 im Sinne eines Angleiches des Istwertes an den Sollwert beeinflußt. Für die Einstellung des Sollwertes ist ein Sollwertgeber 12 vorgesehen.In order to keep the mean image brightness constant in a measuring field of the output screen of the X-ray image intensifier 4, a semiconductor detector 8 is provided as an actual value transmitter, which feeds a corresponding signal to the actual value input of a comparator 9 via a measuring transducer 10. The comparator 9 has a setpoint input 11, at which there is a signal corresponding to the setpoint of the average image brightness in the measuring field of the output screen of the X-ray image intensifier 4. Depending on the difference between the actual value and the target value, the x-ray generator 2 is influenced by a brightness control device 13 in the sense of an adjustment of the actual value to the target value. A setpoint generator 12 is provided for setting the setpoint.

Der Halbleiterdetektor 8 hat eine Fläche, auf der das ganze Ausgangsbild des Röntgenbildverstärkers 4 abbildbar ist, und zwar mit Hilfe eines teildurchlässigen Spiegels 14 im Strahlen­gang zwischen dem Ausgangsleuchtschirm des Röntgenbildverstär­kers 4 und der Fernsehkamera 5. Eine Steuervorrichtung 15 wählt dabei einen vorbestimmten Bereich des Halbleiterdetektors 8 entsprechend dem gewünschten Meßfeld elektronisch aus. Der Halbleiterdetektor 8 erlaubt dabei die Wahl einer Vielzahl von Meßfeldern, und zwar sowohl hinsichtlich ihrer Lage als auch ihrer Form und Größe.The semiconductor detector 8 has an area on which the entire output image of the X-ray image intensifier 4 can be reproduced, with the aid of a partially transparent mirror 14 in the beam path between the exit fluorescent screen of the X-ray image intensifier 4 and the television camera 5. A control device 15 selects electronically a predetermined area of the semiconductor detector 8 corresponding to the desired measuring field. The semiconductor detector 8 allows the selection of a large number of measuring fields, both with regard to their position and their shape and size.

Die Fig. 2 zeigt eine Ausführungsform eines Halbleiterdetektors 8 als großflächigen Detektor, der von einem einzigen Detektor­element, also z.B. von einer einzigen Photodiode gebildet ist. Zur Auswahl des jeweils gewünschten Meßfeldes ist im Strahlen­gang vor dem Halbleiterdetektor 8 eine Blende aus einer Flüs­sigkristall-Matrix mit Flüssigkristallen 17 angeordnet. Die einzelnen Flüssigkristalle 17 können durch die Steuervorrich­tung 15 zur Auswahl eines vorbestimmten, vom Licht getroffenen Bereiches auf dem Halbleiterdetektor 8 in ihrer Lichtdurchläs­sigkeit gesteuert werden. In Fig. 2 ist beispielsweise die Wahl dreier Meßfelder, eines zentralen Meßfeldes sowie zweier seit­licher Meßfelder dargestellt.Fig. 2 shows an embodiment of a semiconductor detector 8 as a large-area detector, which is composed of a single detector element, e.g. is formed by a single photodiode. To select the desired measuring field in each case, an aperture made of a liquid crystal matrix with liquid crystals 17 is arranged in the beam path in front of the semiconductor detector 8. The light transmission of the individual liquid crystals 17 can be controlled by the control device 15 to select a predetermined area hit by the light on the semiconductor detector 8. 2 shows, for example, the choice of three measuring fields, a central measuring field and two lateral measuring fields.

Bei der in Fig. 2 gezeigten Ausführungsform ist auch eine Si­gnalbewertung innerhalb des Meßfeldes möglich. Dabei wird das Meßsignal jeder einzelnen Photodiode der Meßfeldmatrix vor der Addition zum Gesamtistwertsignal elektronisch mit einem Ge­wichtungsfaktor multipliziert. An einer Röntgenanlage mit Or­ganbedienung kann die Wahl der Gewichtungsfaktoren objektabhän­gig erfolgen. Bei der Detektorausführung gemäß Fig. 2 ist eine entsprechende Bewertung möglich, indem nicht alle Flüssigkri­stalle 17 der Flüssigkristallmatrix innerhalb der Meßfläche auf Lichtdurchlässigkeit gesteuert werden. Durch eine Variation der auf Durchlässigkeit gesteuerten Flüssigkristalle pro Flächen­einheit im Bereich des Meßfeldes ist also eine Anpassung an das zu untersuchende Objekt möglich.In the embodiment shown in FIG. 2, signal evaluation within the measurement field is also possible. The measuring signal of each individual photodiode of the measuring field matrix is electronically multiplied by a weighting factor before being added to the total actual value signal. The weighting factors can be selected on an X-ray system with organ operation depending on the object. A corresponding evaluation is possible in the detector embodiment according to FIG. 2, in that not all liquid crystals 17 of the liquid crystal matrix within the measuring surface are controlled for light transmission. By varying the liquid crystals controlled for permeability per unit area in the area of the measuring field, an adaptation to the object to be examined is possible.

Weiterhin kann auch eine Spitzenwertregelung erfolgen, indem die Signale der einzelnen Matrixelemente des ausgewählten Meß­feldes seriell ausgelesen werden und nur der Maximalwert der ermittelten Signalverteilung zur Istwertbildung herangezogen wird. Für eine Anpassung der Regelung an unterschiedliche Ob­jekte können bei der Auswahl der Matrixelemente, die zur Ist­wert-Signalbildung beitragen, auch Methoden der Mustererkennung angewendet werden.Furthermore, peak value regulation can also take place, in that the signals of the individual matrix elements of the selected measuring field are read out serially and only the maximum value of the determined signal distribution is used for the actual value formation becomes. To adapt the control to different objects, methods of pattern recognition can also be used when selecting the matrix elements that contribute to the actual value signal formation.

Die hier für eine Fernsehkamera dargestellte Technik der Meß­feldbildung ist auch anwendbar bei der Indirekt-Technik mit einer Blattfilmkamera.The technique of measuring field formation shown here for a television camera can also be used in the indirect technique with a sheet film camera.

Wird der Halbleiterdetektor anstelle einer Ionisationskammer auch für die Direktaufnahme verwendet, so können auch hier die angeführten Vorteile (flexible Meßfeldbildung, Signal-Bewer­tung, Mittelwert-/Spitzenwertregelung) genutzt werden. Nachdem der Bildverstärker hinter der Kassette angeordnet ist, sind für alle beim Durchgang der Strahlung durch die Kassette auftreten­den Aufhärtungseffekte Belichtungskorrekturen erforderlich, die z.B. in tabellarischer Form im Speicher des Belichtungsautoma­ten abgelegt sein können. Wird vor Auslösung der Direktaufnahme die Patiententransparenz durch eine vorangehende Durchleuchtung ermittelt und wird außerdem die gewählte Einblendung vom Gerät an den Belichtungsautomaten gemeldet, kann die zutreffende Be­lichtungskorrektur der Tabelle entnommen werden.If the semiconductor detector is also used for direct recording instead of an ionization chamber, the advantages mentioned (flexible measurement field formation, signal evaluation, mean value / peak value control) can also be used here. After the image intensifier is arranged behind the cassette, exposure corrections are necessary for all hardening effects which occur when the radiation passes through the cassette, e.g. can be stored in tabular form in the memory of the exposure machine. If the patient transparency is determined by a previous fluoroscopy before the direct exposure is triggered and the selected display is also reported by the device to the automatic exposure device, the appropriate exposure correction can be found in the table.

Claims (1)

Röntgendiagnostikanlage mit einer Bildverstärker-Fernsehkette (4 bis 7) und einem Detektor (8) für die mittlere Bildhellig­keit auf dem Ausgangsleuchtschirm des Röntgenbildverstärkers (4) in einem vorbestimmten Bereich, bei der der Detektor (8) ein Halbleiterdetektor mit einer Fläche ist, auf der das ganze Ausgangsbild des Röntgenbildverstärkers (4) abbildbar ist, und bei der Mittel (15) zur Auswahl eines vorbestimmten Bereiches des Halbleiterdetektors für die Signalerzeugung vorhanden sind, dadurch gekennzeichnet, daß der Detek­tor (8) ein großflächiger Halbleiterdetektor ist, vor dem eine Blende aus einer Flüssigkristall-Matrix (17) liegt, die durch eine Steuervorrichtung (15) zur Auswahl eines vorbestimmten, vom Licht getroffenen Bereiches auf dem Halbleiterdetektor an­steuerbar ist.X-ray diagnostic system with an image intensifier television chain (4 to 7) and a detector (8) for the average image brightness on the output fluorescent screen of the X-ray image intensifier (4) in a predetermined range, in which the detector (8) is a semiconductor detector with an area on which the entire output image of the X-ray image intensifier (4) can be imaged, and in which means (15) for selecting a predetermined area of the semiconductor detector for signal generation are present, characterized in that the detector (8) is a large-area semiconductor detector in front of which an aperture is formed a liquid crystal matrix (17), which can be controlled by a control device (15) for selecting a predetermined area hit by the light on the semiconductor detector.
EP88116591A 1987-10-19 1988-10-06 X-ray diagnostic apparatus Expired - Lifetime EP0312850B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE8714009U DE8714009U1 (en) 1987-10-19 1987-10-19
DE8714009U 1987-10-19

Publications (2)

Publication Number Publication Date
EP0312850A1 true EP0312850A1 (en) 1989-04-26
EP0312850B1 EP0312850B1 (en) 1992-08-12

Family

ID=6813240

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88116591A Expired - Lifetime EP0312850B1 (en) 1987-10-19 1988-10-06 X-ray diagnostic apparatus

Country Status (4)

Country Link
US (1) US5029338A (en)
EP (1) EP0312850B1 (en)
JP (1) JPH0163269U (en)
DE (2) DE8714009U1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2803394A1 (en) * 1999-12-30 2001-07-06 Thomson Tubes Electroniques X-RAY IMAGE DETECTION SYSTEM FOR SCANNING X-RAY GENERATOR

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2548018Y2 (en) * 1990-01-24 1997-09-17 興和 株式会社 X-ray imaging device
EP0480096B1 (en) * 1990-10-12 1994-07-13 Siemens Aktiengesellschaft X-ray diagnostic apparatus comprising an X-ray image intensifier and a detector for its output screen image brightness
DE4102445C1 (en) * 1991-01-28 1992-03-05 Siemens Ag, 8000 Muenchen, De
DE9107256U1 (en) * 1991-06-12 1991-08-08 Siemens Ag, 8000 Muenchen, De
US5311568A (en) * 1992-05-01 1994-05-10 Picker International, Inc. Optical alignment means utilizing inverse projection of a test pattern/target
DE4232901A1 (en) * 1992-10-01 1994-04-07 Siemens Ag Medical X=Ray diagnostic equipment with optimum setting of emission control - has stray transmitted emission received by sensors to provide signal compared with reference to control generator
US5651047A (en) * 1993-01-25 1997-07-22 Cardiac Mariners, Incorporated Maneuverable and locateable catheters
US5550378A (en) * 1993-04-05 1996-08-27 Cardiac Mariners, Incorporated X-ray detector
US5682412A (en) * 1993-04-05 1997-10-28 Cardiac Mariners, Incorporated X-ray source
WO1996020579A1 (en) * 1994-12-23 1996-07-04 Philips Electronics N.V. X-ray examination apparatus comprising an exposure control circuit
US5617462A (en) * 1995-08-07 1997-04-01 Oec Medical Systems, Inc. Automatic X-ray exposure control system and method of use
DE19842474A1 (en) * 1998-09-16 2000-03-30 Siemens Ag Radiation detector for diagnostic X=ray device
DE69913311T2 (en) * 1998-10-19 2004-10-14 Koninklijke Philips Electronics N.V. X-RAY EXAMINATION DEVICE WITH REGULATION OF THE RADIATION DOSE
US6275335B1 (en) 1999-07-16 2001-08-14 Sl3D, Inc. Single-lens 3D method, microscope, and video adapter
WO2001039558A1 (en) * 1999-11-23 2001-05-31 Koninklijke Philips Electronics N.V. X-ray examination apparatus with exposure control
US20020131170A1 (en) * 2001-01-12 2002-09-19 Bryan Costales Stereoscopic aperture valves
DE102004015326A1 (en) * 2004-03-30 2005-10-20 Leica Microsystems Apparatus and method for inspecting a semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185198A (en) * 1976-07-08 1980-01-22 Tokyo Shibaura Electric Co., Ltd. Means for generating an X-ray exposure command in response to a video signal component
EP0038666A1 (en) * 1980-04-21 1981-10-28 Technicare Corporation Radiographic apparatus and method with automatic exposure control
EP0200623A1 (en) * 1985-04-19 1986-11-05 Thomson-Cgr Radiological apparatus
FR2582502A1 (en) * 1985-06-04 1986-12-05 Thomson Cgr Radiology installation with global compensator placed in an optical path of the image
EP0217456A1 (en) * 1985-09-20 1987-04-08 Koninklijke Philips Electronics N.V. An X-ray examination apparatus with a locally divided auxiliary detector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2803913C2 (en) * 1978-01-30 1986-01-30 Siemens AG, 1000 Berlin und 8000 München X-ray diagnostic system with an image intensifier television chain
DE3141987A1 (en) * 1981-10-22 1983-05-05 Siemens AG, 1000 Berlin und 8000 München X-RAY DIAGNOSTIC DEVICE
NL8200852A (en) * 1982-03-03 1983-10-03 Philips Nv ROENTGEN RESEARCH DEVICE.
DE3225061A1 (en) * 1982-07-05 1984-01-05 Siemens AG, 1000 Berlin und 8000 München X-RAY DIAGNOSTIC DEVICE
FR2577374A1 (en) * 1985-02-08 1986-08-14 Thomson Cgr Method of automatic adjustment of exposure in a radiology installation and radiology installation implementing such a method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185198A (en) * 1976-07-08 1980-01-22 Tokyo Shibaura Electric Co., Ltd. Means for generating an X-ray exposure command in response to a video signal component
EP0038666A1 (en) * 1980-04-21 1981-10-28 Technicare Corporation Radiographic apparatus and method with automatic exposure control
EP0200623A1 (en) * 1985-04-19 1986-11-05 Thomson-Cgr Radiological apparatus
FR2582502A1 (en) * 1985-06-04 1986-12-05 Thomson Cgr Radiology installation with global compensator placed in an optical path of the image
EP0217456A1 (en) * 1985-09-20 1987-04-08 Koninklijke Philips Electronics N.V. An X-ray examination apparatus with a locally divided auxiliary detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2803394A1 (en) * 1999-12-30 2001-07-06 Thomson Tubes Electroniques X-RAY IMAGE DETECTION SYSTEM FOR SCANNING X-RAY GENERATOR
WO2001050481A1 (en) * 1999-12-30 2001-07-12 Thales Electron Devices S.A. Radiological image sensing system for scanning x-ray generator
US6934360B2 (en) 1999-12-30 2005-08-23 Thales Electron Devices S.A. Radiological image sensing system for a scanning x-ray generator
US7082187B2 (en) 1999-12-30 2006-07-25 Thales Electron Devices S.A. Radiological image detection system for a scanning X-ray generator

Also Published As

Publication number Publication date
DE8714009U1 (en) 1989-02-16
DE3873680D1 (en) 1992-09-17
JPH0163269U (en) 1989-04-24
US5029338A (en) 1991-07-02
EP0312850B1 (en) 1992-08-12

Similar Documents

Publication Publication Date Title
EP0312850B1 (en) X-ray diagnostic apparatus
DE3840736C2 (en)
EP0234603B1 (en) X-ray generator with control of dosing power
EP0362427B1 (en) X-ray diagnostic apparatus with a detector for the average image brightness
DE2950767A1 (en) X-RAY GENERATOR
EP0223432A2 (en) X-ray radiography system
EP0480096B1 (en) X-ray diagnostic apparatus comprising an X-ray image intensifier and a detector for its output screen image brightness
DE2851640A1 (en) ELECTRON MICROSCOPE
DE19651722A1 (en) Automatic exposure setting method for panorama or tomographic radiography device
DE3928282A1 (en) X-RAY RECEIVING DEVICE
EP0106402B1 (en) Method of producing tomographic images
DE2702009A1 (en) RADIOGRAPHIC DEVICE
EP0471883B1 (en) X-ray exposure automat
DE69815252T2 (en) EXPOSURE CONTROL BASED ON A SIGNIFICANT PART OF AN X-RAY IMAGE
DE2803913C2 (en) X-ray diagnostic system with an image intensifier television chain
DE2548531A1 (en) Radio diagnostic technique with improved picture contrast - using beam splitting slit screens above and below object
DE1764414C3 (en) X-ray slice imaging device with a drive means for generating a slice movement and with a television device
DE4102445C1 (en)
DE19755764C2 (en) Method for operating an X-ray diagnostic device with an X-ray image converter television chain and device for carrying out such a method
DE2207053A1 (en) IMAGE ENHANCER DENSITOMETER
DE2141676A1 (en) X-RAY IMAGE AMPLIFIER ARRANGEMENT
EP0121151B1 (en) X-ray diagnostic apparatus
DE3433141C2 (en)
DE4239957C2 (en) X-ray imaging device
DE739973C (en) Procedure for determining the most favorable recording voltage for X-ray recordings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19890529

17Q First examination report despatched

Effective date: 19920102

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920914

Year of fee payment: 5

REF Corresponds to:

Ref document number: 3873680

Country of ref document: DE

Date of ref document: 19920917

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921016

Year of fee payment: 5

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921216

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931006

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST