EP0362529A1 - Combined shock wave generator - Google Patents

Combined shock wave generator Download PDF

Info

Publication number
EP0362529A1
EP0362529A1 EP89115234A EP89115234A EP0362529A1 EP 0362529 A1 EP0362529 A1 EP 0362529A1 EP 89115234 A EP89115234 A EP 89115234A EP 89115234 A EP89115234 A EP 89115234A EP 0362529 A1 EP0362529 A1 EP 0362529A1
Authority
EP
European Patent Office
Prior art keywords
shock wave
wave source
imaging system
shock
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89115234A
Other languages
German (de)
French (fr)
Inventor
Michael Dr.rer.nat. Dipl.-Phys. Grünewald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier Medizintechnik GmbH
Original Assignee
Dornier Medizintechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier Medizintechnik GmbH filed Critical Dornier Medizintechnik GmbH
Publication of EP0362529A1 publication Critical patent/EP0362529A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/04Sound-producing devices
    • G10K15/043Sound-producing devices producing shock waves

Definitions

  • the invention relates to a device for generating focused shock waves according to the preamble of claim 1.
  • Shock waves are understood here as weaker pressure pulses, the intensity of which is sufficient to cause changes in the bodies of living beings, such as e.g. Movement of stones or heating of tissue.
  • a lithotripter with an area source is known. This is either designed as a self-focusing spherical cap or flat. Imaging systems such as reflectors, lenses or electrical controls of the different zones of the shock wave source are then required for focusing.
  • a lithotripter with two shock wave sources is known from German utility model 88 02 995.
  • shock waves are generated extracorporeally and passed through the skin to the stone; on the other hand, the shock waves are generated at the end of a light guide near the stone.
  • the object of the invention is to propose a flexible and versatile shock wave source, in particular for lithotripsy, which combines the positive properties of the individual shock wave sources known per se, such as high flexibility and high shattering power.
  • the essence of the invention is the dual use of the imaging system by shock waves that come from two different sources.
  • the second shock wave source is a flat, circular oscillator (e.g. a disk covered with piezoceramic elements).
  • the imaging system is a rotationally symmetrical body with a flat back and a curved front. This body is designed so that it acts as a reflector for the point source and for the surface shock wave source together with the medium in the reflector as a lens, so that with suitable dimensioning and choice of material both sources have a common object-side focus.
  • the second shock wave source and the imaging body are preferably rotationally symmetrical, in particular the body has an ellipsoidal front surface.
  • the first shock wave source is preferably located in the Axis of symmetry of the two aforementioned components.
  • a common focal point and ideal geometric imaging properties are present if ellipsoid eccentricity and refractive index on the object side match.
  • the latter condition determines the selection of suitable materials and the geometric shape.
  • the imaging system exists - e.g. when the reflector is filled with water - preferably from a metallic material with which the double effect (lens and reflector) can be achieved.
  • the imaging system is flush with the flat shock wave (e.g. the piezoceramic transducer or the transducer), which can be achieved by gluing or friction welding.
  • the flat shock wave e.g. the piezoceramic transducer or the transducer
  • the first shock wave source the electrode
  • the ellipsoid of revolution formed by the front surface of the imaging body can be closed off for use with a water cushion for coupling to the patient's body.
  • the flat transducer can be segmented. This segmentation can e.g. in a piezoceramic transducer consist of individual elements (mosaic-like design) to protect the transducer from destruction by high-voltage pulses.
  • the mechanical termination of the piezoelectric oscillator is selected so that acoustic pulses (shock waves) with the widest possible band are generated.
  • the flat transducer can also have a dynamic focus. This can be done in the segmented Execution can be achieved in that the individual elements are controlled radially offset in time. This makes it possible to achieve different foci of the two shock wave systems, to vary the focus or, in the case of non-ideal focusing, to compensate for the error by means of electronic control by means of the ellipsoid of rotation.
  • the planar transducer can also be curved itself. This is advantageous, for example, if the ellipsoid eccentricity and the refractive index of the lens on the object side are different, so that one or the other shock wave system results in a non-ideal focusing, which is corrected without electronic aids.
  • the shape of the transducer should be either concave or convex, depending on whether the eccentricity is greater or less than the refractive index.
  • the imaging body can also have such curvatures that different foci can be reached. This always occurs when the eccentricity and the refractive index are different. This can be used to advantage if different focal lengths are required in the application, which can be due to different stone positions or patient sizes.
  • the invention is illustrated by a figure.
  • the figure shows a device for crushing stones in the body of a patient P.
  • the device is arranged opposite the patient's body such that the second focal point (F2) coincides with the location of the stone in the patient P.
  • the device contains a first shock wave source, here the electrode E, whose spark, which generates a shock wave, lies in the focal point F1 of an imaging body K.
  • the body K has a rotationally elliptical symmetry and guides all shock waves generated in its focal point F1 into the second focal point by reflection on its front side. This is indicated by the wave normal N1 in the figure.
  • the device contains a second shock wave source, here the piezoceramic vibrator S. This shock wave source is here rotationally symmetrical and flat.
  • shock waves generated by the vibrator S pass through the imaging body K, whose front interface here deflects the shock waves to the focal point F2.
  • An exemplary shock wave is represented by the normal N2.
  • the components of the electrical current and voltage supply for the two shock wave sources E and S are not shown, it being possible for one or both of the sources to also be strong ultrasound transmitters.
  • shock wave sources are also not shown.
  • the shape of the shock wave sources corresponds to the back of the imaging body.

Abstract

Device for the generation of focused shock waves, especially for non-contact lithotripsy, having a first point-shaped shock wave generator (E), a second, laminar shock wave generator (S) and an imaging system (K), which focuses the shock waves generated by both shock wave generators (E, S) onto the focal point F2 in the body of a patient (P). <IMAGE>

Description

Die Erfindung betrifft eine Vorrichtung zur Erzeugung fokussierter Stoßwellen nach dem Oberbegriff des Anspruchs 1. Unter Stoßwellen werden hier auch schwächere Druckpulse verstanden, deren Intensität ausreicht, um in Körpern von Lebewesen Veränderungen zu verursachen, wie z.B. Bewegung von Steinen oder Erwärmung von Gewebe.The invention relates to a device for generating focused shock waves according to the preamble of claim 1. Shock waves are understood here as weaker pressure pulses, the intensity of which is sufficient to cause changes in the bodies of living beings, such as e.g. Movement of stones or heating of tissue.

Aus der DE-PS 23 51 247 ist ein Lithotripter mit einer punktförmigen Stoßwellenquelle und einem Abbildungs­system (einem Reflektor) bekannt. Diese Vorrichtung bildet den Oberbegriff des Anspruchs 1.From DE-PS 23 51 247 a lithotripter with a punctiform shock wave source and an imaging system (a reflector) is known. This device forms the preamble of claim 1.

Aus der DE-OS 31 19 295 ist ein Lithotripter mit flächenhafter Quelle bekannt. Diese ist entweder als Kugel-Kalotte selbstfokussierend ausgebildet oder eben. Zur Fokussierung werden dann Abbildungssyteme wie Reflektoren, Linsen oder elektrische Ansteuerungen der unterschiedlichen Zonen der Stoßwellenquelle benötigt.From DE-OS 31 19 295 a lithotripter with an area source is known. This is either designed as a self-focusing spherical cap or flat. Imaging systems such as reflectors, lenses or electrical controls of the different zones of the shock wave source are then required for focusing.

Aus dem deutschen Gebrauchsmuster 88 02 995 ist ein Lithotripter mit zwei Stoßwellenquellen bekannt. Zum einen werden Stoßwellen extrakorporal erzeugt und durch die Haut zum Stein geleitet, zum anderen werden die Stoßwellen am Ende eines Lichtleiters in der Nähe des Steins erzeugt.A lithotripter with two shock wave sources is known from German utility model 88 02 995. To the on the one hand, shock waves are generated extracorporeally and passed through the skin to the stone; on the other hand, the shock waves are generated at the end of a light guide near the stone.

Aufgabe der Erfindung ist es, eine flexible und viel­seitige Stoßwellenquelle, insbesondere für die Litho­tripsie, vorzuschlagen, die die positiven Eigenschaften der einzelnen, ansich bekannten Stoßwellenquellen wie hohe Flexibilität und hohe Zertrümmerungsleistung vereint.The object of the invention is to propose a flexible and versatile shock wave source, in particular for lithotripsy, which combines the positive properties of the individual shock wave sources known per se, such as high flexibility and high shattering power.

Diese Aufgabe wird erfindungsgemäß gelöst von einer Vorrichtung mit den Merkmalen des Anspruchs 1. Ausge­staltungen der Erfindung sind Gegenstände von Unter­sprüchen.This object is achieved according to the invention by a device having the features of claim 1. Embodiments of the invention are the subject of sub-claims.

Kern der Erfindung ist die Doppelnutzung des Abbil­dungssystems durch Stoßwellen, die von zwei verschie­denen Quellen stammen.The essence of the invention is the dual use of the imaging system by shock waves that come from two different sources.

In einer bevorzugten Ausführung ist die zweite Stoß­wellenquelle ein ebener, kreisförmiger Schwinger (z. B eine mit Piezokeramikelementen belegte Scheibe). Das Abbildungssystem ist ein rotationssymmetrischer Körper mit ebener Rückseite und gekrümmter Vorderseite. Dieser Körper ist so ausgeführt, daß er für die Punktquelle als Reflector und für die flächenhafte Stoßwellenquelle zusammen mit dem Medium im Reflector als Linse wirkt, so daß bei geeigneter Dimensionierung und Materialwahl beide Quellen einen gemeinsamen objektseitigen Fokus besitzen. Die zweite Stoßwellenquelle und der abbildende Körper sind bevorzugt rotationssymmetrisch ausgebildet, insbesondere hat der Körper eine rotationsellipsoidförmige Vorderfläche. Die erste Stoßwellenquelle befindet sich bevorzugt in der Symmetrieachse der beiden vorgenannten Bauelemente.In a preferred embodiment, the second shock wave source is a flat, circular oscillator (e.g. a disk covered with piezoceramic elements). The imaging system is a rotationally symmetrical body with a flat back and a curved front. This body is designed so that it acts as a reflector for the point source and for the surface shock wave source together with the medium in the reflector as a lens, so that with suitable dimensioning and choice of material both sources have a common object-side focus. The second shock wave source and the imaging body are preferably rotationally symmetrical, in particular the body has an ellipsoidal front surface. The first shock wave source is preferably located in the Axis of symmetry of the two aforementioned components.

Ein gemeinsamer Brennpunkt und ideale geometrische Abbildungseigenschaften (keine sphärische Aberration) liegen vor, wenn Ellipsoidexzentrizität und objektseitige Brechzahl übereinstimmen. Neben der (vorzugebenen) Fokuslänge des Systems bestimmt letzere Bedingung die Auswahl geeigneter Materialen und die geometrische Form.A common focal point and ideal geometric imaging properties (no spherical aberration) are present if ellipsoid eccentricity and refractive index on the object side match. In addition to the (specified) focus length of the system, the latter condition determines the selection of suitable materials and the geometric shape.

Das Abbildungssystem besteht - z.B. bei einer Füllung des Reflektors mit Wasser - bevorzugt aus einem metallischen Material, mit dem die Doppelwirkung (Linse und Reflektor) erfüllt werden kann. Das Abbildungssystem ist mit der flächenhaften Stoßwelle (z.B. dem piezokeramischen Schwinger oder dem Transducer) bündig verbunden, was durch Klebung oder Reibschweißen erreicht werden kann. In der Mitte dieses Körpers befindet sich eine zentrale, axiale Öffnung, in der z.B. die erste Stoßwellenquelle (die Elektrode) angeordnet ist. Das von der Vorderfläche des abbildenden Körpers gebildete Rotationsellipsoid kann für die Anwendung mit einem Wasserkissen zur Ankoppelung an den Patientenkörper abgeschlossen sein.The imaging system exists - e.g. when the reflector is filled with water - preferably from a metallic material with which the double effect (lens and reflector) can be achieved. The imaging system is flush with the flat shock wave (e.g. the piezoceramic transducer or the transducer), which can be achieved by gluing or friction welding. In the middle of this body there is a central, axial opening in which e.g. the first shock wave source (the electrode) is arranged. The ellipsoid of revolution formed by the front surface of the imaging body can be closed off for use with a water cushion for coupling to the patient's body.

Der flächenhafte Schwinger kann segmentiert sein. Diese Segmentierung kann z.B. bei einem piezokera­mischen Transducer aus einzelnen Elementen bestehen (mosaikartige Ausführung) um den Schwinger vor Zer­störung durch Hochspannungspulse zu schützen. Der mechanische Abschluß des Piezoschwingers ist dabei so gewählt, daß möglichst breibandige akustische Pulse (Stoßwellen) erzeugt werden.The flat transducer can be segmented. This segmentation can e.g. in a piezoceramic transducer consist of individual elements (mosaic-like design) to protect the transducer from destruction by high-voltage pulses. The mechanical termination of the piezoelectric oscillator is selected so that acoustic pulses (shock waves) with the widest possible band are generated.

Der flächenhafte Schwinger kann auch eine dynamische Fokussierung haben. Dies kann in der segmentierten Ausführung dadurch erreicht sein, daß die einzelnen Elemente radial zeitlich versetzt angesteuert werden. Dadurch besteht die Möglichkeit, verschieden Foci der beiden Stoßwellensystem zu erzielen, den Fokus zu variieren oder bei nichtidealer Fokussierung durch das Rotationsellipsoid den Fehler durch elektronische Ansteuerung zu kompensieren. Der flächenhafte Schwinger kann auch selbst gekrümmt sein. Dies ist z.B. dann vorteilhaft, wenn die Ellipsoidexzentrizität und die objektseitige Brechzahl der Linse verschieden sind, so daß sich für das eine oder andere Stoßwellensystem eine nicht-ideale Fokussierung ergibt, die ohne elek­tronische Hilfsmittel korrigiert wird. Dabei ist die Form des Schwingers entweder konkav oder konvex zu wählen, je nach dem, ob die Exzentrizität größer oder kleiner als die Brechzahl ist.The flat transducer can also have a dynamic focus. This can be done in the segmented Execution can be achieved in that the individual elements are controlled radially offset in time. This makes it possible to achieve different foci of the two shock wave systems, to vary the focus or, in the case of non-ideal focusing, to compensate for the error by means of electronic control by means of the ellipsoid of rotation. The planar transducer can also be curved itself. This is advantageous, for example, if the ellipsoid eccentricity and the refractive index of the lens on the object side are different, so that one or the other shock wave system results in a non-ideal focusing, which is corrected without electronic aids. The shape of the transducer should be either concave or convex, depending on whether the eccentricity is greater or less than the refractive index.

Der abbildende Körper kann auch solche Krümmungen haben, daß verschiedene Foci erreichbar sind. Dies tritt immer dann auf, wenn die Exzentrizität und die Brechzahl verschieden sind. Dies kann vorteilhaft genützt werden, falls in der Anwendung verschiedene Fokuslängen benötigt werden, was durch unterschiedliche Steinlagen oder Patientengößen bedingt sein kann.The imaging body can also have such curvatures that different foci can be reached. This always occurs when the eccentricity and the refractive index are different. This can be used to advantage if different focal lengths are required in the application, which can be due to different stone positions or patient sizes.

Durch die erfindungsgemäße Integration zweier Stoß­wellenquellen unterschiedlicher Eigenschaften mit separater elektrischer Versorgung in einem Behand­lungssystem sind neue Behandlungsstrategien möglich. So ergeben sich unter anderem die Möglichkeiten

  • a) mit dem Piezosystem im niederenergetischen Bereich und verschiedenen Arbeitszyklen vorzubehandeln oder Ultraschallyse zu betreiben
  • b) durch alternierende Ansteuerung der beiden Quellen oder gezielte zeitliche Versetzung der beiden Pulse die Steinzertrümmerung durch die kombinierte Anwen­dung zu verbessern.
The inventive integration of two shock wave sources with different properties with separate electrical supply in a treatment system makes new treatment strategies possible. Among other things, this gives rise to the possibilities
  • a) to pre-treat with the piezo system in the low-energy range and various working cycles or to operate ultrasound
  • b) by alternately controlling the two sources or targeted temporal offset of the two pulses to improve stone fragmentation through the combined application.

Die Erfindung wird anhand einer Figur näher erläutert.The invention is illustrated by a figure.

Die Figur zeigt eine Vorrichtung zum Zerkleinern von Steinen im Körper eines Patienten P. Die Vorrichtung ist gegenüber dem Patientenkörper so angeordnet, daß der zweite Brennpunkt (F2) mit dem Ort des Steins im Patienten P zusammenfällt. Die Vorrichtung enthält eine erste Stoßwellenquelle, hier die Elektrode E, deren Funke, der eine Stoßwelle erzeugt, im Brennpunkt F1 eines abbildenden Körpers K liegt. Der Körper K hat eine rotationselliptische Symmetrie und leitet alle in seinem Brennpunkt F1 erzeugten Stoßwellen durch Reflektion an seiner Vorderseite in den zweiten Brennpunkt. Dies ist durch die Wellennormale N1 in der Figur angedeutet. Die Vorrichtung enthält eine zweite Stoßwellenquelle, hier den piezokeramischen Schwinger S. Dies Stoßwellenquelle ist hier rotations­symmetrisch und eben ausgeführt. Die vom Schwinger S erzeugten Stoßwellen laufen durch den abbildenden Körper K, dessen vordere Grenzfläche hier die Stoß­wellen zum Brennpunkt F2 ablenkt. Eine beispielhafte Stoßwelle ist durch die Normale N2 dargestellt. Nicht gezeigt sind die Komponenten der elektrischen Strom- und Spannungsversorgung für die beiden Stoßwellenquel­len E und S, wobei eine oder beide der Quellen auch starke Ultraschallsender sein können.The figure shows a device for crushing stones in the body of a patient P. The device is arranged opposite the patient's body such that the second focal point (F2) coincides with the location of the stone in the patient P. The device contains a first shock wave source, here the electrode E, whose spark, which generates a shock wave, lies in the focal point F1 of an imaging body K. The body K has a rotationally elliptical symmetry and guides all shock waves generated in its focal point F1 into the second focal point by reflection on its front side. This is indicated by the wave normal N1 in the figure. The device contains a second shock wave source, here the piezoceramic vibrator S. This shock wave source is here rotationally symmetrical and flat. The shock waves generated by the vibrator S pass through the imaging body K, whose front interface here deflects the shock waves to the focal point F2. An exemplary shock wave is represented by the normal N2. The components of the electrical current and voltage supply for the two shock wave sources E and S are not shown, it being possible for one or both of the sources to also be strong ultrasound transmitters.

Nicht gezeigt sind auch die Komponenten zur Einleitung der Stoßwellen in den Patientenkörper, sowie Ausführungen mit konkav oder konvex gekrümmten flächi­gen Stoßwellenquellen. Der Form der Stoßwellenquellen entspricht jeweils die Hinterseite des abbildenden Körpers.Also not shown are the components for introducing the shock waves into the patient's body, as well as designs with concave or convex curved flat shock wave sources. The shape of the shock wave sources corresponds to the back of the imaging body.

Claims (8)

1. Vorrichtung zur Erzeugung fokussierter Stoß­wellen, insbesondere für die berührungsfreie Lithotripsie, mit einer ersten punktförmigen Stoßwellenquelle und einem Abbildungssystem, wie einem Reflektor, dadurch gekennzeichnet, daß eine zweite, flächenhafte Stoßwellenquelle vorgesehen ist und daß das Abbildungssystem auch die von der zweiten Stoßwellenquelle erzeugten Stoßwellen fokussiert.1. Device for generating focused shock waves, in particular for non-contact lithotripsy, with a first punctiform shock wave source and an imaging system, such as a reflector, characterized in that a second, flat shock wave source is provided and that the imaging system also the shock waves generated by the second shock wave source focused. 2. Vorrichtung nach Anspruch 1, gekennzeichnet durch einen hinter der ersten Stoßwellenquelle (Elektrode E) angeordneten ebenen kreisförmigen Schwinger (S) als zweite Stoßwellenquelle und einen rotationssystemmetrischen Körper (K) mit ebener Rückseite und gekrümmter Vorder­seite als Abbildungssystem, wobei der Körper (K) für die Punktquelle als Reflektor und für den ebenen Schwinger (S) als Linse wirkt.2. Apparatus according to claim 1, characterized by a flat circular oscillator (S) arranged behind the first shock wave source (electrode E) as the second shock wave source and a rotational system metric body (K) with a flat back and curved front as an imaging system, the body (K) acts as a reflector for the point source and as a lens for the plane transducer (S). 3. Vorrichtung nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß das Abbildungs­system aus einem metallischen Material besteht.3. Apparatus according to claim 1 or claim 2, characterized in that the imaging system consists of a metallic material. 4. Vorrichtung nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß der Schwinger (S) segmentiert ist.4. Device according to one of claims 2 or 3, characterized in that the oscillator (S) is segmented. 5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die zweite Stoßwellenquelle eine dynamische Fo­kussierung hat.5. Device according to one of the preceding claims, characterized in that the second shock wave source has a dynamic focusing. 6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die zweite Stoßwellenquelle (S) in ihrer Ober­fläche gekrümmt ist und daß das Abbildungs­system (K) an seiner Rückseite der Kontur der zweiten Stoßwellenquelle entspricht.6. Device according to one of the preceding claims, characterized in that the second shock wave source (S) is curved in its surface and that the imaging system (K) corresponds on its back to the contour of the second shock wave source. 7. Vorrichtung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch solche Krüm­mungen des Abbildungssystems, daß die von beiden Stoßwellenquellen abgestrahlten Wellen auf verschiedene Foci (F2) gelenkt werden.7. Device according to one of the preceding claims, characterized by such curvatures of the imaging system that the waves emitted by two shock wave sources are directed to different foci (F2). 8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Vorderfläche des Abbildungssystems (Körper K) Rotationssymmetrie hat, insbesondere als Rotationsellipsoid ausgebildet ist, und daß die erste Stoßwellenquelle (Elektrode E) in der Symmetrieachse des Abbildungssystems (K) angeordnet ist.8. Device according to one of the preceding claims, characterized in that the front surface of the imaging system (body K) has rotational symmetry, in particular is designed as an ellipsoid of revolution, and that the first shock wave source (electrode E) is arranged in the axis of symmetry of the imaging system (K).
EP89115234A 1988-10-05 1989-08-18 Combined shock wave generator Withdrawn EP0362529A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19883833862 DE3833862A1 (en) 1988-10-05 1988-10-05 COMBINED SHOCK WAVE SOURCE
DE3833862 1988-10-05

Publications (1)

Publication Number Publication Date
EP0362529A1 true EP0362529A1 (en) 1990-04-11

Family

ID=6364426

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89115234A Withdrawn EP0362529A1 (en) 1988-10-05 1989-08-18 Combined shock wave generator

Country Status (3)

Country Link
EP (1) EP0362529A1 (en)
JP (1) JPH02174839A (en)
DE (1) DE3833862A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159917A (en) * 1991-12-03 1992-11-03 Meco Corporation Portable barbecue cooking grill
US5224468A (en) * 1990-04-05 1993-07-06 Dornier Medizintechnik Gmbh Combination shock wave source
US5458652A (en) * 1992-09-28 1995-10-17 Hmt High Medical Technologies Entwicklungs-Und Vertriebs Ag Device for generating shock waves for non contact disintegration of calculi

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2973685B1 (en) * 2011-04-05 2014-11-28 Eye Tech Care ULTRASOUND OCULAR THERAPY DEVICE WITH REFLECTOR

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2247195A1 (en) * 1973-10-12 1975-05-09 Dornier System Gmbh
DE3119295A1 (en) * 1981-05-14 1982-12-16 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR DESTROYING CONCRETE IN BODIES
DE3617032A1 (en) * 1985-05-24 1987-01-08 Elscint Ltd Ultrasonic apparatus for locating stone formations
EP0229981A1 (en) * 1985-12-20 1987-07-29 Siemens Aktiengesellschaft Method for controlling the focussing characteristics of an ultrasonic field and device for carrying out said method
EP0277489A2 (en) * 1987-01-26 1988-08-10 Siemens Aktiengesellschaft Lithotripsy operation site

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3543867C3 (en) * 1985-12-12 1994-10-06 Wolf Gmbh Richard Device for the spatial location and destruction of concrements in body cavities
DE8802995U1 (en) * 1988-03-05 1988-05-05 Dornier Medizintechnik Gmbh, 8034 Germering, De

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2247195A1 (en) * 1973-10-12 1975-05-09 Dornier System Gmbh
DE3119295A1 (en) * 1981-05-14 1982-12-16 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR DESTROYING CONCRETE IN BODIES
DE3617032A1 (en) * 1985-05-24 1987-01-08 Elscint Ltd Ultrasonic apparatus for locating stone formations
EP0229981A1 (en) * 1985-12-20 1987-07-29 Siemens Aktiengesellschaft Method for controlling the focussing characteristics of an ultrasonic field and device for carrying out said method
EP0277489A2 (en) * 1987-01-26 1988-08-10 Siemens Aktiengesellschaft Lithotripsy operation site

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224468A (en) * 1990-04-05 1993-07-06 Dornier Medizintechnik Gmbh Combination shock wave source
US5159917A (en) * 1991-12-03 1992-11-03 Meco Corporation Portable barbecue cooking grill
US5458652A (en) * 1992-09-28 1995-10-17 Hmt High Medical Technologies Entwicklungs-Und Vertriebs Ag Device for generating shock waves for non contact disintegration of calculi

Also Published As

Publication number Publication date
DE3833862C2 (en) 1990-09-06
DE3833862A1 (en) 1990-04-19
JPH02174839A (en) 1990-07-06

Similar Documents

Publication Publication Date Title
DE3907605C2 (en) Shock wave source
EP0298334B1 (en) Shock wave generator
EP0327917B1 (en) Shock wave generator for the non-contacting disintegration of concretions in a body
DE4315282C2 (en) Use of an acoustic pressure pulse source
DE4110102C2 (en)
EP0308644A2 (en) Focusing ultrasonic transducer
EP0183236A2 (en) Apparatus for the contactless disintegration of concrements in the bodies of living beings
EP0189756A1 (en) Device for the production of out-of-phase sound shock waves
DE4241161A1 (en) High power focussed acoustic pulse generator for clinical use - has pressure sensors for determining spatial position of treated region as function of time, electric motors for adjusting focus of acoustic waves to area to be treated over three=dimensional coordinates, and fuzzy logic controller
DE4318237A1 (en) Device for the treatment of biological tissue and body concretions
EP0421286A2 (en) Piezoelectric transducer
DE3328039C2 (en) FACILITIES FOR THE CONTACTLESS SMASHING OF A CONCERMENT IN THE BODY OF A LIVING BEING
DE4011017C1 (en)
DE3312014A1 (en) Device for the contactless crushing of concrements in the body of living beings
WO1990004359A2 (en) Device for generating focused acoustic pressure waves
EP0240923B1 (en) Shoke wave generator with a piezo ceramic transducer
EP0783870A1 (en) Device for locating concretions in the body of a patient
WO2016174065A1 (en) Hearing prosthesis emitting ultrasonic pulses
DE3833862C2 (en)
EP0240797A1 (en) Shockwave generator with increased efficiency
DE3739390A1 (en) Lithotripter having a variable focus
EP0513279B1 (en) Device for producing focussed sound waves
DE3444421A1 (en) Device for coupling a treatment apparatus to the human body, especially for the contactless destruction of concrements in the human body
DE202010014057U1 (en) Application head for emitting shock waves
DE4120593C1 (en) Focussed acoustic pressure pulse source - comprises circular zones similarly activated but of differing diameters and foci

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH ES FR GB IT LI

17P Request for examination filed

Effective date: 19900512

17Q First examination report despatched

Effective date: 19930122

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19931013