EP0398398A1 - Fluorescent tube support - Google Patents

Fluorescent tube support Download PDF

Info

Publication number
EP0398398A1
EP0398398A1 EP90113647A EP90113647A EP0398398A1 EP 0398398 A1 EP0398398 A1 EP 0398398A1 EP 90113647 A EP90113647 A EP 90113647A EP 90113647 A EP90113647 A EP 90113647A EP 0398398 A1 EP0398398 A1 EP 0398398A1
Authority
EP
European Patent Office
Prior art keywords
tube
sections
walls
supports
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP90113647A
Other languages
German (de)
French (fr)
Inventor
David E. Creaden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lawrence Paper Co
Original Assignee
Lawrence Paper Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/895,507 external-priority patent/US4705170A/en
Application filed by Lawrence Paper Co filed Critical Lawrence Paper Co
Priority to EP90113647A priority Critical patent/EP0398398A1/en
Publication of EP0398398A1 publication Critical patent/EP0398398A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D71/00Bundles of articles held together by packaging elements for convenience of storage or transport, e.g. portable segregating carrier for plural receptacles such as beer cans or pop bottles; Bales of material
    • B65D71/70Trays provided with projections or recesses in order to assemble multiple articles, e.g. intermediate elements for stacking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/34Trays or like shallow containers
    • B65D1/36Trays or like shallow containers with moulded compartments or partitions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/30Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
    • B65D85/42Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for ampoules; for lamp bulbs; for electronic valves or tubes

Definitions

  • the present invention is broadly concerned with synthetic resin dunnage supports designed for cushioning and protecting elongated fluorescent tubes during packing and shipping thereof. More particularly, it is concerned with such supports which are especially configured to permit automated dispensing of individual supports during the packag­ing process, while giving essentially equivalent or superior protection to the tubes, as compared with conventional dunnage formed of molded pulp material.
  • elongated fluorescent tubes are packaged in long corrugated paper cartons.
  • the respective ends of the tubes are normally supported by inserts or dunnage elements.
  • dunnage elements include elongated tube-receiving sockets, together with design config­urations (e.g., hollow triangular marginal wall portions) which serve to absorb potentially destruc­tive impact forces.
  • the present invention overcomes the pro­blems noted above, and provides synthetic resin dunnage supports which are particularly designed for fast, sure, individual automated dispensing while at the same time giving tube protection essentially equivalent or superior to conventional molded pulp dunnage.
  • the tube support of the invention is in the form of an integral body fabricated from thin synthetic resin sheet material (e.g. polyvinyl chloride having a thickness of from about 0.13 to 0.018 inches).
  • the integral body has concavo-convex walls presenting a number of elon­gated, open top, parallel, juxtaposed concave tube-­receiving regions or sockets, and corresponding convex underside wall surfaces.
  • the integral tube support is provided with spacer means which prevents complete nesting of plural supports and serves to define substantially uniform, elon­gated, laterally-extending spaces between adjacent interfitted supports. In this fashion, automatic dispensing equipment can be used for dispensing of the supports on an individual basis from a stack thereof.
  • the dunnage support is pro­vided with an elongated, rearward extending, thin rear side lip having an underside presenting an abutment surface.
  • Each lip in turn carries spacer means for preventing complete nesting of plural supports in a stack, to define the aforementioned substantially uniform, elongated, laterally extend­ing spaces between adjacent interfitted supports in order to allow insertion of automatic dispensing equipment therebetween.
  • the lip spacer means is advantageously in the form of a plurality of up­standing, laterally spaced apart nibs carried by the lip. Such nibs should have a vertical height of at least about 1/8 inch and preferably from about 1/8 to 3/8 inches in height.
  • the front edge of each support is advantageously formed to provide ledge structure serving to maintain the desirable spacing between individual interfitted tube supports.
  • the nibs carried by respective element lips are also preferably laterally offset from one another, so that in a stack of interfitted supports positive spacing between the supports is assured.
  • the front side ledges are alter­nately arranged in respective interfitted supports so as to provide the needed spacing function.
  • at least two separate molds are em­ployed in the fabrication of the dunnage supports in order to provide the alternating nib and ledge arrangement in accordance with the invention.
  • many (e.g., five) separate molds are used, each with a correspondingly different nib and alternate ledge placement, so that in an up­right, interfitted stack of the supports, a particu­lar style of support occurs only every sixth sup­port.
  • the dunnage support of the invention also includes a number of unique features serving to provide adequate breakage protection for the fluore­scent tubes.
  • the concavo-convex socket-defining walls of the supports preferably include a first plurality of axially spaced apart, upwardly opening and diverging tube-engaging arcuate first sections each having a radius conforming with the circular sidewall of a fluorescent tube. More strictlyover, a second plurality of axially spaced apart, downwardly opening and diverging tube-engaging arcuate second sections are also provided, and here again these second sections have a radius conforming with the circular sidewall of a fluorescent tube.
  • the upwardly opening first sections, and the down­ wardly opening second sections are alternated along the length of each of the tube-receiving sockets, with the downwardly opening sections being located vertically below the upwardly opening sections.
  • a single dunnage support can engage and protect two layers of fluorescent tubes, while the spaced apart tube-engaging sections give cush­ioned protection to the tubes.
  • Such protection is enhanced by provision of striations or small cush­ioning ribs in the faces of each of the tube-engag­ing sections. Such ribs have been found to further absorb destructive impact in order to fully protect the fluorescent tubes.
  • a dunnage support 10 is illustrated in Figs. 1-6.
  • the support is in the form of an integral, thermo-formed body of synthetic resin material.
  • the material is polyvinyl chloride sheeting having an initial thickness before forming of 0.014 inches.
  • the support 10 includes an upstanding rear sidewall 12, an opposed, upstanding hollow front sidewall 14, opposed end walls 16, 18, and a rear­wardly extending rear side lip 20.
  • the overall support 10 is further provided with a total of six concavo-convex wall sections 22 which cooperatively present a plurality of indivi­dual, elongated, open-top, parallel, juxtaposed concave tube-receiving sockets or regions 24.
  • the regions 24 terminate at rear wall 12, and accordingly, the wall 12 presents in overall configuration a scalloped appearance.
  • the wall sections 22 are joined at their respective apices by means of elongated, rectangular, fore and aft extending connector walls 26, the latter being notched as at 28 adjacent front wall 14.
  • the endmost wall sections 22 are joined to the adjacent end walls 16, 18, by means of a similar connector wall 30, each of the latter being provided with three spaced apart upstanding spacers 32.
  • rear sidewall 12 is integrally joined with each of the sidewalls 16, 18, at smooth, rounded rear corners 34.
  • the wall 12 is provided with a total of five formed recesses 36 therein, respectively located directly beneath an associated connector wall 26 in the region between the tube-receiving regions 24.
  • FIGs. 1 and 3 depict the particular construction of front wall 14.
  • the front wall 14 is integrally connected with the sidewalls 16, 18 at smooth, rounded corners 38.
  • the front wall 14 includes a series of openings 40 therein respectively in communication and alignment with the corresponding tube-receiving regions 24.
  • four openings 40 of relatively deep configuration are provided, along with two openings 40a of somewhat shallower config­uration.
  • the openings 40, 40a are designed to receive and accommodate the connector prongs of fluorescent tubes received within the supports, as those skilled in the art will readily appreciate.
  • each of the re­cesses 40, 40a at the left hand margin thereof as viewed in Figs.
  • the support includes a somewhat tri­angularly-shaped ledge or platform 42 and a corre­spondingly shaped relieved zone.
  • the platforms 42 and relieved zones are provided at the righthand margin of each recess 40, 40a, as opposed to the configuration specifically depicted in Fig. 1.
  • the left and righthand placement of platforms 42 would alternate in the stack so as to establish and main­ tain in a proper spacing between individual interfitted supports.
  • front wall 14 is pro­vided with a total of five somewhat triangularly shaped, arcuate in cross section, open top, upwardly diverging recessed zones 44. These zones are de­fined by correspondingly shaped indentations in wall 14 as will be readily seen, with such indentations being in opposed relationship to each of the five connector walls 26 (see Fig. 2). As a result of this configuration, it will be perceived that each of the connector walls 26, at the region of front wall 14, is somewhat Y-shaped in configuration, with the base of the Y extending from the corresponding notch 28, and with the bifurcated portion thereof surrounding and defining the upper end of each zone 44. As readily observable from Figs.
  • front wall 14 presents an effective thickness attributable to the noted Y-shaped sections together with the bottom walls 46 and 46a of the respective openings and 40a.
  • the overall front wall 14 presents an upright inner surface in the form of respective arcuate walls 48 joined to the Y-shaped sections and opening-defining walls and extending downwardly therefrom for joinder with the concavo-­convex walls 22.
  • the arcuate walls 48 in turn define an upright abutment surface for the end of a fluorescent tube situated within each corresponding region 24.
  • Rear side lip 20 is provided with a plur­ality, here seven, of upstanding spacer nibs 50.
  • the nibs 50 in the depicted embodi­ment, are located at the ends of the lip 20, and just to the left of each recess 36. The purpose of these nibs 50 will be made clear hereinafter.
  • Each of the concavo-convex wall sections 22 include a stepped, arcuate, end cap-receiving wall portion 52 which extends rearwardly from each associated wall 48 and terminates at the frontmost end of the associated notches 28 as shown.
  • the wall portions 52 as indicated receive the metallic end caps provided on the fluorescent tubes.
  • each concavo-convex wall section 22 includes a plurality of axially spaced apart, arcuate, upwardly opening and diverging wall sections 56 presenting a radius of curvature conforming to that of the sidewall of a fluorescent tube.
  • These spaced apart wall sections 56 at their respective side margins, merge into and form a part of similarly curved main sidewall por­tions 58 which extend upwardly and are integral with the upper connector walls 26.
  • the concavo-convex walls 22 further in­clude a second plurality of downwardly opening and diverging wall portions 54 which similarly have a radius of curvature conforming to the sidewall of a fluorescent tube.
  • the respective marginal ends of each wall section 54 are joined with upwardly ex­tending walls 60 (see Fig. 8) which extend upwardly to merge into main wall portion 58.
  • the alternating walls sections 54, 56 are joined together by means of vertical walls 62 in order to maintain the wall sections in vertically spaced relationship to one another.
  • each upwardly opening wall section 56 is spaced above the adjacent wall section 54. Indeed, the lateral side margins of the wall sections 54 extend slightly below the bottom edge of the sidewalls 16, 18, and rear wall 14.
  • each of the wall sections 54, 56 is pro­vided with a plurality of relatively small cushion­ing striations or ribs 64 formed therein during the vacuum forming process of the dunnage support 10.
  • each end cap-receiving wall portion 52 is similarly striated.
  • the element 10 is formed in a female mold so that the thickness of each of the upper connector walls 26, 30 is greater than that of the lower down­wardly opening wall sections 54. Indeed, the thick­ness of the endmost portions of the wall sections 54 are on the order of 0.004 inch, and are effectively transluscent. On the other hand, the connector walls 26, 30 are virtually the same thickness as the starting sheet material, or preferably about 0.014 inch.
  • FIG. 9 depicts a vertical stack 66 of interfitted dunnage supports in accordance with the invention.
  • This stack is made up of two particular embodiments of the dunnage supports, namely the supports 10 fully described above, together with alternating supports 10a.
  • the supports 10a are in all respects identical with the supports 10, save for the fact that in the supports 10a, the nibs 50a thereof are laterally offset from the nibs 50 of the supports 10, and the ledges or platforms thereof (not shown) are later­ally offset from the platforms 42.
  • the nibs 50, 50a alternate in a stairstep fashion throughout the stack 66; furthermore, the spacing platforms of the supports 10, 10a similarly alternate in a stair­step fashion.
  • each of the nibs 50, 50a contacts the planar underside of the lip of the support next above in the stack; likewise, each individual set of ledges or platforms engages the full heighth wall of the Y-shaped sec­tion of the next adjacent support.
  • the heighth of the nibs and the vertical recess of the platforms are correlated so as to maintain an even spacing between individual supports about the entire periph­ery thereof. This prevents full nesting of the respective supports 10, 10a and effectively presents a series of substantially even, elongated spaces 68 between individual dunnage supports in the stack 66.
  • the stack 66 can be placed in automatic dispensing equipment, and the spaces 68 afford adequate clearance for the insertion of dispensing equipment between individual supports in the stack.
  • such dispensing equipment can be used to good effect to achieve easy, high speed automated dispensing of the individual supports.
  • PVC having a thickness of 0.014 inch is the preferred sheet material for use in forming the supports of the invention
  • other current or future equivalent materials may also be used.
  • thermoplastic polyester or polyethylene terephthalate synthetic resins can also be used to good effect in the inve­ntion, with the thicknesses of these materials being substantially the same as outlined above.
  • syn­thetic resin materials having a durometer value (Shore D per ASTM O-2240) of from about 80 to 90 (most preferably 84), and a modulus of elasticity of from about 400,000 to 440,000, ASTM D-790 (most preferably 420,000).
  • the most preferred PVC mate­rial further has a specific gravity 1.35, ASTM D-­792; a tensile strength of 6750 psi, ASTM D-638; a tensile modulus of 315,000 psi, ASTM D-638; a flex­ural modulus of 420,000 psi, ASTM D-790; and a deflection temperature at 264 psi of 5806, ASTM D-­648.
  • the various structural fea­tures of the dunnage supports assures that a package of fluorescent tubes with individual supports be­tween respective layers thereof can withstand poten­tially destructive impact forces. That is to say, a given package containing four layers of tubes would make use of five dunnage supports at each end of the tubes, with four of the supports receiving the tubes as illustrated in Fig. 8, and with one support being inverted.
  • actual testing with the dunnage elements hereof has proved that they are fully capable of supporting and protecting fluore­scent tubes in a manner at least equivalent to conventional pulp dunnage supports.
  • Such protection is believed to stem from the inherent flexibility of the synthetic resin material, and also by virtue of the striations 64 provided on the tube-engaging sur­faces.
  • the various recesses such as the notches 28 and zones 44, afford a controlled collapse to the dunnage elements which has been found to safely absorb potentially destructive forces.
  • central connector wall 26 is slightly wider than the remaining connector walls on either side thereof. This not only enhances the strength of the central section of the support, but also facilitates auto­mated insertion of thin vertical corrugated material between the central tubes during the packing pro­cess.
  • a prime feature of the present invention resides in the provision of dun­nage supports designed to only incompletely nest in a stack thereof so as to present uniform spacings between pairs of elements and thus facilitate machine dispensing thereof. While in the preferred form of the invention use is made of an alternating nib and ledge arrangement respectively located along the rear and front side edges of the supports, the invention is not so limited. Thus, it will be appreciated that there are a multitude of ways to form spacing elements in the supports themselves in such a manner as to insure the partial nesting feature described above. All such equivalents are therefore deemed to be within the spirit and scope of the present invention.

Abstract

A fluorescent tube dunnage (10) includes an integral body formed from thin synthetic resin sheet material and provided with generally concavo-convex walls (22) presenting a number of elongated, open-top, parallel, juxtaposed concave tube-receiving regions (24) with corresponding convex underside wall surfaces (54) and elongated, axially extending top walls (26) between two adjacent tube-receiving regions (24). The concavo-convex walls (22) each include a wall section (54) for engaging a fluorescent tube disposed immediately below the corresponding tube-receiving region (24). The region-presenting walls include a first plurality of axially spaced apart, upwardly opening and diverging tube-engaging arcuate first sections (56) each having a radius conforming with the circular side wall of fluorescent tube, and a second plurality of axially spaced apart, downwardly opening and diverging tube-engaging arcuate second sections (54) each having a radius conforming with the circular side wall of a fluorescent tube. The upwardly opening first sections (56) and the downwardly opening second sections (54) are disposed alter­nately along the length of each of the regions (24), and the downwardly opening sections (54) are located vertically below the upwardly opening sections (56).

Description

    Background of the Invention 1. Field of the Invention
  • The present invention is broadly concerned with synthetic resin dunnage supports designed for cushioning and protecting elongated fluorescent tubes during packing and shipping thereof. More particularly, it is concerned with such supports which are especially configured to permit automated dispensing of individual supports during the packag­ing process, while giving essentially equivalent or superior protection to the tubes, as compared with conventional dunnage formed of molded pulp material.
  • 2. Description of the Prior Art
  • Generally speaking, elongated fluorescent tubes are packaged in long corrugated paper cartons. In order to protect the tubes during packaging and in transit, the respective ends of the tubes are normally supported by inserts or dunnage elements. Typically, such dunnage elements include elongated tube-receiving sockets, together with design config­urations (e.g., hollow triangular marginal wall portions) which serve to absorb potentially destruc­tive impact forces.
  • Heretofore, most commercially used tube supports have been formed from molded pulp or paper­board. This material can be readily fabricated in desired shapes, is low in cost, and provides the requisite degree of protection against tube break­age., However, molded pulp dunnage elements suffer from a significant problem relating to the handling and packaging thereof. That is to say, many manu­ facturers would prefer to package their fluorescent tubes on a completely automated basis. This in turn necessitates that the dunnage elements employed be machine dispensable. Experience has proved though that pulp supports have a tendency to stick together when nested in a stack, to the point that automated dispensing machines simply cannot be used on an efficient basis. In fact, it has been the practice to position a worker at the dispensing station in order to clear the constant hang-ups of paperboard supports and to assure relatively smooth operation of the automated dispensing equipment. As can be appreciated, use of a worker in this context largely negates the cost advantage of automated dispensing.
  • The problems of dispensing paperboard dunnage elements are believed to stem from the fact that these elements are of varying thicknesses and quality. Moreover, during high humidity conditions these elements tend to adhere to one another, which further compounds the separation and dispensing problem.
  • In short, the molded pulp dunnage of the prior art is seriously deficient from the standpoint of easy, cost effective handling and dispensing thereof, and therefore fluorescent tube manufactur­ers have been searching for an acceptable substitute which meets the dictates of automated handling.
  • Summary of the Invention
  • The present invention overcomes the pro­blems noted above, and provides synthetic resin dunnage supports which are particularly designed for fast, sure, individual automated dispensing while at the same time giving tube protection essentially equivalent or superior to conventional molded pulp dunnage.
  • In preferred forms, the tube support of the invention is in the form of an integral body fabricated from thin synthetic resin sheet material (e.g. polyvinyl chloride having a thickness of from about 0.13 to 0.018 inches). The integral body has concavo-convex walls presenting a number of elon­gated, open top, parallel, juxtaposed concave tube-­receiving regions or sockets, and corresponding convex underside wall surfaces. Moreover, the integral tube support is provided with spacer means which prevents complete nesting of plural supports and serves to define substantially uniform, elon­gated, laterally-extending spaces between adjacent interfitted supports. In this fashion, automatic dispensing equipment can be used for dispensing of the supports on an individual basis from a stack thereof.
  • Preferably, the dunnage support is pro­vided with an elongated, rearward extending, thin rear side lip having an underside presenting an abutment surface. Each lip in turn carries spacer means for preventing complete nesting of plural supports in a stack, to define the aforementioned substantially uniform, elongated, laterally extend­ing spaces between adjacent interfitted supports in order to allow insertion of automatic dispensing equipment therebetween. The lip spacer means is advantageously in the form of a plurality of up­standing, laterally spaced apart nibs carried by the lip. Such nibs should have a vertical height of at least about 1/8 inch and preferably from about 1/8 to 3/8 inches in height. Furthermore, the front edge of each support is advantageously formed to provide ledge structure serving to maintain the desirable spacing between individual interfitted tube supports.
  • The nibs carried by respective element lips are also preferably laterally offset from one another, so that in a stack of interfitted supports positive spacing between the supports is assured. In like manner, the front side ledges are alter­nately arranged in respective interfitted supports so as to provide the needed spacing function. Accordingly, at least two separate molds are em­ployed in the fabrication of the dunnage supports in order to provide the alternating nib and ledge arrangement in accordance with the invention. In actual practice, many (e.g., five) separate molds are used, each with a correspondingly different nib and alternate ledge placement, so that in an up­right, interfitted stack of the supports, a particu­lar style of support occurs only every sixth sup­port.
  • The dunnage support of the invention also includes a number of unique features serving to provide adequate breakage protection for the fluore­scent tubes. In particular, the concavo-convex socket-defining walls of the supports preferably include a first plurality of axially spaced apart, upwardly opening and diverging tube-engaging arcuate first sections each having a radius conforming with the circular sidewall of a fluorescent tube. More­over, a second plurality of axially spaced apart, downwardly opening and diverging tube-engaging arcuate second sections are also provided, and here again these second sections have a radius conforming with the circular sidewall of a fluorescent tube. The upwardly opening first sections, and the down­ wardly opening second sections, are alternated along the length of each of the tube-receiving sockets, with the downwardly opening sections being located vertically below the upwardly opening sections. In this fashion, a single dunnage support can engage and protect two layers of fluorescent tubes, while the spaced apart tube-engaging sections give cush­ioned protection to the tubes. Such protection is enhanced by provision of striations or small cush­ioning ribs in the faces of each of the tube-engag­ing sections. Such ribs have been found to further absorb destructive impact in order to fully protect the fluorescent tubes.
  • Brief Description of the Drawings
    • Figure 1 is a perspective view of a dun­nage support in accordance with the invention;
    • Fig. 2 is a plan view of the support depicted in Fig. 1;
    • Fig. 3 is a side elevational view of the support illustrated in Figs. 1 and 2, viewing the front side thereof;
    • Fig. 4 is a side elevationai view of the dunnage support of Figs. 1-3, depicting the rear side thereof;
    • Figs. 5 and 6 and respective end eleva­tional views of the dunnage support;
    • Fig. 7 is a sectional view taken along line 7-7 of Fig. 4;
    • Fig. 8 is a fragmentary vertical sectional view illustrating a pair of dunnage supports in use, with the supports in operative, supporting engage­ment with fluorescent tubes; and
    • Fig. 9 is a front side elevationai view of an interfitted stack of dunnage supports in accord­ lance with the invention, illustrating the provision of substantially uniform, laterally extending spaces between individual supports permitting ready machine dispensing of the supports.
    Description of the Preferred Embodiments
  • Turning now to the drawings, a dunnage support 10 is illustrated in Figs. 1-6. The support is in the form of an integral, thermo-formed body of synthetic resin material. Most preferably, the material is polyvinyl chloride sheeting having an initial thickness before forming of 0.014 inches.
  • The support 10 includes an upstanding rear sidewall 12, an opposed, upstanding hollow front sidewall 14, opposed end walls 16, 18, and a rear­wardly extending rear side lip 20.
  • The overall support 10 is further provided with a total of six concavo-convex wall sections 22 which cooperatively present a plurality of indivi­dual, elongated, open-top, parallel, juxtaposed concave tube-receiving sockets or regions 24. It will be noted in this respect that the regions 24 terminate at rear wall 12, and accordingly, the wall 12 presents in overall configuration a scalloped appearance. The wall sections 22 are joined at their respective apices by means of elongated, rectangular, fore and aft extending connector walls 26, the latter being notched as at 28 adjacent front wall 14. The endmost wall sections 22 are joined to the adjacent end walls 16, 18, by means of a similar connector wall 30, each of the latter being provided with three spaced apart upstanding spacers 32.
  • In more detail, it will be seen that rear sidewall 12 is integrally joined with each of the sidewalls 16, 18, at smooth, rounded rear corners 34. Moreover, the wall 12 is provided with a total of five formed recesses 36 therein, respectively located directly beneath an associated connector wall 26 in the region between the tube-receiving regions 24.
  • Attention is next directed to Figs. 1 and 3 which depict the particular construction of front wall 14. In this regard, it will be seen that the front wall 14 is integrally connected with the sidewalls 16, 18 at smooth, rounded corners 38. Moreover, the front wall 14 includes a series of openings 40 therein respectively in communication and alignment with the corresponding tube-receiving regions 24. It will be noted that four openings 40 of relatively deep configuration are provided, along with two openings 40a of somewhat shallower config­uration. The openings 40, 40a are designed to receive and accommodate the connector prongs of fluorescent tubes received within the supports, as those skilled in the art will readily appreciate. However, it will be observed that each of the re­cesses 40, 40a, at the left hand margin thereof as viewed in Figs. 1 and 2, includes a somewhat tri­angularly-shaped ledge or platform 42 and a corre­spondingly shaped relieved zone. As explained previously, other embodiments of the support provide a different placement for the platforms 42 and relieved zones. In particular, in another embodi­ment of the invention, the platforms 42 and relieved zones are provided at the righthand margin of each recess 40, 40a, as opposed to the configuration specifically depicted in Fig. 1. Thus, and consid­ering an interfitted stack of the tube supports, the left and righthand placement of platforms 42 would alternate in the stack so as to establish and main­ tain in a proper spacing between individual interfitted supports.
  • Referring particularly to Figs. 2 and 3, it will further be seen that front wall 14 is pro­vided with a total of five somewhat triangularly shaped, arcuate in cross section, open top, upwardly diverging recessed zones 44. These zones are de­fined by correspondingly shaped indentations in wall 14 as will be readily seen, with such indentations being in opposed relationship to each of the five connector walls 26 (see Fig. 2). As a result of this configuration, it will be perceived that each of the connector walls 26, at the region of front wall 14, is somewhat Y-shaped in configuration, with the base of the Y extending from the corresponding notch 28, and with the bifurcated portion thereof surrounding and defining the upper end of each zone 44. As readily observable from Figs. 1 and 2, front wall 14 presents an effective thickness attributable to the noted Y-shaped sections together with the bottom walls 46 and 46a of the respective openings and 40a. In addition, the overall front wall 14 presents an upright inner surface in the form of respective arcuate walls 48 joined to the Y-shaped sections and opening-defining walls and extending downwardly therefrom for joinder with the concavo-­convex walls 22. The arcuate walls 48 in turn define an upright abutment surface for the end of a fluorescent tube situated within each corresponding region 24.
  • Rear side lip 20 is provided with a plur­ality, here seven, of upstanding spacer nibs 50. As illustrated, the nibs 50, in the depicted embodi­ment, are located at the ends of the lip 20, and just to the left of each recess 36. The purpose of these nibs 50 will be made clear hereinafter.
  • Each of the concavo-convex wall sections 22 include a stepped, arcuate, end cap-receiving wall portion 52 which extends rearwardly from each associated wall 48 and terminates at the frontmost end of the associated notches 28 as shown. The wall portions 52 as indicated receive the metallic end caps provided on the fluorescent tubes.
  • The remainder of the concavo-convex wall sections extending rearwardly from the portions 52 to rear wall 12 are in the form of alternating downwardly and upwardly opening, vertically spaced apart arcuate tube-engaging wall sections 54, 56. That is to say, the majority of the length of each concavo-convex wall section 22 includes a plurality of axially spaced apart, arcuate, upwardly opening and diverging wall sections 56 presenting a radius of curvature conforming to that of the sidewall of a fluorescent tube. These spaced apart wall sections 56, at their respective side margins, merge into and form a part of similarly curved main sidewall por­tions 58 which extend upwardly and are integral with the upper connector walls 26.
  • The concavo-convex walls 22 further in­clude a second plurality of downwardly opening and diverging wall portions 54 which similarly have a radius of curvature conforming to the sidewall of a fluorescent tube. The respective marginal ends of each wall section 54 are joined with upwardly ex­tending walls 60 (see Fig. 8) which extend upwardly to merge into main wall portion 58. The alternating walls sections 54, 56 are joined together by means of vertical walls 62 in order to maintain the wall sections in vertically spaced relationship to one another. As best seen in Fig. 8, each upwardly opening wall section 56 is spaced above the adjacent wall section 54. Indeed, the lateral side margins of the wall sections 54 extend slightly below the bottom edge of the sidewalls 16, 18, and rear wall 14.
  • Each of the wall sections 54, 56 is pro­vided with a plurality of relatively small cushion­ing striations or ribs 64 formed therein during the vacuum forming process of the dunnage support 10. In like manner, each end cap-receiving wall portion 52 is similarly striated.
  • The element 10 is formed in a female mold so that the thickness of each of the upper connector walls 26, 30 is greater than that of the lower down­wardly opening wall sections 54. Indeed, the thick­ness of the endmost portions of the wall sections 54 are on the order of 0.004 inch, and are effectively transluscent. On the other hand, the connector walls 26, 30 are virtually the same thickness as the starting sheet material, or preferably about 0.014 inch.
  • Attention is next directed to Fig. 9 which depicts a vertical stack 66 of interfitted dunnage supports in accordance with the invention. This stack is made up of two particular embodiments of the dunnage supports, namely the supports 10 fully described above, together with alternating supports 10a. The supports 10a are in all respects identical with the supports 10, save for the fact that in the supports 10a, the nibs 50a thereof are laterally offset from the nibs 50 of the supports 10, and the ledges or platforms thereof (not shown) are later­ally offset from the platforms 42. As a consequence of this construction, it will be seen that the nibs 50, 50a alternate in a stairstep fashion throughout the stack 66; furthermore, the spacing platforms of the supports 10, 10a similarly alternate in a stair­step fashion. By virtue of this configuration, each of the nibs 50, 50a contacts the planar underside of the lip of the support next above in the stack; likewise, each individual set of ledges or platforms engages the full heighth wall of the Y-shaped sec­tion of the next adjacent support. The heighth of the nibs and the vertical recess of the platforms are correlated so as to maintain an even spacing between individual supports about the entire periph­ery thereof. This prevents full nesting of the respective supports 10, 10a and effectively presents a series of substantially even, elongated spaces 68 between individual dunnage supports in the stack 66. As a consequence, the stack 66 can be placed in automatic dispensing equipment, and the spaces 68 afford adequate clearance for the insertion of dispensing equipment between individual supports in the stack. Thus, such dispensing equipment can be used to good effect to achieve easy, high speed automated dispensing of the individual supports.
  • Although PVC having a thickness of 0.014 inch is the preferred sheet material for use in forming the supports of the invention, other current or future equivalent materials may also be used. For example, it is believed that thermoplastic polyester or polyethylene terephthalate synthetic resins can also be used to good effect in the inve­ntion, with the thicknesses of these materials being substantially the same as outlined above. In order to provide the most advantageous protection for the fluorescent tubes, it is preferred to employ syn­thetic resin materials having a durometer value (Shore D per ASTM O-2240) of from about 80 to 90 (most preferably 84), and a modulus of elasticity of from about 400,000 to 440,000, ASTM D-790 (most preferably 420,000). The most preferred PVC mate­rial further has a specific gravity 1.35, ASTM D-­792; a tensile strength of 6750 psi, ASTM D-638; a tensile modulus of 315,000 psi, ASTM D-638; a flex­ural modulus of 420,000 psi, ASTM D-790; and a deflection temperature at 264 psi of 5806, ASTM D-­648.
  • In addition, the various structural fea­tures of the dunnage supports assures that a package of fluorescent tubes with individual supports be­tween respective layers thereof can withstand poten­tially destructive impact forces. That is to say, a given package containing four layers of tubes would make use of five dunnage supports at each end of the tubes, with four of the supports receiving the tubes as illustrated in Fig. 8, and with one support being inverted. In any event, actual testing with the dunnage elements hereof has proved that they are fully capable of supporting and protecting fluore­scent tubes in a manner at least equivalent to conventional pulp dunnage supports. Such protection is believed to stem from the inherent flexibility of the synthetic resin material, and also by virtue of the striations 64 provided on the tube-engaging sur­faces. Furthermore, the various recesses such as the notches 28 and zones 44, afford a controlled collapse to the dunnage elements which has been found to safely absorb potentially destructive forces.
  • In addition to the foregoing, it has been found that it is advantageous to provide a spacing between the longitudinal axes of adjacent pairs of tube-receiving regions 24 slightly differently than the spacing between other pairs of axes. This slight differential is in itself believed to enhance the protective function during an impact situation. To further enhance the protective function, the shape, spacing, contours, dimensions and ribbed texture of the areas 54, 56, 58, 60 and 62 are individually shaped to be slightly different from one another.
  • Finally, it will also be noted that the central connector wall 26 is slightly wider than the remaining connector walls on either side thereof. This not only enhances the strength of the central section of the support, but also facilitates auto­mated insertion of thin vertical corrugated material between the central tubes during the packing pro­cess.
  • As indicated above, a prime feature of the present invention resides in the provision of dun­nage supports designed to only incompletely nest in a stack thereof so as to present uniform spacings between pairs of elements and thus facilitate machine dispensing thereof. While in the preferred form of the invention use is made of an alternating nib and ledge arrangement respectively located along the rear and front side edges of the supports, the invention is not so limited. Thus, it will be appreciated that there are a multitude of ways to form spacing elements in the supports themselves in such a manner as to insure the partial nesting feature described above. All such equivalents are therefore deemed to be within the spirit and scope of the present invention.

Claims (8)

1. Fluorescent tube support (10) including an integral body formed from thin synthetic resin sheet material, the body having generally concavo-convex walls (22) presenting a number of elongated, open-top, parallel, juxtaposed concave tube-receiving regions (24) with corresponding convex underside wall surfaces (54) and elongated, axially extending top walls (26) between two adjacent tube-receiving regions (24), each of the generally concavo-convex walls (22) including a wall section (54) for engaging a fluorescent tube disposed immediately below the corresponding tube-receiving region (24), the region-presenting walls including a first plurality of axially spaced apart, upwardly opening and diverging tube-engaging arcuate first sections (56) each having a radius conforming with the circular side wall of a fluorescent tube, and a second plurality of axially spaced apart, downwardly opening and diverging tube-engaging arcuate second sections (54) each having a radius conforming with the circular side wall of a fluorescent tube, characterized by:
the upwardly opening first sections (56) and the downward­ly opening second sections (54) alternating along the length of each of the regions (24),
the downwardly opening sections (54) being located vertically below the upwardly opening sections (56).
2. The tube support of claim 1, each of the tube-engaging sections (54, 56) being formed with a plurality of cushion ribs (64) therein.
3. The tube support of claim 1, said sheet material having a thickness prior to forming of from 0.013 to 0.018 inches.
4. The tube support of claim 1, the sheet material being polyvinyl chloride.
5. The tube support of claim 1, the thickness of the top walls (26) being greater than the thickness of the wall sections (54) and
the body including spacer means (32, 36, 42, 50), carried by the tube support (10) for preventing complete nesting of plural supports and for defining substantially uniform, elongated, laterally extending spaces (68) between adjacent interfitted supports for insertion of automatic dispensing equipment therebetween.
6. The tube support of claim 5, the spacer means (32, 36, 42, 50) comprising an elongated, rearwardly extending rear side lip (20) having an underside presenting an abutment surface, and a plurality of upstanding, laterally spaced apart nibs (50) carried by the lip, the nibs (50) having a vertical height of at least about 1/8 inch.
7. The tube of claim 5, the spacermeans (32, 36, 42, 50) including structure presenting a plurality of laterally spaced apart ledge platforms (42) oriented along the front side edge of the support (10) and positioned for preventing complete nesting of plural supports.
8. The tube support of claim 1, the distance between the longitudinal axes of certain adjacend pairs of the tube-­receiving regions (24) being slightly different than the distance between the longitudinal axes of other adjacent pairs of the tube-receiving regions (24).
EP90113647A 1986-08-11 1987-02-09 Fluorescent tube support Ceased EP0398398A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP90113647A EP0398398A1 (en) 1986-08-11 1987-02-09 Fluorescent tube support

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US06/895,507 US4705170A (en) 1986-08-11 1986-08-11 Fluorescent tube dunnage
US895507 1986-08-11
EP90113647A EP0398398A1 (en) 1986-08-11 1987-02-09 Fluorescent tube support

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP87101728.1 Division 1987-02-09

Publications (1)

Publication Number Publication Date
EP0398398A1 true EP0398398A1 (en) 1990-11-22

Family

ID=26125354

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90113647A Ceased EP0398398A1 (en) 1986-08-11 1987-02-09 Fluorescent tube support

Country Status (1)

Country Link
EP (1) EP0398398A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0997390A1 (en) 1998-09-30 2000-05-03 Draht- und Metallwarenfabrik Philipp Schneider GmbH & Co.KG Transport unit consisting of a tray-like support for bottle capsules
EP1847479A2 (en) * 2006-04-19 2007-10-24 NSK Ltd. Component transport method and combination structure of component transport container and transferring jig and component transport container and supporting jig

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3195770A (en) * 1963-02-18 1965-07-20 Holley Plastics Company Plastic capsule packaging
US3589511A (en) * 1969-08-13 1971-06-29 Owens Illinois Inc Package and tray for tubes or the like
US3740238A (en) * 1971-01-04 1973-06-19 S Graham Stackable cookie package and tray
US4427730A (en) * 1982-04-26 1984-01-24 Keyes Fibre Company Tube packing sheet with spaced support surfaces

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3195770A (en) * 1963-02-18 1965-07-20 Holley Plastics Company Plastic capsule packaging
US3589511A (en) * 1969-08-13 1971-06-29 Owens Illinois Inc Package and tray for tubes or the like
US3740238A (en) * 1971-01-04 1973-06-19 S Graham Stackable cookie package and tray
US4427730A (en) * 1982-04-26 1984-01-24 Keyes Fibre Company Tube packing sheet with spaced support surfaces

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0997390A1 (en) 1998-09-30 2000-05-03 Draht- und Metallwarenfabrik Philipp Schneider GmbH & Co.KG Transport unit consisting of a tray-like support for bottle capsules
EP1847479A2 (en) * 2006-04-19 2007-10-24 NSK Ltd. Component transport method and combination structure of component transport container and transferring jig and component transport container and supporting jig
EP1847479A3 (en) * 2006-04-19 2008-03-26 NSK Ltd. Component transport method and combination structure of component transport container and transferring jig and component transport container and supporting jig

Similar Documents

Publication Publication Date Title
EP0257177A2 (en) Fluorescent tube dunnage
US4792045A (en) Fluorescent tube dunnage
US3589511A (en) Package and tray for tubes or the like
US4410099A (en) Case for multipacks of bottles
US3282458A (en) Nestable egg trays
US3467247A (en) Shock-absorbing one-piece tray for supporting elongated articles
US4779758A (en) Cardboard container with reinforcing slits lined with synthetic material
US4936453A (en) Compact fluorescent tube dunnage element
EP0612665B1 (en) Stackable products with conically contoured sidewalls having longitudinal folds
CA1215023A (en) Tube packing sheet with spaced support surfaces
US8152002B2 (en) Container support and storage plate
GB2169881A (en) Egg container, obtained from synthetic thermoplastic sheet material
US4942965A (en) Elongated tray for supporting tubular objects
EP0908401B1 (en) Egg tray
US4617748A (en) Label for egg trays and the like
EP0398398A1 (en) Fluorescent tube support
US5058744A (en) Minimum length fluoroescent tube dunnage element
US5016751A (en) Molded flourescent tube dunnage element
US6811050B2 (en) Packing tray
US4874091A (en) Core sample box
US3966111A (en) Container partitioning
EP0696543B1 (en) Storage and/or transit stacking of articles
EP0610100B1 (en) Storage and stacking tray for articles
CN218086246U (en) Round cover distributing and conveying device
EP0026535B1 (en) A plastics crate or tray

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 257177

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901011

17Q First examination report despatched

Effective date: 19920710

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19931202