EP0360653A1 - Method and system for correcting image defects caused by the movement of a scanner - Google Patents

Method and system for correcting image defects caused by the movement of a scanner Download PDF

Info

Publication number
EP0360653A1
EP0360653A1 EP89402440A EP89402440A EP0360653A1 EP 0360653 A1 EP0360653 A1 EP 0360653A1 EP 89402440 A EP89402440 A EP 89402440A EP 89402440 A EP89402440 A EP 89402440A EP 0360653 A1 EP0360653 A1 EP 0360653A1
Authority
EP
European Patent Office
Prior art keywords
scanner
center
view
rotation
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP89402440A
Other languages
German (de)
French (fr)
Inventor
Andréi CABINET BALLOT-SCHMIT Feldman
Dominique Cabinet Ballot-Schmit Cornuejols
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric CGR SA
Original Assignee
General Electric CGR SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric CGR SA filed Critical General Electric CGR SA
Publication of EP0360653A1 publication Critical patent/EP0360653A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4035Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis the source being combined with a filter or grating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting

Definitions

  • the invention relates to X-ray scanners and more particularly to a method which makes it possible to correct, in the images obtained, the defects due to the displacements of the measuring assembly; it also relates to a system for correcting such faults.
  • These devices consist essentially, as shown in Figure 1, of a source 10 of X-rays associated with a detection device 11, these two elements being arranged relative to each other in a fixed geometric relationship so to be able to interpose between them the body to be examined. In addition, they are supported by a structure (not shown) which can rotate around the body to be examined so as to irradiate the body at different angles.
  • the X-ray source which is controlled by a device 13, emits its rays in an angular sector which has a width sufficient to illuminate the entire cross section of the body.
  • the detection device 11 has the form of an annular sector the length of which is adapted to the width of the X-ray beam and consists of a large number of elementary detectors 12 juxtaposed one next to the other.
  • the support structure of the source 10 and of the detection device 11 is rotated around the body and the output signals of the elementary detectors 12 are measured. to treat them appropriately according to known methods in order to obtain a representative image of the cross section.
  • the elementary detectors 12, also called channels are connected to an electronic device 14 which first performs a calculation of the logarithm of the signals received so as to obtain a signal whose amplitude is proportional to the attenuation of the rays X.
  • the axis of rotation of the structure - source 10, detection device 11 - is materialized by point 0, which means that the source 10 and the detectors 12 each describe a circumference of center 0 and of radius determined during rotation of the structure. This is only true in theory because the construction and use tolerances lead to deviations from the theoretical positions. This then results in defects in the images called "artifacts" and a decrease in spatial resolution.
  • the object of the present invention is therefore to implement a method which makes it possible to correct the defects resulting from deviations in the position of the source and of the detectors with respect to their theoretical position.
  • Another object of the invention is also to provide a system which implements said correction method.
  • the invention relates to a method for correcting image defects of a scanner due to the movements of the latter, characterized in that it comprises the following operations: - The installation of at least one bar which introduces a significant weakening of the incident X-ray, the rotation of the scanner over a complete revolution so as to produce a number m of views on the N detectors or channels of the scanner, each view corresponding to a determined angular position ⁇ j of the scanner around its center of rotation, - the determination, for each view, of the center of gravity of the attenuation (bar) so as to measure an angle ⁇ j between the axes of radiation passing one by the center of rotation and the other by the center of gravity attenuation, - the measurement of the Cartesian coordinates b and c of the center of gravity of the attenuation, that is to say of the bar, - the calculation for each view of the theoretical angle ⁇ th between the axes of radiation passing one by the center of rotation of the scanner and the other by the point of coordinate
  • the invention also relates to a system for implementing the method described above in a scanner comprising an X-ray source, an X-ray detection device with N detectors, means for rotating, around a center of rotation, the X-ray source and the detection device, means for introducing at least one bar between the X-radiation source and the X-ray detection device, means for recording in a memory the received signals corresponding to m different angular positions ⁇ j of the source and of the detection device during a complete revolution, characterized in that it further comprises: first means associated with the memory for analyzing the signals contained in said memory so as to determine for each view the value of the angle ⁇ j , second means associated with the memory for analyzing the signals contained in said memory so as to determine the coordinates b, c of the bar, - third means for calculating the theoretical angle ⁇ th for each of the m angular positions ⁇ j . - fourth means for calculating for each of the m views, the angular difference ⁇ th -
  • the geometrical diagram of FIG. 2 makes it possible to better understand the process and to determine the corrections to be made.
  • the point O designates the axis of rotation of the scanner and the axes Ox and Oy are two axes orthogonal to each other and to the axis of rotation, one Ox being horizontal, the other Oy being vertical.
  • the angular position of the structure is defined by the angel ⁇ made by the line FO with Ox, F materializing the focal point of the X-ray source.
  • the point P indicates the location of a bar which strongly absorbs X-ray and whose coordinates are for example b for the abscissa and c for the ordinate.
  • the angle OFP will be called ⁇ ; this angle ⁇ varies during a rotation cycle of the scanner.
  • This angle can also be defined as being the angle between the central detector (aligned with FO) of the detection device 11 and the rank i detector whose signal is attenuated by the bar P.
  • FO central detector
  • i detector rank i detector
  • ⁇ th it is first necessary to determine the coordinates b and c of the bar P, which can be obtained in different ways, for example by carrying out an acquisition on the bar leading to measuring b and c on the image obtained. Another way to calculate b and c will be explained below in relation to the description of Figure 3. The angle ⁇ th is then then calculated by formula (1).
  • the angle ⁇ j is determined by the position of the channel i which presents the most attenuated signal, that corresponding to the X-rays meeting the bar P.
  • the invention proposes a system which will now be described in relation to FIG. 3. It comprises an analog / digital converter 20 to which the output signals of the N detectors or channels of the detection device are applied. 11.
  • the N digital codes corresponding to a position or view of rank j are applied to a logarithm calculation circuit 21 which provides, for each channel i and each view j, a code representative of the attenuation undergone by the X-rays.
  • N codes resulting from this logarithmic calculation operation are applied to a subtraction circuit 22 in which a REF value representative of the attenuation undergone by the X-ray in the air is subtracted from them. This value is obtained using a detector called a monitor, the position of which on the detection device 11 is such that it receives X-radiation without attenuation.
  • the codes which result from this subtraction are recorded in a memory 29 then processed in a calculation device 23 in order to determine for each view j, the angle ⁇ j corresponding to the bar P.
  • This is for example carried out by analyzing the N signals Y i of each view to determine the channel i which represents the center of gravity of the attenuation due to the bar P. More precisely, the channels which correspond to signals attenuated by the bar P are determined, attenuation of which the maximum does not necessarily correspond to the exact angular position of a channel .
  • the straight line FP is not generally aligned with the center of a detector 12 ( Figure 2).
  • the angle ⁇ j is then calculated by the number of channels or detectors 12 which are between the central detector, aligned with FO, and the detector of rank i (i fractional) corresponding to the maximum attenuation, taking into account the fact that the detectors are regularly arranged on an arc of a circle of center F.
  • the m values ⁇ j are recorded in a memory 24 in order to serve, on the one hand, as a basis for calculating the coordinates b and c and, on the other hand, to obtain the correction values ⁇ j .
  • b and c The calculation of b and c is carried out in a circuit 25 using the formula (1) in which ⁇ th is replaced by ⁇ j measured. More precisely, the successive values of ⁇ j are used two by two so as to obtain each time a system of two equations with two unknowns b and c in which ⁇ j and ⁇ j are known.
  • Each system of equations is of the type: with j varying from 1 to m so as to obtain m / 2 systems of equations. It will be understood that ⁇ m + 1 in fact corresponds to ⁇ 1.
  • the resolution of the m / 2 systems results in m / 2 values of b and m / 2 values of c whose averages are calculated.
  • Each of the m values ⁇ j contained in the memory 24 is subtracted algebraically in a circuit 27 from the corresponding value (same angle ⁇ j, that is to say same view) which is provided by the calculation circuit 26.
  • ⁇ j that is to say same view
  • m differential values ⁇ j which are recorded in a memory 28 for use in the image processing device by modifying the angles ⁇ ij which indicate the angular positions of the detectors with respect to the axis Ox.
  • the invention has been described using a single bar, but it can also be implemented using several bars at different positions.
  • the memory 29, which records the values Y ij can be deleted if the calculation of ⁇ j (circuit 23) is carried out in real time.
  • the calculation of the coordinates b and c of the bar P can be carried out in different ways, for example on the image of the bar obtained by the scanner as indicated above.

Abstract

Method for correcting in a scanner defects caused by movements of the scanner, which consists in disposing a test bar (P) which introduces a large attenuation and making the scanner perform a complete turn about a centre of rotation O and obtaining m distinct image captures of the test bar (P) each corresponding to an angular position alpha j. Analysis of the signals from each image capture enables determination of the angle beta j of the test bar, knowledge of this angle beta j leading to the calculation of the coordinates b and c of the test bar P and of the theoretical value beta th of the angle beta for each image capture. The difference between the theoretical value beta th and the measured value beta j is a correction value which is used in the device for formulating the scanner image. <IMAGE>

Description

L'invention concerne les scanners à rayons X et plus particulièrement un procédé qui permet de corriger, dans les images obtenues, les défauts dus aux déplacements de l'ensemble de mesure; elle concerne également un système de correction de tels défauts.The invention relates to X-ray scanners and more particularly to a method which makes it possible to correct, in the images obtained, the defects due to the displacements of the measuring assembly; it also relates to a system for correcting such faults.

Pour examiner un patient, on utilise de plus en plus des appareils à rayons X appelés "scanners" qui réalisent des images de coupes transversales du patient. Ces appareils sont basés sur le phénomène physique d'absorption des rayons X par le corps humain. Cette absorption est directement liée à la distance parcourue x des rayons X dans le corps selon la formule :
I = Ioe-bx
formule dans laquelle :
Io est l'intensité du rayonnement entrant dans le corps humain
I est l'intensité du rayonnement sortant du corps humain,
b est un coefficient d'atténuation qui dépend du corps traversé.
Dans une échelle de mesure logarithmique, l'atténuation I/Io est égale à bx, c'est-à-dire qu'elle est proportionnelle à la distance x.
To examine a patient, more and more x-ray machines called "scanners" are used which take images of the patient's cross sections. These devices are based on the physical phenomenon of absorption of X-rays by the human body. This absorption is directly linked to the distance traveled x of the X-rays in the body according to the formula:
I = I o e -bx
formula in which:
I o is the intensity of the radiation entering the human body
I is the intensity of the radiation leaving the human body,
b is a coefficient of attenuation which depends on the body crossed.
In a logarithmic measurement scale, the attenuation I / I o is equal to bx, i.e. it is proportional to the distance x.

Ces appareils sont constitués essentiellement, comme le montre la figure 1, d'une source 10 de rayons X associée à un dispositif de détection 11, ces deux éléments étant disposés l'un par rapport à l'autre dans une relation géométrique fixe de manière à pouvoir intercaler entre eux le corps à examiner. En outre, ils sont supportés par une structure (non représentée) qui peut tourner autour du corps à examiner de manière à irradier le corps suivant des angles différents. La source de rayons X, qui est commandée par un dispositif 13, émet ses rayons suivant un secteur angulaire qui a une largeur suffisante pour illuminer toute la section transversale du corps. Le dispositif de détection 11 a la forme d'un secteur annulaire dont la longueur est adaptée à la largeur du faisceau de rayons X et est constitué d'un grand nombre de détecteurs élémentaires 12 juxtaposés les uns à côté des autres.These devices consist essentially, as shown in Figure 1, of a source 10 of X-rays associated with a detection device 11, these two elements being arranged relative to each other in a fixed geometric relationship so to be able to interpose between them the body to be examined. In addition, they are supported by a structure (not shown) which can rotate around the body to be examined so as to irradiate the body at different angles. The X-ray source, which is controlled by a device 13, emits its rays in an angular sector which has a width sufficient to illuminate the entire cross section of the body. The detection device 11 has the form of an annular sector the length of which is adapted to the width of the X-ray beam and consists of a large number of elementary detectors 12 juxtaposed one next to the other.

Pour obtenir une image de la section transversale du corps humain traversé par le faisceau de rayons X, on fait tourner la structure de support de la source 10 et du dispositif de détection 11 autour du corps et on mesure les signaux de sortie des détecteurs élémentaires 12 pour les traiter de manière appropriée selon des procédés connus afin d'en tirer une image représentative de la section transversale. Pour ce traitement, les détecteurs élémentaires 12, également appelés canaux, sont connectés à un dispositif électronique 14 qui effectue en premier lieu un calcul du logarithme des signaux reçus de manière à obtenir un signal dont l'amplitude est proportionnelle à l'atténuation des rayons X.To obtain an image of the cross section of the human body through which the X-ray beam passes, the support structure of the source 10 and of the detection device 11 is rotated around the body and the output signals of the elementary detectors 12 are measured. to treat them appropriately according to known methods in order to obtain a representative image of the cross section. For this processing, the elementary detectors 12, also called channels, are connected to an electronic device 14 which first performs a calculation of the logarithm of the signals received so as to obtain a signal whose amplitude is proportional to the attenuation of the rays X.

L'axe de rotation de la structure - source 10, dispositif de détection 11 - est matérialisé par le point 0, ce qui signifie que la source 10 et les détecteurs 12 décrivent chacun une circonférence de centre 0 et de rayon déterminé lors de la rotation de la structure. Ceci n'est vrai qu'en théorie car les tolérances de construction et d'utilisation conduisent à des écarts par rapport aux positions théoriques. Il en résulte alors des défauts dans les images appelés "artéfacts" et une diminution de la résolution spatiale.The axis of rotation of the structure - source 10, detection device 11 - is materialized by point 0, which means that the source 10 and the detectors 12 each describe a circumference of center 0 and of radius determined during rotation of the structure. This is only true in theory because the construction and use tolerances lead to deviations from the theoretical positions. This then results in defects in the images called "artifacts" and a decrease in spatial resolution.

Le but de la présente invention est donc de mettre en oeuvre un procédé qui permet de corriger les défauts résultant des écarts de position de la source et des détecteurs par rapport à leur position théorique.The object of the present invention is therefore to implement a method which makes it possible to correct the defects resulting from deviations in the position of the source and of the detectors with respect to their theoretical position.

Un autre but de l'invention est également de réaliser un système qui met en oeuvre ledit procédé de correction.Another object of the invention is also to provide a system which implements said correction method.

L'invention se rapporte à un procédé de correction des défauts d'images d'un scanner dus aux déplacements de ce dernier, caractérisé en ce qu'il comprend les opérations suivantes :
- La mise en place d'au moins un barreau qui introduit un affaiblissement important du rayonnement X incident,
- la rotation du scanner sur un tour complet de manière à réaliser un nombre m de vues sur les N détecteurs ou canaux du scanner, chaque vue correspondant à une position angulaire déterminée αj du scanner autour de son centre de rotation,
- la détermination, pour chaque vue, du centre de gravité de l'atténuation (barreau) de manière à mesurer un angle βj entre les axes de rayonnement passant l'un par le centre de rotation et l'autre par le centre de gravité de l'atténuation,
- la mesure des coordonnées cartésiennes b et c du centre de gravité de l'atténuation, c'est-à-dire du barreau,
- le calcul pour chaque vue de l'angle théorique βth entre les axes de rayonnement passant l'un par le centre de rotation du scanner et l'autre par le point de coordonnées b et c,
- le calcul pour chaque vue de la différence δj entre les angles βth et βj et la mise en mémoire des m valeurs δj, chaque valeur δj étant ensuite utilisée pour modifier la valeur correspondante de la position angulaire αj.
The invention relates to a method for correcting image defects of a scanner due to the movements of the latter, characterized in that it comprises the following operations:
- The installation of at least one bar which introduces a significant weakening of the incident X-ray,
the rotation of the scanner over a complete revolution so as to produce a number m of views on the N detectors or channels of the scanner, each view corresponding to a determined angular position α j of the scanner around its center of rotation,
- the determination, for each view, of the center of gravity of the attenuation (bar) so as to measure an angle β j between the axes of radiation passing one by the center of rotation and the other by the center of gravity attenuation,
- the measurement of the Cartesian coordinates b and c of the center of gravity of the attenuation, that is to say of the bar,
- the calculation for each view of the theoretical angle β th between the axes of radiation passing one by the center of rotation of the scanner and the other by the point of coordinates b and c,
- the calculation for each view of the difference δ j between the angles β th and β j and the storage of the m values δ j , each value δ j then being used to modify the corresponding value of the position angular α j .

L'invention se rapporte également à un système pour mettre en oeuvre le procédé décrit ci-dessus dans un scanner comprenant une source de rayonnement X, un dispositif de détection du rayonnement X à N détecteurs, des moyens pour faire tourner, autour d'un centre de rotation, la source de rayonnement X et le dispositif de détection, des moyens pour introduire au moins un barreau entre la source de rayonnement X et le dispositif de détection de rayonnement X, des moyens pour enregistrer dans une mémoire les signaux reçus correspondant à m positions angulaires différentes αj de la source et du dispositif de détection lors d'un tour complet, caractérisé en ce qu'il comprend en outre :
- des premiers moyens associés à la mémoire pour analyser les signaux contenus dans ladite mémoire de manière à déterminer pour chaque vue la valeur de l'angle βj,
- des deuxièmes moyens associés à la mémoire pour analyser les signaux contenus dans ladite mémoire de manière à déterminer les coordonnées b, c du barreau,
- des troisièmes moyens pour calculer l'angle théorique βth pour chacune des m positions angulaires αj.
- des quatrièmes moyens pour calculer pour chacune des m vues, la différence angulaire
βth - βj = δj, et
- des cinquièmes moyens pour enregistrer les m valeurs angulaires de correction δj.
The invention also relates to a system for implementing the method described above in a scanner comprising an X-ray source, an X-ray detection device with N detectors, means for rotating, around a center of rotation, the X-ray source and the detection device, means for introducing at least one bar between the X-radiation source and the X-ray detection device, means for recording in a memory the received signals corresponding to m different angular positions α j of the source and of the detection device during a complete revolution, characterized in that it further comprises:
first means associated with the memory for analyzing the signals contained in said memory so as to determine for each view the value of the angle β j ,
second means associated with the memory for analyzing the signals contained in said memory so as to determine the coordinates b, c of the bar,
- third means for calculating the theoretical angle β th for each of the m angular positions α j .
- fourth means for calculating for each of the m views, the angular difference
β th - β j = δ j , and
- fifth means for recording the m angular correction values δ j .

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description suivante d'un exemple particulier de réalisation, ladite description étant faite avec les dessins joints dans lesquels :

  • - la figure 1 est un schéma de principe d'un scanner à rayons X ;
  • - la figure 2 est un schéma géométrique qui permet de comprendre le procédé mis en oeuvre; et
  • - la figure 3 est un schéma fonctionnel d'un système de traitement des signaux des détecteurs mettant en oeuvre le procédé de correction des images d'un scanner selon l'invention.
Other characteristics and advantages of the present invention will appear on reading the following description of a particular embodiment, said description being made with the accompanying drawings in which :
  • - Figure 1 is a block diagram of an X-ray scanner;
  • - Figure 2 is a geometric diagram which allows to understand the process used; and
  • - Figure 3 is a block diagram of a signal processing system of the detectors implementing the image correction method of a scanner according to the invention.

Le schéma géométrique de la figure 2 permet de mieux comprendre le procédé et de déterminer les corrections à effectuer. Sur cette figure, le point O désigne l'axe de rotation du scanner et les axes Ox et Oy sont deux axes orthogonaux entre eux et à l'axe de rotation, l'un Ox étant horizontal, l'autre Oy étant vertical. La position angulaire de la structure est définie par l'ange α que fait la droite FO avec Ox, F matérialisant le foyer de la source de rayons X. Le point P indique l'emplacement d'un barreau qui absorbe fortement le rayonnement X et dont les coordonnées sont par exemple b pour l'abscisse et c pour l'ordonnée.The geometrical diagram of FIG. 2 makes it possible to better understand the process and to determine the corrections to be made. In this figure, the point O designates the axis of rotation of the scanner and the axes Ox and Oy are two axes orthogonal to each other and to the axis of rotation, one Ox being horizontal, the other Oy being vertical. The angular position of the structure is defined by the angel α made by the line FO with Ox, F materializing the focal point of the X-ray source. The point P indicates the location of a bar which strongly absorbs X-ray and whose coordinates are for example b for the abscissa and c for the ordinate.

Par ailleurs, on appellera β l'angle OFP; cet angle β varie au cours d'un cycle de rotation du scanner. Cet angle peut aussi se définir comme étant l'angle entre le détecteur central (aligné avec FO) du dispositif de détection 11 et le détecteur de rang i dont le signal est atténué par le barreau P. Ainsi, pour chaque vue d'ordre j, plusieurs canaux présenteront un signal fortement atténué par le barreau P, ce qui permettra de définir un angle βj. Selon l'invention, cet angle βj sera comparé par soustraction à l'angle théorique βth défini par la relation trigonométrique :

Figure imgb0001
Furthermore, the angle OFP will be called β; this angle β varies during a rotation cycle of the scanner. This angle can also be defined as being the angle between the central detector (aligned with FO) of the detection device 11 and the rank i detector whose signal is attenuated by the bar P. Thus, for each view of order j , several channels will present a signal strongly attenuated by the bar P, which will make it possible to define an angle β j . According to the invention, this angle β j will be compared by subtraction to the theoretical angle β th defined by the trigonometric relation:
Figure imgb0001

C'est le résultat de cette soustraction βth - βj qui sera utilisé pour effectuer des corrections sur les positions angulaires αj.It is the result of this subtraction β th - β j which will be used to make corrections on the angular positions α j .

Pour connaître βth, il faut d'abord déterminer les coordonnées b et c du barreau P, ce qui peut être obtenu de différentes manières, par exemple en effectuant une acquisition sur le barreau conduisant à mesurer b et c sur l'image obtenue. Une autre manière de calculer b et c sera expliquée ci-après en relation avec la description de la figure 3. L'angle βth est alors ensuite calculé par la formule (1).To know β th , it is first necessary to determine the coordinates b and c of the bar P, which can be obtained in different ways, for example by carrying out an acquisition on the bar leading to measuring b and c on the image obtained. Another way to calculate b and c will be explained below in relation to the description of Figure 3. The angle β th is then then calculated by formula (1).

Pour chaque vue j, l'angle βj est déterminé par la position du canal i qui présente le signal le plus atténué, celui correspondant aux rayons X rencontrant le barreau P.For each view j, the angle β j is determined by the position of the channel i which presents the most attenuated signal, that corresponding to the X-rays meeting the bar P.

Le procédé de correction des défauts d'images d'un scanner dus aux déplacements de ce dernier comprend donc les opérations suivantes :
- La mise en place au moins d'un barreau introduisant un affaiblissement important du rayonnement X incident,
- la rotation du scanner sur un tour complet de manière à réaliser un nombre m de vues sur les N détecteurs ou canaux, chaque vue correspond à une position angulaire déterminée αj du scanner autour de son centre de rotation,
- la détermination, pour chaque vue d'ordre j (angle αj), du centre de gravité de l'atténuation (correspondant au barreau P) et ainsi obtenir la valeur de l'angle βj,
- la mesure des coordonnées b et c du barreau P,
- le calcul pour chaque vue j de l'angle théorique βth à partir des coordonnées mesurées b et c du barreau en utilisant la formule (1);
- le calcul pour chaque vue j de la différence
δj = (βth - βj)
qui constitue une valeur de correction et la mise en mémoire des m valeurs δj;
- l'utilisation de chaque valeur δj pour modifier la valeur correspondante des positions angulaires des N détecteurs pour la vue d'ordre j.
The method for correcting image defects of a scanner due to the movements of the latter therefore comprises the following operations:
- The installation of at least one bar introducing a significant weakening of the incident X-ray,
the rotation of the scanner over a complete revolution so as to produce a number m of views on the N detectors or channels, each view corresponds to a determined angular position α j of the scanner around its center of rotation,
the determination, for each view of order j (angle α j ), of the center of gravity of the attenuation (corresponding to the bar P) and thus obtain the value of the angle β j ,
- the measurement of the coordinates b and c of the bar P,
- the calculation for each view j of the theoretical angle β th from the measured coordinates b and c of the bar using the formula (1);
- the calculation for each view j of the difference
δ j = (β th - β j )
which constitutes a correction value and the storage of the m values δ j ;
- the use of each value δ j to modify the corresponding value of the angular positions of the N detectors for the view of order j.

Pour mettre en oeuvre ce procédé de correction, l'invention propose un système qui sera maintenant décrit en relation avec la figure 3. Il comprend un convertisseur analogique/numérique 20 auquel sont appliqués les signaux de sortie des N détecteurs ou canaux du dispositif de détection 11. Les N codes numériques correspondant à une position ou vue de rang j sont appliqués à un circuit de calcul de logarithme 21 qui fournit, pour chaque canal i et chaque vue j un code représentatif de l'atténuation subie par le rayonnement X. Les N codes résultant de cette opération de calcul logarithmique sont appliqués à un circuit de soustraction 22 dans lequel on leur soustrait une valeur REF représentative de l'atténuation subie par le rayonnement X dans l'air. Cette valeur est obtenue à l'aide d'un détecteur appelé moniteur dont la position sur le dispositif de détection 11 est telle qu'il reçoit le rayonnement X sans atténuation.To implement this correction method, the invention proposes a system which will now be described in relation to FIG. 3. It comprises an analog / digital converter 20 to which the output signals of the N detectors or channels of the detection device are applied. 11. The N digital codes corresponding to a position or view of rank j are applied to a logarithm calculation circuit 21 which provides, for each channel i and each view j, a code representative of the attenuation undergone by the X-rays. N codes resulting from this logarithmic calculation operation are applied to a subtraction circuit 22 in which a REF value representative of the attenuation undergone by the X-ray in the air is subtracted from them. This value is obtained using a detector called a monitor, the position of which on the detection device 11 is such that it receives X-radiation without attenuation.

Les codes qui résultent de cette soustraction, appelés mesures Yij, sont enregistrées dans une mémoire 29 puis traitées dans un dispositif de calcul 23 afin de déterminer pour chaque vue j, l'angle βj correspondant au barreau P. Ceci est par exemple effectué en analysant les N signaux Yi de chaque vue pour déterminer le canal i qui représente le centre gravité de l'atténuation due au barreau P. Plus précisément, on détermine les canaux qui correspondent à des signaux atténués par le barreau P, atténuation dont le maximum ne correspond pas forcément à la position angulaire exacte d'un canal. En d'autres mots, la droite FP n'est pas en général alignée avec le centre d'un détecteur 12 (Figure 2). Aussi, il est nécessaire de déterminer le maximum de l'atténuation et on obtient alors une valeur de i qui n'est pas entière mais fractionnaire. L'angle βj est alors calculé par le nombre de canaux ou de détecteurs 12 qui sont entre le détecteur central, aligné avec FO, et le détecteur de rang i (i fractionnaire) correspondant à l'atténuation maximale, en tenant compte du fait que les détecteurs sont régulièrement disposés sur un arc de cercle de centre F.The codes which result from this subtraction, called measurements Y ij , are recorded in a memory 29 then processed in a calculation device 23 in order to determine for each view j, the angle β j corresponding to the bar P. This is for example carried out by analyzing the N signals Y i of each view to determine the channel i which represents the center of gravity of the attenuation due to the bar P. More precisely, the channels which correspond to signals attenuated by the bar P are determined, attenuation of which the maximum does not necessarily correspond to the exact angular position of a channel . In other words, the straight line FP is not generally aligned with the center of a detector 12 (Figure 2). Also, it is necessary to determine the maximum of the attenuation and one then obtains a value of i which is not integer but fractional. The angle β j is then calculated by the number of channels or detectors 12 which are between the central detector, aligned with FO, and the detector of rank i (i fractional) corresponding to the maximum attenuation, taking into account the fact that the detectors are regularly arranged on an arc of a circle of center F.

Les m valeurs βj sont enregistrées dans une mémoire 24 afin de servir, d'une part, de base de calcul des coordonnées b et c et, d'autre part, pour obtenir les valeurs δj de correction.The m values β j are recorded in a memory 24 in order to serve, on the one hand, as a basis for calculating the coordinates b and c and, on the other hand, to obtain the correction values δ j .

Le calcul de b et c est effectué dans un circuit 25 en utilisant la formule (1) dans laquelle βth est remplacé par βj mesuré. Plus précisément, on utilise les valeurs successives de βj deux à deux de manière à obtenir à chaque fois un système de deux équations à deux inconnues b et c dans lequel βj et αj sont connus. Chaque système d'équations est du type :

Figure imgb0002
avec j variant de 1 à m de manière à obtenir m/₂ systèmes d'équations. On comprendra que βm+1 correspond en fait à β₁.The calculation of b and c is carried out in a circuit 25 using the formula (1) in which β th is replaced by β j measured. More precisely, the successive values of β j are used two by two so as to obtain each time a system of two equations with two unknowns b and c in which β j and α j are known. Each system of equations is of the type:
Figure imgb0002
with j varying from 1 to m so as to obtain m / ₂ systems of equations. It will be understood that β m + 1 in fact corresponds to β₁.

La résolution des m/2 systèmes aboutit à m/2 valeurs de b et m/2 valeurs de c dont on calcule les moyennes.The resolution of the m / 2 systems results in m / 2 values of b and m / 2 values of c whose averages are calculated.

Ce sont ces valeurs moyennes de b et c qui sont transmises à un circuit 26 qui réalise pour chaque vue de position αj le calcul des m valeurs théoriques βth.These are the average values of b and c which are transmitted to a circuit 26 which performs for each position view α j the calculation of the m theoretical values β th .

Chacune des m valeurs βj contenues dans la mémoire 24 est soustraite algébriquement dans un circuit 27 à la valeur correspondante (même angle αj c'est-à-dire même vue) qui est fournie par le circuit de calcul 26. On obtient alors m valeurs différentielles δj qui sont enregistrées dans une mémoire 28 pour être utilisées dans le dispositif d'élaboration de l'image en modifiant les angles αij qui indiquent les positions angulaires des détecteurs par rapport à l'axe Ox.Each of the m values β j contained in the memory 24 is subtracted algebraically in a circuit 27 from the corresponding value (same angle α j, that is to say same view) which is provided by the calculation circuit 26. We then obtain m differential values δ j which are recorded in a memory 28 for use in the image processing device by modifying the angles α ij which indicate the angular positions of the detectors with respect to the axis Ox.

L'invention a été décrite en utilisant un seul barreau mais elle peut être aussi mise en oeuvre en utilisant plusieurs barreaux à différentes positions.The invention has been described using a single bar, but it can also be implemented using several bars at different positions.

Le système qui a été décrit en relation avec la figure 3 peut être réalisé suivant différentes variantes sans sortir du cadre de la présente invention. Notamment, le mémoire 29, qui enregistre les valeurs Yij, peut être supprimée si le calcul de βj (circuit 23) est effectué en temps réel.The system which has been described in relation to FIG. 3 can be produced according to different variants without departing from the scope of the present invention. In particular, the memory 29, which records the values Y ij , can be deleted if the calculation of β j (circuit 23) is carried out in real time.

De même, le calcul des coordonnées b et c du barreau P peut être réalisé de différentes manières, par exemple sur l'image du barreau obtenu par le scanner comme on l'a signalé ci-dessus.Likewise, the calculation of the coordinates b and c of the bar P can be carried out in different ways, for example on the image of the bar obtained by the scanner as indicated above.

Claims (5)

1. Procédé de correction des défauts d'images d'un scanner dus aux déplacements de ce dernier, caractérisé en ce qu'il comprend les opérations suivantes :
- La mise en place d'au moins un barreau (P) qui introduit un affaiblissement important du rayonnement X incident,
- la rotation du scanner sur un tour complet de manière à réaliser un nombre m de vues sur les N détecteurs ou canaux du scanner, chaque vue correspondant à une position angulaire déterminée αj du scanner autour de son centre de rotation,
- la détermination, pour chaque vue, du centre de gravité de l'atténuation de manière à mesurer un angle βj entre les axes de rayonnement passant l'un par le centre de rotation et l'autre par le détecteur présentant le centre de gravité de l'atténuation.
- la mesure des coordonnées cartésiennes b et c du centre de gravité du barreau (P),
- le calcul pour chaque vue de l'angle théorique βth entre les axes de rayonnement passant l'un par le centre de rotation du scanner et l'autre par le point de coordonnées b et c,
- le calcul pour chaque vue de la différence δj entre les angles βth et βj et la mise en mémoire des m valeurs δj, chacune de ces m valeurs étant ensuite utilisées pour modifier la valeur correspondante de la position angulaire αj.
1. Method for correcting image defects of a scanner due to the movements of the latter, characterized in that it comprises the following operations:
- The installation of at least one bar (P) which introduces a significant weakening of the incident X-ray,
the rotation of the scanner over a complete revolution so as to produce a number m of views on the N detectors or channels of the scanner, each view corresponding to a determined angular position α j of the scanner around its center of rotation,
the determination, for each view, of the center of gravity of the attenuation so as to measure an angle β j between the axes of radiation passing one by the center of rotation and the other by the detector having the center of gravity of mitigation.
- the measurement of the Cartesian coordinates b and c of the center of gravity of the bar (P),
- the calculation for each view of the theoretical angle β th between the axes of radiation passing one by the center of rotation of the scanner and the other by the point of coordinates b and c,
- the calculation for each view of the difference δ j between the angles β th and β j and the storage of the m values δ j , each of these m values then being used to modify the corresponding value of the angular position α j .
2. Procédé selon la revendication caractérisé en ce que l'opération de détermination de l'angle βj consiste à analyser, pour chaque vue, les N signaux reçus de manière à déterminer la position angulaire du centre de gravité du signal le plus faible et à la comparer à la position angulaire correspondant à l'alignement foyer (F) du rayonnement X et du centre O de rotation du scanner.2. Method according to claim characterized in that the operation of determining the angle β j consists in analyzing, for each view, the N signals received from so as to determine the angular position of the center of gravity of the weakest signal and to compare it to the angular position corresponding to the focal point alignment (F) of the X-ray and of the center O of rotation of the scanner. 3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'opération de mesure des coordonnées cartésiennes b et c du barreau (P) est réalisée à partir des m valeurs βj en résolvant m/2 systèmes de deux équations à deux inconnues du type :
Figure imgb0003
(j variant de 1 à m) et en calculant les moyennes des m/2 valeurs obtenues pour b et c.
3. Method according to claim 1 or 2, characterized in that the measurement operation of the Cartesian coordinates b and c of the bar (P) is carried out from the m values β j by solving m / 2 systems of two equations with two unknown type:
Figure imgb0003
(j varying from 1 to m) and by calculating the means of the m / 2 values obtained for b and c.
4. Procédé selon la revendication 1, 2 ou 3, caractérisé en ce que l'opération de calcul pour chaque vue de l'angle théorique βth est effectuée selon la formule :
Figure imgb0004
4. Method according to claim 1, 2 or 3, characterized in that the calculation operation for each view of the theoretical angle β th is carried out according to the formula:
Figure imgb0004
5. Système pour mettre en oeuvre le procédé selon l'une quelconque des revendications précédentes dans un scanner comprenant une source (10) de rayonnement X, un dispositif de détection (11) du rayonnement X à N détecteurs, des moyens pour faire tourner, autour d'un centre de rotation, la source de rayonnement X et le dispositif de détection, des moyens pour enregistrer dans une mémoire les signaux reçus correspondant à m positions angulaires différentes αj de la source et du dispositif de détection lors d'un tour complet, caractérisé en ce qu'il comprend en outre :
- des premiers moyens (23) associés à la première mémoire pour analyser les signaux contenus dans ladite mémoire de manière à déterminer pour chaque vue la valeur de l'angle βj,
- des deuxièmes moyens (25) pour déterminer les coordonnées b, c du barreau (P),
- des troisièmes moyens (26) pour calculer l'angle théorique βth pour chacune des m positions angulaires αj.
- des quatrièmes moyens (27) pour calculer pour chacune des m vues, la différence angulaire
βth - βj = δj, et
- des cinquièmes moyens (28) pour enregistrer les m valeurs angulaires de correction δj.
5. System for implementing the method according to any one of the preceding claims in a scanner comprising a source (10) of X-radiation, a device (11) for detecting X-radiation at N detectors, means for rotating the X-ray source and the detection device around a center of rotation, means for recording in a memory the signals received corresponding to m different angular positions α j of the source and the detection device during a complete revolution, characterized in that it further comprises:
- first means (23) associated with the first memory for analyzing the signals contained in said memory so as to determine for each view the value of the angle β j ,
- second means (25) for determining the coordinates b, c of the bar (P),
- third means (26) for calculating the theoretical angle β th for each of the m angular positions α j .
- fourth means (27) for calculating for each of the m views, the angular difference
β th - β j = δ j , and
- fifth means (28) for recording the m angular correction values δ j .
EP89402440A 1988-09-16 1989-09-07 Method and system for correcting image defects caused by the movement of a scanner Ceased EP0360653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8812120A FR2636752B1 (en) 1988-09-16 1988-09-16 METHOD AND SYSTEM FOR CORRECTING DEFECTS IN IMAGES OF A SCANNER DUE TO MOVEMENTS THEREOF
FR8812120 1988-09-16

Publications (1)

Publication Number Publication Date
EP0360653A1 true EP0360653A1 (en) 1990-03-28

Family

ID=9370079

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89402440A Ceased EP0360653A1 (en) 1988-09-16 1989-09-07 Method and system for correcting image defects caused by the movement of a scanner

Country Status (4)

Country Link
US (1) US5056020A (en)
EP (1) EP0360653A1 (en)
JP (1) JP2952313B2 (en)
FR (1) FR2636752B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2705222A1 (en) * 1993-05-18 1994-11-25 Ge Medical Syst Sa Field shaping device slaved to the angular position of the beam of an X-ray imaging system

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251128A (en) * 1990-11-19 1993-10-05 General Electric Company Motion artifact reduction in projection imaging
US5611026A (en) * 1992-12-21 1997-03-11 General Electric Company Combining a priori data with partial scan data to project three dimensional imaging of arbitrary objects with computerized tomography
JPH07218637A (en) * 1994-01-31 1995-08-18 Shimadzu Corp Emission ct system
US6694163B1 (en) 1994-10-27 2004-02-17 Wake Forest University Health Sciences Method and system for producing interactive, three-dimensional renderings of selected body organs having hollow lumens to enable simulated movement through the lumen
US5782762A (en) * 1994-10-27 1998-07-21 Wake Forest University Method and system for producing interactive, three-dimensional renderings of selected body organs having hollow lumens to enable simulated movement through the lumen
US5920319A (en) 1994-10-27 1999-07-06 Wake Forest University Automatic analysis in virtual endoscopy
US7194117B2 (en) 1999-06-29 2007-03-20 The Research Foundation Of State University Of New York System and method for performing a three-dimensional virtual examination of objects, such as internal organs
US6331116B1 (en) 1996-09-16 2001-12-18 The Research Foundation Of State University Of New York System and method for performing a three-dimensional virtual segmentation and examination
US8682045B2 (en) * 1997-02-25 2014-03-25 Wake Forest University Health Sciences Virtual endoscopy with improved image segmentation and lesion detection
US7747055B1 (en) 1998-11-25 2010-06-29 Wake Forest University Health Sciences Virtual endoscopy with improved image segmentation and lesion detection
US7477768B2 (en) * 1999-06-29 2009-01-13 The Research Foundation Of State University Of New York System and method for performing a three-dimensional virtual examination of objects, such as internal organs
WO2001093745A2 (en) * 2000-06-06 2001-12-13 The Research Foundation Of State University Of New York Computer aided visualization, fusion and treatment planning
AU2002211391A1 (en) 2000-10-02 2002-04-15 The Research Foundation Of State University Of New York Enhanced virtual navigation and examination
US7630750B2 (en) * 2001-02-05 2009-12-08 The Research Foundation For The State University Of New York Computer aided treatment planning
US7324104B1 (en) 2001-09-14 2008-01-29 The Research Foundation Of State University Of New York Method of centerline generation in virtual objects
US7596256B1 (en) 2001-09-14 2009-09-29 The Research Foundation For The State University Of New York Computer assisted detection of lesions in volumetric medical images
JP2006000225A (en) * 2004-06-15 2006-01-05 Canon Inc X-ray ct apparatus
US20100260390A1 (en) * 2005-11-30 2010-10-14 The Research Foundation Of State University Of New York System and method for reduction of false positives during computer aided polyp detection
US8452061B2 (en) * 2005-11-30 2013-05-28 The Research Foundation Of State University Of New York Electronic colon cleansing method for virtual colonoscopy
US8243334B2 (en) 2008-06-06 2012-08-14 Virginia Venture Industries, Llc Methods and apparatuses for printing three dimensional images

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068306A (en) * 1976-07-12 1978-01-10 General Electric Co. X-ray data acquisition system and method for calibration
FR2397179A1 (en) * 1977-07-12 1979-02-09 Emi Ltd IMPROVED TREATMENT TOMOGRAPHY DEVICE
EP0218367A1 (en) * 1985-09-30 1987-04-15 Picker International, Inc. Bone mineral analysis phantom

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2645416A1 (en) * 1976-10-08 1978-04-13 Philips Patentverwaltung PROCEDURE AND ARRANGEMENT FOR DETERMINING THE DISTRIBUTION OF ABSORPTION OF A BODY
US4135096A (en) * 1977-11-23 1979-01-16 Giordano Ames F Electronic-optical system for X-ray object cross section image reconstruction
DE2754361C2 (en) * 1977-12-07 1983-07-14 N.V. Philips' Gloeilampenfabrieken, 5621 Eindhoven Method for reducing image errors in computer tomography images
US4217641A (en) * 1978-04-28 1980-08-12 U.S. Philips Corporation Correction for polychromatic X-ray distortion in CT images

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068306A (en) * 1976-07-12 1978-01-10 General Electric Co. X-ray data acquisition system and method for calibration
FR2397179A1 (en) * 1977-07-12 1979-02-09 Emi Ltd IMPROVED TREATMENT TOMOGRAPHY DEVICE
EP0218367A1 (en) * 1985-09-30 1987-04-15 Picker International, Inc. Bone mineral analysis phantom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2705222A1 (en) * 1993-05-18 1994-11-25 Ge Medical Syst Sa Field shaping device slaved to the angular position of the beam of an X-ray imaging system

Also Published As

Publication number Publication date
FR2636752B1 (en) 1990-10-26
JP2952313B2 (en) 1999-09-27
JPH02121067A (en) 1990-05-08
US5056020A (en) 1991-10-08
FR2636752A1 (en) 1990-03-23

Similar Documents

Publication Publication Date Title
EP0360653A1 (en) Method and system for correcting image defects caused by the movement of a scanner
US6044288A (en) Apparatus and method for determining the perimeter of the surface of an object being scanned
JP3560374B2 (en) Method for shielding with partially transmissive objects for scattered radiation correction in X-ray imaging
US4549307A (en) X-Ray imaging system having radiation scatter compensation and method
EP0346181B1 (en) Process and system for calibrating an x-ray scanner using one or several circular offset standards
EP0074877B1 (en) System for the non-destructive testing of the internal structure of objects
US8094774B2 (en) X-ray computed tomography apparatus
US7570735B2 (en) X-ray CT scanner
US4547893A (en) Continuous wave fan beam tomography system having a best-estimating filter
FR2885007A1 (en) DIFFUSION COMPENSATION METHOD AND MEASURING METHOD
JPH0798041B2 (en) Overrange correction circuit and overrange correction method
FR2905466A1 (en) METHOD AND DEVICE FOR SECURITY INSPECTION OF LIQUID ARTICLES USING RADIATION
EP0105618B1 (en) X-ray imaging system having radiation scatter compensation and method
US9372163B2 (en) Method of conducting an X-ray diffraction-based crystallography analysis
FR2629214A1 (en) METHOD AND SYSTEM FOR CALIBRATING AN X-RAY SCANNER USING ONLY ONE NON-CIRCULAR CALIBRATION
EP0159248B1 (en) Reconstruction of tomographic images of high definition based on absorption measurements
EP0157687B1 (en) Reconstruction of tomographic images based on absorption measurements
FR2803916A1 (en) Method and device for digitally processing images of an object or patient, obtained using ionizing radiation, in which the signal is optimized whether the signal obtained is of high or low intensity
FR2461485A1 (en) NOVEL METHOD OF USING AN X-RAY TOMODENSITOMETER FOR REALIZING CINENSENSORRAPHY, AND A TOMODENSITOMETER THUS USED
EP0366529A1 (en) Method and system for suppressing interferences in an X-ray scanner
JP2826297B2 (en) Optical CT reconstruction method
EP1003419B1 (en) Apparatus for determining the perimeter of a scanned object
EP0366528A1 (en) Method and device for calibrating an X-ray scanner by means of at least one phantom
FR2700259A1 (en) X-ray scanner collimator
JP2813984B2 (en) X-ray CT X-ray detection system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT NL

17P Request for examination filed

Effective date: 19900305

17Q First examination report despatched

Effective date: 19921103

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19930503